Science.gov

Sample records for compact miniature mmic

  1. Compact, Single-Stage MMIC InP HEMT Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2008-01-01

    A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.

  2. Compact and miniature snapshot imaging polarimeter.

    PubMed

    Luo, Haitao; Oka, Kazuhiko; DeHoog, Edward; Kudenov, Michael; Schiewgerling, James; Dereniak, Eustace L

    2008-08-20

    We present and demonstrate a compact and miniature snapshot imaging polarimeter camera; it is anticipated that such a camera can be scaled down to less than 1.5 cm. Two Savart plates are used at the pupil plane to generate multiple fringes to encode the full Stokes vector in a single image. A geometric ray model is developed to explain the system. The numerical simulation based on this model is presented. Finally, the validity of the device is demonstrated by showing experimental results. PMID:18716648

  3. Compact Miniaturized Antenna for 210 MHz RFID

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Chun, Kue

    2008-01-01

    This paper describes the design and simulation of a miniaturized square-ring antenna. The miniaturized antenna, with overall dimensions of approximately one tenth of a wavelength (0.1 ), was designed to operate at around 210 MHz, and was intended for radio-frequency identification (RFID) application. One unique feature of the design is the use of a parasitic element to improve the performance and impedance matching of the antenna. The use of parasitic elements to enhance the gain and bandwidth of patch antennas has been demonstrated and reported in the literature, but such use has never been applied to miniaturized antennas. In this work, we will present simulation results and discuss design parameters and their impact on the antenna performance.

  4. 180-GHz I-Q Second Harmonic Resistive Mixer MMIC

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.

  5. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.

  6. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.

    PubMed

    Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C

    2013-12-18

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561

  7. Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array

    PubMed Central

    Aguilar, Suzette M.; Al-Joumayly, Mudar A.; Burfeindt, Matthew J.; Behdad, Nader; Hagness, Susan C.

    2014-01-01

    We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems. PMID:25392561

  8. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  9. A simplified compact model of miniaturized cross-shaped CMOS integrated Hall devices

    NASA Astrophysics Data System (ADS)

    Haiyun, Huang; Dejun, Wang; Wenbo, Li; Yue, Xu; Huibin, Qin; Yongcai, Hu

    2012-08-01

    A simplified compact model for a miniaturized cross-shaped CMOS integrated Hall device is presented. The model has a simple circuit structure, only consisting of a passive network with eight non-linear resistors and four current-controlled voltage sources. It completely considers the following effects: non-linear conductivity, geometry dependence of sensitivity, temperature drift, lateral diffusion, and junction field effect. The model has been implemented in Verilog-A hardware description language and was successfully performed in a Cadence Spectre simulator. The simulation results are in good accordance with the classic experimental results reported in the literature.

  10. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  11. SiPM arrays and miniaturized readout electronics for compact gamma camera

    NASA Astrophysics Data System (ADS)

    Dinu, N.; Imando, T. Ait; Nagai, A.; Pinot, L.; Puill, V.; Callier, S.; Janvier, B.; Esnault, C.; Verdier, M.-A.; Raux, L.; Vandenbussche, V.; Charon, Y.; Menard, L.

    2015-07-01

    This article reports on the design and features of a very compact and light gamma camera based on SiPM arrays and miniaturized readout electronics dedicated to tumor localization during radio-guided cancer surgery. This gamma camera, called MAGICS, is composed of four (2×2) photo-detection elementary modules coupled to an inorganic scintillator. The 256 channels photo-detection system covers a sensitive area of 54×53 m2. Each elementary module is based on four (2×2) SiPM monolithic arrays, each array consisting of 16 SiPM photo-sensors (4×4) with 3×3 mm2 sensitive area, coupled to a miniaturized readout electronics and a dedicated ASIC. The overall dimensions of the electronics fit the size of the detector, enabling to assemble side-by-side several elementary modules in a close-packed arrangement. The preliminary performances of the system are very encouraging, showing an energy resolution of 9.8% and a spatial resolution of less than 1 mm at 122 keV.

  12. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction

    SciTech Connect

    Kuechler, R.; Bauer, T.; Brando, M.; Steglich, F.

    2012-09-15

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 A at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T= 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360 Degree-Sign .

  13. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  14. A miniaturized compact open-loop RFOG with demodulation signal compensation technique to suppress intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Mao, Jianmin; Li, Qiang; Jin, Zhonghe

    2016-01-01

    A miniaturized compact open-loop resonator fiber optic gyro (RFOG) prototype with main body size of about 10.4 cm×10.4 cm×5.2 cm is reported, and a demodulation signal compensation technique is proposed, aiming to suppress the drift arising from accompanying intensity modulation induced by semiconductor laser diode (LD). The scheme of how to establish this miniaturized RFOG prototype is specifically stated. The linear relationship between the first-harmonic and second-harmonic demodulated signals respectively for the two counter propagating beams in the resonator is verified by theory and experiment, and based on this relationship, the demodulation signal compensation technique by monitoring the second-harmonic demodulated signal is described in detail. With this compensation technique, the gyro output stability under 1°/s rotation rate is effectively improved from 0.12°/s to 0.03°/s, and especially, an about 0.36°/s peak-to-peak fluctuation due to tuning current reset is significantly suppressed. A long term bias stability of about 4.5°/h in 1 h for such a small-sized RFOG prototype is demonstrated, which is of the same magnitude as that of currently reported large-sized RFOG systems utilizing LD as the laser source as well.

  15. A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue

    NASA Astrophysics Data System (ADS)

    Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew

    2016-09-01

    In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

  16. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  17. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  18. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  19. MMIC Package for Millimeter Wave Frequency

    NASA Technical Reports Server (NTRS)

    Bharj, Sarjit Singh; Yuan, Steve

    1997-01-01

    Princeton Microwave Technology has successfully demonstrated the transfer of technology for the MMIC package. During this contract the package design was licensed from Hughes Aircraft Company for manufacture within the U.S. A major effort was directed towards characterization of the ceramic material for its dielectric constant and loss tangent properties. After selection of a ceramic tape, the high temperature co-fired ceramic package was manufactured in the U.S. by Microcircuit Packaging of America, Inc. Microwave measurements of the MMIC package were conducted by an intercontinental microwave test fixture. The package demonstrated a typical insertion loss of 0.5 dB per transition up to 32 Ghz and a return loss of better than 15 db. The performance of the package has been demonstrated from 2 to 30 Ghz by assembling three different MMIC amplifiers. Two of the MMIC amplifiers were designed for the 26 Ghz to 30 Ghz operation while the third MMIC was a distributed amplifier from 2 to 26.5 Ghz. The measured gain of the amplifier is consistent with the device data. The package costs are substantially lower than comparable packages available commercially. Typically the price difference is greater than a factor of three. The package cost is well under $5.00 for a quantity of 10,000 pieces.

  20. The potential impact of MMICs on future satellite communications

    NASA Technical Reports Server (NTRS)

    Dunn, Vernon E.

    1988-01-01

    This is the Final Report representing the results of a 17-month study on the future trends and requirements of Monolithic Microwave Integrated Circuits (MMIC) for space communication applications. Specifically this report identifies potential space communication applications of MMICs, assesses the impact of MMIC on the classes of systems that were identified, determines the present status and probable 10-year growth in capability of required MMIC and competing technologies, identifies the applications most likely to benefit from further MMIC development and presents recommendations for NASA development activities to address the needs of these applications.

  1. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-09-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  2. Multiple Differential-Amplifier MMICs Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich

    2010-01-01

    Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.

  3. Advances in MMIC technology for communications satellites

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  4. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  5. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  6. Integrated Radial Probe Transition From MMIC to Waveguide

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam

    2007-01-01

    A radial probe transition between a monolithic microwave integrated circuit (MMIC) and a waveguide has been designed for operation at frequency of 340 GHz and to be fabricated as part of a monolithic unit that includes the MMIC. Integrated radial probe transitions like this one are expected to be essential components of future MMIC amplifiers operating at frequencies above 200 GHz. While MMIC amplifiers for this frequency range have not yet been widely used because they have only recently been developed, there are numerous potential applications for them-- especially in scientific instruments, test equipment, radar, and millimeter-wave imaging systems for detecting hidden weapons.

  7. Millimeter wave band ultra wideband transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Ling, Jin; Rolland, Nathalie

    2015-09-01

    This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

  8. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  9. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  10. A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler.

    PubMed

    Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W

    2010-05-10

    We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments.

  11. Towards Terahertz MMIC Amplifiers: Present Status and Trends

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    This viewgraph presentation surveys the fastest Monolithic Millimeter-wave Integrated Circuit (MMIC) amplifiers to date; summarize previous solid state power amp results to date; reviews examples of MMICs, reviews Power vs. Gate periphery and frequency; Summarizes previous LNA results to date; reviews Noise figure results and trends toward higher frequency

  12. Ka-band MMIC arrays for ACTS Aero Terminal Experiment

    NASA Technical Reports Server (NTRS)

    Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.

    1992-01-01

    An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.

  13. A design concept for an MMIC microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    1986-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  14. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  15. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  16. Ka-band MMIC microstrip array for high rate communications

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  17. Miniaturized handheld hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wu, Huawen; Haibach, Frederick G.; Bergles, Eric; Qian, Jack; Zhang, Charlie; Yang, William

    2014-05-01

    A miniaturized hyperspectral imager is enabled with image sensor integrated with dispersing elements in a very compact form factor, removing the need for expensive, moving, bulky and complex optics that have been used in conventional hyperspectral imagers for decades. The result is a handheld spectral imager that can be installed on miniature UAV drones or conveyor belts in production lines. Eventually, small handhelds can be adapted for use in outpatient medical clinics for point-of-care diagnostics and other in-field applications.

  18. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  19. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  20. The potential impact of MMICs on future satellite communications: Executive summary

    NASA Technical Reports Server (NTRS)

    Dunn, Vernon E.

    1988-01-01

    This Executive Summary presents the results of a 17-month study on the future trends and requirments for Monolithic Microwave Integrated circuits (MMIC) for space communication application. Specifically this report identifies potential space communication applications of MMICs, assesses the impact of MMIC on the classes of systems that were identified, determines the present status and probable 10-year growth in capability of required MMIC and competing technologies, identifies the applications most likely to benefit from further MMIC development, and presents recommendations for NASA development activities to address the needs of these applications.

  1. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  2. Empirical-Statistics Analysis for Zero-Failure GaAs MMICs Life Testing Data

    NASA Astrophysics Data System (ADS)

    Huang, Zheng-Liang; Yu, Fa-Xin; Zhang, Shu-Ting; Luo, Hao; Wang, Ping-Hui; Zheng, Yao

    GaAs MMICs (Monolithic Microwave Integrated Circuits) reliability is a critical part of the overall reliability of the thermal solution in semiconductor devices. With MMICs reliability improved, GaAs MMICs failure rates will reach levels which are impractical to measure with conventional methods in the near future. This letter proposes a methodology to predict the GaAs MMICs reliability by combining empirical and statistical methods based on zero-failure GaAs MMICs life testing data. Besides, we investigate the effect of accelerated factors on MMICs degradation and make a comparison between the Weibull and lognormal distributions. The method has been used in the reliability evaluation of GaAs MMICs successfully.

  3. Update on Waveguide-Embedded Differential MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schleht, Erich

    2010-01-01

    There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.

  4. Ka-band MMIC beam steered transmitter array

    NASA Technical Reports Server (NTRS)

    Rascoe, D. L.; Riley, A. L.; Huang, J.; Lubecke, V.; Duffy, L.

    1989-01-01

    A 32-GHz six-element linear transmitter array utilizing monolithic microwave integrated circuit (MMIC) phase shifters and power amplifiers was designed and tested as part of the development of a spacecraft array feed for NASA deep-space communications applications. Measurements of the performance of individual phase shifters, power amplifiers, and microstrip radiators were carried out, and electronic beam steering of the linear array was demonstrated. The switched-line phase shifters were accurate to within 7 percent on average and the power amplifier 1-dB compressed output power varied over 0.3 dB. The array had a beamwidth of 7.5 deg and demonstrated acceptable beam steering over + or - 8 deg. From the results, it can be concluded that this MMIC phased array has adequate beam-scanning capability for use in the two-dimensional array. The areas that need to be improved are the efficiency of the MMIC power amplifier and the insertion loss of the MMIC phase shifter.

  5. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  6. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  7. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  8. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  9. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  10. Optical control of MMIC-based T/R modules

    NASA Astrophysics Data System (ADS)

    Herczfeld, P. R.; Paolella, A.; Daryoush, A. S.; Jemison, W.; Rosen, A.

    1988-05-01

    Some of the basic issues of optical control and interconnects of MMICs are discussed with special consideration given to the application of optical technology to the new generation of phased-array antennas utilizing a very large number of individually controlled MMIC T/R modules. In these antennas, the fiber optic links are used to achieve synchronization of the T/R modules and signal coding; in optical beamforming in the microwave domain, where the control elements, such as microwave phase shifters and attennuators are activated by control signals transmitted via optical fibers; and in beamforming in the optical domain. Optial fibers are also used in control of passive microwave components such as microstrip lines and dielectric resonators.

  11. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  12. Fast bias dependent device models for CAD of MMICs

    NASA Astrophysics Data System (ADS)

    Daniel, Tom T.; Tayrani, Reza

    1995-02-01

    Fast and accurate physics-based models for High Electron Mobility Transistors (HEMTs) and Metal-Semiconductor Field-Effect Transistors (MESFETs) suitable for computer-aided design of Monolithic Microwave Integrated Circuits (MMICs) are described. These models are incorporated into Microwave Harmonica(sup trademark) to enable the prediction of device IV characteristics and nonlinear performance, as well as bias dependent equivalent circuit parameters from device geometry and material profile.

  13. Special Component Designs for Differential-Amplifier MMICs

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka

    2010-01-01

    Special designs of two types of electronic components transistors and transmission lines have been conceived to optimize the performances of these components as parts of waveguide-embedded differential-amplifier monolithic microwave integrated circuits (MMICs) of the type described in the immediately preceding article. These designs address the following two issues, the combination of which is unique to these particular MMICs: Each MMIC includes a differential double-strip transmission line that typically has an impedance between 60 and 100 W. However, for purposes of matching of impedances, transmission lines having lower impedances are also needed. The transistors in each MMIC are, more specifically, one or more pair(s) of InP-based high-electron-mobility transistors (HEMTs). Heretofore, it has been common practice to fabricate each such pair as a single device configured in the side-to-side electrode sequence source/gate/drain/gate/source. This configuration enables low-inductance source grounding from the sides of the device. However, this configuration is not suitable for differential operation, in which it is necessary to drive the gates differentially and to feed the output from the drain electrodes differentially. The special transmission-line design provides for three conductors, instead of two, in places where lower impedance is needed. The third conductor is a metal strip placed underneath the differential double-strip transmission line. The third conductor increases the capacitance per unit length of the transmission line by such an amount as to reduce the impedance to between 5 and 15 W. In the special HEMT-pair design, the side-to-side electrode sequence is changed to drain/gate/source/gate/ drain. In addition, the size of the source is reduced significantly, relative to corresponding sizes in prior designs. This reduction is justified by the fact that, by virtue of the differential configuration, the device has an internal virtual ground, and

  14. Miniature Earthmover

    NASA Technical Reports Server (NTRS)

    1996-01-01

    International Machinery Corporation (IMC) developed a miniature earthmover, the 1/8 scale Caterpillar D11N Track-type Tractor, with trademark product approval and manufacturing/marketing license from Caterpillar, Inc. Through Marshall Space Flight Center assistance, the company has acquired infrared remote control technology, originally developed for space exploration. The technology is necessary for exports because of varying restrictions on radio frequency in foreign countries. The Cat D11N weighs only 340 pounds and has the world's first miniature industrial internal combustion engine. The earthmover's uses include mining, construction and demolition work, and hazardous environment work. IMC also has designs of various products for military use and other Caterpillar replicas.

  15. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  16. An MMIC implementation of FitzHugh-Nagumo neurons using a resonant tunneling diode nonlinear transmission line

    NASA Astrophysics Data System (ADS)

    Klofaï, Yerima; Essimbi, B. Z.; Jäger, D.

    2015-02-01

    In this paper the electronic implementation of FitzHugh-Nagumo (F-N) neurons via monolithic microwave integrated circuits (MMIC) based upon a resonant tunneling diode (RTD) nonlinear transmission line (NLTL) using a coplanar waveguide (CPW) is considered. The goals are twofold. In the framework of electrical equivalent circuit emulating nonlinear active wave propagation effects, it is shown, on one hand, how different physical mechanisms are responsible for the time evolution of given input signals. A key result is that this medium supports stable and stationary pulse propagation that is only determined by the parameters of the RTD-NLTL and is independent of the boundary conditions. On the other hand, the influence of specific line elements on the output signal waveform is discussed in a most systematic manner. This leads, for the first time, to a more physical interpretation of the properties of the RTD-NLTL and, furthermore, to interesting technical applications at multi-GHz frequencies and on picosecond time scales. As a result, physically based ways are elucidated regarding how the technical design of those compact neuromorphic electrical circuits can be optimized by numerical simulations and performed using standard MMIC technologies.

  17. Miniature Laser Magnetometer

    NASA Technical Reports Server (NTRS)

    Slocum, Robert; Brown, Andy

    2011-01-01

    A conceptual design has been developed for a miniature laser magnetometer (MLM) that will measure the scalar magnitude and vector components of near-Earth magnetic fields. The MLM incorporates a number of technical innovations to achieve high-accuracy and high-resolution performance while significantly reducing the size of the laser-pumped helium magnetometer for use on small satellites and unmanned aerial vehicles (UAVs). and electronics sections that has the capability of measuring both the scalar magnetic field magnitude and the vector magnetic field components. Further more, the high-accuracy scalar measurements are used to calibrate and correct the vector component measurements in order to achieve superior vector accuracy and stability. The correction algorithm applied to the vector components for calibration and the same cell for vector and scalar measurements are major innovations. The separate sensor and electronics section of the MLM instrument allow the sensor to be installed on a boom or otherwise located away from electronics and other noisy magnetic components. The MLM s miniaturization will be accomplished through the use of advanced miniaturized components and packaging methods for the MLM sensor and electronics. The MLM conceptual design includes three key innovations. The first is a new non-magnetic laser package that will allow the placement of the laser pump source near the helium cell sensing elements. The second innovation is the design of compact, nested, triaxial Braunbek coils used in the vector measurements that reduce the coil size by a factor of two compared to existing Helmholtz coils with similar field-generation performance. The third innovation is a compact sensor design that reduces the sensor volume by a factor of eight compared to MLM s predecessor.

  18. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  19. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  20. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  1. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  2. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  3. Compact grating structure for application to filters and resonators in monolithic microwave integrated circuits

    NASA Astrophysics Data System (ADS)

    Wang, Te-Hui; Itoh, Tatsuo

    1987-12-01

    Possible high-Q circuits based on a low-loss crosstie-overlay slow-wave structure are proposed for monolithic microwave integrated circuits (MMICs). Various configurations and results for slow-wave factors are presented. This structure is used for construction of a frequency-selective reflector with a compact size. The effect of conductor loss is considered.

  4. V-band pseudomorphic HEMT MMIC phased array components for space communications

    NASA Technical Reports Server (NTRS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Hu, M.; Downey, Alan N.

    1992-01-01

    Recent advances in pseudomorphic high-electron-mobility transistor (PMHEMT) monolithic microwave integrated circuit (MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. The development of V-band PMHEMT/MMIC components including power amplifiers and phase shifters is described. For the single-stage MMIC power amplifier employing a 200 micron PMHEMT, we achieved 151.4 mW output power (757.0 mW/mm) with 1.8 dB associated gain and 26.4 percent power-added efficiency at 60 GHz. A two-stage MMIC amplifier utilizing the same devices demonstrated small-signal gain as high as 15 dB at 58 GHz. And, for the phase shifter, a four-bit phase shifter with less than 8 dB insertion loss from 61 to 63 GHz was measured.

  5. MMIC Power Amplifier Puts Out 40 mW From 75 to 110 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    A three-stage monolithic microwave integrated circuit (MMIC) W-band amplifier has been constructed and tested in a continuing effort to develop amplifiers as well as oscillators, frequency multipliers, and mixers capable of operating over wide frequency bands that extend above 100 GHz. There are numerous potential uses for MMICs like these in scientific instruments, radar systems, communication systems, and test equipment operating in this frequency range.

  6. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  7. MMIC antenna technology development in the 30/20 gigahertz band

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Kascak, T. J.; Alexovich, R. E.

    1986-01-01

    This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to pushc GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future are also discussed.

  8. Handheld interface for miniature sensors

    NASA Astrophysics Data System (ADS)

    Kedia, Sunny; Samson, Scott A.; Farmer, Andrew; Smith, Matthew C.; Fries, David; Bhansali, Shekhar

    2005-02-01

    Miniaturization of laboratory sensors has been enabled by continued evolution of technology. Field portable systems are often desired, because they reduce sample handling, provide rapid feedback capability, and enhance convenience. Fieldable sensor systems should include a method for initiating the analysis, storing and displaying the results, while consuming minimal power and being compact and portable. Low cost will allow widespread usage of these systems. In this paper, we discuss a reconfigurable Personal Data Assistant (PDA) based control and data collection system for use with miniature sensors. The system is based on the Handspring visor PDA and a custom designed motherboard, which connects directly to the PDA microprocessor. The PDA provides a convenient and low cost graphical user interface, moderate processing capability, and integrated battery power. The low power motherboard provides the voltage levels, data collection, and input/output (I/O) capabilities required by many MEMS and miniature sensors. These capabilities are relayed to connectors, where an application specific daughterboard is attached. In this paper, two applications are demonstrated. First, a handheld nucleic acid sequence-based amplification (NASBA) detection sensor consisting of a heated and optical fluorescence detection system is discussed. Second, an electrostatically actuated MEMS micro mirror controller is realized.

  9. Phase and gain control of GaAs MMIC transmit-receive modules by optical means

    NASA Astrophysics Data System (ADS)

    Herczfeld, P. R.; Daryoush, A.; Jemison, W.; Rosen, Arye; Paolella, A.

    The authors report on the optical phase and gain control of GaAs microwave monolithic integrated-circuit (MMIC) transmit-receive modules with applications for active phased-array antennas. Phase shifts of 45 degrees were obtained with 50 mW of optical power, and amplifier gain was controlled 15 dB with 250 mW of light intensity. It is concluded that this approach can be extended to the millimeter wave range, is compatible with GaAs MMICs, has potential for fast response, is cost effective, and is compatible with parallel optical processing.

  10. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  11. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  12. MMIC Amplifier Produces Gain of 10 dB at 235 GHz

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Fung, King Man; Lee, Karen; Samoska, Lorene; Wells, Mary; Gaier, Todd; Kangaslahti, Pekka; Grundbacher, Ronald; Lai, Richard; Raja, Rohit; Liu, Po-Hsin

    2007-01-01

    The first solid-state amplifier capable of producing gain at a frequency >215 GHz has been demonstrated. This amplifier was fabricated as a monolithic microwave integrated-circuit (MMIC) chip containing InP high-electron-mobility transistors (HEMTs) of 0.07 micron gate length on a 50- m-thick InP substrate.

  13. Ku-band high efficiency GaAs MMIC power amplifiers

    NASA Technical Reports Server (NTRS)

    Tserng, H. Q.; Witkowski, L. C.; Wurtele, M.; Saunier, Paul

    1988-01-01

    The development of Ku-band high efficiency GaAs MMIC power amplifiers is examined. Three amplifier modules operating over the 13 to 15 GHz frequency range are to be developed. The first MMIC is a 1 W variable power amplifier (VPA) with 35 percent efficiency. On-chip digital gain control is to be provided. The second MMIC is a medium power amplifier (MPA) with an output power goal of 1 W and 40 percent power-added efficiency. The third MMIC is a high power amplifier (HPA) with 4 W output power goal and 40 percent power-added efficiency. An output power of 0.36 W/mm with 49 percent efficiency was obtained on an ion implanted single gate MESFET at 15 GHz. On a dual gate MESFET, an output power of 0.42 W/mm with 27 percent efficiency was obtained. A mask set was designed that includes single stage, two stage, and three stage single gate amplifiers. A single stage 600 micron amplifier produced 0.4 W/mm output power with 40 percent efficiency at 14 GHz. A four stage dual gate amplifier generated 500 mW of output power with 20 dB gain at 17 GHz. A four-bit digital-to-analog converter was designed and fabricated which has an output swing of -3 V to +/- 1 V.

  14. Miniature Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Chmielewski, Artur B.

    1995-01-01

    Proposed miniature power source generates electricity for years from heat developed in small radioisotope unit without addition of fuel or dependence on sunlight. Called powerstick, is relatively inexpensive, lightweight, and rugged. Supplies power to small vehicles or scientific instruments in remote locations on Earth or in outer space. Envisioned uses include Mars miniature rovers and monitoring equipment for toxic or nuclear storage sites.

  15. W-band GaN MMIC PA with 257 mW output power at 86.5 GHz

    NASA Astrophysics Data System (ADS)

    Peng, Xu; Xubo, Song; Yuanjie, Lü; Yuangang, Wang; Shaobo, Dun; Jiayun, Yin; Yulong, Fang; Guodong, Gu; Zhihong, Feng; Shujun, Cai

    2015-08-01

    A three-stage W-band GaN monolithic microwave integrated circuit power amplifier (MMIC PA) is reported. In order to manage coupling effects between all the parts of the W-band MMIC, all matching and bias networks have been first optimized using circuit simulating software and then systematically simulated on 3D full-wave electromagnetic simulator. The fabricated MMIC PA achieves a 257 mW output power at 86.5 GHz in continuous-wave mode, with an associated power added efficiency of 5.4% and an associated power gain of 6.1 dB. The power density is 459 mW/mm. Moreover, the MMIC PA offers over 100 mW in the 83-90 GHz bandwidth. Those performances were measured at drain bias of 12 V. Project supported by the National Natural Science Foundation of China (No. 61306113).

  16. Miniature TV Camera

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Originally devised to observe Saturn stage separation during Apollo flights, Marshall Space Flight Center's Miniature Television Camera, measuring only 4 x 3 x 1 1/2 inches, quickly made its way to the commercial telecommunications market.

  17. Compact, low power consumption methane sensor based on a novel miniature multipass gas cell and a CW, room temperature interband cascade laser emitting at 3.3 μm

    NASA Astrophysics Data System (ADS)

    Dong, Lei; Li, Chunguang; Sanchez, Nancy P.; Gluszek, Aleksander K.; Griffin, Robert J.; Tittel, Frank K.

    2016-02-01

    A tunable diode laser absorption spectroscopy (TDLAS)-based methane sensor, employing a miniature dense-pattern multi-pass gas cell (MPGC) and a continuous wave, room temperature interband cascade laser (ICL), is reported. The optical integration based on an advanced folded optical path design and an efficient ICL control system with appropriate electrical power management results in a methane sensor with a small footprint (32 × 20 × 17 cm3) and low-power consumption (6W). The direct absorption measurement strategy allows absolute quantitative assessments without any calibration. Polynomial and least-squares fit algorithms are employed to remove the baseline of the spectral scan and retrieve CH4 concentrations, respectively. An Allan-Werle deviation analysis shows that the measurement precision can reach 1.4 ppb for a 60 s averaging time. Continuous measurements lasting seven days were performed to demonstrate the stability and robustness of the reported methane sensor.

  18. Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications

    NASA Technical Reports Server (NTRS)

    Venkatesan, Jaikrishna; Mysoor, Narayan R.; Hashemi, Hassein; Aflatouni, Firooz

    2010-01-01

    A fully integrated, front-end Ka-band monolithic microwave integrated circuit (MMIC) was developed that houses an LNA (low noise amplifier) stage, a down-conversion stage, and output buffer amplifiers. The MMIC design employs a two-step quadrature down-conversion architecture, illustrated in the figure, which results in improved quality of the down-converted IF quadrature signals. This is due to the improved sensitivity of this architecture to amplitude and phase mismatches in the quadrature down-conversion process. Current sharing results in reduced power consumption, while 3D-coupled inductors reduce the chip area. Improved noise figure is expected over previous SiGe-based, frontend designs

  19. APS-Workshop on Characterization of MMIC (Monolithic Microwave Integrated Circuit) Devices for Array Antenna

    NASA Technical Reports Server (NTRS)

    Smetana, Jerry (Editor); Mittra, Raj (Editor); Laprade, Nick; Edward, Bryan; Zaghloul, Amir

    1987-01-01

    The IEEE AP-S ADCOM is attempting to expand its educational, tutorial and information exchange activities as a further benefit to all members. To this end, ADCOM will be forming specialized workshops on topics of interest to its members. The first such workshop on Characterization and Packaging of MMIC Devices for Array Antennas was conceived. The workshop took place on June 13, 1986 as part of the 1986 International Symposium sponsored by IEEE AP-S and URSI in Philadelphia, PA, June 9-13, 1986. The workshop was formed to foster the interchange of ideas among MMIC device users and to provide a forum to collect and focus information among engineers experienced and interested in the topic. After brief presentations by the panelists and comments from attendees on several subtopics, the group was divided into working committees. Each committee evaluated and made recommendations on one of the subtopics.

  20. CAD facilities for GaAs MMIC mask design and generation

    NASA Astrophysics Data System (ADS)

    Giannini, Franco; Salerno, Mario; Caggese, Giuseppe; Granieri, Mario Notturno

    1989-02-01

    A software environment specifically developed for the effective design and realization of the mask tools for MMIC fabrication is described. The multitask capabilities representing the new generation of desk-top computers is utilized. The present software environment is compatible with external description languages and capable of driving the EBMF 6 mask fabricator; this is necessary for the fabrication of a monolithic microwave integrated circuit.

  1. Accurate characterization and modeling of transmission lines for GaAs MMIC's

    NASA Astrophysics Data System (ADS)

    Finlay, Hugh J.; Jansen, Rolf H.; Jenkins, John A.; Eddison, Ian G.

    1988-06-01

    The authors discuss computer-aided design (CAD) tools together with high-accuracy microwave measurements to realize improved design data for GaAs monolithic microwave integrated circuits (MMICs). In particular, a combined theoretical and experimental approach to the generation of an accurate design database for transmission lines on GaAs MMICs is presented. The theoretical approach is based on an improved transmission-line theory which is part of the spectral-domain hybrid-mode computer program MCLINE. The benefit of this approach in the design of multidielectric-media transmission lines is described. The program was designed to include loss mechanisms in all dielectric layers and to include conductor and surface roughness loss contributions. As an example, using GaAs ring resonator techniques covering 2 to 24 GHz, accuracies in effective dielectric constant and loss of 1 percent and 15 percent respectively, are presented. By combining theoretical and experimental techniques, a generalized MMIC microstrip design database is outlined.

  2. Reducing Unsteady Loads on a Piggyback Miniature Submarine

    NASA Technical Reports Server (NTRS)

    Lin, John

    2009-01-01

    A small, simple fixture has been found to be highly effective in reducing destructive unsteady hydrodynamic loads on a miniature submarine that is attached in piggyback fashion to the top of a larger, nuclear-powered, host submarine. The fixture, denoted compact ramp, can be installed with minimal structural modification, and the use of it does not entail any change in submarine operations.

  3. Miniature Incandescent Lamps as Fiber-Optic Light Sources

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; Collura, Joe; Helvajian, Henry; Pocha, Michael; Meyer, Glenn; McConaghy, Charles F.; Olsen, Barry L.

    2008-01-01

    Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating.

  4. Miniaturization of Planar Horn Motors

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-01-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2x2x2 mm piezoelectric stacks integrated into thin plates that are of the order of3 x 3x 0.2 cm.

  5. Miniaturization of planar horn motors

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Ostlund, Patrick N.; Chang, Zensheu; Bao, Xiaoqi; Bar-Cohen, Yoseph; Widholm, Scott E.; Badescu, Mircea

    2012-04-01

    There is a great need for compact, efficient motors for driving various mechanisms including robots or mobility platforms. A study is currently underway to develop a new type of piezoelectric actuators with significantly more strength, low mass, small footprint, and efficiency. The actuators/motors utilize piezoelectric actuated horns which have a very high power density and high electromechanical conversion efficiency. The horns are fabricated using our recently developed novel pre-stress flexures that make them thermally stable and increases their coupling efficiency. The monolithic design and integrated flexures that pre-stresses the piezoelectric stack eliminates the use of a stress bolt. This design allows embedding solid-state motors and actuators in any structure so that the only macroscopically moving parts are the rotor or the linear translator. The developed actuator uses a stack/horn actuation and has a Barth motor configuration, which potentially generates very large torque and speeds that do not require gearing. Finite element modeling and design tools were investigated to determine the requirements and operation parameters and the results were used to design and fabricate a motor. This new design offers a highly promising actuation mechanism that can potentially be miniaturized and integrated into systems and structures. It can be configured in many shapes to operate as multi-degrees of freedom and multi-dimensional motors/actuators including unidirectional, bidirectional, 2D and 3D. In this manuscript, we are reporting the experimental measurements from a bench top design and the results from the efforts to miniaturize the design using 2×2×2 mm piezoelectric stacks integrated into thin plates that are of the order of 3 × 3 × 0.2 cm.

  6. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary

  7. Miniature integrated-optical wavelength analyzer chip

    NASA Astrophysics Data System (ADS)

    Kunz, R. E.; Dübendorfer, J.

    1995-11-01

    A novel integrated-optical chip suitable for realizing compact miniature wavelength analyzers with high linear dispersion is presented. The chip performs the complete task of converting the spectrum of an input beam into a corresponding spatial irradiance distribution without the need for an imaging function. We demonstrate the feasibility of this approach experimentally by monitoring the changes in the mode spectrum of a laser diode on varying its case temperature. Comparing the results with simultaneous measurements by a commercial spectrometer yielded a rms wavelength deviation of 0.01 nm.

  8. Throw a Miniature Vase

    ERIC Educational Resources Information Center

    Sapiro, Maurice

    1977-01-01

    A direct correlation exists between the acquisition of skills on the potter's wheel and the vertical dimension of the finished pot. Ability equals height. Overlooked somewhere in the search for acquiring technical facility and a means of demonstrating it, is the fascinating world of miniature pottery. Describes the mechanics peculiar to small…

  9. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  10. Miniature, sub-nanometer resolution Talbot spectrometer.

    PubMed

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6  cm3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum.

  11. Micro-Miniature Split Stirling Linear Crycooler

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zehtzer, S.; Vilenchik, H.; Pundak, N.

    2010-04-01

    Novel tactics for rescue, surveillance, reconnaissance, force protection, perimeter security, navigation and targeting often involve the use of miniature infrared imagers, where the cooled imaging systems are known to be superior to their uncooled rivals in terms of working range, resolution and ability to distinguish/track fast moving objects in dynamic infrared scenes. The latest technological advances in industrial applications of high-temperature infrared detectors have spurred the development of linearly driven, long life, dynamically quiet and aurally undetectable micro-miniature split Stirling linear cryogenic coolers. Recent progress in designing highly efficient "moving magnet" resonant linear actuators and dedicated smart electronics have enabled further improvements to the cooler's size, weight, power consumption, cooldown time and ownership costs. The authors report on the development of a novel micro-miniature split Stirling linear cryogenic cooler, where, by means of increasing the driving frequency up to 90 Hz, it appeared possible to shorten the cold finger to 19 mm. The cooler was specifically designed to cool a new generation of 130 K infrared detectors for portable infrared imagers, where compactness, low steady-state power consumption, fast cool-down time, vibration export and aural stealth are of primary concern.

  12. Miniature Robotic Spacecraft for Inspecting Other Spacecraft

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer; Lemke, Matthew; Wade, Randall; Wheeler, Scott; Baggerman, Clinton

    2004-01-01

    A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.

  13. From an MMIC chip to a working cryogenic low-noise amplifier: a detailed study on packaging

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Mariotti, S.; Armogida, A.; Baz, A.; Biggi, M.; Carbonaro, L.; Cremonini, A.; De Rosa, A.; Gervasi, M.; Passerini, A.; Schiavone, F.; Zannoni, M.; Zuccarelli, J.

    2012-09-01

    Cryogenic Low Noise Amplifiers, based on MMIC HEMT technology, require a careful packaging to reach optimal performance. Differences between modeled and measured performance can often be related to chip mounting details. In the framework of the development of new cryogenic LNAs, described in a companion paper, we have developed a specific packaging to host W-band cryogenic MMIC LNAs. We present here some of the main factors analyzed in the design and chip integration activities. In particular, mechanical and thermal modeling, LNA chip gluing and adhesive properties, sensitivity to components integration accuracy (i.e. deviation from the ideal orientation). Preliminary test results are also reported.

  14. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  15. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  16. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.

  17. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.

  18. 6 to 18 GHz GaAs FET/MMIC amplifiers provide 1 W saturated output

    NASA Astrophysics Data System (ADS)

    Bybokas, Jim

    1987-05-01

    The paper describes the construction and performance characteristics of three amplifiers that combine GaAs FETs, GaAs MMICs, and thin-film hybrid construction and can provide more than 1 W of saturated output power over the 6 to 18 GHz frequency range. These amplifiers feature minimum gains of 26, 34, and 42 dB and noise figures of 13, 10, and 9 dB, respectively, and are specified for operation over the 0 to +50 C temperature range. Amplifier block diagram is included.

  19. Two-dimensional thermal modeling of power monolithic microwave integrated circuits (MMIC's)

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Christou, Aris; Pecht, Michael G.

    1992-01-01

    Numerical simulations of the two-dimensional temperature distributions for a typical GaAs MMIC circuit are conducted, aiming at understanding the heat conduction process of the circuit chip and providing temperature information for device reliability analysis. The method used is to solve the two-dimensional heat conduction equation with a control-volume-based finite difference scheme. In particular, the effects of the power dissipation and the ambient temperature are examined, and the criterion for the worst operating environment is discussed in terms of the allowed highest device junction temperature.

  20. Miniaturization in Biocatalysis

    PubMed Central

    Fernandes, Pedro

    2010-01-01

    The use of biocatalysts for the production of both consumer goods and building blocks for chemical synthesis is consistently gaining relevance. A significant contribution for recent advances towards further implementation of enzymes and whole cells is related to the developments in miniature reactor technology and insights into flow behavior. Due to the high level of parallelization and reduced requirements of chemicals, intensive screening of biocatalysts and process variables has become more feasible and reproducibility of the bioconversion processes has been substantially improved. The present work aims to provide an overview of the applications of miniaturized reactors in bioconversion processes, considering multi-well plates and microfluidic devices, update information on the engineering characterization of the hardware used, and present perspective developments in this area of research. PMID:20479988

  1. Miniaturized Environmental Monitoring Instrumentation

    SciTech Connect

    C. B. Freidhoff

    1997-09-01

    The objective of the Mass Spectrograph on a Chip (MSOC) program is the development of a miniature, multi-species gas sensor fabricated using silicon micromachining technology which will be orders of magnitude smaller and lower power consumption than a conventional mass spectrometer. The sensing and discrimination of this gas sensor are based on an ionic mass spectrograph, using magnetic and/or electrostatic fields. The fields cause a spatial separation of the ions according to their respective mass-to-charge ratio. The fabrication of this device involves the combination of microelectronics with micromechanically built sensors and, ultimately, vacuum pumps. The prototype of a chemical sensor would revolutionize the method of performing environmental monitoring for both commercial and government applications. The portable unit decided upon was the miniaturized gas chromatograph with a mass spectrometer detector, referred to as a GC/MS in the analytical marketplace.

  2. Miniature ceramic fuel cell

    DOEpatents

    Lessing, Paul A.; Zuppero, Anthony C.

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  3. Miniature multichannel biotelemeter system

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.; Sumida, J. T. (Inventor)

    1974-01-01

    A miniature multichannel biotelemeter system is described. The system includes a transmitter where signals from different sources are sampled to produce a wavetrain of pulses. The transmitter also separates signals by sync pulses. The pulses amplitude modulate a radio frequency carrier which is received at a receiver unit. There the sync pulses are detected by a demultiplexer which routes the pulses from each different source to a separate output channel where the pulses are used to reconstruct the signals from the particular source.

  4. Miniaturized photoacoustic spectrometer

    DOEpatents

    Okandan, Murat; Robinson, Alex; Nielson, Gregory N.; Resnick, Paul J.

    2016-08-09

    A low-power miniaturized photoacoustic sensor uses an optical microphone made by semiconductor fabrication techniques, and optionally allows for all-optical communication to and from the sensor. This allows integration of the photoacoustic sensor into systems with special requirements, such as those that would be reactive in an electrical discharge condition. The photoacoustic sensor can also be operated in various other modes with wide application flexibility.

  5. Miniature Heat Transport System for Nanosatellite Technology

    NASA Technical Reports Server (NTRS)

    Douglas, Donya M,

    1999-01-01

    The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an

  6. Miniaturizing RFID for magnamosis.

    PubMed

    Jiang, Hao; Chen, Shijie; Kish, Shad; Loh, Lokkee; Zhang, Junmin; Zhang, Xiaorong; Kwiat, Dillon; Harrison, Michael; Roy, Shuvo

    2014-01-01

    Anastomosis is a common surgical procedure using staples or sutures in an open or laparoscopic surgery. A more effective and much less invasive alternative is to apply the mechanical pressure on the tissue over a few days [1]. Since the pressure is produced by the attractive force between two permanent magnets, the procedure is called magnamosis[1]. To ensure the two magnets are perfectly aligned during the surgery, a miniaturized batteryless Radio Frequency IDentification (RFID) tag is developed to wirelessly telemeter the status of a pressure sensitive mechanical switch. Using the multi-layer circular spiral coil design, the diameter of the RFID tag is shrunk to 10, 15, 19 and 27 mm to support the magnamosis for children as well as adults. With the impedance matching network, the operating distance of these four RFID tags are longer than 10 cm in a 20 × 22 cm(2) area, even when the tag's normal direction is 45° off the antenna's normal direction. Measurement results also indicate that there is no noticeable degradation on the operating distance when the tag is immersed in saline or placed next to the rare-earth magnet. The miniaturized RFID tag presented in this paper is able to support the magnamosis and other medical applications that require the miniaturized RFID tag.

  7. Miniaturized GC/MS instrumentation for in situ measurements: micro gas chromatography coupled with miniature quadrupole array and paul ion trap mass spectrometers

    NASA Technical Reports Server (NTRS)

    Holland, P.; Chutjian, A.; Darrach, M.; Orient, O.

    2002-01-01

    Miniaturized chemical instrumentation is needed for in situ measurements in planetary exploration and other spaceflight applications where factors such as reduction in payload requirements and enhanced robustness are important. In response to this need, we are 'continuing to develop miniaturized GC/MS instrumentation which combines chemical separations by gas chromatography (GC) with mass spectrometry (MS) to provide positive identification of chemical compounds in complex mixtures of gases, such as those found in the International Space Station's cabin atmosphere. Our design approach utilizes micro gas chromatography components coupled with either a miniature quadrupole mass spectrometer array (QMSA) or compact, high-resolution Paul ion trap.

  8. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  9. Application of MMIC modules in future multiple beam satellite antenna systems

    NASA Technical Reports Server (NTRS)

    Smetana, J.

    1982-01-01

    Multiple beam antenna systems for advanced communication satellites operating in the 30/20 GHz frequency bands (30 GHz uplink, 20 GHz downlink) were developed. Up to twenty 0.3 deg HPBW fixed spot beams and six 0.3 deg HPBW scanning spot beams will be required. Array-fed dual reflector antenna systems in which monolithic microwave integrated circuit (MMIC) phase shift and amplifier modules are used with each radiating element of the feed array for beam pointing and power gain were developed. The feasibility of distributed power amplification and beam pointing with MMIC modules in the elements of an array and to develop a data base for future development were demonstrated. The technical discussion centers around the potential advantages of ""monolithic'' antennas for specific applications as compared to systems using high powered TWT's. These include: reduced losses in the beam forming network; advantage of space combining and graceful degradation; dynamic control of beam pointing and illumination contour; and possibilities for cost and weight reduction.

  10. Design and Analysis of Broad-Band Fixed-Tuned Submillimeter-Waveguide Multipliers using MMIC Style Circuit Topology

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Kim, M.; Martin, S. C.; Mehdi, I.; Smith, R. P.; Siegel, P. H.

    1996-01-01

    The design and analysis of varactor diode doubler, quadrupler and cascaded doubler circuits for 320 and 640 GHz have been completed. A new approach has been employed to produce a tunerless waveguide mount with a very flexible, frequency scaleable, MMIC style multiplier circuit. The concept, design, predicted performance and measurements on some of the constituent mount elements are presented.

  11. Miniaturized radiation chirper

    DOEpatents

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  12. Miniature electrical connector

    DOEpatents

    Casper, Robert F.

    1976-01-01

    A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.

  13. Perspectives on Simulation and Miniaturization.

    ERIC Educational Resources Information Center

    McCluskey, Michael R.

    Training applications of simulation and miniaturization are examined, as are areas where research is needed to develop cost-effectiveness simulation methodologies for training. In order for simulation and miniaturization techniques to reach maximum levels of effectiveness, systems analysis is needed to define physical and psychological dimensions,…

  14. Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Schmitz, Adele

    2009-01-01

    Closely following the development reported in the immediately preceding article, three new monolithic microwave integrated circuit (MMIC) amplifiers that would operate in the 120-to-200-GHz frequency band have been designed and are under construction at this writing. The active devices in these amplifiers are InP high-electron-mobility transistors (HEMTs). These amplifiers (see figure) are denoted the LSLNA150, the LSA200, and the LSA185, respectively. Like the amplifiers reported in the immediately preceding article, the LSLNA150 (1) is intended to be a prototype of low-noise amplifiers (LNAs) to be incorporated into spaceborne instruments for sensing cosmic microwave background radiation and (2) has potential for terrestrial use in electronic test equipment, passive millimeter-wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The HEMTs in this amplifier were fabricated according to 0.08- m design rules of a commercial product line of InP HEMT MMICs at HRL Laboratories, LLC, with a gate geometry of 2 fingers, each 15 m wide. On the basis of computational simulations, this amplifier is designed to afford at least 15 dB of gain, with a noise figure of no more than about 6 dB, at frequencies from 120 to 160 GHz. The measured results of the amplifier are shown next to the chip photo, with a gain of 16 dB at 150 GHz. Noise figure work is ongoing. The LSA200 and the LSA185 are intended to be prototypes of transmitting power amplifiers for use at frequencies between about 180 and about 200 GHz. These amplifiers have also been fabricated according to rules of the aforesaid commercial product line of InP HEMT MMICs, except that the HEMTs in these amplifiers are characterized by a gate geometry of 4 fingers, each 37 m wide. The measured peak performance of the LSA200 is characterized by a gain of about 1.4 dB at a frequency of 190 GHz; the measured peak performance of the LSA185 is characterized by a gain of about 2

  15. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  16. Miniaturized Mid-Infrared Sensor Technologies

    SciTech Connect

    Kim, S; Young, C; Mizaikoff, B

    2007-08-16

    Fundamental vibrational and rotational modes associated with most inorganic and organic molecules are spectroscopically accessible within the mid-infrared (MIR; 3-20 {micro}m) regime of the electromagnetic spectrum. The interaction between MIR photons and organic molecules provides particularly sharp transitions, which - despite the wide variety of organic molecules - provide unique MIR absorption spectra reflecting the molecularly characteristic arrangement of chemical bonds within the probed molecules via the frequency position of the associated vibrational and rotational transitions. Given the inherent molecular selectivity and achievable sensitivity, MIR spectroscopy provides an ideal platform for optical sensing applications. Despite this potential, early MIR sensing applications were limited to localized applications due to the size of the involved instrumentation, and limited availability of appropriately compact MIR optical components including light sources, detectors, waveguides, and spectrometers. During the last decades, engineering advances in photonics and optical engineering have facilitated the translation of benchtop-style MIR spectroscopy into miniaturized optical sensing schemes providing a footprint compatible with portable instrumentation requirements for field deployable analytical tools. In this trend article, we will discuss recent advances and future strategies for miniaturizing MIR sensor technology. The Beer-Lambert law implies that achievable limit of detection (LOD) for any optical sensor system improves by increasing the interaction length between photons and target analyte species such as e.g., folding the optical path multiple times as in multi-pass gas phase sensing; however, this governing paradigm naturally leads to an increase in system dimensions. Hence, miniaturization of optical sensing system requires scaling down of each optical component, yet improving the performance of each optical element within a smaller form factor for

  17. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    PubMed

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  18. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  19. T/R Multi-Chip MMIC Modules for 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.

    2009-01-01

    Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.

  20. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  1. Miniature, ruggedized data collector

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  2. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  3. A highly miniaturized NDIR methane sensor

    NASA Astrophysics Data System (ADS)

    Ayerden, N. P.; de Graaf, Ger; Enoksson, Peter; Wolffenbuttel, Reinoud F.

    2016-04-01

    The increasing demand for handheld systems for absorption spectroscopy has triggered the development of microspectrometers at various wavelength ranges. Several MEMS implementations of the light source, interferometer/optical filter, and detector have already been reported in the literature. However, the size of microspectrometers is still limited by the required absorption path length in the sample gas cell. This paper presents a compact MEMS linear-variable optical filter (LVOF) where the resonator cavity of the filter is also used as a sample gas cell to measure the absorption of methane at 3392nm wavelength. The physical resonator cavity length is elongated 62.2-fold, using multiple reflections from highly reflective Bragg mirrors to achieve a sufficiently long effective optical absorption path. Although the LVOF would in principle enable operation as a robust portable microspectrometer, here it is used in a miniaturized NDIR methane sensor for wavelength selection and calibration.

  4. Producing miniature threads. Final report

    SciTech Connect

    Gillespie, L.K.; Robb, J.M.

    1981-11-01

    Miniature precision actuators, timers, and switches typically utilize miniature threads to provide convenient assembly, disassembly and adjustment. Thread rolling provides high-quality external threads with greater strength and lower cost than other thread-producing techniques. Tap breakage is a significant problem when 0.5 and 0.6 Unified National Miniature (UNM) threads must be produced in hard materials such as SAE K95100 high-permeability magnetic steel. Aluminum parts can be tapped with no difficulty in these sizes. Stainless steel 0.5 UNM screws break at loads of 21 lb (53 N). Thread failure occurs at thread heights of 62% full thread or lower.

  5. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  6. Experimental and theoretical study of parasitic leakage/resonance in a K/Ka-band MMIC package

    NASA Technical Reports Server (NTRS)

    Yook, Jong-Gwan; Simons, Rainee N.; Katehi, Linda P. B.; Shaulkhauser, Kurt

    1996-01-01

    In this paper, electromagnetic leakage and spurious resonances in a K/Ka-band (18-40 GHz) MMIC hermetic package designed for a phase shifter chip are studied using the finite element method (FEM) and the numerical simulation results are compared with measured data. Both in measured and calculated data several spurious resonances are observed in the 18 to 24 GHz region and the origin of this phenomenon is identified by virtue of the modeling capability of the FEM.

  7. A Laser Interferometric Miniature Sensor

    SciTech Connect

    Carr, Dustin W., PhD.; Baldwin, Patrick C.; Milburn, Howard; Robinson, David

    2011-09-12

    This is the second year of a Phase II Small Business Innovation Research (SBIR) contract geared towards the development of a new seismic sensor. Ground-based seismic monitoring systems have proven to be very capable in identifying nuclear tests, and can provide somewhat precise information on the location and yield of the explosive device. Making these measurements, however, currently requires very expensive and bulky seismometers that are difficult to deploy in places where they are most needed. A high performance, compact device can enable rapid deployment of large scale arrays, which can in turn be used to provide higher quality data during times of critical need. The use of a laser interferometer-based device has shown considerable promise, while also presenting significant challenges. The greatest strength of this optical readout technique is the ability to decouple the mechanical design from the transducer, thus enabling a miniaturized design that is not accessible with conventional sensing techniques. However, the nonlinearity in the optical response must be accounted for in the sensor output. Previously, we had proposed using a force-feedback approach to position the sensor at a point of maximum linearity. However, it can be shown that the combined nonlinearities of the optical response and the force-feedback curve necessarily results in a significant amount of unwanted noise at low frequencies. Having realized this, we have developed a new approach that eliminates force feedback, allowing the proof mass to move freely at all times. This takes advantage of some advanced optical spatial filtering that was developed at Symphony Acoustics for other types of sensors, and was recently adapted to this work. After processing the signals in real time, the digital output of the device is intrinsically linear, and the sensor can operate at any orientation with the same level of resolution, while instantly adapting to significant changes in orientation. Ultimately, we

  8. Noise in miniature microphones.

    PubMed

    Thompson, Stephen C; LoPresti, Janice L; Ring, Eugene M; Nepomuceno, Henry G; Beard, John J; Ballad, William J; Carlson, Elmer V

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed. PMID:11863188

  9. Miniature Chemical Sensor

    SciTech Connect

    Andrew C. R. Pipino

    2004-12-13

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages.

  10. Noise in miniature microphones

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen C.; Lopresti, Janice L.; Ring, Eugene M.; Nepomuceno, Henry G.; Beard, John J.; Ballad, William J.; Carlson, Elmer V.

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed.

  11. Miniaturized Electrochemical Flow Cells

    PubMed Central

    Sahlin, Eskil; Halle, Alexandra ter; Schaefer, Kathleen; Horn, Jeffery; Then, Matthew; Weber, Stephen G.

    2006-01-01

    Several novel types of miniaturized electrochemical flow cells are described. The flow cells are fabricated in fluorinated ethylene propylene using a novel technique where channels with inner diameters down to 13 μm are integrated with electrodes. The channel is formed by shrinking and simultaneous melting of a heat shrink/melt tubing around a channel template (a tungsten wire) and electrodes followed by removal of the channel template. The technique allows incorporation of different electrode materials of different sizes. The electrode configuration consists of one or two working electrodes inside the channel and a counter electrode located in the channel outlet reservoir. Electrode configurations with different channel and working electrode sizes, different electrode materials including carbon fibers, glassy carbon rods, poly(tetrafluoroethylene)/carbon composite material, and platinum wires, and different arrangements have been assembled. Hydrodynamic voltammograms in dual-electrode (generator–collector) experiments indicate good potential control for cells with 25-μm channels, while there is some iR drop in cells with 13-μm channels. Cells prepared with a cylindrical working electrode tangent and perpendicular to a flow channel show a flow rate dependence consistent with thin-layer cell behavior. Electrode areas can be made in the range of 10−10–10−8 m2. PMID:12622401

  12. The Whole new world of miniature technology

    SciTech Connect

    Gillespie, L.K.

    1980-07-01

    In the past ten years, miniaturization of both electrical and mechanical parts has significantly increased. Documentation of the design and production capabilities of miniaturization in the electronics industry is well-defined. Literature on the subject of miniaturization of metal piece parts, however, is hard to find. Some of the current capabilities in the manufacture of miniature metal piece parts or miniature features in larger piece parts are discussed.

  13. Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared.

    PubMed

    Fossi, Armande Pola; Ferrec, Yann; Roux, Nicolas; D'almeida, Oscar; Guerineau, Nicolas; Sauer, Hervé

    2016-05-01

    We present the design and the realization of a compact and robust imaging spectrometer in the mid-infrared spectral range. This camera combines a small static Fourier transform birefringent interferometer and a cooled miniaturized infrared camera in order to build a robust and compact instrument that can be embedded in an unmanned aerial vehicle for hyperspectral imaging applications. This instrument has been tested during a gas detection measurement campaign. First results are presented. PMID:27128034

  14. Miniature Intelligent Sensor Module

    NASA Technical Reports Server (NTRS)

    Beech, Russell S.

    2007-01-01

    An electronic unit denoted the Miniature Intelligent Sensor Module performs sensor-signal-conditioning functions and local processing of sensor data. The unit includes four channels of analog input/output circuitry, a processor, volatile and nonvolatile memory, and two Ethernet communication ports, all housed in a weathertight enclosure. The unit accepts AC or DC power. The analog inputs provide programmable gain, offset, and filtering as well as shunt calibration and auto-zeroing. Analog outputs include sine, square, and triangular waves having programmable frequencies and amplitudes, as well as programmable amplitude DC. One innovative aspect of the design of this unit is the integration of a relatively powerful processor and large amount of memory along with the sensor-signalconditioning circuitry so that sophisticated computer programs can be used to acquire and analyze sensor data and estimate and track the health of the overall sensor-data-acquisition system of which the unit is a part. The unit includes calibration, zeroing, and signalfeedback circuitry to facilitate health monitoring. The processor is also integrated with programmable logic circuitry in such a manner as to simplify and enhance acquisition of data and generation of analog outputs. A notable unique feature of the unit is a cold-junction compensation circuit in the back shell of a sensor connector. This circuit makes it possible to use Ktype thermocouples without compromising a housing seal. Replicas of this unit may prove useful in industrial and manufacturing settings - especially in such large outdoor facilities as refineries. Two features can be expected to simplify installation: the weathertight housings should make it possible to mount the units near sensors, and the Ethernet communication capability of the units should facilitate establishment of communication connections for the units.

  15. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  16. Design and fabrication of a fingerprint imager with compact LED illumination and compact imaging optics.

    PubMed

    Joo, Jae Young; Woo, Do-Kyun; Park, Soon Sub; Lee, Sun-Kyu

    2010-08-30

    In this study, we presented a light-emitting diode-based (LED) miniaturized optical pattern imager for slim mobile phone application. To meet volume constraints, we designed a miniaturized compact illuminating and imaging optical component. The objective was to minimize optical loss using several nano- and micro-fabrication methods. After integration into a single optical body, the prototype imager-with dimensions of 6.8 × 2.2 × 2.5 mm and a weight of 0.4 g-demonstrated clear feasibility in measuring 2D micropatterns with widths of 50 and 10 μm.

  17. Miniaturized LTCC elliptic-function lowpass filters with side stopbands

    DOE PAGES

    Hsieh, Lung -Hwa; Dai, Steve Xunhu

    2015-05-28

    A compact, high-selectivity, and wide stopband lowpass filter is highly demanded in wireless communication systems to suppress adjacent harmonics and unwanted signals. In this letter, a new miniaturized lowpass filter with elliptic-function frequency response is introduced. The filter is fabricated in multilayer low temperature cofired ceramics. The size of the miniaturized filter is 5.5 × 3.9 × 1.72 mm3. As a result, the measured insertion loss of the filter is better than 0.37 dB from DC to 1.28 GHz and the measured stopband of the filter is great than 22 dB from 2.3 to 7.5 GHz.

  18. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  19. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  20. Investigation of Microwave Monolithic Integrated Circuit (MMIC) non-reciprocal millimeterwave components

    NASA Astrophysics Data System (ADS)

    Talisa, S. H.; Krishnaswamy, S. V.; Adam, J. D.; Yoo, K. C.; Doyle, N. J.

    1991-09-01

    Two ferrite film deposition techniques were investigated in this program for possible use in the monolithic integration of Gallium Arsenide electronic and magnetic millimeter-wave devices; (1) spin-spray plating (SSP) of nickel zinc ferrite films, and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP technique potential for this application was demonstrated. Film structural characteristics were studied, as well as their adhesions to other substrates and the conditions for growth of thicker films. Multilayers totalling 25 microns in thickness were grown on semiconducting substrates. The SSP process occurs at about 100 C and was experimentally demonstrated not to damage Gallium arsenide MMIC devices. The magnetic characteristics of these films were comparable to ceramic materials. A scheme for the monolithic integration of magnetic and Gallium arsenide electronic devices was proposed and its feasibility experimentally demonstrated. The films showed higher dielectric loss than was desirable, possibly owing to high water content. A better drying technique is required. Barium ferrite films with C-axis texture were reproducibly grown on sapphire. Magnetic measurements yielded acceptable saturation magnetization and anisotrophy field. Ferromagnetic resonance was not observed, possibly due to broad linewidths.

  1. Finite element analysis of MMIC structures and electronic packages using absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Jian-She; Mittra, Raj

    1994-03-01

    In this paper, a three-dimensional finite element method (FEM) is employed in conjunction with first and second-order absorbing boundary conditions (ABC's) to analyze waveguide discontinuities and to derive their scattering parameters. While the application of FEM for the analysis of MMIC structures is not new, to the best of the knowledge of the authors the technique for mesh truncation for microstrip lines using the first and higher-order ABC's, described in this paper, has not been reported elsewhere. The scattering parameters of a microstrip discontinuity are computed in two steps. As a first step, the field distribution of the fundamental mode in a uniform microstrip is obtained by exciting the uniform line with the quasi-static transverse electric field, letting it propagate, and then extracting the dominant mode pattern after the higher order modes have decayed. In step two, the discontinuity problem is solved by exciting the structure by using the fundamental mode obtained in step one. The scattering parameters based on the voltage definition are calculated by using the line integral of electric fields underneath the strip. Numerical solutions for several waveguide discontinuities and electronic packages are obtained and compared with the published data.

  2. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  3. Miniaturized radioisotope solid state power sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  4. Miniaturized Cassegrainian concentrator concept demonstration

    NASA Technical Reports Server (NTRS)

    Patterson, R. E.; Rauschenbach, H. S.

    1982-01-01

    High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.

  5. Miniature Laser Tracker

    DOEpatents

    Vann, Charles S.

    2003-09-09

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  6. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  7. Development of a miniature actuator/controller system

    NASA Technical Reports Server (NTRS)

    Stanley, Scott P.

    1995-01-01

    Development of new products is often hampered or prevented by the cost and resource commitments required by a traditional engineering approach. Schaeffer Magnetics, Inc. identified the potential need for a miniature incremental actuator with an integrated controller but did not want the development to be subject to the obstacles inherent in the traditional approach. In response a new approach - the Pathfinder Engineering Program (PEP) - was developed to streamline new product generation and improve product quality. The actuator/controller system resulting from implementation of this new procedure is an exceptionally compact and self-contained device with many applications.

  8. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  9. Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate

    NASA Technical Reports Server (NTRS)

    Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.; Fung, A.; Samoska, Lorene A.; Lai, R.

    2006-01-01

    In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.

  10. Li-ion battery operated power amplifier MMICs utilizing SrTiO 3 capacitors and heterojunction FETs for PDC and CDMA cellular phones

    NASA Astrophysics Data System (ADS)

    Iwata, N.; Yamaguchi, K.; Nishimura, T. B.; Takemura, K.; Miyasaka, Y.

    1999-04-01

    Highly efficient two-stage 1 W power amplifier MMICs utilizing SrTiO 3 capacitors and Si-doped AlGaAs/InGaAs/Si-doped AlGaAs FETs have been developed for Li-ion battery operated digital cellular phones. For the personal digital cellular (PDC) applications, a power amplifier MMIC with 2.0×2.4 mm 2 area includes all bias and matching circuits. The MMIC delivered a 950 MHz π/4-shifted QPSK output signal power ( Pout) of 0.8 W (29.0 dBm), a power-added efficiency (PAE) of 30% and an associated gain ( Ga) of 26.4 dB with an adjacent channel leakage power ratio (ACPR) of -50.5 dBc at 50 kHz off-center frequency under 3.4 V drain bias operation. The power performance showed good agreement with a simulated one when series resistances in the output matching circuit and the drain bias circuit for the second-stage FET were taken into account. When the circuits were removed from the MMIC, it exhibited PAE of 42.4% and Pout of 1.0 W (30.0 dBm) with Ga of 29.8 dB at the PDC criteria. These results revealed that a low loss in the output passive circuits of a power amplifier MMIC is essential. Then, a power amplifier MMIC for the IS-95 application at 840 MHz was designed and evaluated without the output circuit. The MMIC with 2.0×1.5 mm 2 area delivered Pout of 0.93 W (29.7 dBm), PAE of 48.6% and Ga of 28.4 dB with ACPR of -42 dBc at 0.9 MHz off-center frequency under 3.5 V operation. Even operated at a reduced supply voltage of 1.2 V, a high PAE of 46.9% was obtained. These results indicate that the developed power amplifier MMICs and its approach are promising for small-size and lightweight digital cellular phones with long talk time.

  11. Visual thread quality for precision miniature mechanisms

    SciTech Connect

    Gillespie, L.K.

    1981-04-01

    Threaded features have eight visual appearance factors which can affect their function in precision miniature mechanisms. The Bendix practice in deburring, finishing, and accepting these conditions on miniature threads is described as is their impact in assemblies of precision miniature electromechanical assemblies.

  12. A compact semiconductor digital interferometer and its applications

    NASA Astrophysics Data System (ADS)

    Britsky, Oleksander I.; Gorbov, Ivan V.; Petrov, Viacheslav V.; Balagura, Iryna V.

    2015-05-01

    The possibility of using semiconductor laser interferometers to measure displacements at the nanometer scale was demonstrated. The creation principles of miniature digital Michelson interferometers based on semiconductor lasers were proposed. The advanced processing algorithm for the interferometer quadrature signals was designed. It enabled to reduce restrictions on speed of measured movements. A miniature semiconductor digital Michelson interferometer was developed. Designing of the precision temperature stability system for miniature low-cost semiconductor laser with 0.01ºС accuracy enabled to use it for creation of compact interferometer rather than a helium-neon one. Proper firmware and software was designed for the interferometer signals real-time processing and conversion in to respective shifts. In the result the relative displacement between 0-500 mm was measured with a resolution of better than 1 nm. Advantages and disadvantages of practical use of the compact semiconductor digital interferometer in seismometers for the measurement of shifts were shown.

  13. Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.

    2012-01-01

    In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.

  14. Micro-miniature radio frequency transmitter for communication and tracking applications

    SciTech Connect

    Crutcher, R.I.; Emery, M.S.; Falter, K.G.; Nowlin, C.H.; Rochelle, J.M.; Clonts, L.G.

    1996-12-31

    A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its small size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.

  15. Recent Advances in Miniaturized Optical Gyroscopes

    NASA Astrophysics Data System (ADS)

    Dell'Olio, F.; Tatoli, T.; Ciminelli, C.; Armenise, M. N.

    2014-03-01

    Low-cost chip-scale optoelectronic gyroscopes having a resolution ≤ 10 °/h and a good reliability also in harsh environments could have a strong impact on the medium/high performance gyro market, which is currently dominated by well-established bulk optical angular velocity sensors. The R&D activity aiming at the demonstration of those miniaturized sensors is crucial for aerospace/defense industry, and thus it is attracting an increasing research effort and notably funds. In this paper the recent technological advances on the compact optoelectronic gyroscopes with low weight and high energy saving are reviewed. Attention is paid to both the so-called gyroscope-on-a-chip, which is a novel sensor, at the infantile stage, whose optical components are monolithically integrated on a single indium phosphide chip, and to a new ultra-high Q ring resonator for gyro applications with a configuration including a 1D photonic crystal in the resonant path. The emerging field of the gyros based on passive ring cavities, which have already shown performance comparable with that of optical fiber gyros, is also discussed.

  16. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  17. Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation

    PubMed Central

    Choi, Ben Jiwon; Imlach, Wendy L.; Jiao, Wei; Wolfram, Verena; Wu, Ying; Grbic, Mark; Cela, Carolina; Baines, Richard A.; Nitabach, Michael N.; McCabe, Brian D.

    2014-01-01

    Summary Miniature neurotransmission is the transsynaptic process where single synaptic vesicles spontaneously released from presynaptic neurons induce miniature postsynaptic potentials. Since their discovery over 60 years ago, miniature events have been found at every chemical synapse studied. However, the in vivo necessity for these small-amplitude events has remained enigmatic. Here, we show that miniature neurotransmission is required for the normal structural maturation of Drosophila glutamatergic synapses in a developmental role that is not shared by evoked neurotransmission. Conversely, we find that increasing miniature events is sufficient to induce synaptic terminal growth. We show that miniature neurotransmission acts locally at terminals to regulate synapse maturation via a Trio guanine nucleotide exchange factor (GEF) and Rac1 GTPase molecular signaling pathway. Our results establish that miniature neurotransmission, a universal but often-overlooked feature of synapses, has unique and essential functions in vivo. PMID:24811381

  18. 0.8-5.2GHz Broad-Band SiGe-MMIC Quadrature Mixer for Software Defined Radio Receiver

    NASA Astrophysics Data System (ADS)

    Murakami, Keishi; Suematsu, Noriharu; Tsutsumi, Koji; Kanazawa, Gakushi; Sekine, Tomotsugu; Kubo, Hiroshi; Isota, Yoji

    For the next generation wireless terminals used in the software defined radio (SDR), multi-band / multi-mode transceivers and their MMIC are required which cover the wide RF frequency range from several hundreds MHz up to several GHz. In this paper, 0.8-5.2GHz broad-band SiGe-MMIC quadrature mixer (Q-MIX) for multi-band / multi-mode direct conversion receiver has been developed. By using a static type frequency divider as a 90 degrees local (LO) power divider, measured error vector magnitude (EVM) of less than 3.1% can be achieved in the cases of 0.8/2.1GHz W-CDMA and 5.2GHz wireless Local Area Network (LAN) (IEEE 802.11a) reception. This Q-MIX also shows broad-band characteristic for base-band signal and is applicable for 4G cellular. By using fabricated Q-MIX, a multi-band / multi-mode (1.9GHz (3rd generation cellular (W-CDMA)) / 5.2GHz (4th generation cellular (Multi-Carrier (MC)-CDMA))) receiver has been developed and it has firstly demonstrated the successful reception of motion picture via W-CDMA and MC-CDMA.

  19. Development and evaluation of a miniaturized procedure for determining the bonding index: a novel prototype for solid dosage formulation development.

    PubMed

    Lamey, Kimberly; Schwartz, Joseph; Muller, Francis

    2003-08-01

    The purpose of this study was a comparative evaluation of miniaturized vs. University of Minnesota's (i.e., U of Minn. = Hiestand's) procedures for determining the tensile strength, indentation hardness, and bonding index (BI), one out of three Indices of Tableting Performance (ITP). Tableting properties of six direct compression placebo formulations were determined by using a compaction simulator and a Texture Analyser TA-XT2I, or by following the U of Minn. method, which included a specially designed triaxial compression device, a computer-controlled mechanical stress-strain analyzer, and a dynamic pendulum impact apparatus. Miniaturization of the procedures to determine the ITP, as well as the ability to differentiate between materials while operating compaction cycles more comparable to standard tablet production conditions, enabled proper evaluation of each material's inherent tableting properties. Indentation diameter calculated via an empirical equation appeared to correlate well with, and provided acceptable precision of accuracy to, the determination of indentation diameter via standard optical microscopy methods. The miniaturized and U of Minn. procedure exhibited a significant degree of correlation when comparing the BI. However, the tensile strength and indentation hardness values were somewhat different due to the use of triaxial decompression for the U of Minn. procedure vs. standard compaction profiling for the miniaturized procedure. The present direct compression placebo formulation data gathered from the miniaturized procedures and compared with the U of Minn. method for determining the ITP suggest that both techniques yield similar conclusions. However, discrimination of out-of-die compaction properties determined via the miniaturized procedures, such as tensile strength and indentation hardness, appeared to associate more precisely with changes in strain rate, thus allowing better discrimination of particle-particle interactions and ductile

  20. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  1. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw

  2. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control.

    PubMed

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5-10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  3. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-08-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices.

  4. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  5. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  6. Personal miniature electrophysiological tape recorder

    NASA Astrophysics Data System (ADS)

    Green, H.

    1981-11-01

    The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.

  7. Personal miniature electrophysiological tape recorder

    NASA Technical Reports Server (NTRS)

    Green, H.

    1981-01-01

    The use of a personal miniature electrophysiological tape recorder to measure the physiological reactions of space flight personnel to space flight stress and weightlessness is described. The Oxford Instruments Medilog recorder, a battery-powered, four-channel cassette tape recorder with 24 hour endurance is carried on the person and will record EKG, EOG, EEG, and timing and event markers. The data will give information about heart rate and morphology changes, and document adaptation to zero gravity on the part of subjects who, unlike highly trained astronauts, are more representative of the normal population than were the subjects of previous space flight studies.

  8. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  9. A miniature remote deadweight calibrator

    NASA Astrophysics Data System (ADS)

    Supplee, Frank H., Jr.; Tcheng, Ping

    A miniature, computer-controlled, deadweight calibrator was developed to remotely calibrate a force transducer mounted in a cryogenic chamber. This simple mechanism allows automatic loading and unloading of deadweights placed onto a skin friction balance during calibrations. Equipment for the calibrator includes a specially designed set of five interlocking 200-milligram weights, a motorized lifting platform, and a controller box taking commands from a microcomputer on an IEEE interface. The computer is also used to record and reduce the calibration data and control other calibration parameters. The full-scale load for this device is 1,000 milligrams; however, the concept can be extended to accommodate other calibration ranges.

  10. Diagnostics and Optimization of a Miniature High Frequency Pulse Tube Cryocooler

    NASA Astrophysics Data System (ADS)

    Garaway, I.; Veprik, A.; Radebaugh, R.

    2010-04-01

    A miniature, high energy density, pulse tube cryocooler with an inertance tube and reservoir has been developed, tested, diagnosed and optimized to provide appropriate cooling for size-limited cryogenic applications demanding fast cool down. This cryocooler, originally designed using REGEN 3.2 for 80 K, an operating frequency of 150 Hz and an average pressure of 5.0 MPa, has regenerator dimensions of 4.4 mm inside diameter and 27 mm length and is filled with ♯635 mesh stainless steel screen. Various design features, such as the use of compact heat exchangers and a miniature linear compressor, resulted in a remarkably compact pulse tube cryocooler. In this report, we present the preliminary test results and the subsequent diagnostic and optimization sequence performed to improve the overall design and operation of the complete cryocooler. These experimentally determined optimal parameters, though slightly different from those proposed in the initial numerical model, yielded 530 mW of gross cooling power at 120 K with an input electrical power of only 25 W. This study highlights the need to further establish our understanding of miniature, high frequency, regenerative cryocoolers, not only as a collection of independent subcomponents, but as one single working unit. It has also led to a list of additional improvements that may yet be made to even further improve the operating characteristics of such a complete miniature cryocooler.

  11. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  12. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  13. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  14. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  15. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  16. Miniature Telerobots in Space Applications

    NASA Technical Reports Server (NTRS)

    Venema, S. C.; Hannaford, B.

    1995-01-01

    Ground controlled telerobots can be used to reduce astronaut workload while retaining much of the human capabilities of planning, execution, and error recovery for specific tasks. Miniature robots can be used for delicate and time consuming tasks such as biological experiment servicing without incurring the significant mass and power penalties associated with larger robot systems. However, questions remain regarding the technical and economic effectiveness of such mini-telerobotic systems. This paper address some of these open issues and the details of two projects which will provide some of the needed answers. The Microtrex project is a joint University of Washington/NASA project which plans on flying a miniature robot as a Space Shuttle experiment to evaluate the effects of microgravity on ground-controlled manipulation while subject to variable time-delay communications. A related project involving the University of Washington and Boeing Defense and Space will evaluate the effectiveness f using a minirobot to service biological experiments in a space station experiment 'glove-box' rack mock-up, again while subject to realistic communications constraints.

  17. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    NASA Astrophysics Data System (ADS)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  18. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  19. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  20. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  1. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  2. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  3. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  4. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A.; Woolley, Adam T.

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  5. Anthrax vaccine associated deaths in miniature horses.

    PubMed

    Wobeser, Bruce K

    2015-04-01

    During a widespread anthrax outbreak in Canada, miniature horses were vaccinated using a live spore anthrax vaccine. Several of these horses died from an apparent immune-mediated vasculitis temporally associated with this vaccination. During the course of the outbreak, other miniature horses from different regions with a similar vaccination history, clinical signs, and necropsy findings were found.

  6. Advances in Miniaturized Instruments for Genomics

    PubMed Central

    2014-01-01

    In recent years, a lot of demonstrations of the miniaturized instruments were reported for genomic applications. They provided the advantages of miniaturization, automation, sensitivity, and specificity for the development of point-of-care diagnostics. The aim of this paper is to report on recent developments on miniaturized instruments for genomic applications. Based on the mature development of microfabrication, microfluidic systems have been demonstrated for various genomic detections. Since one of the objectives of miniaturized instruments is for the development of point-of-care device, impedimetric detection is found to be a promising technique for this purpose. An in-depth discussion of the impedimetric circuits and systems will be included to provide total consideration of the miniaturized instruments and their potential application towards real-time portable imaging in the “-omics” era. The current excellent demonstrations suggest a solid foundation for the development of practical and widespread point-of-care genomic diagnostic devices. PMID:25114919

  7. Miniature mechanical transfer optical coupler

    DOEpatents

    Abel, Philip; Watterson, Carl

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  8. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, D.N. Jr.; Simpson, M.L.

    1997-10-21

    A miniature lens system that corrects for imaging and chromatic aberrations is disclosed, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components. 2 figs.

  9. Miniature hybrid optical imaging lens

    DOEpatents

    Sitter, Jr., David N.; Simpson, Marc L.

    1997-01-01

    A miniature lens system that corrects for imaging and chromatic aberrations, the lens system being fabricated from primarily commercially-available components. A first element at the input to a lens housing is an aperture stop. A second optical element is a refractive element with a diffractive element closely coupled to, or formed a part of, the rear surface of the refractive element. Spaced closely to the diffractive element is a baffle to limit the area of the image, and this is closely followed by a second refractive lens element to provide the final correction. The image, corrected for aberrations exits the last lens element to impinge upon a detector plane were is positioned any desired detector array. The diffractive element is fabricated according to an equation that includes, as variables, the design wavelength, the index of refraction and the radius from an optical axis of the lens system components.

  10. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  11. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  12. A miniaturized EDM device suitable to fixing on a robot

    NASA Astrophysics Data System (ADS)

    Tang, Yongjun; Guo, Zhongning; Zhang, Yongjun

    2007-10-01

    A miniaturized EDM (Electro Discharge Machining) device has been designed which is suitable to fixing on robot, and the whole system can motion mobile working. A novel control strategy of differential driving principle has been presented in order to solve the problem that electrode can't be revolved owing compact size has been resolved. Coaxial forced vibration of electrode is benefit for the evacuation of debris, and it helps to achieve stable and efficient machining. Analysis of harmonic response and the theoretical value of amplitude have been carried out. The optimal design of ultrasonic motor has been implemented using animate function of ANSYS and optimal design means, and the interference between teeth of stator has been avoided. Auto-frequency tracking has been completed, and electrode lateral vibration of electrode has been eliminated. Finally, the holes with figures of Φ85μm circle, Y have been machined.

  13. Miniaturized optical chemosensor for flow-based assays.

    PubMed

    Pokrzywnicka, Marta; Cocovi-Solberg, David J; Miró, Manuel; Cerdà, Víctor; Koncki, Robert; Tymecki, Łukasz

    2011-01-01

    A cost-effective, highly compact, and versatile optoelectronic device constructed of two ordinary light emitting diodes compatible with optosensing films has been developed. This fibreless device containing chemoreceptor, semiconductor light source, and detector integrated in a miniaturized flow-through cell of low microliter internal volume works as a complete photometric chemical sensor suitable for detection in flow analysis. The operation of the developed device under nonstationary programmable-flow conditions offered by sequential injection analysis has been demonstrated using Prussian Blue film as a model optical chemoreceptor. The unique spectroelectrochemical properties of the sensing material enable its use for optical sensing of redox species, whereby ascorbic acid and hydrogen peroxide have been chosen as model analytes. The reported SI-sensor system features fast and reproducible determination of both analytes in the submillimolar range of concentrations. The construction concept demonstrated in this work can be easily applied to other kinds of optical sensors based on absorbance sensing films. PMID:21103867

  14. Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For CO Intensity Mapping and ALMA Band 2

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Cleary, Kieran; Church, Sarah E.; Cuadrado-Calle, David; Fung, Andy; gaier, todd; gawande, rohit; Kangaslahti, Pekka; Lai, Richard; Lawrence, Charles R.; Readhead, Anthony C. S.; Sarkozy, Stephen; Seiffert, Michael D.; Sieth, Matthew

    2016-01-01

    We will present results of the latest InP HEMT MMIC low noise amplifiers in the 30-300 GHz range, with emphasis on LNAs and mixers developed for CO intensity mapping in the 40-80 GHz range, as well as MMIC LNAs suitable for ALMA Band 2 (67-90 GHz). The LNAs have been developed together with NGC in a 35 nm InP HEMT MMIC process. Recent results and a summary of best InP low noise amplifier data will be presented. This work describes technologies related to the detection and study of highly redshifted spectral lines from the CO molecule, a key tracer for molecular hydrogen. One of the most promising techniques for observing the Cosmic Dawn is intensity mapping of spectral-spatial fluctuations of line emission from neutral hydrogen (H I), CO, and [C II]. The essential idea is that instead of trying to detect line emission from individual galaxies, one measures the total line emission from a number of galaxies within the volume defined by a spectral-spatial pixel. Fluctuations from pixel to pixel trace large scale structure, and the evolution with redshift is revealed as a function of receiver frequency. A special feature of CO is the existence of multiple lines with a well-defined frequency relationship from the rotational ladder, which allows the possibility of cleanly separating the signal from other lines or foreground structure at other redshifts. Making use of this feature (not available to either HI or [C II] measurements) requires observing multiple frequencies, including the range 40-80 GHz, much of which is inaccessible from the ground or balloons.Specifically, the J=1->0 transition frequency is 115 GHz; J=2->1 is 230 GHz; J=3->2 is 345 GHz, etc. At redshift 7, these lines would appear at 14.4, 28.8, and 43.2 GHz, accessible from the ground. Over a wider range of redshifts, from 3 to 7, these lines would appear at frequencies from 14 to 86 GHz. A ground-based CO Intensity mapping experiment, COMAP, will utilize InP-based HEMT MMIC amplifier front ends in the

  15. Metal diaphragm used to calibrate miniature transducers

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Dynamic comparative calibration system measures response of miniature pressure transducers. The system is composed of an electromechanically driven metal diaphragm, a calibrated and an uncalibrated transducer and an oscillator.

  16. Using Miniature Landforms in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  17. Miniature infrared data acquisition and telemetry system

    NASA Technical Reports Server (NTRS)

    Stokes, J. H.; Ward, S. M.

    1985-01-01

    The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.

  18. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  19. Miniature Electrostatic Ion Thruster With Magnet

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A miniature electrostatic ion thruster is proposed that, with one exception, would be based on the same principles as those of the device described in the previous article, "Miniature Bipolar Electrostatic Ion Thruster". The exceptional feature of this thruster would be that, in addition to using electric fields for linear acceleration of ions and electrons, it would use a magnetic field to rotationally accelerate slow electrons into the ion stream to neutralize the ions.

  20. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  1. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  2. Miniature Ion-Array Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    A figure is shown that depicts a proposed miniature ion-mobility spectrometer that would share many features of design and operation of the instrument described in another article. The main differences between that instrument and this one would lie in the configuration and mode of operation of the filter and detector electrodes. A filter electrode and detector electrodes would be located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a combination of (1) a transverse AC electric field that would effect differential transverse dispersal of ions and (2) a transverse DC electric field that would drive the dispersed ions toward the detector electrodes at different distances along the drift tube. The electric current collected by each detector electrode would be a measure of the current, and thus of the abundance of the species of ions impinging on that electrode. The currents collected by all the detector electrodes could be measured simultaneously to obtain continuous readings of abundances of species. The downstream momentum of accelerated ions would be maintained through neutralization on the electrodes; the momentum of the resulting neutral atoms would serve to expel gases from spectrometer, without need for a pump.

  3. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.

  4. Miniature electrically operated diaphragm valve

    DOEpatents

    Adkins, Douglas R.; Spletzer, Barry L.; Wong, Chungnin C.; Frye-Mason, Gregory C.; Fischer, Gary J.; Hesketh, Peter J.

    2001-01-01

    The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.

  5. Miniature Bose-Einstein condensate system design based on a transparent atom chip

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose-Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  6. Miniature Bose–Einstein condensate system design based on a transparent atom chip

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Li, Xiaolin; Zhang, Jingfang; Xu, Xinping; Jiang, Xiaojun; Zhang, Haichao; Wang, Yuzhu

    2016-08-01

    We propose a new miniature Bose–Einstein condensate (BEC) system based on a transparent atom chip with a compact external coil structure. A standard six-beam macroscopic magneto-optical trap (MOT) is able to be created near the chip surface due to the chip’s transparency. A novel wire pattern consisting of a double-z wire and a z-shaped wire is designed on the transparent atom chip. With a vertical bias magnetic field, the double-z wire can create the quadrupole magnetic field of an intermediate chip MOT, which is suitable for transporting atoms from the macroscopic MOT to the chip z-wire trap efficiently. The compact external coil structure is designed with a rectangular frameless geometry consisting of only four coil pairs and its volume is less than 0.3 liters. The maximum system power consumption during the BEC generation procedure is about 45 W. The miniature system is evaluated, and about 3 × 106 atoms can be loaded into the chip z-wire trap. The miniature chip BEC system has the advantages of small volume and low power consumption, and it has great potential for practical applications of BEC.

  7. 225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin

    2016-10-01

    In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.

  8. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  9. Miniature EVA Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Pozhidaev, Aleksey

    2012-01-01

    As NASA embarks upon developing the Next-Generation Extra Vehicular Activity (EVA) Radio for deep space exploration, the demands on EVA battery life will substantially increase. The number of modes and frequency bands required will continue to grow in order to enable efficient and complex multi-mode operations including communications, navigation, and tracking applications. Whether conducting astronaut excursions, communicating to soldiers, or first responders responding to emergency hazards, NASA has developed an innovative, affordable, miniaturized, power-efficient software defined radio that offers unprecedented power-efficient flexibility. This lightweight, programmable, S-band, multi-service, frequency- agile EVA software defined radio (SDR) supports data, telemetry, voice, and both standard and high-definition video. Features include a modular design, an easily scalable architecture, and the EVA SDR allows for both stationary and mobile battery powered handheld operations. Currently, the radio is equipped with an S-band RF section. However, its scalable architecture can accommodate multiple RF sections simultaneously to cover multiple frequency bands. The EVA SDR also supports multiple network protocols. It currently implements a Hybrid Mesh Network based on the 802.11s open standard protocol. The radio targets RF channel data rates up to 20 Mbps and can be equipped with a real-time operating system (RTOS) that can be switched off for power-aware applications. The EVA SDR's modular design permits implementation of the same hardware at all Network Nodes concept. This approach assures the portability of the same software into any radio in the system. It also brings several benefits to the entire system including reducing system maintenance, system complexity, and development cost.

  10. Miniature Bipolar Electrostatic Ion Thruster

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure presents a concept of a bipolar miniature electrostatic ion thruster for maneuvering a small spacecraft. The ionization device in the proposed thruster would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several mega-volts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. In a thruster-based on this concept, one or more propellant gases would be introduced into such a membrane ionizer. Unlike in larger prior ion thrusters, all of the propellant molecules would be ionized. This thruster would be capable of bipolar operation. There would be two accelerator grids - one located forward and one located aft of the membrane ionizer. In one mode of operation, which one could denote the forward mode, positive ions leaving the ionizer on the backside would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid. Electrons leaving the ionizer on the front side would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In another mode of operation, which could denote the reverse mode, the polarities of the voltages applied to the accelerator grids and to the electrodes of the membrane ionizer would be the reverse of those of the forward mode. The reversal of electric fields would cause the ion and electrons to be ejected in the reverse of their forward mode directions, thereby giving rise to thrust in the direction opposite that of the forward mode.

  11. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  12. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  13. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  14. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  15. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  16. Membrane-type resonator as an effective miniaturized tuned vibration mass damper

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min; Tang, Suet To; Yang, Zhiyu; Sheng, Ping

    2016-08-01

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factor to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.

  17. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    NASA Astrophysics Data System (ADS)

    August, Isaac; Oiknine, Yaniv; Abuleil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-03-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems.

  18. Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder

    PubMed Central

    August, Isaac; Oiknine, Yaniv; AbuLeil, Marwan; Abdulhalim, Ibrahim; Stern, Adrian

    2016-01-01

    Spectroscopic imaging has been proved to be an effective tool for many applications in a variety of fields, such as biology, medicine, agriculture, remote sensing and industrial process inspection. However, due to the demand for high spectral and spatial resolution it became extremely challenging to design and implement such systems in a miniaturized and cost effective manner. Using a Compressive Sensing (CS) setup based on a single variable Liquid Crystal (LC) retarder and a sensor array, we present an innovative Miniature Ultra-Spectral Imaging (MUSI) system. The LC retarder acts as a compact wide band spectral modulator. Within the framework of CS, a sequence of spectrally modulated images is used to recover ultra-spectral image cubes. Using the presented compressive MUSI system, we demonstrate the reconstruction of gigapixel spatio-spectral image cubes from spectral scanning shots numbering an order of magnitude less than would be required using conventional systems. PMID:27004447

  19. Advances in miniature spectrometer and sensor development

    NASA Astrophysics Data System (ADS)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  20. Liquid storage of miniature boar semen.

    PubMed

    Shimatsu, Yoshiki; Uchida, Masaki; Niki, Rikio; Imai, Hiroshi

    2002-04-01

    The effects of liquid storage at 15 degrees C on the fertilizing ability of miniature pig semen were investigated. Characterization of ejaculated semen from 3 miniature boars was carried out. Semen volume and pH were similar among these boars. In one of the boars, sperm motility was slightly low, and sperm concentration and total number of sperm were significantly lower than in the others (P < 0.01). Seminal plasma of the semen was substituted with various extenders (Kiev, Androhep, BTS and Modena) by centrifugation and semen was stored for 7 days at 15 degrees C. Sperm motility was estimated daily at 37 degrees C. For complete substitution of seminal plasma, Modena was significantly more efficient than the other extenders (P < 0.001) in retaining sperm motility. Semen from each of the 3 miniature boars that had been stored for 5 to 7 days at 15 degrees C in Modena was used for artificial insemination of 15 miniature sows. The farrowing rates were 100, 100 and 60%, and litter sizes were 6.4 +/- 1.5, 5.8 +/- 0.8 and 5.0 +/- 1.0 for each boar semen, respectively. The boar that sired the smallest farrowing rate was the same one that showed lower seminal quality with respect to sperm motility, sperm concentration and total number of sperm. These results suggest that miniature boar semen can be stored for at least 5 days at 15 degrees C by the substitution of seminal plasma with Modena extender.

  1. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  2. Presynaptic miniature GABAergic currents in developing interneurons.

    PubMed

    Trigo, Federico F; Bouhours, Brice; Rostaing, Philippe; Papageorgiou, George; Corrie, John E T; Triller, Antoine; Ogden, David; Marty, Alain

    2010-04-29

    Miniature synaptic currents have long been known to represent random transmitter release under resting conditions, but much remains to be learned about their nature and function in central synapses. In this work, we describe a new class of miniature currents ("preminis") that arise by the autocrine activation of axonal receptors following random vesicular release. Preminis are prominent in gabaergic synapses made by cerebellar interneurons during the development of the molecular layer. Unlike ordinary miniature postsynaptic currents in the same cells, premini frequencies are strongly enhanced by subthreshold depolarization, suggesting that the membrane depolarization they produce belongs to a feedback loop regulating neurotransmitter release. Thus, preminis could guide the formation of the interneuron network by enhancing neurotransmitter release at recently formed synaptic contacts.

  3. Method and system for assembling miniaturized devices

    DOEpatents

    Montesanti, Richard C.; Klingmann, Jeffrey L.; Seugling, Richard M.

    2013-03-12

    An apparatus for assembling a miniaturized device includes a manipulator system including six manipulators operable to position and orient components of the miniaturized device with submicron precision and micron-level accuracy. The manipulator system includes a first plurality of motorized axes, a second plurality of manual axes, and force and torque and sensors. Each of the six manipulators includes at least one translation stage, at least one rotation stage, tooling attached to the at least one translation stage or the at least one rotation stage, and an attachment mechanism disposed at a distal end of the tooling and operable to attach at least a portion of the miniaturized device to the tooling. The apparatus also includes an optical coordinate-measuring machine (OCMM) including a machine-vision system, a laser-based distance-measuring probe, and a touch probe. The apparatus also includes an operator control system coupled to the manipulator system and the OCMM.

  4. FY 2005 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Johnson, Bradley R.; Riley, Brian J.; Sliger, William A.

    2005-12-01

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical and chromatic aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional bistatic LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  5. FY 2006 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniature spherical retroreflectors using the unique optical and material properties of chalcogenide glass to reduce both performance limiting spherical aberrations. The optimized optical performance will provide efficient signal retroreflection that enables a broad range of remote detection scenarios for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications. Miniature spherical retroreflectors can be developed to aid in the detection of signatures of nuclear proliferation or other chemical vapor or radiation signatures. Miniature spherical retroreflectors are not only well suited to traditional LIDAR methods for chemical plume detection and identification, but could enable remote detection of difficult semi-volatile chemical materials or low level radiation sources.

  6. Acral mutilation syndrome in a miniature pinscher.

    PubMed

    Bardagí, M; Montoliu, P; Ferrer, L; Fondevila, D; Pumarola, M

    2011-01-01

    Acral mutilation syndrome (AMS) is a rare canine hereditary sensory neuropathy that results in progressive mutilation of the distal extremities and which has been reported only in German short-haired pointers, English pointers, English springer spaniels and French spaniels. The present report describes a case of AMS in an 18-month-old female miniature pinscher with progressive self-mutilation of the hind feet. The dog did not respond to any treatment and was humanely destroyed at the age of 30 months. Microscopical findings post mortem were restricted to the nervous system and were compatible with AMS. This is the first case of AMS described in a miniature pinscher. It is not known if the disease was the result of a point mutation in this particular dog or if the miniature pinscher breed will evolve to become a breed predisposed to AMS.

  7. Miniaturized HTS technologies - uHTS.

    PubMed

    Wölcke, J; Ullmann, D

    2001-06-01

    The transition from slow, manual, low-throughput screening to industrialized robotic ultra-high throughput screening (uHTS) in the past few years has made it possible to screen hundreds of thousands of chemical entities against a biological target in a short time-frame. The need to minimize the cost of screening has been addressed primarily by reducing the volume of sample to be screened. This, in turn, has resulted in the miniaturization of HTS technology as a whole. Miniaturization requires new technologies and strategies for compound handling, assay development, assay adaptation, liquid handling and automation in addition to refinement of the technologies used for detection systems and data management. This review summarizes current trends in the field of uHTS and illustrates the technological developments that are necessary to enable the routine application of miniaturized uHTS systems within an industrial environment.

  8. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  9. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  10. A miniature robotic plane meteorological sounding system

    NASA Astrophysics Data System (ADS)

    Ma, Shuqing; Chen, Hongbin; Wang, Gai; Pan, Yi; Li, Qiang

    2004-12-01

    This article presents a miniature robotic plane meteorological sounding system (RPMSS), which consists of three major subsystems: a miniature robotic plane, an air-borne meteorological sounding and flight control system, and a ground-based system. Take-off and landing of the miniature aircraft are guided by radio control, and the flight of the robotic plane along a pre-designed trajectory is automatically piloted by an onboard navigation system. The observed meteorological data as well as all flight information are sent back in real time to the ground, then displayed and recorded by the ground-based computer. The ground-based subsystem can also transmit instructions to the air-borne control subsystem. Good system performance has been demonstrated by more than 300 hours of flight for atmospheric sounding.

  11. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  12. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  13. Miniature Long-life Space Cryocoolers

    NASA Technical Reports Server (NTRS)

    Tward, E.

    1993-01-01

    TRW has designed, built, and tested a miniature integral Stirling cooler and a miniature pulse tube cooler intended for long-life space application. Both efficient, low-vibration coolers were developed for cooling IR sensors to temperatures as low as 50 K on lightsats. The vibrationally balanced nonwearing design Stirling cooler incorporates clearance seals maintained by flexure springs for both the compressor and the drive displacer. The design achieved its performance goal of 0.25 W at 65 K for an input power to the compressor of 12 W. The cooler recently passed launch vibration tests prior to its entry into an extended life test and its first scheduled flight in 1995. The vibrationally balanced, miniature pulse tube cooler intended for a 10-year long-life space application incorporates a flexure bearing compressor vibrationally balanced by a motor-controlled balancer and a completely passive pulse tube cold head.

  14. Miniature field deployable terahertz source

    NASA Astrophysics Data System (ADS)

    Mayes, Mark G.

    2006-05-01

    Developments in terahertz sources include compacted electron beam systems, optical mixing techniques, and multiplication of microwave frequencies. Although significant advances in THz science have been achieved, efforts continue to obtain source technologies that are more mobile and suitable for field deployment. Strategies in source development have approached generation from either end of the THz spectrum, from up-conversion of high-frequency microwave to down-conversion of optical frequencies. In this paper, we present the design of a THz source which employs an up-conversion method in an assembly that integrates power supply, electronics, and radiative component into a man-portable unit for situations in which a lab system is not feasible. This unit will ultimately evolve into a ruggedized package suitable for use in extreme conditions, e.g. temporary security check points or emergency response teams, in conditions where THz diagnostics are needed with minimal planning or logistical support. In order to meet design goals of reduced size and complexity, the inner workings of the unit ideally would be condensed into a monolithic active element, with ancillary systems, e.g. user interface and power, coupled to the element. To attain these goals, the fundamental component of our design is a THz source and lens array that may be fabricated with either printed circuit board or wafer substrate. To reduce the volume occupied by the source array, the design employs a metamaterial composed of a periodic lattice of resonant elements. Each resonant element is an LC oscillator, or tank circuit, with inductance, capacitance, and center frequency determined by dimensioning and material parameters. The source array and supporting electronics are designed so that the radiative elements are driven in-phase to yield THz radiation with a high degree of partial coherence. Simulation indicates that the spectral width of operation may be controlled by detuning of critical dimensions

  15. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    PubMed

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications.

  16. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser.

    PubMed

    Huang, Lin; Mills, Arthur K; Zhao, Yuan; Jones, David J; Tang, Shuo

    2016-05-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  17. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  18. Research on miniature gas analysis systems

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1974-01-01

    Technology for fabricating very small valves, whose function will be to introduce a small sample of the gas to be analyzed into the main carrier gas stream flowing through the chromatograph column is described. In addition, some analyses were made of the factors governing the resolution of gas chromatographs, particularly those with miniature columns. These analyses show how important the column lining thickness is in governing the ability of a miniature column to separate components of an unknown gas. A brief description of column lining factors is included. Preliminary work on a super small thermistor detector is included.

  19. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  20. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  1. Miniature biotelemeter gives multichannel wideband biomedical data

    NASA Technical Reports Server (NTRS)

    Carraway, J. B.

    1972-01-01

    A miniature biotelemeter was developed for sensing and transmitting multiple channels of biomedical data over a radio link. The design of this miniature, 10-channel, wideband (5 kHz/channel), pulse amplitude modulation/ frequency modulation biotelemeter takes advantage of modern device technology (e.g., integrated circuit operational amplifiers, complementary symmetry/metal oxide semiconductor logic, and solid state switches) and hybrid packaging techniques. The telemeter is being used to monitor 10 channels of neuron firings from specific regions of the brain in rats implanted with chronic electrodes. Design, fabrication, and testing of an engineering model biotelemeter are described.

  2. Batch fabrication of precision miniature permanent magnets

    DOEpatents

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  3. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  4. Mechanics of tissue compaction.

    PubMed

    Turlier, Hervé; Maître, Jean-Léon

    2015-12-01

    During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.

  5. Miniature terahertz time-domain spectrometry

    NASA Astrophysics Data System (ADS)

    Schulkin, Brian

    This thesis focuses on the design, development and evaluation of novel concepts which enable the miniaturization of terahertz (THz) time-domain spectrometry. Portable THz spectrometry is applied to research and industrial domains for immediate, short and long term applications in nondestructive evaluation, homeland security, and biomedicine respectively. Due to the previous limitation of THz devices for public uses, in particular, the lack of access to a THz spectrometer, applications of THz science and technology have only recently expanded beyond the laboratory. There is an urgent need for compact, even handheld THz time-domain spectrometry (THz-TDS) platforms which can carry out proven-to-be-useful applications developed and tested in laboratory conditions. There are three major challenges restricting THz-TDS to laboratories. Atmospheric absorption severely limits the propagation distance of the THz beam and confines systems to low-moisture environments. The sample's surface roughness, grain size and geometry severely limit the bandwidth of the measurement. Physical size and weight of THz systems are generally limited by large laser sources and optomechanics. The sensitivity and selectivity of THz-TDS systems are the two most significant parameters used to describe the quality of the system. Sensitivity is directly related to the Signal-to-Noise Ratio (SNR) and dynamic range, which may be improved by either lowering the noise floor or increasing the THz signal. On the other hand, selectivity is far more complex as it is related to the sensitivity, sample preparation, baseline correction, and selection method. Sensitivity is gauged using industrial statistical methods, such as Gauge Repeatability and Reproducibility (GR&R), and can transform a not-so-useful SNR value to an extremely useful measure of the minimum detectable amount of a certain material. It is shown that the GR&R value is inversely proportional to the square root of the number of averaged waveforms

  6. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large

  7. A miniature VGA SWIR camera using MT6415CA ROIC

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Yilmaz, S. Gokhan; Kocak, Serhat

    2014-06-01

    This paper reports the development of a new miniature VGA SWIR camera called NanoCAM-6415, which is developed to demonstrate the key features of the MT6415CA ROIC such as high integration level, low-noise, and low-power in a small volume. The NanoCAM-6415 uses an InGaAs Focal Plane Array (FPA) with a format of 640 × 512 and pixel pitch of 15 μm built using MT6415CA ROIC. MT6415CA is a low-noise CTIA ROIC, which has a system-on-chip architecture, allows generation of all the required timing and biases on-chip in the ROIC without requiring any external components or inputs, thus enabling the development of compact and low-noise SWIR cameras, with reduced size, weight, and power (SWaP). NanoCAM-6415 camera supports snapshot operation using Integrate-Then-Read (ITR) and Integrate-While-Read (IWR) modes. The camera has three gain settings enabled by the ROIC through programmable Full-Well-Capacity (FWC) values of 10.000 e-, 20.000 e-, and 350.000 e- in the very high gain (VHG), high-gain (HG), and low-gain (LG) modes, respectively. The camera has an input referred noise level of 10 e- rms in the VHG mode at 1 ms integration time, suitable for low-noise SWIR imaging applications. In order to reduce the size and power of the camera, only 2 outputs out of 8 of the ROIC are connected to the external Analog-to-Digital Converters (ADCs) in the camera electronics, providing a maximum frame rate of 50 fps through a 26-pin SDR type Camera Link connector. NanoCAM-6415 SWIR camera without the optics measures 32 mm × 32 mm × 35 mm, weighs 45gr, and dissipates less than 1.8 W using a 5 V supply. These results show that MT6415CA ROIC can successfully be used to develop cameras for SWIR imaging applications where SWaP is a concern. Mikro-Tasarim has also developed new imaging software to demonstrate the functionality of this miniature VGA camera. Mikro-Tasarim provides tested ROIC wafers and also offers compact and easy-to-use test electronics, demo cameras, and hardware

  8. A Magnetically Suspended Wheel for a Miniature Gyro Made Using Planar Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Dauwalter, Charles R.

    1996-01-01

    The technical feasibility of a magnetically suspended rotating wheel for miniature gyro applications was investigated under a NASA SBIR contract. A concept for a configuration for a system of compact, lightweight magnetic actuators capable of generating the necessary suspension forces and fabrication using millimachining planar fabrication technologies was developed. Both capacitive and electromagnetic position sensing concepts were developed for implementing a closed loop control system for supporting the wheel. A finite difference technique, implemented in a spreadsheet environment, for analyzing the force characteristics of the actuator was used and the results verified with Finite Element Analysis.

  9. Comparison of Low Cost Miniature Spectrometers for Volcanic SO2 Emission Measurements

    PubMed Central

    Kantzas, Euripides P.; McGonigle, Andrew J. S.; Bryant, Robert G.

    2009-01-01

    Miniature ultraviolet USB coupled spectrometers have become ubiquitously applied over the last decade for making volcanic SO2 emission rate measurements. The dominantly applied unit has recently been discontinued however, raising the question of which currently available devices should now be implemented. In this paper, we consider, and make recommendations on this matter, by studying a number of inexpensive compact spectrometers in respect of measurement performance and thermal behaviour. Of the studied units, the Avaspec demonstrated the best prospects for the highest time resolution applications, but in the majority of cases, we anticipate users likely preferring the less bulky USB2000+s. PMID:22412310

  10. 21 CFR 890.1615 - Miniature pressure transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Miniature pressure transducer. 890.1615 Section... Miniature pressure transducer. (a) Identification. A miniature pressure transducer is a device intended for medical purposes to measure the pressure between a device and soft tissue by converting mechanical...

  11. 21 CFR 890.1615 - Miniature pressure transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Miniature pressure transducer. 890.1615 Section... Miniature pressure transducer. (a) Identification. A miniature pressure transducer is a device intended for medical purposes to measure the pressure between a device and soft tissue by converting mechanical...

  12. 21 CFR 890.1615 - Miniature pressure transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Miniature pressure transducer. 890.1615 Section... Miniature pressure transducer. (a) Identification. A miniature pressure transducer is a device intended for medical purposes to measure the pressure between a device and soft tissue by converting mechanical...

  13. Two Views of Islam: Ceramic Tile Design and Miniatures.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2001-01-01

    Describes an art project focusing on Islamic art that consists of two parts: (1) ceramic tile design; and (2) Islamic miniatures. Provides background information on Islamic art and step-by-step instructions for designing the Islamic tile and miniature. Includes learning objectives and resources on Islamic tile miniatures. (CMK)

  14. Miniature shock tube for laser driven shocks.

    PubMed

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  15. Miniature Paintings: Small Size, Big Impact!

    ERIC Educational Resources Information Center

    Hicks, Bill

    2011-01-01

    This article describes a miniature painting project that allows students to research a master painter and then replicate the work on a smaller scale. This lesson focuses on the students' ability to learn to identify style, subject matter, themes, and content in painting through the study of historical paintings, and the application of various…

  16. Miniature imaging photometer. Phase 2. Technical report

    SciTech Connect

    Eather, R.H.; Lance, C.A.

    1990-07-15

    Progress is presented in the design and fabrication of a miniature imaging photometer for aurora and airglow studies. Detailed descriptions are presented of present status of optical design and fabrication, detector selection and detector housing fabrication, electronics and control system design and prototyping, selection of image analysis hardware and software, and control software development.

  17. Miniature Housings for Electronics With Standard Interfaces

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.; Alhorn, Dean C.

    2006-01-01

    A family of general-purpose miniature housings has been designed to contain diverse sensors, actuators, and drive circuits plus associated digital electronic readout and control circuits. The circuits contained in the housings communicate with the external world via standard RS-485 interfaces.

  18. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  19. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  20. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  1. A 50 GHz GaAs FET MIC transmitter/receiver using hermetic miniature probe transitions

    NASA Astrophysics Data System (ADS)

    Ogawa, Koichi; Ishizaki, Toshio; Hashimoto, Koji; Sakakura, Makoto; Uwano, Tomoki

    1989-09-01

    A very compact 50-GHz-band transmitter/receiver for a video link is described. The RF assemblies used in the system consist of 25/50-GHz frequency doublers, a 25-GHz dielectric-resonator oscillator, and a 25-GHz FM modulator. The circuits make extensive use of microwave IC technology with all GaAs FETs as active elements. The frequency doublers exhibit a minimum conversion loss of 2.6 dB and a maximum output power of 11 dBm. The modulator is highly frequency stabilized by the dielectric resonator. Recently developed miniature probe microstrip-to-waveguide transitions permit the IC assemblies to be installed compactly in hermetically sealed packages. Design considerations and experimental data for the transition are presented. Using these technologies a transmitting power of 10 dBm and a receiver noise figure of 13 dB have been obtained.

  2. Design of a miniature hydraulic compression load frame for microdiffraction tests at the Advanced Photon Source.

    SciTech Connect

    Shu, D.; Varma, R.; Krasnicki, S.; Sinha, S.

    1999-10-11

    In support of the x-ray synchrotrons radiation multidiffraction project of Los Alamos National Laboratory at the Advanced Photon Source (APS), we have designed and fabricated a miniature hydraulic compression load frame with 20000 N load capacity for metal specimen tests at the APS. The compact design allows the load frame to sit on the center of a 6-circle goniometer with six degrees of freedom and maximum solid angle accessibility for the incoming x-ray beam and diffraction beam detectors. A set of compact precision stages with submicron resolution has been designed for the load frame positioning to compensate the sample internal elastic and/or plastic deformation during the loading process. The system design, specifications, and test results are presented.

  3. A miniature dilution refrigerator for sub-Kelvin detector arrays

    NASA Astrophysics Data System (ADS)

    Teleberg, Gustav; Chase, Simon T.; Piccirillo, Lucio

    2006-06-01

    We describe a miniature dilution refrigerator (MDR), operated in continuous mode and suitable for many detector applications at temperatures down to 50 mK. It distinguishes itself from other refrigerators in that it is self-contained and benefits from an internal cycle of the 3He gas. As a result, no external gas handling system is required so size, weight and complexity of the system is dramatically decreased. The system has no fine capillaries, moving parts or cooled O-rings. It is therefore mechanically very reliable, has no risk of blockages and is unlikely to develop cryogenic leaks. One direct application is balloon-borne or ground-based observations of the CMB using large detector arrays. When these experiments are operated remotely on platforms or at sites with limited infrastructure and maintenance support, a compact and reliable dilution refrigerator becomes essential. We describe a complete system incorporating an MDR which we have built and integrated with a pulse-tube refrigerator to achieve a cooling power of several micro Watt at 100 mK. This system is being developed for a CMB polarization experiment (CLOVER) which requires three independent cryostats to cool large TES detector arrays.

  4. Achieving miniature sensor systems via advanced packaging techniques

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Bobier, Kevin; Demmin, Jeffrey

    2005-05-01

    Demands for miniaturized networked sensors that can be deployed in large quantities dictate that the packages be small and cost effective. In order to accomplish these objectives, system developers generally apply advanced packaging techniques to proven systems. A partnership of Nova Engineering and Tessera begins with a baseline of Nova's Unattended Ground Sensors (UGS) technology and utilizes Tessera's three-dimensional (3D) Chip-Scale Packaging (CSP), Multi-Chip Packaging (MCP), and System-in-Package (SIP) innovations to enable novel methods for fabricating compact, vertically integrated sensors utilizing digital, RF, and micro-electromechanical systems (MEMS) devices. These technologies, applied to a variety of sensors and integrated radio architectures, enable diverse multi-modal sensing networks with wireless communication capabilities. Sensors including imaging, accelerometers, acoustical, inertial measurement units, and gas and pressure sensors can be utilized. The greatest challenge to high density, multi-modal sensor networks is the ability to test each component prior to integration, commonly called Known Good Die (KGD) testing. In addition, the mix of multi-sourcing and high technology magnifies the challenge of testing at the die level. Utilizing Tessera proprietary CSP, MCP, and SIP interconnection methods enables fully testable, low profile stacking to create multi-modal sensor radios with high yield.

  5. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Miniature non-mechanical zoom camera using deformable MOEMS mirrors

    NASA Astrophysics Data System (ADS)

    Kaylor, Brant M.; Wilson, Christopher R.; Greenfield, Nathan J.; Roos, Peter A.; Seger, Eric M.; Moghimi, Mohammad J.; Dickensheets, David L.

    2012-03-01

    We present a miniature non-mechanical zoom camera using deformable MOEMS mirrors. Bridger Photonics, Inc. (Bridger) in collaboration with Montana State University (MSU), has developed electrostatically actuated deformable MEMS mirrors for use in compact focus control and zoom imaging systems. Applications including microscopy, endomicroscopy, robotic surgery and cell-phone cameras. In comparison to conventional systems, our MEMS-based designs require no mechanically moving parts. Both circular and elliptical membranes are now being manufactured at the wafer level and possess excellent optical surface quality (membrane flatness < λ/4). The mirror diameters range from 1 - 4 mm. For membranes with a 25 μm air gap, the membrane stroke is 10 μm. In terms of the optical design, the mirrors are considered variable power optical elements. A device with 2 mm diameter and 10 μm stroke can vary its optical power over 40 diopters or 0.04mm∧(-1). Equivalently, this corresponds to a focal length ranging from infinity to 25 mm. We have designed and demonstrated a zoom system using two MOEMS elements and exclusively commercial off-the-shelf optical components to achieve an optical zoom of 1.9x with a 15° full field of view. The total optical track length of the system is 36 mm. The design is approximately 30 mm x 30 mm x 20 mm including the optomechanical housing and image sensor. With custom optics, we anticipate achieving form factors that are compatible with incorporation into cell phones.

  7. MiniMAX: miniature, mobile, agile, x-ray system

    NASA Astrophysics Data System (ADS)

    Watson, Scott A.; Cunningham, Gwynneth; Gonzales, Samuel

    2012-06-01

    We present a unique, lightweight, compact, low-cost, x-ray imager: MiniMAX (Miniature, Mobile, Agile, X-ray). This system, which exploits the best aspects of Computed Radiography (CR) and Digital Radiography (DR) technology, weighs less than 6lbs, fits into a 6" diameter x 16" long carbon-fiber tube, and is constructed almost entirely from offthe- shelf components. MiniMAX is suitable for use in weld inspection, archaeology, homeland security, and veterinary medicine. While quantum limited for MeV radiography, the quantum-efficiency is too low for routine medical use. Formats include: 4"x6", 8"x12", or 16"x24" and can be readily displayed on the camera back, using a pocket projector, or on a tablet computer. In contrast to a conventional, flying-spot scanner, MiniMAX records a photostimulated image from the entire phosphor at once using a bright, red LED flash filtered through an extremely efficient (OD>9) dichroic filter.

  8. Miniature instrumentation for laser light scattering experiments

    NASA Technical Reports Server (NTRS)

    Brown, Robert G. W.

    1989-01-01

    Traditional optical systems for photon correlation spectroscopy and laser anemometry have relied upon physically large and fairly expensive lasers, bulk-optics such as lenses of a few inches diameter, large mechanical mounts and carefully selected, fragile and bulky photon counting photomultiplier detectors. In some cases, experimental fluid dynamics at a desired position in a flow, perhaps deep inside complex machinery, is physically impossible or very difficult. Similar problems exist with photon correlation spectroscopy, e.g., remote and heterodyne experiments. Various optical and electro optical components were investigated and characterized with the aim of replacing existing photon correlation laser spectroscopy and anemometry techniques in miniaturized form, and with significant cost reduction. Very recently, a range of miniature, modular light scattering systems were constructed from little solid state optical and electro optical components, and experimentally verified measurement performance comparable to standard lab photon correlation spectroscopy and laser anemometry equipment.

  9. Design considerations for miniaturized PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Meyers, Jeremy P.; Maynard, Helen L.

    In this paper, we consider the design of a miniaturized proton-exchange membrane (PEM) fuel cell for powering 0.5-20 W portable telecommunication and computing devices. Our design is implemented on a silicon substrate to take advantage of advanced silicon processing technology in order to minimize production costs. The reduced length scales afforded by silicon processing allow us to consider designs that would be prohibited by excessive Ohmic losses in larger systems. We employ a mathematical model to quantify the effects of the secondary current distribution on two competing cell designs. In addition to the design of the cell itself, we discuss key integration issues and engineering trade-offs relevant to all miniaturized fuel cell systems: air movement, fuel delivery and water balance, thermal management and load handling.

  10. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  11. Compact turbidity meter

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  12. Imaging performance of a miniature integrated microendoscope.

    PubMed

    Rogers, Jeremy D; Landau, Sara; Tkaczyk, Tomasz S; Descour, Michael R; Rahman, Mohammed S; Richards-Kortum, Rebecca; Kärkäinen, Ari H O; Christenson, Todd

    2008-01-01

    An integrated miniature multi-modal microscope (4M device) for microendoscopy was built and tested. Imaging performance is evaluated and imaging results are presented for both fluorescence and reflectance samples. Images of biological samples show successful imaging of both thin layers of fixed cells prepared on a slide as well as thick samples of excised fixed porcine epithelial tissue, thus demonstrating the potential for in vivo use.

  13. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  14. Miniature, Variable-Speed Control Moment Gyroscope

    NASA Technical Reports Server (NTRS)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul

    2011-01-01

    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  15. Miniature Reversal Electron-Attachment Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1994-01-01

    Miniature reversal electron-attachment detector (miniREAD) enables direct injection of air or vapor at atmospheric pressure from monitored area into mass-spectrometric instrument to detect explosives, narcotics, or other substances, vapors of which suspected of being present in low concentrations. In comparison with older reversal electron-attachment detector, miniREAD simpler in design; more rugged; and easier to build, repair, and maintain. In addition, probably more sensitive.

  16. A miniature tilting pad gas lubricated bearing

    NASA Astrophysics Data System (ADS)

    Sixsmith, H.; Swift, W. L.

    1983-12-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  17. A miniature tilting pad gas lubricated bearing

    NASA Technical Reports Server (NTRS)

    Sixsmith, H.; Swift, W. L.

    1983-01-01

    This paper describes the design and development of a miniature tilting pad gas bearing developed for use in very small turbomachines. The bearings have been developed for cryogenic turboexpanders with shaft diameters down to about 0.3 cm and rotational speeds up to one million rpm. Cryogenic expansion turbines incorporating this type of bearing should be suitable for refrigeration rates down to about 10 w.

  18. Raytheon Advanced Miniature Cryocooler Characterization Testing

    NASA Astrophysics Data System (ADS)

    Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.

    2015-12-01

    The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.

  19. Development of a miniature multiple reference optical coherence tomography imaging device

    NASA Astrophysics Data System (ADS)

    McNamara, Paul M.; O'Riordan, Colm; Collins, Seán.; O'Brien, Peter; Wilson, Carol; Hogan, Josh; Leahy, Martin J.

    2016-03-01

    Multiple reference optical coherence tomography (MR-OCT) is a new technology ideally suited to low-cost, compact OCT imaging. This modality is an extension of time-domain OCT with the addition of a partial mirror in front of the reference mirror. This enables extended, simultaneous depth scanning with the relatively short sweep of a miniature voice coil motor on which the scanning mirror is mounted. Applications of this technology include biometric security, ophthalmology, personal health monitoring and non-destructive testing. This work details early-stage development of the first iteration of a miniature MR-OCT device. This device utilizes a fiber-coupled input from an off-board superluminescent diode (SLD). Typical dimensions of the module are 40 × 57 mm, but future designs are expected to be more compact. Off-the-shelf miniature optical components, voice coil motors and photodetectors are used, with the complexity of design depending on specific applications. The photonic module can be configured as either polarized or non-polarized and can include balanced detection. The photodetectors are directly connected to a printed circuit board under the module containing a transimpedance amplifier with complimentary outputs. The results shown in this work are from the non-polarized device. Assembly of the photonic modules requires extensive planning. In choosing the optical components, Zemax simulations are performed to model the beam characteristics. The physical layout is modeled using Solidworks and each component is placed and aligned via a well-designed alignment procedure involving an active-alignment pick-and-place assembly system.

  20. Fully traceable miniature CMM with submicrometer uncertainty

    NASA Astrophysics Data System (ADS)

    Lewis, Andrew J.

    2003-11-01

    A CMM has been developed which operates over a working volume of 50 × 50 × 50 mm, and achieves an uncertainty in 3D probing of ~100 nm. This miniature CMM is based around the concept of a metrology frame, mounted on a host CMM, with a miniature probe system held on the host CMM's ram. The probing system is rigidly connected to 3 orthogonal mirrors, the positions and rotations of which are measured using 3 dual axis interferometers (length, angle) and 3 dual axis angular sensors. Corrections for the mis-alignments of the interferometers, flatness errors of the mirrors and the performance of the miniature probe system are all determined in situ, by reference to the calibrated laser wavelength. This process performs a full error map of the CMM and requires only two artefacts: a precision sphere and a good quality optical cube. The error map is used online to determine the 3D position of the probe tip, based on measurements of the interferometers and angle sensing systems. The CMM is fully programmable and operates as a normal CMM, albeit with considerably improved accuracy. The design, manufacture and calibration of the CMM are described, followed by examples of measurements made with the machine and a determination of the uncertainty sources. This CMM is designed as the first step in bridging the gap between conventional (millimetre scale metrology) and nanometrology.

  1. A combined electron beam/optical lithography process step for the fabrication of sub-half-micron-gate-length MMIC chips

    NASA Technical Reports Server (NTRS)

    Sewell, James S.; Bozada, Christopher A.

    1994-01-01

    Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially

  2. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  3. Miniature accelerator-driven gamma source concept.

    SciTech Connect

    Garnett, R. W.; Chan, K. D.; Wangler, Thomas P.,; Wood R. L.; Carlsten, B. E.; Kirbie, H. C.

    2003-01-01

    Recent developments in W-band (-100 GHz) traveling wave tube technology at Los Alarnos may lead to a compact high-power W-band RE source. A conceptual design of a compact 8-MeV electron linac that codd be powered by this source is presented, including electromagnetic structure calculations, proposed rnicrojbbrication and manufacturing methods, supporting calculations to estimate accelerator performance, and gumma production rates based on preliminary target geometries and expected output beam current.

  4. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2011-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW

  5. An Integrated 520-600 GHz Sub-Harmonic Mixer and Tripler Combination Based on GaAs MMIC Membrane Planar Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Thomas, B.; Gill, J.; Maestrini, A.; Lee, C.; Lin, R.; Sin, S.; Peralta, A.; Mehdi, I.

    2010-01-01

    We present here the design, development and test of an integrated sub-millimeter front-end featuring a 520-600 GHz sub-harmonic mixer and a 260-300 GHz frequency tripler in a single cavity. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional machined as well as silicon micro-machined blocks. Measurement results on the metal block give best DSB mixer noise temperature of 2360 K and conversion losses of 7.7 dB at 520 GHz. Preliminary results on the silicon micro-machined blocks give a DSB mixer noise temperature of 4860 K and conversion losses of 12.16 dB at 540 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer for both packages is between 30 and 50 mW.

  6. Channel Temperature Model for Microwave AlGaN/GaN HEMTs on SiC and Sapphire MMICs in High Power, High Efficiency SSPAs

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2004-01-01

    A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).

  7. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  8. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  9. Fabrication of miniaturized electrostatic deflectors using LIGA

    SciTech Connect

    Jackson, K.H.; Khan-Malek, C.; Muray, L.P.

    1997-04-01

    Miniaturized electron beam columns ({open_quotes}microcolumns{close_quotes}) have been demonstrated to be suitable candidates for scanning electron microscopy (SEM), e-beam lithography and other high resolution, low voltage applications. In the present technology, microcolumns consist of {open_quotes}selectively scaled{close_quotes} micro-sized lenses and apertures, fabricated from silicon membranes with e-beam lithography, reactive ion beam etching and other semiconductor thin-film techniques. These miniaturized electron-optical elements provide significant advantages over conventional optics in performance and ease of fabrication. Since lens aberrations scale roughly with size, it is possible to fabricate simple microcolumns with extremely high brightness sources and electrostatic objective lenses, with resolution and beam current comparable to conventional e-beam columns. Moreover since microcolumns typically operate at low voltages (1 KeV), the proximity effects encountered in e-beam lithography become negligible. For high throughput applications, batch fabrication methods may be used to build large parallel arrays of microcolumns. To date, the best reported performance with a 1 keV cold field emission cathode, is 30 nm resolution at a working distance of 2mm in a 3.5mm column. Fabrication of the microcolumn deflector and stigmator, however, have remained beyond the capabilities of conventional machining operations and semiconductor processing technology. This work examines the LIGA process as a superior alternative to fabrication of the deflectors, especially in terms of degree of miniaturization, dimensional control, placement accuracy, run-out, facet smoothness and choice of suitable materials. LIGA is a combination of deep X-ray lithography, electroplating, and injection molding processes which allow the fabrication of microstructures.

  10. Development of Californium-252 Miniature Source Assemblies

    SciTech Connect

    Notspecified, N. A.

    2007-06-26

    The purpose of this CRADA between ORNL and lsotron, Inc. is to develop miniature californium-252 sources configured for remote handling that can be used in neutron brachytherapy for treatment of cancer. Brachytherapy places the · radioactive source at or near the site of the tumor, using a catheter. The CRADA ran from late 1999 through November 2005. The heart of a Cf-252 source is the radioactive core wire, which is sealed inside a metallic source capsule. Previous Cf-252 medical sources were based on a cermet wire with californium oxide dispersed in palladium, typically >1-mm diameter and <0.1% Cf-252 by weight. Previously, the standard medical source in the U.S. was the Applicator Tube (AT) source. 23-mm long, 2.8-mm diameter, with ~30 {micro}g of Cf-252, and which required manual loading into patients by medical staff. The goal of this work was to develop capabilities and technology to fabricate higher-intensity Cf-252 sources attached to a positioning cable, with overall diameter approaching that of exist ing photon (iridium-192) brachytherapy sources (i.e., ~1.1 mm). This work was successful in developing and demonstrating new technologies and procedures for the fabrication of miniaturized Cf-252 sources. CRADA-designed equipment reduced the wire diameters significantly (patent pending). Short wire segments were cut and successfully welded inside capsules meeting the miniaturization goals. A batch of seven prototype sources was prepared that met fabrication specifications. Although their neutron emissions were not maximized, they were still several times more intense than the previous AT sources. Very robust source-to-cable attachment methods were demonstrated (patent issued). A shipping canister was designed and built to contain the completed source assembly. lsotron designed and built a computer-controlled remote afterloader system to deliver the new sources for treatments.

  11. Collaborating miniature drones for surveillance and reconnaissance

    NASA Astrophysics Data System (ADS)

    Bürkle, Axel

    2009-09-01

    The use of miniature Unmanned Aerial Vehicles (UAVs), e.g. quadrocopters, has gained great popularity over the last years. Some complex application scenarios for micro UAVs call for the formation of swarms of multiple drones. In this paper a platform for the creation of such swarms is presented. It consists of commercial quadrocopters enhanced with on-board processing and communication units enabling autonomy of individual drones. Furthermore, a generic ground control station has been realized. Different co-operation strategies for teams of UAVs are currently evaluated with an agent based simulation tool. Finally, complex application scenarios for multiple micro UAVs are presented.

  12. Miniature Ground Penetrating Radar, CRUX GPR

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Carnes, Steven R.; Haldemann, Albert F.; Ulmer, Christopher T.; Ng, Eddie; Arcone, Steven A.

    2006-01-01

    Under NASA instrument development programs (PIDDP 2000-2002, MIPD 2003-2005, ESR and T, 2005) we have been developing miniature ground penetrating radars (GPR) for use in mapping subsurface stratigraphy from planetary rovers for Mars and lunar applications. The Mars GPR is for deeper penetration (up to 50 m depth) into the Martian subsurface at moderate resolution (0.5 m) for a geological characterization. As a part of the CRUX (Construction and Resource Utilization Explorer) instrument suite, the CRUX GPR is optimized for a lunar prospecting application. It will have shallower penetration (5 m depth) with higher resolution (10 cm) for construction operations including ISRU (in-situ resource utilization).

  13. Miniature Robotic Submarine for Exploring Harsh Environments

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Bruhn, Fredrik; Carsey, Frank

    2004-01-01

    The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.

  14. A miniature solid propellant rocket motor

    SciTech Connect

    Grubelich, M.C.; Hagan, M.; Mulligan, E.

    1997-08-01

    A miniature solid-propellant rocket motor has been developed to impart a specific motion to an object deployed in space. This rocket motor effectively eliminated the need for a cold-gas thruster system or mechanical spin-up system. A low-energy igniter, an XMC4397, employing a semiconductor bridge was used to ignite the rocket motor. The rocket motor was ground-tested in a vacuum tank to verify predicted space performance and successfully flown in a Sandia National Laboratories flight vehicle program.

  15. Miniature interferometer terminals for earth surveying

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.

    1978-01-01

    A system of miniature radio interferometer terminals was proposed for the measurement of vector baselines with uncertainties ranging from the millimeter to the centimeter level for baseline lengths ranging, respectively, from a few to a few hundred kilometers. Each terminal would have no moving parts, could be packaged in a volume of less than 0.1 cu m, and would operate unattended. These units would receive radio signals from low-power (10 w) transmitters on earth-orbiting satellites. The baselines between units could be determined virtually instantaneously and monitored continuously as long as at least four satellites were visible simultaneously.

  16. Miniaturized bendable 400 MHz artificial magnetic conductor

    NASA Astrophysics Data System (ADS)

    Presse, Anthony; Tarot, Anne-Claude

    2016-04-01

    A bendable artificial magnetic conductor (AMC) with a resonant frequency of 400 MHz is proposed. The dimensions of the unit cell are 50 × 50 mm2 or 0.07 × 0.07 λ0. The miniaturization is achieved with closely coupled patches printed on each side of a 0.127-mm-thick dielectric substrate. This last one is stacked on a flexible 3-mm-thick silicone over a ground plane. An AMC prototype is simulated and manufactured. Also, a printed inverted-F antenna is used to highlight the bandwidth of the AMC.

  17. Development of a Miniature Laser Interferometric Seismic Sensor

    NASA Astrophysics Data System (ADS)

    Carr, D. W.; Bogart, G.; Zhang, J.; Robinson, D.; Milburn, H.; Baldwin, P.

    2009-12-01

    This paper details the development and initial testing of a new seismic sensing platform that could have broad impact on geophysics. There has long been a general desire for miniaturized sensors that could still maintain very low noise performance for geophysics research, earthquake monitoring, and nuclear test ban treaty monitoring. Smaller size directly translates into simpler deployment, which could in turn make it economical to build higher density arrays over the surface of the earth. Our prototype sensor design integrates laser optics with micromechanical structures and electronic components in a compact sensor capsule. The use of optical sensing enables a mechanical design that is not tightly coupled to the sensing modality, which leads to a smaller and more robust sensor system when compared with sensors that have competitive performance. Our prototype sensor, shown in Figure 1, achieved a noise floor of -150 dB/Hz, relative to 1 m2/s4, over a bandwith from 2 Hz to 100 Hz. Refinements to this design are continuing, with a target to achieve Low Noise Model (LNM) performance of -168 dB/Hz from 0.1 Hz to 100 Hz. This can be achieved with a part that is more than 40 times smaller than the existing state of the art. In this paper we will also show how this design is extensible to much lower frequencies that may be of interest in geophysics research. Figure 1. An image of the Sympony Acoustics SA1210 prototype optical seismometer. Figure 2. Seismogram display of data acquired simultaneously from a Symphony Acoustics SA1210 prototype and a Sercel L4C geophone, of an earthquake off the Baja peninsula. Data was taken in our laboratory in Rio Rancho, NM.

  18. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10-70 dB attenuation at 10 dB intervals from 0.1-20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  19. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol

    PubMed Central

    Qi, Chaolong; Kulkarni, Pramod

    2015-01-01

    A corona-based bipolar charger has been developed for use in compact, field-portable mobility size spectrometers. The charger employs an aerosol flow cavity exposed to two corona ionizers producing ions of opposite polarity. Each corona ionizer houses two electrodes in parallel needle-mesh configuration and is operated at the same magnitude of corona current. Experimental measurement of detailed charge distribution of near-monodisperse particles of different diameter in the submicrometer size range showed that the charger is capable of producing well-defined, consistent bipolar charge distributions for flow rates up to 1.5 L/min and aerosol concentration up to 107 per cm3. For particles with preexisting charge of +1, 0, and −1, the measured charge distributions agreed well with the theoretical distributions within the range of experimental and theoretical uncertainties. The transmission efficiency of the charger was measured to be 80% for 10 nm particles (at 0.3 L/min and 5 μA corona current) and increased with increasing diameter beyond this size. Measurement of uncharged fractions at various combinations of positive and negative corona currents showed the charger performance to be insensitive to fluctuations in corona current. Ion concentrations under positive and negative unipolar operation were estimated to be 8.2 × 107 and 3.37 × 108 cm−3 for positive and negative ions; the n·t product value under positive corona operation was independently estimated to be 8.5 × 105 s/cm3. The ion concentration estimates indicate the charger to be capable of “neutralizing” typical atmospheric and industrial aerosols in most measurement applications. The miniature size, simple and robust operation makes the charger suitable for portable mobility spectrometers. PMID:26512158

  20. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-07-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π-type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm3, which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band.

  1. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  2. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  3. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  4. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  5. Compact ultradense matter impactors.

    PubMed

    Rafelski, Johann; Labun, Lance; Birrell, Jeremiah

    2013-03-15

    We study interactions of meteorlike compact ultradense objects (CUDO), having nuclear or greater density, with Earth and other rocky bodies in the Solar System as a possible source of information about novel forms of matter. We study the energy loss in CUDO puncture of the body and discuss differences between regular matter and CUDO impacts.

  6. Miniature open channel scrubbers for gas collection.

    PubMed

    Toda, Kei; Koga, Tomoko; Tanaka, Toshinori; Ohira, Shin-Ichi; Berg, Jordan M; Dasgupta, Purnendu K

    2010-10-15

    An open channel scrubber is proposed as a miniature fieldable gas collector. The device is 100mm in length, 26 mm in width and 22 mm in thickness. The channel bottom is rendered hydrophilic and liquid flows as a thin layer on the bottom. Air sample flows atop the appropriately chosen flowing liquid film and analyte molecules are absorbed into the liquid. There is no membrane at the air-liquid interface: they contact directly each other. Analyte species collected over a 10 min interval are determined by fluorometric flow analysis or ion chromatography. A calculation algorithm was developed to estimate the collection efficiency a priori; experimental and simulated results agreed well. The characteristics of the open channel scrubber are discussed in this paper from both theoretical and experimental points of view. In addition to superior collection efficiencies at relatively high sample air flow rates, this geometry is particularly attractive that there is no change in collection performance due to membrane fouling. We demonstrate field use for analysis of ambient SO(2) near an active volcano. This is basic investigation of membraneless miniature scrubber and is expected to lead development of an excellent micro-gas analysis system integrated with a detector for continuous measurements.

  7. Miniature Free-Space Electrostatic Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Stephens, James B.

    2006-01-01

    A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.

  8. Miniaturized integration of a fluorescence microscope

    PubMed Central

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  9. Miniature Mass Spectrometers for Hydrogen Isotopic Analyses

    SciTech Connect

    Spencer, W.A.

    2003-05-29

    As part of the Defense Programs Plant Directed Research and Development Program, the Savannah River Technology Center investigated the emerging area of miniature mass sensors for hydrogen and hydrogen isotope analysis. New sensors from Ferran Scientific and a beta prototype sensor from Mass Sensors, Inc. were purchased. A small pumping platform was designed and assembled. Components for miniature ion traps were investigated based on design information from Oak Ridge National Laboratories. The systems were compared to a conventional residual gas analyzer based on a Stanford Research RGA 300. Each of the sensors investigated had distinct advantages for particular applications. The Ferran system was the least expensive and the smallest, but it had low resolution for hydrogen and deuterium mixtures. The Mass Sensor unit used a new ExB design which achieved excellent resolution of the hydrogen isotopes in a small package. One limitation with the current design was the small 3 to 4 order dynamic range and another was a need for a variable sampling rate to speed analysis over a wider mass range.

  10. Miniature bioreactors: current practices and future opportunities

    PubMed Central

    Betts, Jonathan I; Baganz, Frank

    2006-01-01

    This review focuses on the emerging field of miniature bioreactors (MBRs), and examines the way in which they are used to speed up many areas of bioprocessing. MBRs aim to achieve this acceleration as a result of their inherent high-throughput capability, which results from their ability to perform many cell cultivations in parallel. There are several applications for MBRs, ranging from media development and strain improvement to process optimisation. The potential of MBRs for use in these applications will be explained in detail in this review. MBRs are currently based on several existing bioreactor platforms such as shaken devices, stirred-tank reactors and bubble columns. This review will present the advantages and disadvantages of each design together with an appraisal of prototype and commercialised devices developed for parallel operation. Finally we will discuss how MBRs can be used in conjunction with automated robotic systems and other miniature process units to deliver a fully-integrated, high-throughput (HT) solution for cell cultivation process development. PMID:16725043

  11. Miniature open channel scrubbers for gas collection.

    PubMed

    Toda, Kei; Koga, Tomoko; Tanaka, Toshinori; Ohira, Shin-Ichi; Berg, Jordan M; Dasgupta, Purnendu K

    2010-10-15

    An open channel scrubber is proposed as a miniature fieldable gas collector. The device is 100mm in length, 26 mm in width and 22 mm in thickness. The channel bottom is rendered hydrophilic and liquid flows as a thin layer on the bottom. Air sample flows atop the appropriately chosen flowing liquid film and analyte molecules are absorbed into the liquid. There is no membrane at the air-liquid interface: they contact directly each other. Analyte species collected over a 10 min interval are determined by fluorometric flow analysis or ion chromatography. A calculation algorithm was developed to estimate the collection efficiency a priori; experimental and simulated results agreed well. The characteristics of the open channel scrubber are discussed in this paper from both theoretical and experimental points of view. In addition to superior collection efficiencies at relatively high sample air flow rates, this geometry is particularly attractive that there is no change in collection performance due to membrane fouling. We demonstrate field use for analysis of ambient SO(2) near an active volcano. This is basic investigation of membraneless miniature scrubber and is expected to lead development of an excellent micro-gas analysis system integrated with a detector for continuous measurements. PMID:20875590

  12. Maximizing strain in miniaturized dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Araromi, Oluwaseun; Shea, Herbert

    2015-04-01

    We present a theoretical model to optimise the unidirectional motion of a rigid object bonded to a miniaturized dielectric elastomer actuator (DEA), a configuration found for example in AMI's haptic feedback devices, or in our tuneable RF phase shifter. Recent work has shown that unidirectional motion is maximized when the membrane is both anistropically prestretched and subjected to a dead load in the direction of actuation. However, the use of dead weights for miniaturized devices is clearly highly impractical. Consequently smaller devices use the membrane itself to generate the opposing force. Since the membrane covers the entire frame, one has the same prestretch condition in the active (actuated) and passive zones. Because the passive zone contracts when the active zone expands, it does not provide a constant restoring force, reducing the maximum achievable actuation strain. We have determined the optimal ratio between the size of the electrode (active zone) and the passive zone, as well as the optimal prestretch in both in-plane directions, in order to maximize the absolute displacement of the rigid object placed at the active/passive border. Our model and experiments show that the ideal active ratio is 50%, with a displacement twice smaller than what can be obtained with a dead load. We expand our fabrication process to also show how DEAs can be laser-post-processed to remove carefully chosen regions of the passive elastomer membrane, thereby increasing the actuation strain of the device.

  13. Miniature Oxidizer Ionizer for a Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hartley, Frank

    2006-01-01

    A proposed miniature device for ionizing the oxygen (or other oxidizing gas) in a fuel cell would consist mostly of a membrane ionizer using the same principles as those of the device described in the earlier article, Miniature Bipolar Electrostatic Ion Thruster (NPO-21057). The oxidizing gas would be completely ionized upon passage through the holes in the membrane ionizer. The resulting positively charged atoms or molecules of oxidizing gas could then, under the influence of the fringe fields of the ionizer, move toward the fuel-cell cathode that would be part of a membrane/electrode assembly comprising the cathode, a solid-electrolyte membrane, and an anode. The electro-oxidized state of the oxidizer atoms and molecules would enhance transfer of them through the cathode, thereby reducing the partial pressure of the oxidizer gas between the ionizer and the fuel-cell cathode, thereby, in turn, causing further inflow of oxidizer gas through the holes in the membrane ionizer. Optionally the ionizer could be maintained at a positive electric potential with respect to the cathode, in which case the resulting electric field would accelerate the ions toward the cathode.

  14. Congenital urethral stenosis in a male miniature piglet

    PubMed Central

    Pouleur-Larrat, Bénédicte; Maccolini, Edouard; Carmel, Eric Norman; Hélie, Pierre

    2014-01-01

    A 2-month-old male miniature pig showed progressive abdominal pain, pollakiuria, and stranguria that progressed to complete urinary obstruction. Postmortem examination revealed idiopathic urethral stenosis at the level of the recess, of probable congenital origin. Urinary tract malformations should be included in the differential diagnosis of miniature piglets with urinary disorders. PMID:24891635

  15. The Miniature Job Training and Evaluation Approach: Additional Findings.

    ERIC Educational Resources Information Center

    Siegel, Arthur I.

    1983-01-01

    Describes miniature job training and evaluation situations administered to 1,034 "low aptitude" Navy recruits. Checklist criterion data describing the on-the-job performance of the sample were collected after the recruits were on their fleet assignments. The results confirmed the predictive validity of the miniature job training approach.…

  16. A miniaturized artificial mastoid using a skull simulator.

    PubMed

    Stenfelt, S P; Håkansson, B E

    1998-01-01

    A miniaturized artificial mastoid of size and weight that allow calibration and measurement of bone conduction hearing aids in a conventional audiometric soundproof box has been developed. Its level of mechanical impedance corresponds to the standard IEC 373 (1990) within the frequency range 250 Hz to 8 kHz. The miniaturized artificial mastoid consists of three parts: coupler, skull simulator (TU-1000), and an external electrical correction filter. The coupler is a highly damped mass-spring system designed to give the miniaturized artificial mastoid mechanical impedance in accordance with the standard IEC 373 (1990). It was found that the miniaturized artificial mastoid yielded results that are in correspondence with results obtained with the Brüel & Kjaer type 4930 artificial mastoid for frequencies above 450 Hz. Thus, at these frequencies, the miniaturized artificial mastoid can be used for audiometer calibration as well as measurement of bone conduction hearing aids.

  17. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  18. Maintenance energy requirements in miniature colony dogs.

    PubMed

    Serisier, S; Weber, M; Feugier, A; Fardet, M-O; Garnier, F; Biourge, V; German, A J

    2013-05-01

    There are numerous reports of maintenance energy requirements (MER) in dogs, but little information is available about energy requirements of miniature dog breeds. In this prospective, observational, cohort study, we aimed to determine MER in dogs from a number of miniature breeds and to determine which factors were associated with it. Forty-two dogs participated in the study. MER was calculated by determining daily energy intake (EI) during a period of 196 days (28-359 days) when body weight did not change significantly (e.g. ±2% in 12 weeks). Estimated median MER was 473 kJ/kg(0.75) /day (285-766 kJ/kg(0.75) /day), that is, median 113 kcal/kg(0.75) /day (68-183 kcal/kg(0.75) /day). In the obese dogs that lost weight, median MER after weight loss was completed was 360 kJ/kg(0.75) /day (285-515 kJ/kg(0.75) /day), that is, 86 kcal/kg(0.75) /day, (68-123 kcal/kg(0.75) /day). Simple linear regression analysis suggested that three breeds (e.g. Chihuahua, p = 0.002; Yorkshire terrier, p = 0.039; dachshund, p = 0.035) had an effect on MER. In addition to breed, simple linear regression revealed that neuter status (p = 0.079) and having previously been overweight (p = 0.002) were also of significance. However, with multiple linear regression analysis, only previous overweight status (MER less in dogs previously overweight p = 0.008) and breed (MER greater in Yorkshire terriers [p = 0.029] and less in Chihuahuas [p = 0.089]) remained in the final model. This study is the first to estimate MER in dogs of miniature breeds. Although further information from pet dogs is now needed, the current work will be useful for setting energy and nutrient requirement in such dogs for the future.

  19. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  20. Compact torsatron reactors

    SciTech Connect

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R/sub 0/ = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R/sub 0/ approx. = 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs.

  1. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  2. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  3. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  4. Miniature Neutron-Alpha Activation Spectrometer

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar; Holloway, James Paul; He, Zhong; Goldsten, John

    2002-10-01

    We are developing a miniature neutron-alpha activation spectrometer for in-situ analysis of chem-bio samples, including rocks, fines, ices, and drill cores, suitable for a lander or Rover platform for Mars or outer-planet missions. In the neutron-activation mode, penetrating analysis will be performed of the whole sample using a γ spectrometer and in the α-activation mode, the sample surface will be analyzed using Rutherford-backscatter and x-ray spectrometers. Novel in our approach is the development of a switchable radioactive neutron source and a small high-resolution γ detector. The detectors and electronics will benefit from remote unattended operation capabilities resulting from our NEAR XGRS heritage and recent development of a Ge γ detector for MESSENGER. Much of the technology used in this instrument can be adapted to portable or unattended terrestrial applications for detection of explosives, chemical toxins, nuclear weapons, and contraband.

  5. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  6. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  7. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  8. An automated miniature robotic vehicle inspection system

    SciTech Connect

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  9. Affordable miniaturized SAR for tactical UAV applications

    NASA Astrophysics Data System (ADS)

    Sloan, George R.; Dubbert, Dale F.

    2004-08-01

    Sandia"s fielded and experimental SAR systems are well known for their real time, high resolution imagery. Previous designs, such as the Lynx radar, have been successfully demonstrated on medium-payload UAVs, including Predator and Fire Scout. However, fielding a high performance SAR sensor on even smaller (sub-50 pound payload) UAVs will require at least a 5x reduction in size, weight, and cost. This paper gives an overview of Sandia"s system concept and roadmap for near-term SAR miniaturization. Specifically, the "miniSAR" program, which plans to demonstrate a 25 pound system with 4 inch resolution in early 2005, is detailed. Accordingly, the conceptual approach, current status, design tradeoffs, and key facilitating technologies are reviewed. Lastly, future enhancements and directions are described, such as the follow-on demonstration of a sub-20 pound version with multi-mode (SAR/GMTI) capability.

  10. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  11. Miniature solid-state gas compressor

    DOEpatents

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  12. Miniature solid-state gas compressor

    DOEpatents

    Lawless, William N.; Cross, Leslie E.; Steyert, William A.

    1985-01-01

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  13. A miniaturized fibrinolytic assay for plasminogen activators

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Nachtwey, D. S.; Damron, K. L.

    1991-01-01

    This report describes a micro-clot lysis assay (MCLA) for evaluating fibrinolytic activity of plasminogen activators (PA). Fibrin clots were formed in wells of microtiter plates. Lysis of the clots by PA, indicated by change in turbidity (optical density, OD), was monitored with a microplate reader at five minutes intervals. Log-log plots of PA dilution versus endpoint, the time at which the OD value was halfway between the maximum and minimum value for each well, were linear over a broad range of PA concentrations (2-200 International units/ml). The MCLA is a modification and miniaturization of well established fibrinolytic methods. The significant practical advantages of the MCLA are that it is a simple, relatively sensitive, non-radioactive, quantitative, kinetic, fibrinolytic micro-technique which can be automated.

  14. Miniature Ring-Shaped Peristaltic Pump

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi; Lih, Shyh-Shiuh

    2004-01-01

    An experimental miniature peristaltic pump exploits piezoelectrically excited flexural waves that travel around a ring: A fluid is carried in the containers formed in the valleys between the peaks of the flexural waves, What sets the present pump apart from other pumps that exploit piezoelectrically excited flexural waves is the ring shape, which makes it possible to take advantage of some of the desirable characteristics of previously developed piezoelectric rotary motors. A major advantage of the circular (in contradistinction to a straight-line) wave path is that the flexural waves do not come to a stop and, instead, keep propagating around the ring. Hence, a significant portion of the excitation energy supplied during each cycle is reused during the next cycle, with the result that the pump operates more effectively than it otherwise would.

  15. Miniature reciprocating heat pumps and engines

    NASA Technical Reports Server (NTRS)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  16. A miniaturized pointing mount for Spacelab missions

    NASA Technical Reports Server (NTRS)

    Fritz, C. G.; Howell, T., Jr.; Nicaise, P. D.; Parker, J. R.

    1975-01-01

    A Miniaturized Pointing Mount (MPM) for Spacelab missions is defined and simulation results are described. This mount is proposed to complement the Spacelab Instrument Pointing System (IPS). It uses the same mount isolator concept as the Spacelab IPS but is much more efficient and economical for the accommodation of small shuttle payloads. The MPM is built from star tracker assemblies left over from the Apollo Telescope Mount program thereby assuring low cost and development risk. Simulation results indicate a high level of instrument stability can be expected. The short development time of the MPM would permit it to serve as a precursor to the Spacelab IPS for verifying critical new concepts such as the mount isolation and hold down mechanisms.

  17. Micro-miniature roll rate sensor

    NASA Astrophysics Data System (ADS)

    Grant, Jonathan; Nelson, Bruce; Garnes, George

    1989-11-01

    The Phase 2 Micro-Miniature Roll Rate Sensor Program developed an optical centripetal accelerometer that can be tailored to work over a wide range of accelerations. A rate sensing device was developed by measuring centripetal acceleration due to rotation with a proof mass loading a photoelastic sensing element. The acceleration is proportional to the amount of birefringence induced by the load. Development of this technology resulted in construction of a prototype rate sensor targeted for use with the Copperhead munition. The sensors developed in this program can be adjusted for the desired range of operation through changes in width of a photoelastic (plastic) sensing element and/or changes in the amount of proof mass used to load the sensing element. Radial location of the sensor can also be used to control the range.

  18. An automated miniature robotic vehicle inspection system

    NASA Astrophysics Data System (ADS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-02-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  19. Miniaturized spectral imager for Aalto-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Näsilä, Antti; Praks, Jaan; Saari, Heikki; Antila, Jarkko

    2011-11-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. VTT Technical Research Centre of Finland will develop the main Earth observation payload, a miniaturized spectral imager, for the satellite. It is a novel highly miniaturized tunable filter type spectral imager. Mass of the spectral imager will be less than 400 grams, and dimensions will be approximately 80 mm x 80 mm x 45 mm. The spectral imager is based on a tunable Fabry-Pérot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based either on a microelectromechanical (MEMS) or piezo-actuated structure. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force. Benefits of the MEMS FPI are low mass and small size. However, large aperture (2-10 mm) MEMS FPIs are currently under development, thus it is not yet known if their performance is adequate. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The drawback of the piezo-actuated FPI is its higher mass. However, it has a large aperture which enables a shorter exposure times. Selection of the FPI type will be done after thorough evaluation. Depending on the selected FPI type, the spectral resolution of the imager will be 5 - 10 nm at full width at half maximum and it will operate in the visible and/or near infrared range.

  20. Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2001-01-01

    The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.

  1. Real-time Sample Analysis using Sampling Probe and Miniature Mass Spectrometer

    PubMed Central

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R. Graham; Ouyang, Zheng

    2016-01-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intra-surgical probe for tissue analysis. PMID:26237577

  2. Miniature Stirling cryocoolers at Thales Cryogenics: qualification results and integration solutions

    NASA Astrophysics Data System (ADS)

    Arts, R.; Martin, J.-Y.; Willems, D.; Seguineau, C.; de Jonge, G.; Van Acker, S.; Mullié, J.; Le Bordays, J.; Benschop, T.

    2016-05-01

    During the 2015 SPIE-DSS conference, Thales Cryogenics presented new miniature cryocoolers for high operating temperatures. In this paper, an update is given regarding the qualification programme performed on these new products. Integration aspects are discussed, including an in-depth examination of the influence of the dewar cold finger on sizing and performance of the cryocooler. The UP8197 will be placed in the reference frame of the Thales product range of high-reliability linear cryocoolers, while the rotary solution will be considered as the most compact solution in the Thales portfolio. Compatibility of the cryocoolers design with new and existing 1/4" dewar designs is examined, and potential future developments are presented.

  3. Real-time sample analysis using a sampling probe and miniature mass spectrometer.

    PubMed

    Chen, Chien-Hsun; Lin, Ziqing; Tian, Ran; Shi, Riyi; Cooks, R Graham; Ouyang, Zheng

    2015-09-01

    A miniature mass spectrometry system with a sampling probe has been developed for real-time analysis of chemicals from sample surfaces. The sampling probe is 1.5 m in length and is comprised of one channel for introducing the spray and the other channel for transferring the charged species back to the Mini MS. This system provides a solution to the problem of real-time mass spectrometry analysis of a three-dimensional object in the field and is successful with compounds including those in inks, agrochemicals, explosives, and animal tissues. This system can be implemented in the form of a backpack MS with a sampling probe for forensic analysis or in the form of a compact MS with an intrasurgical probe for tissue analysis. PMID:26237577

  4. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  5. A multipurpose miniature piston-cylinder diamond-anvil cell for pressures beyond 100 GPa

    NASA Astrophysics Data System (ADS)

    Yu. Machavariani, G.; Pasternak, M. P.; Hearne, G. R.; Rozenberg, G. Kh.

    1998-03-01

    A miniature piston-cylinder diamond-anvil cell (DAC) was constructed and tested for pressure operation at and beyond 100 GPa. Its advantages compared to other piston-cylinder DACs are its compactness (22-mm diam by 21-mm high), self-contained force generator, and simple way of operation. Tungsten carbide backing plates are used for supporting the anvils; one with a hemispherical shape allowing for parallelism alignment, and one with a flat circular shape allowing for lateral alignment of the anvils' culets. The force is generated by six M3 Allen screws and is conveyed to the piston via force rings. Pressures to 130 GPa were achieved with beveled culets having 300-μm flats and Re gaskets. Design features, mode of operation, and performance are described. The latter has been demonstrated for the particular case of Mössbauer spectroscopy in La57FeO3.

  6. Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Nagano, Hosei

    2008-01-01

    Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.

  7. A miniature fiber-optic temperature sensor based on a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Rong, Qiangzhou; Sun, Hao; Qiao, Xueguang; Zhang, Jing; Hu, Manli; Feng, Zhongyao

    2012-04-01

    A miniature fiber Fabry-Perot interferometer (FFPI) for temperature measurement is proposed and demonstrated. The sensor consists of a section of single-mode fiber (SMF) tip coated with a thin film of polyvinyl alcohol (PVA) at the end of the fiber tip. A well-defined interference pattern is obtained as the result of the FFPI based on Fresnel reflection. The sensing head is extremely sensitive to ambient temperature, and provides a stable temperature sensitivity with a maximum value up to 173.5 pm °C-1 above 80 °C. This proposed sensor has advantages of low cost, ultra-compactness, a small degree of hysteresis and high stability.

  8. A miniaturized low-power VCM actuator for auto-focusing applications.

    PubMed

    Liu, Chien-Sheng; Lin, Psang Dain

    2008-02-18

    In keeping with consumer preferences for ever smaller electronic products, a requirement exists for compact, high-performance auto-focusing actuators for the camera modules deployed in cell phones. Accordingly, the present study proposes a miniaturized electromagnetic-based actuator comprising a voice coil motor (VCM) and a closed-loop position control system in which an auto-focusing capability is achieved by using a position feedback signal generated by a Hall element to dynamically adjust the position of the lens module. The experimental results show that the holding current required to maintain a lens module weighing 200 mgw in the vertical position is 17 mA +/- 2 mA. Compared to conventional VCM actuators deployed in cell phone camera applications, the actuator presented in this study has a smaller size (6.5 mm x 6.5 mm x 4 mm) and an improved power efficiency. In particular, the miniaturized actuator reduces the holding current required to maintain the lens module in the focusing position by around 75% of that required in a traditional actuator.

  9. Optical characterization of a miniaturized large field of view motion sensor

    NASA Astrophysics Data System (ADS)

    Moens, Els; Ottevaere, Heidi; Meuret, Youri; Thienpont, Hugo

    2012-06-01

    In this paper we discuss the geometrical and optical characterization of a miniaturized very wide field-of-view (FOV) motion sensor inspired by the working principle of insect facet eyes. The goal of the sensor is to detect movement in the environment and to specify where in the surroundings these changes took place. Based on the measurements of the sensor, certain actions can be taken such as sounding an alarm in security applications or turning on the light in domotic applications. The advantage of miniaturizing these sensors is that they are low-cost, compact and more esthetical compared to current motion detectors. The sensor was designed to have a very large FOV of 125° and an angular resolution of 1° or better. The micro-optics is built up of two stacked polymer plates consisting each out of a five by five lens array. In between there is a plate of absorbing material with a five by five array of baffles to create 25 optically isolated channels that each image part of the total FOV of 125° onto the detector. To geometrically characterize the lens arrays and verify the designed specifications, we made use of a coordinate measuring machine. The optical performance of the designed micro-optical system was analyzed by sending white light beams with different angles of incidence with respect to the sample through the sensor, comparing the position of the light spots visible on the detector and determining optical quality parameters such as MTF and distortion.

  10. Miniaturized sharp band-pass filter based on complementary electric-LC resonator

    NASA Astrophysics Data System (ADS)

    Torabi, Yalda; Dadashzadeh, Golamreza; Oraizi, Homayoon

    2016-04-01

    In this paper, a novel application of complementary electric-LC (CELC) resonator as a basic element to synthesize miniaturized sharp band-pass filters is introduced. The proposed metamaterial band-pass filter is a three-stage CELC-based device, where two shunt short-circuited stubs are employed in the input and output stages and a series gap is etched in the middle stage. By these means, a high-selectivity prototype band-pass filter with 2 % fractional bandwidth in S band is designed and fabricated. The out-of-band attenuation is better than 40 dB, and the upper and lower transition bands are also quite sharp due to the presence of two transmission zeros (nearly 60 and 30 dB fall in 0.2 GHz at lower and upper edges, respectively). Moreover, the filter is substantially miniaturized with a size of effective region of 1.3 cm × 1 cm at 2.9 GHz, which is quite smaller relative to conventional designs with the same performance. The fabrication and measurement of the proposed filter configuration attest to its expected desirable features. Therefore, the application of CELC resonator is proposed for super-compact sharp band-pass filters.

  11. On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda

    2012-01-01

    JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.

  12. Towards establishing compact imaging spectrometer standards

    USGS Publications Warehouse

    Slonecker, E. Terrence; Allen, David W.; Resmini, Ronald G.

    2016-01-01

    Remote sensing science is currently undergoing a tremendous expansion in the area of hyperspectral imaging (HSI) technology. Spurred largely by the explosive growth of Unmanned Aerial Vehicles (UAV), sometimes called Unmanned Aircraft Systems (UAS), or drones, HSI capabilities that once required access to one of only a handful of very specialized and expensive sensor systems are now miniaturized and widely available commercially. Small compact imaging spectrometers (CIS) now on the market offer a number of hyperspectral imaging capabilities in terms of spectral range and sampling. The potential uses of HSI/CIS on UAVs/UASs seem limitless. However, the rapid expansion of unmanned aircraft and small hyperspectral sensor capabilities has created a number of questions related to technological, legal, and operational capabilities. Lightweight sensor systems suitable for UAV platforms are being advertised in the trade literature at an ever-expanding rate with no standardization of system performance specifications or terms of reference. To address this issue, both the U.S. Geological Survey and the National Institute of Standards and Technology are eveloping draft standards to meet these issues. This paper presents the outline of a combined USGS/NIST cooperative strategy to develop and test a characterization methodology to meet the needs of a new and expanding UAV/CIS/HSI user community.

  13. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  14. A MEMS-based miniature DNA analysis system

    SciTech Connect

    Northrup, M.A.; Gonzalez, C.; Hadley, D.

    1995-04-25

    We detail the design and development of a miniature thermal cycling instrument for performing the polymerase chain reaction (PCR) that uses microfabricated, silicon-based reaction chambers. The MEMS-based, battery-operated instrument shows significant improvements over commercial thermal cycling instrumentation. Several different biological systems have been amplified and verified with the miniature PCR instrument including the Human Immunodeficiency Virus; both cloned and genomic DNA templates of {beta} globin; and the genetic disease, Cystic Fibrosis from human DNA. The miniaturization of a PCR thermal cycler is the initial module of a fully-integrated portable, low-power, rapid, and highly efficient bioanalytical instrument.

  15. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  16. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  17. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  18. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  19. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  20. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  1. Miniaturized Airborne Imaging Central Server System

    NASA Technical Reports Server (NTRS)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  2. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  3. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are

  4. A Miniature Controllable Flapping Wing Robot

    NASA Astrophysics Data System (ADS)

    Arabagi, Veaceslav Gheorghe

    The agility and miniature size of nature's flapping wing fliers has long baffled researchers, inspiring biological studies, aerodynamic simulations, and attempts to engineer their robotic replicas. Flapping wing flight is characterized by complex reciprocating wing kinematics, transient aerodynamic effects, and very small body lengths. These characteristics render robotic flapping wing aerial vehicles ideal for surveillance and defense applications, search and rescue missions, and environment monitoring, where their ability to hover and high maneuverability is immensely beneficial. One of the many difficulties in creating flapping wing based miniature robotic aerial vehicles lies in generating a proper wing trajectory that would result in sufficient lift forces for hovering and maneuvering. Since design of a flapping wing system is a balance between overall weight and the number of actuated inputs, we take the approach of having minimal controlled inputs, allowing passive behavior wherever possible. Hence, we propose a completely passive wing pitch reversal design that relies on wing inertial dynamics, an elastic energy storage mechanism, and low Reynolds number aerodynamic effects. Theoretical models, compiling previous research on piezoelectric actuators, four-bar transmissions, and aerodynamics effects, are developed and used as basis for a complete numerical simulation. Limitations of the model are discussed in comparison to experimental results obtained from a working prototype of the proposed passive pitch reversal flapping wing mechanism. Given that the mechanism is under-actuated, methods to control lift force generation by actively varying system parameters are proposed, discussed, and tested experimentally. A dual wing aerial platform is developed based on the passive pitch reversal wing concept. Design considerations are presented, favoring controllability and structural rigidity of the final platform. Finite element analysis and experimental

  5. Laboratory assessment of a miniature electromagnetic tracker

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Birkfellner, Wolfgang; Figl, Michael; Haider, C.; Hanel, Rudolf A.; Bergmann, Helmar

    2002-05-01

    With the invention of miniaturized electromagnetic digitizers comes a variety of potential clinical applications for computer aided interventions using flexible instruments; it has become possible to track endoscopes or catheters within the body. To evaluate the reliability of a new commercial tracking system, we measured the systematic distortions induced by various materials such as closed metallic loops, wire guides, catheters and ultrasound scan heads. The system under evaluation was the electromagnetic tracking system Aurora (Mednetix/CH, NDI/Can); data were acquired using the serial port of a PC running SuSE Linux 7.1 (SuSE, Gmbh, Nuernberg). The objects suspected to cause distortions were brought into the digitizer volume. Beside this, we evaluated the influence of a C-arm fluoroscopy unit. To quantify the reliability of the system, the miniaturized sensor was mounted on a nonmetallic measurement rack while the transmitter was fixed at three different distances within the digitizer range. The tracker is more sensitive to distortions caused by materials close to the emitter (average value 13.6 mm +/- 16.6mm) for wire loops positioned at a distance between 100 mm and 200 mm from the emitter). Distortions caused by materials near the sensor (distances smaller than 100 mm) are small (typical error: 2.2 mm +/- 1.9 mm) in comparison to the errors of other electromagnetic systems published in an earlier study of our group where we found an average error of 3.4 mm. Considerable distortions are caused by the C-arm fluoroscopy unit and limits the reliability of the tracker (error: 18.6 mm +/- 24.9 mm). The US scan head was found to cause significant distortions only at a distance between the emitter and the scan head less than 100 mm from the emitter in contrast to the average error of 3.8 mm +/- 6.3 mm at distances greater than 100 mm. Taking into account that significant distortions only occur in the presence of metallic objects close to the emitter, these results

  6. Compact Video Microscope Imaging System Implemented in Colloid Studies

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2002-01-01

    Long description Photographs showing fiber-optic light source, microscope and charge-coupled discharge (CCD) camera head connected to camera body, CCD camera body feeding data to image acquisition board in PC, and Cartesian robot controlled via PC board. The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. CMIS can be used in situ with a minimum amount of user intervention. This system can scan, find areas of interest in, focus on, and acquire images automatically. Many multiple-cell experiments require microscopy for in situ observations; this is feasible only with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control. The software also has a user-friendly interface, which can be used independently of the hardware for further post-experiment analysis. CMIS has been successfully developed in the SML Laboratory at the NASA Glenn Research Center and adapted for use for colloid studies and is available for telescience experiments. The main innovations this year are an improved interface, optimized algorithms, and the ability to control conventional full-sized microscopes in addition to compact microscopes. The CMIS software-hardware interface is being integrated into our SML Analysis package, which will be a robust general-purpose image-processing package that can handle over 100 space and industrial applications.

  7. The determination of particulate contamination in miniature ball bearings

    SciTech Connect

    Harding, W.B.

    1992-12-01

    A method is described for determining the particulate contamination in miniature ball bearings in which the bearing is flushed with a solvent that is then filtered. The particles that are collected on the filter are examined by optical microscopy.

  8. An Investigation Into the Performance of a Miniature Diesel Engine

    ERIC Educational Resources Information Center

    Stevenson, P. W.

    1970-01-01

    Reports the procedures and results of a student investigation of the performance of a miniature diesel engine. The experiments include (1) torque measurement, (2) power measurement, and (3) variation of power output with applied load. Bibliography. (LC)

  9. Miniature Tractor Pull Helps Teach Mechanical Power Transmission.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.

    1996-01-01

    A miniature tractor pull was developed as a high school activity, enabling students to assess a tractor's pulling capabilities and determine subsequent horsepower. The activity takes the textbook concept of horsepower and makes it come alive. (JOW)

  10. Miniature paint-spray gun for recessed areas

    NASA Technical Reports Server (NTRS)

    Vanasse, M. A.

    1968-01-01

    Miniature spray gun regulates paints and other liquids to spray at close range, facilitating spraying of remote or recessed areas. Individual valves for regulating air pressure and paint maximizes atomization for low pressure spraying.

  11. Miniature oxygen-hydrogen cutting torch constructed from hypodermic needle

    NASA Technical Reports Server (NTRS)

    Shlichta, P.

    1964-01-01

    A miniature cutting torch consisting of a main body member, upon which the hydrogen and oxygen containers are mounted, valves for controlling gas flow, and a hypodermic needle that acts as a mixing tube and flame tip is constructed.

  12. A compact SADM family

    NASA Astrophysics Data System (ADS)

    Barbet, Vincent; Le Quintrec, Cyrille; Jeandot, Xavier; Chaix, Alain; Grain, Eric; Roux, Jerome

    2005-07-01

    Alcatel Space has developed a new SADM family driven by cost, modularity, mass and performances. The modularity concept is based on separating the rotation drive function from the electrical transfer function. The drive actuator has been designed for various applications where pointing and reliability is needed. It can be associated with high dissipative rotary devices (SA collectors, RF joints..). The design goal was to minimize the number of parts in order to reach the most simple and compact mechanism. Mass reduction was achieved by reducing as much as possible the load path between the Solar Array interface and the spacecraft interface. Following these guidelines, the drive actuator was developed and qualified on ATV SADM (part od Alcatel Space Solar Array Drive Sub System for ATV). Further more a high power integrated collector was qualified inside the SADM for Geo-stationary telecom satellite (SPACEBUS platforms). Fine thermal and mechanical modeling was necessary to predict SADM behaviors for the numerous thermal environments over the missions (steady and transient cases). These modeling were well correlated through mechanical and thermal balances qualification tests. The challenging approach of thermal dissipation in a compact design leads to a family of 3 SADM capabilities form 2kW up to 15kW per SADM weighing less than 4.5 kg each.

  13. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  14. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  15. Ultra-compact coherent receiver with serial interface for pluggable transceiver.

    PubMed

    Itoh, Toshihiro; Nakajima, Fumito; Ohno, Tetsuichiro; Yamanaka, Shogo; Soma, Shunichi; Saida, Takashi; Nosaka, Hideyuki; Murata, Koichi

    2014-09-22

    An ultra-compact integrated coherent receiver with a volume of 1.3 cc using a quad-channel transimpedance amplifier (TIA)-IC chip with a serial peripheral interface (SPI) is demonstrated for the first time. The TIA with the SPI and photodiode (PD) bias circuits, a miniature dual polarization optical hybrid, an octal-PD and small optical coupling system enabled the realization of the compact receiver. Measured transmission performance with 32 Gbaud dual-polarization quadrature phase shift keying signal is equivalent to that of the conventional multi-source agreement-based integrated coherent receiver with dual channel TIA-ICs. By comparing the bit-error rate (BER) performance with that under continuous SPI access, we also confirmed that there is no BER degradation caused by SPI interface access. Such an ultra-compact receiver is promising for realizing a new generation of pluggable transceivers.

  16. Miniature detector measures deep space radiation

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  17. Design considerations for miniaturized optical neural probes

    NASA Astrophysics Data System (ADS)

    Rudmann, Linda; Ordonez, Juan S.; Stieglitz, Thomas

    2016-03-01

    Neural probes are designed to selectively record from or stimulate nerve cells. In optogenetics it is desirable to build miniaturized and long-term stable optical neural probes, in which the light sources can be directly and chronically implanted into the animals to allow free movement and behavior. Because of the size and the beam shape of the available light sources, it is difficult to target single cells as well as spatially localized networks. We therefore investigated design considerations for packages, which encapsulate the light source hermetically and have integrated hemispherical lens structures that enable to focus the light onto the desired region, by optical simulations. Integration of a biconvex lens into the package lid (diameter = 300 μm, material: silicon carbide) increased the averaged absolute irradiance ηA by 298 % compared to a system without a lens and had a spot size of around 120 μm. Solely integrating a plano-convex lens (same diameter and material) results in an ηA of up to 227 %.

  18. Computational investigation of miniature trailing edge effectors

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Tae

    Miniature trailing edge effectors (MiTEs) are small flaps (typically 1% to 5% chord) actuated with deflection angles of up to 90 degrees. The small size, combined with little required power and good control authority, enables the device to be used for high bandwidth control as well as conventional attitude control. However, some of the aerodynamic characteristics of these devices are complex and poorly understood. This research investigated the aerodynamics of MiTEs using incompressible Navier-Stokes flow solvers, INS2D and INS3D. To understand the flow structure and establish a parametric database, two dimensional steady-state computations were performed for MiTEs with various geometries and flow conditions. Time accurate computations were used to resolve the unsteady characteristics including transient response and vortex shedding phenomena. The frequency response was studied to fully identify the dynamics of MiTEs. Three dimensional computations show the change in control effectiveness with respect to the spanwise length of MiTEs as well as the spanwise lift distribution induced by these devices. Based on the CFD results, an approximate vortex panel model was developed for design purposes that reproduces the key characteristics of MiTEs. Two application areas for MiTEs were explored. Flutter suppression was demonstrated by combining a finite element structural model with the vortex panel model. The application of MiTEs to augment maximum lift and improve the post stall behavior of an airfoil was also investigated.

  19. Miniaturization and globalization of clinical laboratory activities.

    PubMed

    Melo, Murilo R; Clark, Samantha; Barrio, Daniel

    2011-04-01

    Clinical laboratories provide an invaluable service to millions of people around the world in the form of quality diagnostic care. Within the clinical laboratory industry the impetus for change has come from technological development (miniaturization, nanotechnology, and their collective effect on point-of-care testing; POCT) and the increasingly global nature of laboratory services. Potential technological gains in POCT include: the development of bio-sensors, microarrays, genetics and proteomics testing, and enhanced web connectivity. In globalization, prospective opportunities lie in: medical tourism, the migration of healthcare workers, cross-border delivery of testing, and the establishment of accredited laboratories in previously unexplored markets. Accompanying these impressive opportunities are equally imposing challenges. Difficulty transitioning from research to clinical use, poor infrastructure in developing countries, cultural differences and national barriers to global trade are only a few examples. Dealing with the issues presented by globalization and the impact of developing technology on POCT, and on the clinical laboratory services industry in general, will be a daunting task. Despite such concerns, with appropriate countermeasures it will be possible to address the challenges posed. Future laboratory success will be largely dependent on one's ability to adapt in this perpetually shifting landscape.

  20. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-12-01

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m. PMID:26602094

  1. Miniaturized Amperometric Solid Electrolyte Carbon Dioxide Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Xu, J. C.; Liu, C. C.; Hammond, J. W.; Ward, B.; Lukco, D.; Lampard, P.; Artale, M.; Androjna, D.

    2006-01-01

    A miniaturized electrochemical carbon dioxide (CO2) sensor using Na3Z r2Si2PO12 (NASICON) as a solid electrolyte has been fabricated and de monstrated. Microfabrication techniques were used for sensor fabricat ion to yield a sensing area around 1.0 mm x 1.1 mm. The NASICON solid electrolyte and the Na2CO3/BaCO3 (1:1.7 molar ratio) auxiliary elect rolyte were deposited by sputtering in between and on top of the inte rdigitated finger-shaped platinum electrodes. This structure maximize s the length of the three-phase boundary (electrode, solid electrolyt e, and auxiliary electrolyte), which is critical for gas sensing. The robust CO2 sensor operated up to 600 C in an amperometric mode and a ttempts were made to optimize sensor operating parameters. Concentrat ions of CO2 between 0.02% and 4% were detected and the overall sensor performance was evaluated. Linear response of sensor current output to ln[CO2 concentration] ranging from 0.02% to 1% was achieved.

  2. NASA Ultra-Sensitive Miniature Accelerometer

    NASA Technical Reports Server (NTRS)

    Zavracky, Paul M.; Hartley, Frank T.

    1994-01-01

    Using micro-machined silicon technology, an ultra-sensitive miniature acce.,rometer can be constructed which meets the requirements for microgravity experiments in the space environment.Such an accelerometer will have a full scale sensitivity of 1C2 g a resolution of lC8 g, low cross axis sensitivity, and low temperature sensitivity. Mass of the device is approximately five grams and its footprint is 2 cm x 2 cm. Innovative features of the accelerometer, which are patented, are: electrostatic caging to withstand handling shock up to 150 g, in-situ calibration, in situ performance characterization, and both static and dynamic compensation. The transducer operates on a force balance principle wherein the displacement of the proof mass is monitored by measuring tunneling electron current flow between a conductive tip, and a fixed platen. The four major parts of the accelerometer are tip die, incorporating the tunneling tip and four field plates for controlling pitch and roll of the proof mass; two proof mass dies, attached to the surrounding frame by sets of four leg" springs; and a force plate die. The four parts are fuse-bonded into a complete assembly. External electrical connections are made at bond pads on the front surface of the force plate die. Materials and processes used in the construction of the transducer are compatible with volume production.

  3. Miniaturized Technologies for Enhancement of Motor Plasticity.

    PubMed

    Moorjani, Samira

    2016-01-01

    The idea that the damaged brain can functionally reorganize itself - so when one part fails, there lies the possibility for another to substitute - is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525

  4. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  5. Miniaturized Blue Laser using Second Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Kitaoka, Yasuo; Yokoyama, Toshifumi; Mizuuchi, Kiminori; Yamamoto, Kazuhisa

    2000-06-01

    We demonstrate a miniaturized blue laser (5× 12× 1.5 mm3) using second harmonic generation (SHG), which consists of a quasi-phase-matched (QPM)-SHG waveguide device on an x-cut Mg-doped LiNbO3 substrate and a tunable distributed-Bragg-reflector (DBR) laser diode. By using the QPM-SHG waveguide device on an x-cut substrate, efficient optical coupling was realized without a half-wave plate, and the maximum coupling efficiency of 75% was achieved. The blue light power of 2 mW was generated for the fundamental coupling power of 20 mW, which agreed with a conversion efficiency of 10%. The mechanical stability of the planar-type butt-coupled SHG blue laser was examined, where the coupling efficiency was maintained constantly under the change of module temperature and the temperature cycle test from 10 to 60°C. We succeeded in downsizing the SHG blue laser to 0.1 cm3, which is sufficiently small for its application to optical disk systems.

  6. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  7. Development of a Prototype Miniature Silicon Microgyroscope

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong

    2009-01-01

    A miniature vacuum-packaged silicon microgyroscope (SMG) with symmetrical and decoupled structure was designed to prevent unintended coupling between drive and sense modes. To ensure high resonant stability and strong disturbance resisting capacity, a self-oscillating closed-loop circuit including an automatic gain control (AGC) loop based on electrostatic force feedback is adopted in drive mode, while, dual-channel decomposition and reconstruction closed loops are applied in sense mode. Moreover, the temperature effect on its zero bias was characterized experimentally and a practical compensation method is given. The testing results demonstrate that the useful signal and quadrature signal will not interact with each other because their phases are decoupled. Under a scale factor condition of 9.6 mV/°/s, in full measurement range of ± 300 deg/s, the zero bias stability reaches 15°/h with worse-case nonlinearity of 400 ppm, and the temperature variation trend of the SMG bias is thus largely eliminated, so that the maximum bias value is reduced to one tenth of the original after compensation from -40 °C to 80 °C. PMID:22408543

  8. A new miniaturized atomic magnetic gradiometer

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Perry, Abigail; Krzyzewski, Sean; Geller, Shawn; Knappe, Svenja; Kitching, John

    2016-05-01

    We report the development of a new miniaturized magnetic gradiometer using alkali atoms. The gradiometer, with the length of 5 cm and cross section diameter of 11 mm, is made of two chip-scale atomic magnetometers placed on a printed optical bench with a defined separation. Both magnetometers work in the spin-exchange relaxation free regime, share the same beam for pumping and probing to reduce the common mode noises from the lasers, and atom temperature is independently controlled by heating beams at telecom wavelength. With 2 cm baseline, 1 mW pumping beam power, and less than 400 mW input heating beam power, we measure a noise level of 15 fT/ Hz1/2 from the subtraction of two magnetometer outputs, which corresponds to a gradient field sensitivity of 7.5 fT/ Hz1/2/cm. The maximum common mode magnetic field noise rejection is up to 1000 within the gradiometer bandwidth. This device is useful in many fields that require both sensitive gradient field information and high common mode noise cancellation. We are also developing a new hybrid system based on this device to improve its dynamical range.

  9. Oxygen Transfer Characteristics of Miniaturized Bioreactor Systems

    PubMed Central

    Kirk, Timothy V; Szita, Nicolas

    2013-01-01

    Since their introduction in 2001 miniaturized bioreactor systems have made great advances in function and performance. In this article the dissolved oxygen (DO) transfer performance of submilliliter microbioreactors, and 1–10 mL minibioreactors was examined. Microbioreactors have reached kLa values of 460 h-1, and are offering instrumentation and some functionality comparable to production systems, but at high throughput screening volumes. Minibioreactors, aside from one 1,440 h-1 kLa system, have not offered as high rates of DO transfer, but have demonstrated superior integration with automated fluid handling systems. Microbioreactors have been typically limited to studies with E. coli, while minibioreactors have offered greater versatility in this regard. Further, mathematical relationships confirming the applicability of kLa measurements across all scales have been derived, and alternatives to fluorescence lifetime DO sensors have been evaluated. Finally, the influence on reactor performance of oxygen uptake rate (OUR), and the possibility of its real-time measurement have been explored. Biotechnol. Bioeng. 2013; 110: 1005–1019. © 2012 Wiley Periodicals, Inc. PMID:23280578

  10. Parallel operation of miniature hollow cathode discharges

    SciTech Connect

    Schoenbach, K.H.; Peterkin, F.E.; Verhappen, R.

    1994-12-31

    The pressure where hollow cathode discharges operate scales inversely with the cathode hole diameter. By reducing the size of the cathode hole to less than one millimeter, the authors were able to obtain stable operation of the hollow cathode glow discharge in air, up to ten`s of torr. The current-voltage characteristic was found to have a positive slope below approximately 5 torr. This allows the authors to operate hollow cathode discharges in parallel at these pressures without using ballast resistors for the individual discharges. In an experiment with four 0.75 mm diameter cathode holes drilled in a 0.75 mm copper plate, the authors obtained stable operation of the discharges at a threshold voltage of 380 V and a total current of 0.16 mA. The intensity of the glow from each hole tended to equalize after several hours of operation. The system was run for approximately 40 hours without evident change in performance. The stability with respect to parallel operation offers the possibility to use miniature hollow cathode discharge arrays as flat panel electron and ion sources.

  11. Miniaturized Technologies for Enhancement of Motor Plasticity

    PubMed Central

    Moorjani, Samira

    2016-01-01

    The idea that the damaged brain can functionally reorganize itself – so when one part fails, there lies the possibility for another to substitute – is an exciting discovery of the twentieth century. We now know that motor circuits once presumed to be hardwired are not, and motor-skill learning, exercise, and even mental rehearsal of motor tasks can turn genes on or off to shape brain architecture, function, and, consequently, behavior. This is a very significant alteration from our previously static view of the brain and has profound implications for the rescue of function after a motor injury. Presentation of the right cues, applied in relevant spatiotemporal geometries, is required to awaken the dormant plastic forces essential for repair. The focus of this review is to highlight some of the recent progress in neural interfaces designed to harness motor plasticity, and the role of miniaturization in development of strategies that engage diverse elements of the neuronal machinery to synergistically facilitate recovery of function after motor damage. PMID:27148525

  12. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  13. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  14. Production of transgenic miniature pigs by pronuclear microinjection.

    PubMed

    Uchida, M; Shimatsu, Y; Onoe, K; Matsuyama, N; Niki, R; Ikeda, J E; Imai, H

    2001-12-01

    Miniature pig is an attractive animal for a wide range of research fields, such as medicine and pharmacology, because of its small size, the possibility of breeding it under minimum environmental controls and the physiology that is potentially similar to that of human. Although transgenic technology is useful for the analysis of gene function and for the development of model animals for various diseases, there have not yet been any reports on producing transgenic miniature pig. This study is the first successful report concerning the production of transgenic miniature pig by pronuclear microinjection. The huntingtin gene cloned from miniature pig, which is a homologue of candidate gene for Huntington's disease, connected with rat neuron-specific enolase promoter region, was injected into a pronucleus of fertilized eggs with micromanipulator. The eggs were transferred into the oviduct of recipient miniature pigs, whose estrus cycles were previously synchronized with a progesterone analogue. A total of 402 injected eggs from 171 donors were transferred to 23 synchronized recipients. Sixteen of them maintained pregnancy and delivered 65 young, and one resulted in abortion. Five of the 68 offspring (three of which were aborted) were determined to have transgene by PCR and Southern analysis. The overall rate of transgenic production was 1.24% (transgenic/injected eggs). This study provides the first success and useful information regarding production of transgenic miniature pig for biomedical research.

  15. Compact Receiver Front Ends for Submillimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  16. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  17. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  18. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  19. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  20. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  1. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  2. Multipurpose Compact Spectrometric Unit

    NASA Astrophysics Data System (ADS)

    Bočarov, Viktor; Čermák, Pavel; Mamedov, Fadahat; Štekl, Ivan

    2009-11-01

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  3. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  6. Compact reactor design automation

    NASA Technical Reports Server (NTRS)

    Nassersharif, Bahram; Gaeta, Michael J.

    1991-01-01

    A conceptual compact reactor design automation experiment was performed using the real-time expert system G2. The purpose of this experiment was to investigate the utility of an expert system in design; in particular, reactor design. The experiment consisted of the automation and integration of two design phases: reactor neutronic design and fuel pin design. The utility of this approach is shown using simple examples of formulating rules to ensure design parameter consistency between the two design phases. The ability of G2 to communicate with external programs even across networks provides the system with the capability of supplementing the knowledge processing features with conventional canned programs with possible applications for realistic iterative design tools.

  7. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  8. Compact laser vibrometer for industrial and medical applications

    NASA Astrophysics Data System (ADS)

    Lewin, Andrew C.

    1998-06-01

    Laser interferometric vibrometers are now well known and accepted as sensitive, accurate, high bandwidth and linear measurement system. For many applications the internal complexity and resultant size of the interferometric sensor head limits the widespread use. This paper describes the performance and principle of operation of a new miniaturized interferometric sensor head which retains the important characteristics of the previously mentioned systems, but embodied in a robust compact housing no larger thana typical torchlight. Velocity resolution in the acoustic range has been found to be up to 50 nanometers/sec in a 10 Hz RBW. The size of this new sensor head allows it to be mounted on balanced microscope assemblies or within machinery, and the waterproof design allows disinfectant cleaning in clinical applications or operation in industrial environments.

  9. A 300-nm compact mm-wave linac FEL design

    SciTech Connect

    Nassiri, A.; Kustom, R.L.; Kang, Y.W.

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  10. A compact triple-band bandpass filter based on metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Ya-juan; Jiang, Bo; Li, Bao-yi; Wang, Dong-hong

    2016-07-01

    This paper presents a compact triple-band bandpass filter based on metamaterials. The miniaturization is realized by the principle of phase compensation of metamaterial. Compared with the conventional half-wavelength filter, the metamaterial filter has a small size of 10 mm×10 mm. The triple-band bandpass filter performance has been validated by the electromagnetic simulation software of high frequency structure simulator (HFSS). The results illustrate that the filter is designed with center frequencies of 2.4 GHz, 5.1 GHz and 8.8 GHz, bandwidths of about 7.9% (2.31—2.50 GHz), 7.8% (5.0—5.4 GHz) and 7.4% (8.50—9.15 GHz), respectively, and it shows good band pass characteristics.

  11. Progress Toward a Compact, Highly Stable Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2009-01-01

    There was an update on the subject of two previous NASA Tech Briefs articles: Compact, Highly Stable Ion Clock (NPO-43075), Vol. 32, No. 5 (May 2008), page 63; and Neon as a Buffer Gas for a Mercury-Ion Clock (NPO-42919), Vol. 32, No. 7 (July 2008), page 62. To recapitulate: A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump maintains the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a neon buffer gas. There was progress in the development of the clock, with emphasis on the design, fabrication, pump-down, and bake-out of the vacuum tube (based on established practice in the travelingwave- tube-amplifier industry) and the ability of the tube to retain a vacuum after a year of operation. Other developments include some aspects of the operation of mercury-vapor source (a small appendage oven containing HgO) so as to maintain the optimum low concentration of mercury vapor, and further efforts to miniaturize the vacuum and optical subsystems to fit within a volume of 2 L.

  12. Compaction-based VLSI layout

    SciTech Connect

    Xiong, Xiao-Ming.

    1989-01-01

    Generally speaking, a compaction based VLSI layout system consists of two major parts: (1) a symbolic editor which maintains explicit connectivity and structural information about the circuit; (2) a compactor which translates the high level description of a circuit to the detailed layout needed for fabrication and tries to make as compact a layout as Possible without violating any design rules. Instead of developing a complete compaction based VLSI layout system, this thesis presents some theoretical concepts and several new compaction techniques, such as scan line based approach, which can either cooperate with a symbolic editor to form a layout system or work as a post-process step to improve the results obtained by an existing layout system. Also, some compaction related problems are solved and proposed. Based on the special property of channel routing, the author presents a geometric method for channel compaction. For a given channel routing topology, the minimum channel height is always achieved with the incorporation of sliding contacts and automatically inserting necessary jogs. The geometric compaction approach is then generalized and applied to compact the entire VLSI chip at the building-block level. With a systematic way of automatic jog insertion, he proves that under the given layout topology and design rules, the lower bound of one dimensional compaction with automatic jog insertion is achieved by the geometric compaction algorithm. A new simultaneous two-dimensional compaction algorithm is developed primarily for placement refinement of building-block layout. The algorithm is based on a set of defined graph operations on a mixed adjacency graph for a given placement. The mixed-adjacency graph can be updated efficiently if the placement is represented by tiles in the geometric domain.

  13. FY 2007 Miniature Spherical Retroreflectors Final Report

    SciTech Connect

    Anheier, Norman C.; Bernacki, Bruce E.; Krishnaswami, Kannan

    2008-02-20

    Miniature spherical retroreflectors, less than 8 millimeters in diameter, are currently being developed to enhance remote optical detection of nuclear proliferation activities. These retroreflecting spheres resemble small, sand-colored marbles that have the unique optical property of providing a strong reflection directly back to the source (i.e., retroreflecting) when illuminated with a laser. The addition of specific coatings, sensitive to specific chemicals or radioactive decay in the environment, can be applied to the surface of these retroreflectors to provide remote detection of nuclear proliferation activities. The presence of radioactive decay (e.g., alpha, gamma, neutron) or specific chemicals in the environment (e.g., TBP, acids) will change the optical properties of the spheres in a predictable fashion, thus indicating the presence or absence of the target materials. One possible scenario might employ an airborne infrared laser system (e.g., quantum-cascade lasers) to illuminate a section of ground littered with these retroreflective spheres. Depending on the coating and the presence of a specific chemical or radioisotope in the environment, the return signal would be modified in some predictable fashion because of fluorescence, frequency shifting, intensity attenuation/enhancement, or change in polarization. Research conducted in FY 2007 focused on developing novel optical fabrication processes and exploiting the unique material properties of chalcogenide infrared-transparent glass (germanium-arsenic-sulfur-tellurium compounds) to produce highly efficient retroreflectors. Pacific Northwest National Laboratory’s approach provides comparable performance to the ideal graded index sphere concept, developed by R. K. Luneburg in 1944 (Luneburg 1944), while greatly reducing the complexity in fabrication by utilizing chalcogenide glass materials and compression-molding processes.

  14. A miniature inexpensive, oxygen sensing element

    SciTech Connect

    Arenz, R.W.

    1991-10-07

    An exhaustive study was conducted to determine the feasibility of Nernst-type oxygen sensors based on ceramics containing Bi{sub 2}O{sub 3}. The basic sensor design consisted of a ceramic sensing module sealed into a metal tube. The module accommodated an internal heater and thermocouple. Thermal-expansion-matched metals, adhesives, and seals were researched and developed, consistent with sequential firings during sensor assembly. Significant effort was devoted to heater design/testing and to materials' compatibility with Pt electrodes. A systematic approach was taken to develop all sensor components which led to several design modifications. Prototype sensors were constructed and exhaustively tested. It is concluded that development of Nerst-type oxygen sensors based on Bi{sub 2}O{sub 3} will require much further effort and application of specialized technologies. However, during the course of this 3-year program much progress was reported in the literature on amperometric-type oxygen sensors, and a minor effort was devoted here to this type of sensor based on Bi{sub 2}O{sub 3}. These studies were made on Bi{sub 2}O{sub 3}-based ceramic samples in a multilayer-capacitor-type geometry and amperometric-type oxygen sensing was demonstrated at very low temperatures ({approximately} 160{degree}C). A central advantage here is that these types of sensors can be mass-produced very inexpensively ({approximately} 20--50 cents per unit). Research is needed, however, to develop an optimum diffusion-limiting barrier coating. In summary, the original goals of this program were not achieved due to unforeseen problems with Bi{sub 2}O{sub 3}-based Nernst sensors. However, a miniature amperometric sensor base on Bi{sub 2}O{sub 3} was demonstrated in this program, and it is now seen that this latter sensor is far superior to the originally proposed Nernst sensor. 6 refs., 24 figs.

  15. Miniature Laboratory for Detecting Sparse Biomolecules

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  16. Miniature Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Potember, Richard S.

    1999-01-01

    Major advances must occur to protect astronauts from prolonged periods in near-zero gravity and high radiation associated with extended space travel. The dangers of living in space must be thoroughly understood and methods developed to reverse those effects that cannot be avoided. Six of the seven research teams established by the National Space Biomedical Research Institute (NSBRI) are studying biomedical factors for prolonged space travel to deliver effective countermeasures. To develop effective countermeasures, each of these teams require identification of and quantitation of complex pharmacological, hormonal, and growth factor compounds (biomarkers) in humans and in experimental animals to develop an in-depth knowledge of the physiological changes associated with space travel. At present, identification of each biomarker requires a separate protocol. Many of these procedures are complicated and the identification of each biomarker requires a separate protocol and associated laboratory equipment. To carry all of this equipment and chemicals on a spacecraft would require a complex clinical laboratory; and it would occupy much of the astronauts time. What is needed is a small, efficient, broadband medical diagnostic instrument to rapidly identify important biomarkers for human space exploration. The Miniature Time-Of- Flight Mass Spectrometer Project in the Technology Development Team is developing a small, high resolution, time-of-flight mass spectrometer (TOFMS) to quantitatively measure biomarkers for human space exploration. Virtues of the JHU/APL TOFMS technologies reside in the promise for a small (less than one cubic ft), lightweight (less than 5 kg), low-power (less than 50 watts), rugged device that can be used continuously with advanced signal processing diagnostics. To date, the JHU/APL program has demonstrated mass capability from under 100 to beyond 10,000 atomic mass units (amu) in a very small, low power prototype for biological analysis. Further

  17. A miniature MOSFET radiation dosimeter probe.

    PubMed

    Gladstone, D J; Lu, X Q; Humm, J L; Bowman, H F; Chin, L M

    1994-11-01

    Prototype miniature dosimeter probes have been designed, built, and characterized employing a small, radiation sensitive metal oxide semiconductor field effect transistor (MOSFET) chip to measure, in vivo, the total accumulated dose and dose rate as a function of time after internal administration of long range beta particle radiolabeled antibodies and in external high energy photon and electron beams. The MOSFET detector is mounted on a long narrow alumina substrate to facilitate electrical connection. The MOSFET, alumina substrate, and lead wires are inserted into a 16 gauge flexineedle, which, in turn, may be inserted into tissue. The radiation dosimeter probe has overall dimensions of 1.6 mm diam and 3.5 cm length. The MOSFET probe signals are read, stored, and analyzed using an automated data collection and analysis system. Initially, we have characterized the probe's response to long range beta particle emission from 90Y sources in solution and to high energy photon and electron beams from linear accelerators. Since the prototype has a finite substrate thickness, the angular dependence has been studied using beta particle emission from a 90Sr source. Temperature dependence and signal drift have been characterized and may be corrected for. Measurements made in spherical volumes containing 90Y with diameters less than the maximum electron range, to simulate anticipated geometries in animal models, agree well with Berger point kernel and EGS4 Monte Carlo calculations. The results from the prototype probes lead to design requirements for detection of shorter range beta particles used in radioimmunotherapy and lower photon energies used in brachytherapy. PMID:7891632

  18. Integrated Miniature Arrays of Optical Biomolecule Detectors

    NASA Technical Reports Server (NTRS)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  19. Compost improves compacted urban soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  20. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  1. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    NASA Astrophysics Data System (ADS)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  2. Miniature transmissive DLP-based infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Koudsi, Badia; Refai, Hakki

    2016-02-01

    Spectroscopic measurements have the potential to positively impact a wide range of research, development, monitoring and control applications. In many cases, this potential is not realized because the spectrometer cannot be brought out of the laboratory to the measurement site due to sensitivities to environmental factors, highly accurate data cannot be obtained in a timely manner, or customizing the spectrometer to a specific application is costly and precludes re-use of the device for other application once its original purpose is served. We present the development of a DLP-based spectroscopic system in the near-infrared that is low-cost, compact and rugged, provides high resolution and is highly adaptable through straightforward software control. The key elements of the design include an efficient and compact optical pathway, a high-resolution DMD controlled by a fast DLP board, and a user-friendly, feature-rich software package that facilitates system configuration and data analysis. The DMD replaces the detector array in traditional spectrometers, and is shown to provide greater functionality while eliminating the need for mechanical scanning. We demonstrate how the long, thin columns of mirrors in the DMD provide high wavelength selectivity and capture more light at each wavelength, increasing measurement SNR. Selectively activating columns of mirrors is shown to adaptively tailor the resolution and the wavelengths collected and analyzed by the system allow one device to meet the needs of many different applications and to reduce measurement times. The software interface developed for accessing the many features of the spectrometer is discussed.

  3. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    NASA Astrophysics Data System (ADS)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C–V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW‑1 at 10 GHz and at least 5.4 mV μW‑1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  4. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    NASA Astrophysics Data System (ADS)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C-V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW-1 at 10 GHz and at least 5.4 mV μW-1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  5. Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The figure presents selected views of a compact microscope imaging system (CMIS) that includes a miniature video microscope, a Cartesian robot (a computer- controlled three-dimensional translation stage), and machine-vision and control subsystems. The CMIS was built from commercial off-the-shelf instrumentation, computer hardware and software, and custom machine-vision software. The machine-vision and control subsystems include adaptive neural networks that afford a measure of artificial intelligence. The CMIS can perform several automated tasks with accuracy and repeatability . tasks that, heretofore, have required the full attention of human technicians using relatively bulky conventional microscopes. In addition, the automation and control capabilities of the system inherently include a capability for remote control. Unlike human technicians, the CMIS is not at risk of becoming fatigued or distracted: theoretically, it can perform continuously at the level of the best human technicians. In its capabilities for remote control and for relieving human technicians of tedious routine tasks, the CMIS is expected to be especially useful in biomedical research, materials science, inspection of parts on industrial production lines, and space science. The CMIS can automatically focus on and scan a microscope sample, find areas of interest, record the resulting images, and analyze images from multiple samples simultaneously. Automatic focusing is an iterative process: The translation stage is used to move the microscope along its optical axis in a succession of coarse, medium, and fine steps. A fast Fourier transform (FFT) of the image is computed at each step, and the FFT is analyzed for its spatial-frequency content. The microscope position that results in the greatest dispersal of FFT content toward high spatial frequencies (indicating that the image shows the greatest amount of detail) is deemed to be the focal position.

  6. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  7. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.

    PubMed

    Villalobos, Joel; Fallon, James B; McNeill, Peter M; Allison, Rachel K; Bibari, Olivier; Williams, Chris E; McDermott, Hugh J

    2015-01-01

    The effect of miniaturizing the electrode lead for Deep Brain Stimulation (DBS) therapy was investigated in this work. A direct comparison was made between a miniature lead (0.65 mm diameter) and a lead of standard size (1.3 mm). Acute in vivo implantation in two cat brains was performed to evaluate surgical trauma and confirm capacity to target thalamic nuclei. Insertion into a homogeneous gel model of neural tissue was used to compare insertion forces while visualizing the process. The standard size cannula, used first to guide lead insertion, required substantially higher insertion force compared with the miniature version and produced a significantly larger region of tissue disruption. The characteristic hemorrhage and edema extended 119-352 μm from the implanted track surface of the miniature lead and cannula, while these extended 311-571 μm for the standard size lead and cannula. A miniature DBS implant can reduce the extent of trauma and could potentially help improve neural function preservation after functional neurosurgery. PMID:26737881

  8. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.

    PubMed

    Villalobos, Joel; Fallon, James B; McNeill, Peter M; Allison, Rachel K; Bibari, Olivier; Williams, Chris E; McDermott, Hugh J

    2015-01-01

    The effect of miniaturizing the electrode lead for Deep Brain Stimulation (DBS) therapy was investigated in this work. A direct comparison was made between a miniature lead (0.65 mm diameter) and a lead of standard size (1.3 mm). Acute in vivo implantation in two cat brains was performed to evaluate surgical trauma and confirm capacity to target thalamic nuclei. Insertion into a homogeneous gel model of neural tissue was used to compare insertion forces while visualizing the process. The standard size cannula, used first to guide lead insertion, required substantially higher insertion force compared with the miniature version and produced a significantly larger region of tissue disruption. The characteristic hemorrhage and edema extended 119-352 μm from the implanted track surface of the miniature lead and cannula, while these extended 311-571 μm for the standard size lead and cannula. A miniature DBS implant can reduce the extent of trauma and could potentially help improve neural function preservation after functional neurosurgery.

  9. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  10. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  11. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  12. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  13. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  14. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  15. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  16. Miniature vibration isolation system for space applications

    NASA Astrophysics Data System (ADS)

    Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.

    2001-06-01

    In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded

  17. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  18. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.

    PubMed

    Takatani, S; Orime, Y; Tasai, K; Ohara, Y; Naito, K; Mizuguchi, K; Makinouchi, K; Damm, G; Glueck, J; Ling, J

    1994-01-01

    A multipurpose miniature electromechanical energy system has been developed to yield a compact, efficient, durable, and biocompatible total artificial heart (TAH) and ventricular assist device (VAD). Associated controller-driver electronics were recently miniaturized and converted into hybrid circuits. The hybrid controller consists of a microprocessor and controller, motor driver, Hall sensor, and commutation circuit hybrids. The sizing study demonstrated that all these components can be incorporated in the pumping unit of the TAH and VAD, particularly in the centerpiece of the TAH and the motor housing of the VAD. Both TAH and VAD pumping units will start when their power line is connected to either the internal power pack or the external battery unit. As a redundant driving and diagnostic port, an emergency port was newly added and will be placed in subcutaneous location. In case of system failure, the skin will be cut down, and an external motor drive or a pneumatic driver will be connected to this port to run the TAH. This will minimize the circulatory arrest time. Overall efficiency of the TAH without the transcutaneous energy transmission system was 14-18% to deliver pump outputs of 4-9 L/min against the right and left afterload pressures of 25 and 100 mm Hg. The internal power requirement ranged from 6 to 13 W. The rechargeable batteries such as NiCd or NiMH with 1 AH capacity can run the TAH for 30-45 min. The external power requirement, when TETS efficiency of 75% was assumed, ranged from 8 to 18 W. The accelerated endurance test in the 42 degrees C saline bath demonstrated stable performance over 4 months. Long-term endurance and chronic animal studies will continue toward a system with 5 years durability by the year 2000.

  19. Development of miniaturized mass flow meter for an axial flow blood pump.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yamane, Takashi

    2007-05-01

    To grasp the conditions of patients and implantable artificial hearts, it is essential to monitor the blood flow rate continuously and noninvasively. However, it is difficult to monitor the pump flow rate in an implantable artificial heart, because the conventional flow meter is too large to implant into the human body, and the flow estimation method is influenced by changes in the blood characteristics and the pump performance. In particular, the power consumption has neither linearity nor uniqueness with respect to the pump flow rate in an axial flow blood pump. In this research, we develop a prototype miniaturized mass flow meter that uses centrifugal force F(c) for discharged patients with an axial flow blood pump. This flow meter measures the F(c) corresponding to the mass flow rate, and implements compensation for static pressure. Because the strain gauges are attached outside of the curved tube, this mass flow meter has no blood contact point, resulting in a compact design. To evaluate the measurement accuracy and the tracking performance, the mass flow meter was compared with the conventional ultrasonic flow meter in a mock-up circulation study. As a result, the measurement error ranging from 0.5 to 5.0 L/min was less than +/-10% with respect to the maximum flow rate. The tracking performance of pulsation flow was approximately equivalent to that of the conventional flow meter. These experiments demonstrated that the prototype miniaturized mass flow meter using F(c) could accurately measure the mass flow rate continuously and noninvasively. PMID:17470214

  20. Miniaturization design and implementation of magnetic field coupled RFID antenna

    NASA Astrophysics Data System (ADS)

    Hu, Tiling

    2013-03-01

    The development of internet of things has brought new opportunities and challenges to the application of RFID tags. Moreover, the Miniaturization application trend of tags at present has become the mainstream of development. In this paper, the double-layer design is to reduce the size of HF antenna, and the magnetic null point of magnetic reconnection region between the RLC resonant circuit and the reader provides sufficient energy to the miniaturization of antenna. The calculated and experimental results show that the miniaturization of HF antennas can meet the reading and writing requirement of the international standard ISO/IEC14443 standard. The results of this paper may make a positive contribution to the applications of RFID technology.

  1. Miniature instruments for aerosol extinction at ambient conditions

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.

    2015-12-01

    Aerosol extinction is a fundamental parameter for the direct forcing of climate, visibility, and comparisons to remote sensing. Bringing air into an instrument "box" almost always changes the relative humidity and loses some dust or other large particles. I will show two techniques for miniature instruments that measure extinction at ambient conditions. One is a miniature sun photometer for vertical profiles. In the last year it has successfully gathered data on test flights with excellent performance and signal to noise. The second instrument is a miniature cavity ring down instrument open to the air. In both cases, small instruments require decisions about just what is necessary for the measurement rather than just scaling down larger designs. I will explore the rationale for some of these design choices.

  2. Miniature metastable ionization detectors for exobiology flight experiments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.

    1986-01-01

    The Metastable Ionization Detector (MID) is three orders of magnitude more sensitive than the thermal conductivity detectors used on previous flight instruments. The miniature MID provides scientists with a much smaller and highly sensitive detector for flight gas chromatographs. A miniature MID featuring an unconventional triaxial electrode configuration was developed and used routinely in the laboratory. Although much smaller and lighter than the commercial MID, its performance characteristics parallel those of the traditional design. The detector is compatible with the modulated voltage circuitry, also developed here, and thus can perform over an expanded response range of more than 7 orders magnitude. A micro volume version of a miniature MID, with an internal volume of less than 8 microliter, was recently designed is now being tested. The micro volume MID uses carrier gas flow rates of approx. 2cc/min thus eliminating the need for makeup gas when capillary columns are used.

  3. Miniature Blimps for Surveillance and Collection of Samples

    NASA Technical Reports Server (NTRS)

    Jones, Jack

    2004-01-01

    Miniature blimps are under development as robots for use in exploring the thick, cold, nitrogen atmosphere of Saturn's moon, Titan. Similar blimps can also be used for surveillance and collection of biochemical samples in buildings, caves, subways, and other, similar structures on Earth. The widely perceived need for means to thwart attacks on buildings and to mitigate the effects of such attacks has prompted consideration of the use of robots. Relative to rover-type (wheeled) robots that have been considered for such uses, miniature blimps offer the advantage of ability to move through the air in any direction and, hence, to perform tasks that are difficult or impossible for wheeled robots, including climbing stairs and looking through windows. In addition, miniature blimps are expected to have greater range and to cost less, relative to wheeled robots.

  4. Kinematics of Haro 11: The miniature Antennae

    NASA Astrophysics Data System (ADS)

    Östlin, G.; Marquart, T.; Cumming, R. J.; Fathi, K.; Bergvall, N.; Adamo, A.; Amram, P.; Hayes, M.

    2015-11-01

    Luminous blue compact galaxies are among the most active galaxies in the local Universe in terms of their star formation rate per unit mass. They are rare at the current cosmic epoch, but were more abundant in the past and may be seen as the local analogues of higher red shift Lyman break galaxies. Studies of their kinematics is key to understanding what triggers their unusually active star formation. In this work, we investigate the kinematics of stars and ionised gas in Haro 11, one of the most luminous blue compact galaxies in the local Universe. Previous works have indicated that many of these galaxies may be triggered by galaxy mergers. We have employed Fabry-Perot interferometry, long-slit spectroscopy, and integral field unit (IFU) spectroscopy to explore the kinematics of Haro 11. We target the near-infrared calcium triplet, and use cross-correlation and penalised pixel fitting techniques to derive the stellar velocity field and velocity dispersion. We analyse ionised gas through emission lines from hydrogen, [O iii], and [S iii]. When spectral resolution and signal to noise allows, we investigate the line profile in detail and identify multiple velocity components when present. The spectra reveal a complex velocity field whose components, both stellar and gaseous, we attempt to disentangle. We find that to first order, the velocity field and velocity dispersions derived from stars and ionised gas agree. Hence the complexities reveal real dynamical disturbances providing further evidence for a merger in Haro 11. Through decomposition of emission lines, we find evidence for kinematically distinct components, for instance, a tidal arm. The ionised gas velocity field can be traced to large galactocentric radii, and shows significant velocity dispersion even far out in the halo. If interpreted as virial motions, this indicates that Haro 11 may have a mass of ~1011 M⊙. Haro 11 shows many resemblances with the famous Antennae galaxies both morphologically and

  5. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  6. Compact Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  7. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  8. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  9. Lattice-engineered MBE growth of high-indium mole fraction InGaAs for low cost MMICs and (1.3--1.55 {micro}m) OEICs

    SciTech Connect

    Childs, T.T.; Sokolov, V.; Sullivan, C.T.

    1997-11-01

    Using molecular beam epitaxy (MBE) and lattice engineering techniques, the feasibility of combining photonic devices applicable to the 1.3 to 1.55 {micro}m wavelength range and monolithic microwave (or mm-wave) integrated circuits (MMICs) on GaAs is demonstrated. A key factor in the MBE growth is incorporation of an InGaAs active layer having an indium arsenide mole fraction of 0.35 or greater and its lattice compatibility with the underlying semi-insulating GaAs substrate. The InGaAs layer used for the photonic devices, can also serve as the active channel for the high electron mobility transistors (HEMTs) for application in MMICs. Several examples of active and passive photonic devices grown by MBE are presented including an optical ridge waveguide, and a photodetector for detection of light in the 1.3 {micro}m range. The material structure includes a 3-layer AlGaAs/GaAs/AlGaAs optical waveguide and a thin InGaAs absorbing layer situated directly above the optical waveguide. Metal-semiconductor-metal (MSM) photodetectors are formed on the top surface of the InGaAs layer for collection of the photo-induced carriers. The optical ridge waveguide is designed for lateral incidence of the light to enhance the MSM photodetector responsivity. Initial measurements on the optical waveguide and photodetector are presented.

  10. Miniaturized gas ionization sensors using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Modi, Ashish; Koratkar, Nikhil; Lass, Eric; Wei, Bingqing; Ajayan, Pulickel M.

    2003-07-01

    Gas sensors operate by a variety of fundamentally different mechanisms. Ionization sensors work by fingerprinting the ionization characteristics of distinct gases, but they are limited by their huge, bulky architecture, high power consumption and risky high-voltage operation. Here we report the fabrication and successful testing of ionization microsensors featuring the electrical breakdown of a range of gases and gas mixtures at carbon nanotube tips. The sharp tips of nanotubes generate very high electric fields at relatively low voltages, lowering breakdown voltages several-fold in comparison to traditional electrodes, and thereby enabling compact, battery-powered and safe operation of such sensors. The sensors show good sensitivity and selectivity, and are unaffected by extraneous factors such as temperature, humidity, and gas flow. As such, the devices offer several practical advantages over previously reported nanotube sensor systems. The simple, low-cost, sensors described here could be deployed for a variety of applications, such as environmental monitoring, sensing in chemical processing plants, and gas detection for counter-terrorism.

  11. Parametric Investigations of Miniaturized Cylindrical and Annular Hall Thrusters

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2001-10-16

    A cylindrical geometry Hall thruster may overcome certain physical and technological limitations in scaling down of Hall thrusters to miniature sizes. The absence of the inner wall and use of the cusp magnetic field can potentially reduce heating of the thruster parts and erosion of the channel. A 2.6 cm miniaturized Hall thruster of a flexible design was built and successfully operated in the power range of 50-300 W. Comparison of preliminary results obtained for cylindrical and annular thruster configurations is presented.

  12. Propagation of cold atoms along a miniature magnetic guide

    PubMed

    Key; Hughes; Rooijakkers; Sauer; Hinds; Richardson; Kazansky

    2000-02-14

    A cloud of laser-cooled 85Rb atoms is coupled through a magnetic funnel into a miniature waveguide formed by four current-carrying wires embedded in a silica fiber. The atom cloud has a approximately 100 &mgr;m radius within the fiber and propagates over cm distances. We study the coupling, propagation, and transverse distribution of atoms in the fiber, and find good agreement with theory. This prototype demonstrates the feasibility of miniature guides as a tool in the new field of integrated atom optics, leading to single-mode propagation of de Broglie waves and the possible preparation of 1D atom clouds.

  13. Applications of SPICE for modeling miniaturized biomedical sensor systems

    NASA Technical Reports Server (NTRS)

    Mundt, C. W.; Nagle, H. T.

    2000-01-01

    This paper proposes a model for a miniaturized signal conditioning system for biopotential and ion-selective electrode arrays. The system consists of three main components: sensors, interconnections, and signal conditioning chip. The model for this system is based on SPICE. Transmission-line based equivalent circuits are used to represent the sensors, lumped resistance-capacitance circuits describe the interconnections, and a model for the signal conditioning chip is extracted from its layout. A system for measurements of biopotentials and ionic activities can be miniaturized and optimized for cardiovascular applications based on the development of an integrated SPICE system model of its electrochemical, interconnection, and electronic components.

  14. Mechanical, Electrical, and Environmental Evaluation of Nano-Miniature Connectors

    SciTech Connect

    Hilton, J.W.

    2001-07-30

    Because of their small size (0.025-inch spacing), nano-miniature connectors have been chosen for JTA telemetry applications. At the time they were chosen, extensive testing had not been done to determine the mechanical, electrical, and environmental characteristics of these connectors at the levels required for use by weapon systems. Since nano-miniature connectors use some unique plating and wire crimping processes not used in most design agency connectors, it was decided that these properties should be tested thoroughly. This report describes the results of that testing.

  15. Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation.

    PubMed

    Duerr, Fabian; Meuret, Youri; Thienpont, Hugo

    2010-04-20

    Sizing down the dimensions of solar concentrators for photovoltaic applications offers a number of promising advantages. It provides thinner modules and smaller solar cells, which reduces thermal issues. In this work a plane Fresnel lens design is introduced that is first analyzed with geometrical optics. Because of miniaturization, pure ray tracing may no longer be valid to determine the concentration performance. Therefore, a quantitative wave optical analysis of the miniaturization's influence on the obtained concentration performance is presented. This better quantitative understanding of the impact of diffraction in microstructured Fresnel lenses might help to optimize the design of several applications in nonimaging optics. PMID:20411014

  16. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  17. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-08-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  18. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  19. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  20. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  1. Compact beam expander based on planar structure to avoid inner focus

    NASA Astrophysics Data System (ADS)

    Sze, Jyh Rou; Wei, An Chi

    2016-10-01

    Based on the planar optical theory, compact beam expanders are proposed to miniaturize the dimension of an optical system. Both simulated and experimental results have demonstrated the designate functions of the proposed beam expanders. Such planar beam expanders (PBEs) consist of both parabolic mirrors which locate on the both sides of one substrate. The calculated results have showed that those PBEs, possessing thinner volume compared with the conventional beam expanders, are achromatic and aberration-free. To verify the optical performance of the designed PBEs, two of them were individually fabricated using the diamond grinding technique. The measured results have shown that the designate functions of the fabricated PBE have been achieved.

  2. Compact piezoelectric micromotor with a single bulk lead zirconate titanate stator

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Lan, Hua; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2013-04-01

    The advance of micro/nanotechnology promotes the development of micromotors in recent years. In this article, a compact piezoelectric ultrasonic micromotor with a single bulk lead zirconate titanate stator is proposed. A traveling wave is generated by superposition of bending modes with 90° phase difference excited by d15 inverse piezoelectric effects. The operating principle simplifies the system structure significantly, and provides a miniaturization solution. A research prototype with the size of 0.75× 0.75×1.55 mm is developed. It can produce start-up torque of 0.27μNmand maximum speed of 2760 r/min at 14RMS.

  3. Ultra-Compact Imaging Spectrometer (UCIS) for In-Situ Planetary Mineralogy: Laboratory and Field Calibration

    NASA Technical Reports Server (NTRS)

    Van Gorp, Byron; Mouroulis, Pantazis; Green, Robert O.; Rodriguez, Jose I.; Blaney, Diana; Wilson, Daniel W.; Sellar, R. Glenn; Richardson, Brandon S.

    2012-01-01

    The Ultra-Compact Imaging Spectrometer (UCIS) is a miniature telescope and spectrometer system intended for mapping terrain mineralogy over distances from 1.5 m to infinity with spatial sampling of 1.35 mrad over a 33 deg field, and spectral sampling of 10 nm in the 600-2500 nm range. The core of the system has been designed for operation in a Martian environment, but can also be used in a terrestrial environment when placed inside a vacuum vessel. We report the laboratory and field calibration data that include spatial and spectral calibration, and demonstrate the use of the system.

  4. Compact beam expander based on planar structure to avoid inner focus

    NASA Astrophysics Data System (ADS)

    Sze, Jyh Rou; Wei, An Chi

    2016-08-01

    Based on the planar optical theory, compact beam expanders are proposed to miniaturize the dimension of an optical system. Both simulated and experimental results have demonstrated the designate functions of the proposed beam expanders. Such planar beam expanders (PBEs) consist of both parabolic mirrors which locate on the both sides of one substrate. The calculated results have showed that those PBEs, possessing thinner volume compared with the conventional beam expanders, are achromatic and aberration-free. To verify the optical performance of the designed PBEs, two of them were individually fabricated using the diamond grinding technique. The measured results have shown that the designate functions of the fabricated PBE have been achieved.

  5. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  6. A Miniaturized Video System for Monitoring Drosophila Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana

    2011-01-01

    Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila

  7. SiC-Based Miniature High-Temperature Cantilever Anemometer

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  8. Miniaturized gas chromatograph-Paul ion trap system: applications to environmental monitoring

    NASA Technical Reports Server (NTRS)

    Shortt, B. J.; Darrach, M. R.; Holland, Paul M.; Chutjian, A.

    2004-01-01

    A miniature gas chromatograph (GC) and miniature Paul ion trap (PT) mass spectrometer system has been developed for identifying and quantifying chemical species present in closed environments having a complex mixture of gases.

  9. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  10. Space biology initiative program definition review. Trade study 3: Hardware miniaturization versus cost

    NASA Technical Reports Server (NTRS)

    Jackson, L. Neal; Crenshaw, John, Sr.; Davidson, William L.; Herbert, Frank J.; Bilodeau, James W.; Stoval, J. Michael; Sutton, Terry

    1989-01-01

    The optimum hardware miniaturization level with the lowest cost impact for space biology hardware was determined. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. A mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization are provided.

  11. Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms

    NASA Astrophysics Data System (ADS)

    Rindler, Filip

    2015-01-01

    This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in L p -bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In L p -spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar's framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a "geometric" way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.

  12. Variable recruitment in bundles of miniature pneumatic artificial muscles.

    PubMed

    DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M

    2016-01-01

    The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles. PMID:27623216

  13. Miniature implantable instrument measures and transmits heart function data

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1971-01-01

    Heart diameter is derived from measured transit time of 2.25 MHz ultrasonic pulse between two piezoelectric crystals attached to diametrically opposite heart surfaces. Miniature instrument implanted in chest telemeters information to external receiver-converter. System permits continual dimensional data recording taken from awake animals during long-term experiments.

  14. Planetary instrument definition and development program: 'Miniature Monochromatic Imager'

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.

    1991-01-01

    The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.

  15. Miniature implantable antennas for biomedical telemetry: from simulation to realization.

    PubMed

    Kiourti, Asimina; Costa, Jorge R; Fernandes, Carlos A; Santiago, André G; Nikita, Konstantina S

    2012-11-01

    We address numerical versus experimental design and testing of miniature implantable antennas for biomedical telemetry in the medical implant communications service band (402-405 MHz). A model of a novel miniature antenna is initially proposed for skin implantation, which includes varying parameters to deal with fabrication-specific details. An iterative design-and-testing methodology is further suggested to determine the parameter values that minimize deviations between numerical and experimental results. To assist in vitro testing, a low-cost technique is proposed for reliably measuring the electric properties of liquids without requiring commercial equipment. Validation is performed within a specific prototype fabrication/testing approach for miniature antennas. To speed up design while providing an antenna for generic skin implantation, investigations are performed inside a canonical skin-tissue model. Resonance, radiation, and safety performance of the proposed antenna is finally evaluated inside an anatomical head model. This study provides valuable insight into the design of implantable antennas, assessing the significance of fabrication-specific details in numerical simulations and uncertainties in experimental testing for miniature structures. The proposed methodology can be applied to optimize antennas for several fabrication/testing approaches and biotelemetry applications.

  16. Miniature spectroscopic instrumentation: Applications to biology and chemistry

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Mattley, Yvette; DeFrece, Ronald

    2004-01-01

    Spectroscopy is a fundamental analytical tool utilized throughout all of the sciences. For chemistry and biology alone, there are thousands of applications. In the past two decades there have been monumental advances in the miniaturization of components used in spectrophotometric systems. The key components include detector arrays, laser diodes, and fiber optics. Currently, there are numerous commercially available miniature spectrometer systems as well as discrete components that are used by researchers in designing their own systems. A comprehensive summary of current instrumentation available for the design and development of miniaturized spectroscopy applications is described, including detectors, wavelength discriminating components, light sources, and sampling assemblies. Recommendations are made for designing spectrometer systems for specific applications. Current literature is reviewed for chemical and biological applications specifically using miniaturized spectrometer systems with the focus being on ultraviolet-visible-near-infrared spectrometers. The applications include laboratory applications, environmental sensing, on-site industrial analyses, botany and ecology applications, and finally clinical and biochemical studies. Additionally, microspectrometers, two-dimensional arrays, and photonics crystals are discussed in regards to their future role in chemistry and biology applications.

  17. Miniature galvanic cell construction providing gas channels between electrode compartments

    SciTech Connect

    Urry, L. F.

    1985-03-26

    An improved miniature galvanic cell construction having a sealing gasket with channels defined through the base of the gasket. The channels provide means for the exchange of gaseous products around the cell separator and between the electrode compartments so as to reduce the overall internal pressure of the cell.

  18. Food analysis: a continuous challenge for miniaturized separation techniques.

    PubMed

    Asensio-Ramos, María; Hernández-Borges, Javier; Rocco, Anna; Fanali, Salvatore

    2009-11-01

    One of the current trends of modern analytical chemistry is the miniaturization of the various tools daily used by a large number of researchers. Ultrafast separations, consumption of small amounts of both samples and reagents as well as a high sensitivity and automation are some of the most important goals desired to be achieved. For many years a large number of research laboratories and analytical instrument manufacturing companies have been investing their efforts in this field, which includes miniaturized extraction materials, sample pre-treatment procedures and separation techniques. Among the separation techniques, capillary electromigration methods (which also include CEC), microchip and nano-LC/capillary LC have received special attention. Besides their well-known advantages over other separation tools, the role of these miniaturized techniques in food analysis is still probably in an early stage. In fact, applications in this field carried out by CEC, microchip, nano-LC and capillary LC are only a few when compared with other more established procedures such as conventional GC or HPLC. The scope of this review is to gather and discuss the different applications of such miniaturized techniques in this field. Concerning CE, microchip-CE and CEC works, emphasis has been placed on articles published after January 2007.

  19. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  20. Miniaturization in x ray and gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.; Wang, Yuzhong J.; Bradley, James G.

    1993-01-01

    The paper presents advances in two new sensor technologies and a miniaturized associated electronics technology which, when combined, can allow for very significant miniaturization and for the reduction of weight and power consumption in x-ray and gamma-ray spectroscopy systems: (1) Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems, with parameters approaching those of laboratory quality cryogenic instruments; (2) the silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray spectrometer applications, and offering substantial improvements in size, ruggedness, low power operation and energy resolution; and (3) miniaturized (hybridized) low noise, low power amplification and processing electronics, which take full advantage of the favorable properties of these new sensors and allow for the design and fabrication of advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems. The paper also presents experimental results and examples of spectrometric systems currently under construction. The directions for future developments are discussed.

  1. The Bama miniature swine is susceptible to experimental HEV infection

    PubMed Central

    Tang, Zi-Min; Wang, Si-Ling; Ying, Dong; Wen, Gui-Ping; Cai, Wei; Zhang, Ke; Ji, Wen-Fang; Yang, Ming; Zheng, Zi-Zheng; Xia, Ning-Shao

    2016-01-01

    The hepatitis E virus (HEV) is one of the main causes of enterically transmitted hepatitis worldwide. Although the mortality rates associated with HEV are generally low, they can be up to 28% in HEV-infected pregnant women, and the elderly are more susceptible. The reasons for this selective severity are unclear, partially because there is no suitable, easy-to-use model in which to study HEV infection. Non-human primates and standard swine have been identified as being sensitive to infection with HEV and have been used for HEV infection studies. However, studies in these animals have been limited by high housing costs and the difficulty of manipulating these animals. In the current study, we established a model of HEV infection using Bama miniature swine. The model is easy to use and is sensitive to infections with HEV genotypes 3 and 4, which are classified as zoonotic HEVs. In this model, infection of Bama miniature swine with HEV genotypes 3 and 4 caused the typical features. All Bama miniature swine that were infected with HEV genotypes 3 and 4 exhibited significant HEV viremia, shedding, anti-HEV antibody responses and partial liver inflammation. Bama miniature swine may serve as an alternative to standard swine models for the study of zoonotic HEV infection and HEV genotype specificity research. PMID:27534702

  2. 21 CFR 890.1615 - Miniature pressure transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Miniature pressure transducer. 890.1615 Section 890.1615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices §...

  3. 21 CFR 890.1615 - Miniature pressure transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Miniature pressure transducer. 890.1615 Section 890.1615 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices §...

  4. The Bama miniature swine is susceptible to experimental HEV infection.

    PubMed

    Tang, Zi-Min; Wang, Si-Ling; Ying, Dong; Wen, Gui-Ping; Cai, Wei; Zhang, Ke; Ji, Wen-Fang; Yang, Ming; Zheng, Zi-Zheng; Xia, Ning-Shao

    2016-01-01

    The hepatitis E virus (HEV) is one of the main causes of enterically transmitted hepatitis worldwide. Although the mortality rates associated with HEV are generally low, they can be up to 28% in HEV-infected pregnant women, and the elderly are more susceptible. The reasons for this selective severity are unclear, partially because there is no suitable, easy-to-use model in which to study HEV infection. Non-human primates and standard swine have been identified as being sensitive to infection with HEV and have been used for HEV infection studies. However, studies in these animals have been limited by high housing costs and the difficulty of manipulating these animals. In the current study, we established a model of HEV infection using Bama miniature swine. The model is easy to use and is sensitive to infections with HEV genotypes 3 and 4, which are classified as zoonotic HEVs. In this model, infection of Bama miniature swine with HEV genotypes 3 and 4 caused the typical features. All Bama miniature swine that were infected with HEV genotypes 3 and 4 exhibited significant HEV viremia, shedding, anti-HEV antibody responses and partial liver inflammation. Bama miniature swine may serve as an alternative to standard swine models for the study of zoonotic HEV infection and HEV genotype specificity research. PMID:27534702

  5. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Cromwell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    This invention is an electronically commutated brushless motor contro ller that incorporates Hall-array sensing in a small, 42-gram packag e that provides 4096 absolute counts per motor revolution position s ensing. The unit is the size of a miniature hockey puck, and is a 44 -pin male connector that provides many I/O channels, including CANbus , RS-232 communications, general-purpose analog and digital I/O (GPI O), analog and digital Hall inputs, DC power input (18-90 VDC, 0-l0 A), three-phase motor outputs, and a strain gauge amplifier.

  6. Novel Compact Mushroom-Type EBG Structure for Electromagnetic Coupling Reduction of Microstrip Antenna array

    NASA Astrophysics Data System (ADS)

    Hu, Lizhong; Wang, Guangming; Liang, Jiangang; Zhang, Chenxin

    2015-03-01

    A novel compact electromagnetic bandgap (EBG) structure consisting of two turns complementary spiral resonator (CSR) and conventional mushroom EBG (CM-EBG) structure is introduced to suppress the mutual coupling in antenna arrays for multiple-input and multiple-output (MIMO) applications. Eigenmode calculation is used to investigate the proposed CSR-loaded mushroom-type EBG (MT-EBG), which proved to exhibit bandgap property and a miniaturization of 48.9% is realized compared with the CM-EBG. By inserting the proposed EBG structure between two E-plane coupled microstrip antennas, a mutual coupling reduction of 8.13 dB has been achieved numerically and experimentally. Moreover, the EBG-loaded antenna has better far-field radiation patterns compared with the reference antenna. Thus, this novel EBG structure with advantages of compactness and high decoupling efficiency opens an avenue to new types of antennas with super performances.

  7. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe.

    PubMed

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W; Chen, Zhongping

    2011-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. PMID:20635426

  8. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system for use in aerospace and automotive health monitoring systems

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Kempen, Cornelia; Panahi, Allan; Lopatin, Craig

    2007-09-01

    Fiber Bragg grating sensors (FBGs) have gained rapid acceptance in aerospace and automotive structural health monitoring applications for the measurement of strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky and heavy bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense) microchip technology. The hybrid InOSense microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  9. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  10. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  11. Application and Miniaturization of Linear and Nonlinear Raman Microscopy for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Mittal, Richa

    Current diagnostics for several disorders rely on surgical biopsy or evaluation of ex vivo bodily fluids, which have numerous drawbacks. We evaluated the potential for vibrational techniques (both linear and nonlinear Raman) as a reliable and noninvasive diagnostic tool. Raman spectroscopy is an optical technique for molecular analysis that has been used extensively in various biomedical applications. Based on demonstrated capabilities of Raman spectroscopy we evaluated the potential of the technique for providing a noninvasive diagnosis of mucopolysaccharidosis (MPS). These studies show that Raman spectroscopy can detect subtle changes in tissue biochemistry. In applications where sub-micrometer visualization of tissue compositional change is required, a transition from spectroscopy to high quality imaging is necessary. Nonlinear vibrational microscopy is sensitive to the same molecular vibrations as linear Raman, but features fast imaging capabilities. Coherent Raman scattering when combined with other nonlinear optical (NLO) techniques (like two-photon excited fluorescence and second harmonic generation) forms a collection of advanced optical techniques that provide noninvasive chemical contrast at submicron resolution. This capability to examine tissues without external molecular agents is driving the NLO approach towards clinical applications. However, the unique imaging capabilities of NLO microscopy are accompanied by complex instrument requirements. Clinical examination requires portable imaging systems for rapid inspection of tissues. Optical components utilized in NLO microscopy would then need substantial miniaturization and optimization to enable in vivo use. The challenges in designing compact microscope objective lenses and laser beam scanning mechanisms are discussed. The development of multimodal NLO probes for imaging oral cavity tissue is presented. Our prototype has been examined for ex vivo tissue imaging based on intrinsic fluorescence and SHG

  12. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  13. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  14. A miniaturized and integrated system to measure key parameters of ophthamic optical coherence tomography equipment

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoyu; Hu, Zhixiong; Ge, Chunfeng; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Jia, Dongfang

    2015-08-01

    Optical coherence tomography (OCT) technology has been widely applied in the field of ophthalmic diagnosis. As the use of this innovative 3D imaging approach increases, the requirement to characterize its fundamental system performance is in great demand. Resolution capability is considered as the most important parameter for any imaging devices including OCT. Differing from conventional microscopic imaging method, the axial resolution of OCT is governed by full width at half maximum of the source spectrum (FWHM) while its lateral resolution is determined by the system numerical aperture (NA). Here, a miniaturized system is developed to measure the source spectrum and the system numerical aperture of OCT equipment. Both the hardware and the software are custom designed and integrated to measure the two key parameters of an OCT equipment. A clinical OCT machine is tested with the compact measuring system. In the meanwhile, the same parameters are also acquired with the use of commercial but bulky instrument, and a good agreement has been achieved by comparing the measuring results. The measuring mechanism, data processing algorithm as well as the mechanical design are described in detail. It has provided an applicable method to verify and calibrate fundamental parameters of any OCT equipment.

  15. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 2; Validation Results

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.

  16. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506

  17. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment.

    PubMed

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-11-20

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor's compact size makes it suitable for internal installation in high-voltage electrical equipment.

  18. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  19. Thermo-mechanical actuator-based miniature tagging module for localization in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Chandrappan, Jayakrishnan; Ruiqi, Lim; Su, Nandar; Yen Yi, Germaine Hoe; Vaidyanathan, Kripesh

    2011-04-01

    Capsule endoscopy is a frontline medical diagnostic tool for the gastro intestinal tract disorders. During diagnosis, efficient localization techniques are essential to specify a pathological area that may require further diagnosis or treatment. This paper presents the development of a miniature tagging module that relies on a novel concept to label the region of interest and has the potential to integrate with a capsule endoscope. The tagging module is a compact thermo-mechanical actuator loaded with a biocompatible micro tag. A low power microheater attached to the module serves as the thermal igniter for the mechanical actuator. At optimum temperature, the actuator releases the micro tag instantly and penetrates the mucosa layer of a GI tract, region of interest. Ex vivo animal trials are conducted to verify the feasibility of the tagging module concept. X-ray imaging is used to detect the location of the micro tag embedded in the GI tract wall. The method is successful, and radiopaque micro tags can provide valuable pre-operative position information on the infected area to facilitate further clinical procedures.

  20. Study on Miniaturized UHF Antennas for Partial Discharge Detection in High-Voltage Electrical Equipment

    PubMed Central

    Liu, Jingcun; Zhang, Guogang; Dong, Jinlong; Wang, Jianhua

    2015-01-01

    Detecting partial discharge (PD) is an effective way to evaluate the condition of high-voltage electrical equipment insulation. The UHF detection method has attracted attention due to its high sensitivity, strong interference resistance, and ability to locate PDs. In this paper, a miniaturized equiangular spiral antenna (ESA) for UHF detection that uses a printed circuit board is proposed. I-shaped, L-shaped, and C-shaped microstrip baluns were designed to match the impedance between the ESA and coaxial cable and were verified by a vector network analyzer. For comparison, three other types of UHF antenna were also designed: A microstrip patch antenna, a microstrip slot antenna, and a printed dipole antenna. Their antenna factors were calibrated in a uniform electric field of different frequencies modulated in a gigahertz transverse electromagnetic cell. We performed comparison experiments on PD signal detection using an artificial defect model based on the international IEC 60270 standard. We also conducted time-delay test experiments on the ESA sensor to locate a PD source. It was found that the proposed ESA sensor meets PD signal detection requirements. The sensor’s compact size makes it suitable for internal installation in high-voltage electrical equipment. PMID:26610506