Sample records for compact multiphoton 3d

  1. A novel flexible clinical multiphoton tomograph for early melanoma detection, skin analysis, testing of anti-age products, and in situ nanoparticle tracking

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2010-02-01

    High-resolution 3D microscopy based on multiphoton induced autofluorescence and second harmonic generation have been introduced in 1990. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have first been launched by JenLab company with the tomography DermaInspect®. This year, the second generation of clinical multiphoton tomographs was introduced. The novel multiphoton tomograph MPTflex, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. Improved image quality and signal to noise ratio (SNR) are achieved by a very short source-drain spacing, by larger active areas of the detectors and by single photon counting (SPC) technology. Shorter image acquisition time due to improved image quality reduces artifacts and simplifies the operation of the system. The compact folded optical design and the light-weight structure of the optical head eases the handling. Dual channel detectors enable to distinguish between intratissue elastic fibers and collagenous structures simultaneously. Through the use of piezo-driven optics a stack of optical cross-sections (optical sectioning) can be acquired and 3D imaging can be performed. The multiphoton excitation of biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin is done by picojoule femtosecond laser pulses from an tunable turn-key femtosescond near infrared laser system. The ability for rapid high-quality image acquisition, the user-friendly operation of the system and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research and skin aging measurements as well as in situ drug monitoring and animal research.

  2. Current developments in clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer

    2010-02-01

    Two-photon microscopy has been introduced in 1990 [1]. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched by the JenLab company with the tomograph DermaInspectTM. In 2010, the second generation of clinical multiphoton tomographs was introduced. The novel mobile multiphoton tomograph MPTflexTM, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. The multiphoton excitation of fluorescent biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin as well as the second harmonic generation of collagen is induced by picojoule femtosecond laser pulses from an tunable turn-key near infrared laser system. The ability for rapid highquality image acquisition, the user-friendly operation of the system, and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research, and skin aging measurements as well as in situ drug monitoring and animal research. So far, more than 1,000 patients and volunteers have been investigated with the multiphoton tomographs in Europe, Asia, and Australia.

  3. Compact diode laser source for multiphoton biological imaging

    PubMed Central

    Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.

    2016-01-01

    We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420

  4. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    NASA Astrophysics Data System (ADS)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  5. Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system.

    PubMed

    Oshima, Yusuke; Horiuch, Hideki; Honkura, Naoki; Hikita, Atsuhiko; Ogata, Tadanori; Miura, Hiromasa; Imamura, Takeshi

    2014-09-01

    Near-infrared ultrafast lasers are widely used for multiphoton excited fluorescence microscopy in living animals. Ti:Sapphire lasers are typically used for multiphoton excitation, but their emission wavelength is restricted below 1,000 nm. The aim of this study is to evaluate the performance of a compact Ytterbium-(Yb-) fiber laser at 1,045 nm for multiphoton excited fluorescence microscopy in spinal cord injury. In this study, we employed a custom-designed microscopy system with a compact Yb-fiber laser and evaluated the performance of this system in in vivo imaging of brain cortex and spinal cord in YFP-H transgenic mice. For in vivo imaging of brain cortex, sharp images of basal dendrites, and pyramidal cells expressing EYFP were successfully captured using the Yb-fiber laser in our microscopy system. We also performed in vivo imaging of axon fibers of spinal cord in the transgenic mice. The obtained images were almost as sharp as those obtained using a conventional ultrafast laser system. In addition, laser ablation and multi-color imaging could be performed simultaneously using the Yb-fiber laser. The high-peak pulse Yb-fiber laser is potentially useful for multimodal bioimaging methods based on a multiphoton excited fluorescence microscopy system that incorporates laser ablation techniques. Our results suggest that microscopy systems of this type could be utilized in studies of neuroscience and clinical use in diagnostics and therapeutic tool for spinal cord injury in the future. © 2014 Wiley Periodicals, Inc.

  6. Multiphoton excitation and high-harmonics generation in topological insulator.

    PubMed

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  7. Multiphoton excitation and high-harmonics generation in topological insulator

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  8. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  9. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    PubMed Central

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  10. Multiphoton imaging microscopy at deeper layers with adaptive optics control of spherical aberration.

    PubMed

    Bueno, Juan M; Skorsetz, Martin; Palacios, Raquel; Gualda, Emilio J; Artal, Pablo

    2014-01-01

    Despite the inherent confocality and optical sectioning capabilities of multiphoton microscopy, three-dimensional (3-D) imaging of thick samples is limited by the specimen-induced aberrations. The combination of immersion objectives and sensorless adaptive optics (AO) techniques has been suggested to overcome this difficulty. However, a complex plane-by-plane correction of aberrations is required, and its performance depends on a set of image-based merit functions. We propose here an alternative approach to increase penetration depth in 3-D multiphoton microscopy imaging. It is based on the manipulation of the spherical aberration (SA) of the incident beam with an AO device while performing fast tomographic multiphoton imaging. When inducing SA, the image quality at best focus is reduced; however, better quality images are obtained from deeper planes within the sample. This is a compromise that enables registration of improved 3-D multiphoton images using nonimmersion objectives. Examples on ocular tissues and nonbiological samples providing different types of nonlinear signal are presented. The implementation of this technique in a future clinical instrument might provide a better visualization of corneal structures in living eyes.

  11. Thermooptic two-mode interference device for reconfigurable quantum optic circuits

    NASA Astrophysics Data System (ADS)

    Sahu, Partha Pratim

    2018-06-01

    Reconfigurable large-scale integrated quantum optic circuits require compact component having capability of accurate manipulation of quantum entanglement for quantum communication and information processing applications. Here, a thermooptic two-mode interference coupler has been introduced as a compact component for generation of reconfigurable complex multi-photons quantum interference. Both theoretical and experimental approaches are used for the demonstration of two-photon and four-photon quantum entanglement manipulated with thermooptic phase change in TMI region. Our results demonstrate complex multi-photon quantum interference with high fabrication tolerance and quantum fidelity in smaller dimension than previous thermooptic Mach-Zehnder implementations.

  12. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe

    PubMed Central

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W.; Chen, Zhongping

    2012-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. MPM images of different biological tissues acquired by the compact system which integrates an FBFP laser, an DCPCF and a miniature handheld probe. PMID:20635426

  13. Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue ex vivo

    NASA Astrophysics Data System (ADS)

    Huland, David M.; Jain, Manu; Ouzounov, Dimitre G.; Robinson, Brian D.; Harya, Diana S.; Shevchuk, Maria M.; Singhal, Paras; Xu, Chris; Tewari, Ashutosh K.

    2014-11-01

    Multiphoton microscopy can instantly visualize cellular details in unstained tissues. Multiphoton probes with clinical potential have been developed. This study evaluates the suitability of multiphoton gradient index (GRIN) endoscopy as a diagnostic tool for prostatic tissue. A portable and compact multiphoton endoscope based on a 1-mm diameter, 8-cm length GRIN lens system probe was used. Fresh ex vivo samples were obtained from 14 radical prostatectomy patients and benign and malignant areas were imaged and correlated with subsequent H&E sections. Multiphoton GRIN endoscopy images of unfixed and unprocessed prostate tissue at a subcellular resolution are presented. We note several differences and identifying features of benign versus low-grade versus high-grade tumors and are able to identify periprostatic tissues such as adipocytes, periprostatic nerves, and blood vessels. Multiphoton GRIN endoscopy can be used to identify both benign and malignant lesions in ex vivo human prostate tissue and may be a valuable diagnostic tool for real-time visualization of suspicious areas of the prostate.

  14. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  15. Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin.

    PubMed

    Decencière, Etienne; Tancrède-Bohin, Emmanuelle; Dokládal, Petr; Koudoro, Serge; Pena, Ana-Maria; Baldeweck, Thérèse

    2013-05-01

    Multiphoton microscopy has emerged in the past decade as a useful noninvasive imaging technique for in vivo human skin characterization. However, it has not been used until now in evaluation clinical trials, mainly because of the lack of specific image processing tools that would allow the investigator to extract pertinent quantitative three-dimensional (3D) information from the different skin components. We propose a 3D automatic segmentation method of multiphoton images which is a key step for epidermis and dermis quantification. This method, based on the morphological watershed and graph cuts algorithms, takes into account the real shape of the skin surface and of the dermal-epidermal junction, and allows separating in 3D the epidermis and the superficial dermis. The automatic segmentation method and the associated quantitative measurements have been developed and validated on a clinical database designed for aging characterization. The segmentation achieves its goals for epidermis-dermis separation and allows quantitative measurements inside the different skin compartments with sufficient relevance. This study shows that multiphoton microscopy associated with specific image processing tools provides access to new quantitative measurements on the various skin components. The proposed 3D automatic segmentation method will contribute to build a powerful tool for characterizing human skin condition. To our knowledge, this is the first 3D approach to the segmentation and quantification of these original images. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  16. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  17. Generation of multiphoton entangled quantum states by means of integrated frequency combs.

    PubMed

    Reimer, Christian; Kues, Michael; Roztocki, Piotr; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E; Chu, Sai T; Johnston, Tudor; Bromberg, Yaron; Caspani, Lucia; Moss, David J; Morandotti, Roberto

    2016-03-11

    Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies. Copyright © 2016, American Association for the Advancement of Science.

  18. THREE-DIMENSIONAL RANDOM ACCESS MULTIPHOTON MICROSCOPY FOR FAST FUNCTIONAL IMAGING OF NEURONAL ACTIVITY

    PubMed Central

    Reddy, Gaddum Duemani; Kelleher, Keith; Fink, Rudy; Saggau, Peter

    2009-01-01

    The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Significant progress has been made by optical imaging systems which combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all systems developed to date restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, since they represent complex three-dimensional (3D) structures. Here we present a novel imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused ultra-fast laser beam to arbitrary locations in 3D space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex 3D cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz. PMID:18432198

  19. Enabling high-precision nonlinear three-dimensional photoprocessing of premeditated designs on a conventional multiphoton imaging system

    NASA Astrophysics Data System (ADS)

    Garsha, Karl E.

    2004-06-01

    There is an increasing amount of interest in functionalized microstructural, microphotonic and microelectromechanical systems (MEMS) for use in biological applications. By scanning a tightly focused ultra-short pulsed laser beam inside a wide variety of commercially available polymer systems, the flexibility of the multiphoton microscope can be extended to include routine manufacturing of micro-devices with feature sizes well below the diffraction limit. Compared with lithography, two-photon polymerization has the unique ability to additively realize designs with high resolution in three dimensions; this permits the construction of cross-linked components and structures with hollow cavities. In light of the increasing availability of multiphoton imaging systems at research facilities, femtosecond laser manufacturing becomes particularly attractive in that the modality provides a readily accessible, rapid and high-accuracy 3-D processing capability to biological investigators interested in culture scaffolds and biomimetic tissue engineering, bio-MEMS, biomicrophotonics and microfluidics applications. This manuscript overviews recent efforts towards to enabling user accessible 3-D micro-manufacturing capabilities on a conventional proprietary-based imaging system. Software which permits the off-line design of microstructures and leverages the extensibility of proprietary LCSM image acquisition software to realize designs is introduced. The requirements for multiphoton photo-disruption (ablation) are in some ways analogous to those for multiphoton polymerization. Hence, "beam-steering" also facilitates precision photo-disruption of biological tissues with 3-D resolution, and applications involving tissue microdissection and intracellular microsurgery or three-dimensionally resolved fluorescence recovery after photobleaching (FRAP) studies can benefit from this work as well.

  20. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  1. Multiphoton amplitude in a constant background field

    NASA Astrophysics Data System (ADS)

    Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian

    2018-01-01

    In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.

  2. High-resolution multimodal clinical multiphoton tomography of skin

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  3. Proximal design for a multimodality endoscope with multiphoton microscopy, optical coherence microscopy and visual modalities

    NASA Astrophysics Data System (ADS)

    Kiekens, Kelli C.; Talarico, Olivia; Barton, Jennifer K.

    2018-02-01

    A multimodality endoscope system has been designed for early detection of ovarian cancer. Multiple illumination and detection systems must be integrated in a compact, stable, transportable configuration to meet the requirements of a clinical setting. The proximal configuration presented here supports visible light navigation with a large field of view and low resolution, high resolution multiphoton microscopy (MPM), and high resolution optical coherence microscopy (OCM). All modalities are integrated into a single optical system in the endoscope. The system requires two light sources: a green laser for visible light navigation and a compact fiber based femtosecond laser for MPM and OCM. Using an inline wavelength division multiplexer, the two sources are combined into a single mode fiber. To accomplish OCM, a fiber coupler is used to separate the femtosecond laser into a reference arm and signal arm. The reflected reference arm and the signal from the sample are interfered and wavelength separated by a reflection grating and detected using a linear array. The MPM signal is collimated and goes through a series of filters to separate the 2nd and 3rd harmonics as well as twophoton excitation florescence (2PEF) and 3PEF. Each signal is independently detected on a photo multiplier tube and amplified. The visible light is collected by multiple high numerical aperture fibers at the endoscope tip which are bundled into one SMA adapter at the proximal end and connected to a photodetector. This integrated system design is compact, efficient and meets both optical and mechanical requirements for clinical applications.

  4. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation.

    PubMed

    Doerr, Daniel; Stark, Martin; Ehrhart, Friederike; Zimmermann, Heiko; Stracke, Frank

    2009-08-01

    In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.

  5. A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity

    PubMed Central

    Vučinić, Dejan; Sejnowski, Terrence J.

    2007-01-01

    We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at http://neurospy.org/ under an open source license. PMID:17684546

  6. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  7. Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy.

    PubMed

    Schenke-Layland, Katja; Riemann, Iris; Stock, Ulrich A; König, Karsten

    2005-01-01

    Multiphoton imaging represents a novel and very promising medical diagnostic technology for the high-resolution analysis of living biological tissues. We performed multiphoton imaging to analyzed structural features of extracellular matrix (ECM) components, e.g., collagen and elastin, of vital pulmonary and aortic heart valves. High-resolution autofluorescence images of collagenous and elastic fibers were demonstrated using multifluorophore, multiphoton excitation at two different wavelengths and optical sectioning, without the requirement of embedding, fixation, or staining. Collagenous structures were selectively imaged by detection of second harmonic generation (SHG). Additionally, routine histology and electron microscopy were integrated to verify the observed results. In comparison with pulmonary tissues, aortic heart valve specimens show very similar matrix formations. The quality of the resulting three-dimensional (3-D) images enabled the differentiation between collagenous and elastic fibers. These experimental results indicate that multiphoton imaging with near-infrared (NIR) femtosecond laser pulses may prove to be a useful tool for the nondestructive monitoring and characterization of cardiovascular structures. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  8. Dynamical measurements of motion behavior of free fluorescent sphere using the wide field temporal focusing microscopy with astigmatism method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching

    2017-02-01

    A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.

  9. Multiphoton microscopy and image guided light activated therapy using nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prasad, Paras N.

    2017-02-01

    This talk will focus on design and applications of nanomaterials exhibiting strong multiphoton upconversion for multiphoton microscopy as well as for image-guided and light activated therapy .1-3 Such processes can occur by truly nonlinear optical interactions proceeding through virtual intermediate states or by stepwise coupled linear excitations through real intermediate states. Multiphoton processes in biocompatible multifunctional nanoparticles allow for 3D deep tissue imaging. In addition, they can produce in-situ photon conversion of deep tissue penetrating near IR light into a needed shorter wavelength light for photo-activated therapy at a targeted site, thus overcoming the limited penetration of UV or visible light into biological media. We are using near IR emitters such as silicon quantum dots which also exhibit strong multiphoton excitation for multiphoton microscopy. Another approach involves nonlinear nanocrystals such as ZnO which can produce four wave mixing, sum frequency generation as well as second harmonic generation to convert a deep tissue penetrating Near IR light at the targeted biological site to a desired shorter wavelength light suitable for bio imaging or activation of a therapy. We have utilized this approach to activate a photosensitizer for photodynamic therapy. Yet another type of upconversion materials is rare-earth ion doped optical nanotransformers which transform a Near IR (NIR) light from an external source by sequential single photon absorption, in situ and on demand, to a needed wavelength. Applications of these nanotransformers in multiphoton photoacoustic imaging will also be presented. An exciting direction pursued by us using these multiphoton nanoparticles, is functional imaging of brain. Simultaneously, they can effect optogenetics for regioselective stimulation of neurons for providing an effective intervention/augmentation strategy to enhance the cognitive state and lead to a foundation for futuristic vision of super human capabilities. Challenges and opportunities will be discussed.

  10. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.

    PubMed

    Li, Jian; Jahr, Holger; Zheng, Wei; Ren, Pei-Gen

    2017-09-07

    The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.

  11. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.

    PubMed

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-07-01

    Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo.

  12. Multiphoton imaging of myogenic differentiation in gelatin-based hydrogels as tissue engineering scaffolds.

    PubMed

    Kim, Min Jeong; Shin, Yong Cheol; Lee, Jong Ho; Jun, Seung Won; Kim, Chang-Seok; Lee, Yunki; Park, Jong-Chul; Lee, Soo-Hong; Park, Ki Dong; Han, Dong-Wook

    2016-01-01

    Hydrogels can serve as three-dimensional (3D) scaffolds for cell culture and be readily injected into the body. Recent advances in the image technology for 3D scaffolds like hydrogels have attracted considerable attention to overcome the drawbacks of ordinary imaging technologies such as optical and fluorescence microscopy. Multiphoton microscopy (MPM) is an effective method based on the excitation of two-photons. In the present study, C2C12 myoblasts differentiated in 3D gelatin hydroxyphenylpropionic acid (GHPA) hydrogels were imaged by using a custom-built multiphoton excitation fluorescence microscopy to compare the difference in the imaging capacity between conventional microscopy and MPM. The physicochemical properties of GHPA hydrogels were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. In addition, the cell viability and proliferation of C2C12 myoblasts cultured in the GHPA hydrogels were analyzed by using Live/Dead Cell and CCK-8 assays, respectively. It was found that C2C12 cells were well grown and normally proliferated in the hydrogels. Furthermore, the hydrogels were shown to be suitable to facilitate the myogenic differentiation of C2C12 cells incubated in differentiation media, which had been corroborated by MPM. It was very hard to get clear images from a fluorescence microscope. Our findings suggest that the gelatin-based hydrogels can be beneficially utilized as 3D scaffolds for skeletal muscle engineering and that MPM can be effectively applied to imaging technology for tissue regeneration.

  13. COMPACT NON-CONTACT TOTAL EMISSION DETECTION FOR IN-VIVO MULTI-PHOTON EXCITATION MICROSCOPY

    PubMed Central

    Glancy, Brian; Karamzadeh, Nader S.; Gandjbakhche, Amir H.; Redford, Glen; Kilborn, Karl; Knutson, Jay R.; Balaban, Robert S.

    2014-01-01

    Summary We describe a compact, non-contact design for a Total Emission Detection (c-TED) system for intra-vital multi-photon imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), while murine skeletal muscle and rat kidney showed gains of over two and just under two-fold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a two-fold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers (enabled by greater light collection efficiency) yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multi-photon imaging methods is discussed. PMID:24251437

  14. Nanodissection of human chromosomes and ultraprecise eye surgery with nanojoule near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Krauss, Oliver; Fritzsche, Wolfgang

    2002-04-01

    Nanojoule and sub-nanojoule 80 MHz femtosecond laser pulses at 750-850 nm of a compact titanium:sapphire laser have been used for highly precise nanoprocessing of DNA as well as of intracellular and intratissue compartments. In particular, a mean power between 15 mW and 100 mW, 170 fs pulse width, submicron distance of illumination spots and microsecond beam dwell times on spots have been used for multiphoton- mediated nanoprocessing of human chromosomes, brain and ocular intrastromal tissue. By focusing the laser beam with high numerical aperture focusing optics of the laser scan system femt-O-cut and of modified multiphoton scanning microscopes to diffraction-limited spots and TW/cm2 light intensities, precise submicron holes and cuts have been processed by single spot exposure and line scans. A minimum FWHM cut size below 70 nm during the partial dissection of the human chromosome 3 was achieved. Complete chromosome dissection could be performed with FWHM cut sizes below 200 nm. Intracellular chromosome dissection was possible. Intratissue processing in depths of 50 - 100micrometers and deeper with a precision of about 1micrometers including cuts through a nuclei of a single intratissue cell without destructive photo-disruption effects to surrounding tissue layers have been demonstrated in brain and eye tissues. The femt-O-cut system includes a diagnostic system for optical tomography with submicron resolution based on multiphoton- excited autofluorescence imaging (MAI) and second harmonic generation. This system was used to localize the intracellular and intratissue targets and to control the effects of nanoprocessing. These studies show, that in contrast to conventional approaches of material processing with amplified femtosecond laser systems and (mu) J pulse energies, nanoprocessing of materials including biotissues can be performed with nJ and sub-nJ high repetition femtosecond laser pulses of turn-key compact lasers without collateral damage. Potential applications include highly precise cell and embryo surgery, gene diagnostics and gene therapy, intrastromal refractive surgery, cancer therapy and brain surgery.

  15. High speed multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  16. 3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro.

    PubMed

    De Gregorio, Vincenza; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo A

    2018-04-01

    Current in vitro models of human intestine commonly fail to mimic the complex intestinal functions and features required for drug development and disease research. Here, we deeply investigate the interaction existing between epithelium and the underneath stroma, and its role in the epithelium morphogenesis. We cultured human intestinal subepithelial myofibroblasts (ISEMFs) in two different 3D configurations: 3D-collagen gel equivalent (3D-CGE) and 3D cell-synthetized stromal equivalent (3D-CSSE). The 3D-CGEs were obtained by means of the traditional collagen-based cell technique and the 3D-CSSE were obtained by bottom-up tissue engineering strategy. The biophysical properties of both 3D models with regard to cell growth and composition (via histological analysis, immunofluorescence, and multiphoton imaging) were assessed. Then, human colorectal adenocarcinoma cell line (CaCo-2) was cultured on both the 3D constructs in order to produce the intestinal model. We identified higher levels of matrix-associated proteins from ISEMFs cultured in 3D-CSSE compared to 3D-CGE. Furthermore, multiphoton investigation revealed differences in the collagen network architecture in both models. At last, the more physiologically relevant stromal environment of the 3D-CSSE drove the CaCo-2 cell differentiation toward the four different type of intestinal epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) phenotype and promotes, in contrast to the 3D-CGE, the production of the basement membrane. Taken together, these results highlight a fundamental role of the 3D stromal environment in addressing a correct epithelium morphogenesis as well as epithelial-stromal interface establishment. © 2017 Wiley Periodicals, Inc.

  17. Multiphoton microscopy in every lab: the promise of ultrafast semiconductor disk lasers

    NASA Astrophysics Data System (ADS)

    Emaury, Florian; Voigt, Fabian F.; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-07-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging.

  18. Multiphoton in vivo imaging with a femtosecond semiconductor disk laser

    PubMed Central

    Voigt, Fabian F.; Emaury, Florian; Bethge, Philipp; Waldburger, Dominik; Link, Sandro M.; Carta, Stefano; van der Bourg, Alexander; Helmchen, Fritjof; Keller, Ursula

    2017-01-01

    We use an ultrafast diode-pumped semiconductor disk laser (SDL) to demonstrate several applications in multiphoton microscopy. The ultrafast SDL is based on an optically pumped Vertical External Cavity Surface Emitting Laser (VECSEL) passively mode-locked with a semiconductor saturable absorber mirror (SESAM) and generates 170-fs pulses at a center wavelength of 1027 nm with a repetition rate of 1.63 GHz. We demonstrate the suitability of this laser for structural and functional multiphoton in vivo imaging in both Drosophila larvae and mice for a variety of fluorophores (including mKate2, tdTomato, Texas Red, OGB-1, and R-CaMP1.07) and for endogenous second-harmonic generation in muscle cell sarcomeres. We can demonstrate equivalent signal levels compared to a standard 80-MHz Ti:Sapphire laser when we increase the average power by a factor of 4.5 as predicted by theory. In addition, we compare the bleaching properties of both laser systems in fixed Drosophila larvae and find similar bleaching kinetics despite the large difference in pulse repetition rates. Our results highlight the great potential of ultrafast diode-pumped SDLs for creating a cost-efficient and compact alternative light source compared to standard Ti:Sapphire lasers for multiphoton imaging. PMID:28717563

  19. Near-Infrared Light-Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments.

    PubMed

    Qin, Xiao-Hua; Wang, Xiaopu; Rottmar, Markus; Nelson, Bradley J; Maniura-Weber, Katharina

    2018-03-01

    Advanced hydrogel systems that allow precise control of cells and their 3D microenvironments are needed in tissue engineering, disease modeling, and drug screening. Multiphoton lithography (MPL) allows true 3D microfabrication of complex objects, but its biological application requires a cell-compatible hydrogel resist that is sufficiently photosensitive, cell-degradable, and permissive to support 3D cell growth. Here, an extremely photosensitive cell-responsive hydrogel composed of peptide-crosslinked polyvinyl alcohol (PVA) is designed to expand the biological applications of MPL. PVA hydrogels are formed rapidly by ultraviolet light within 1 min in the presence of cells, providing fully synthetic matrices that are instructive for cell-matrix remodeling, multicellular morphogenesis, and protease-mediated cell invasion. By focusing a multiphoton laser into a cell-laden PVA hydrogel, cell-instructive extracellular cues are site-specifically attached to the PVA matrix. Cell invasion is thus precisely guided in 3D with micrometer-scale spatial resolution. This robust hydrogel enables, for the first time, ultrafast MPL of cell-responsive synthetic matrices at writing speeds up to 50 mm s -1 . This approach should enable facile photochemical construction and manipulation of 3D cellular microenvironments with unprecedented flexibility and precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In vivo histology: optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography

    NASA Astrophysics Data System (ADS)

    Weinigel, M.; Breunig, H. G.; Kellner-Höfer, M.; Bückle, R.; Darvin, M. E.; Klemp, M.; Lademann, J.; König, K.

    2014-05-01

    The majority of existing coherent anti-Stokes Raman scattering (CARS) imaging systems are still huge and complicated laboratory systems and neither compact nor user-friendly nor mobile medically certified CARS systems. We have developed a new flexible multiphoton/CARS tomograph for imaging in a clinical environment. The system offers exceptional 360° flexibility with a very stable setup and enables label free ‘in vivo histology’ with chemical contrast within seconds. It can be completely operated by briefly trained non-laser experts. The imaging capability and flexibility of the novel in vivo tomograph are shown on optical biopsies with subcellular resolution and chemical contrast of patients suffering from psoriasis and squamous cell carcinoma.

  1. An Automated System for the Control of, and Data Acquisition from Multiphoton Ionization and Fluorescence Lifetime Measurements.

    DTIC Science & Technology

    1986-09-01

    Quanta- Ray company , which also supplied the laser used for the multiphoton work. The, burner was mounted on a translator stage from Velmex, Inc...and no longer exists as a process in the system. When the user analysis program has completed, the lifetime program is again automatically re-started...KCHAR) RETURN 100 FORMAT(I3) 101 FORMAT(F7.2) END SUBROUTINE LAB4 FODA SE"oteD C This routine puts the label "INTEGRAL FROM DATA SET" on the MDP C screen

  2. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.

  3. Femtosecond laser three-dimensional micro- and nanofabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugioka, Koji, E-mail: ksugioka@riken.jp; Cheng, Ya, E-mail: ya.cheng@siom.ac.cn

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement ofmore » the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.« less

  4. New developments in multimodal clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  5. Three-dimensional imaging of sulfides in silicate rocks at submicron resolution with multiphoton microscopy.

    PubMed

    Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A

    2011-12-01

    We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.

  6. Differentiation and Distributions of DNA/Cisplatin Crosslinks by Liquid Chromatography-Electrospray Ionization-Infrared Multiphoton Dissociation Mass Spectrometry

    PubMed Central

    Xu, Zhe; Brodbelt, Jennifer S.

    2013-01-01

    Liquid chromatography-electrospray ionization-infrared multiphoton dissociation (IRMPD) mass spectrometry was developed to investigate the distributions of intrastrand crosslinks formed between cisplatin and two oligodeoxynucleotides (ODNs), d(A1T2G3G4G5T6A7C8C9C10A11T12) (G3-D) and its analog d(A1T2G3G4G5T6T7C8C9C10A11T12) (G3-H), that have been reported to adopt different secondary structures in solution. Based on the formation of site-specific fragment ions upon IRMPD, two isobaric crosslink products were differentiated for each ODN. The preferential formation of G3G4 and G4G5 crosslinks was determined as a function of reaction conditions, including incubation temperature and presence of metal ions. G3-D consistently exhibited a greater preference for formation of the G4G5 crosslink compared to the G3-H ODN. The ratio of G3G4:G4G5 crosslinks increased for both G3-D and G3-H at higher incubation temperatures or when metal salts were added. Comparison of the IRMPD fragmentation patterns of the unmodified ODNs and the intramolecular platinated crosslinks indicated that backbone cleavage was significantly suppressed near the crosslink. PMID:24135806

  7. Ionic rotational branching ratios in resonant enhanced multiphoton ionization of NO via the A2Sigma(+)(3s sigma) and D2Sigma(+)(3p sigma) states

    NASA Technical Reports Server (NTRS)

    Rudolph, H.; Mckoy, V.; Dixit, S. N.; Huo, W. M.

    1988-01-01

    Results are presented for the rotationally resolved photoelectron spectra resulting from a (2 + 1) one-color resonant enhanced multiphoton ionization (REMPI) of NO via the rotationally clean S21(11.5) and mixed S11(15.5) + R21(15.5) branches of the 0-0 transition in the D-X band. The calculations were done in the fixed-nuclei frozen core approximation. The resulting photoionization spectra, convoluted with a Lorentzian detection function, agree qualitatively with experimental results of Viswanathan et al. (1986) and support their conclusion that the nonspherical nature of the molecular potential creates a substantial l-mixing in the continuum, which in turn leads to the intense Delta N = 0 peak. The rather strong photoelectron energy dependence of the rotational branching ratios of the D 2Sigma(+) S21(11.5) line was investigated and compared to the weak energy dependence of the A 2Sigma(+) R22(21.5) line.

  8. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  9. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy

    PubMed Central

    Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-01-01

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680–750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author’s best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments. PMID:28984838

  10. Application of Negative Curvature Hollow-Core Fiber in an Optical Fiber Sensor Setup for Multiphoton Spectroscopy.

    PubMed

    Popenda, Maciej Andrzej; Stawska, Hanna Izabela; Mazur, Leszek Mateusz; Jakubowski, Konrad; Kosolapov, Alexey; Kolyadin, Anton; Bereś-Pawlik, Elżbieta

    2017-10-06

    In this paper, an application of negative curvature hollow core fiber (NCHCF) in an all-fiber, multiphoton fluorescence sensor setup is presented. The dispersion parameter (D) of this fiber does not exceed the value of 5 ps/nm × km across the optical spectrum of (680-750) nm, making it well suited for the purpose of multiphoton excitation of biological fluorophores. Employing 1.5 m of this fiber in a simple, all-fiber sensor setup allows us to perform multiphoton experiments without any dispersion compensation methods. Multiphoton excitation of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with this fiber shows a 6- and 9-fold increase, respectively, in the total fluorescence signal collected when compared with the commercial solution in the form of a hollow-core photonic band gap fiber (HCPBF). To the author's best knowledge, this is the first time an NCHCF was used in an optical-fiber sensor setup for multiphoton fluorescence experiments.

  11. Compact fixed wavelength femtosecond oscillators as an add-on for tunable Ti:sapphire lasers extend the range of applications towards multimodal imaging and optogenetics

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2016-03-01

    Two-photon (2P) microscopy based on tunable Ti:sapphire lasers has become a widespread tool for 3D imaging with sub-cellular resolution in living tissues. In recent years multi-photon microscopy with simpler fixed-wavelength femtosecond oscillators using Yb-doped tungstenates as gain material has raised increasing interest in life-sciences, because these lasers offer one order of magnitude more average power than Ti:sapphire lasers in the wavelength range around 1040 nm: Two-photon (2P) excitation of mainly red or yellow fluorescent dyes and proteins (e.g. YFP, mFruit series) simultaneously has been proven with a single IR laser wavelength. A new approach is to extend the usability of existing tunable Titanium sapphire lasers by adding a fixed IR wavelength with an Yb femtosecond oscillator. By that means a multitude of applications for multimodal imaging and optogenetics can be supported. Furthermore fs Yb-lasers are available with a repetition rate of typically 10 MHz and an average power of typically 5 W resulting in pulse energy of typically 500 nJ, which is comparably high for fs-oscillators. This makes them an ideal tool for two-photon spinning disk laser scanning microscopy and holographic patterning for simultaneous photoactivation of large cell populations. With this work we demonstrate that economical, small-footprint Yb fixed-wavelength lasers can present an interesting add-on to tunable lasers that are commonly used in multiphoton microscopy. The Yb fs-lasers hereby offer higher power for imaging of red fluorescent dyes and proteins, are ideally enhancing existing Ti:sapphire lasers with more power in the IR, and are supporting pulse energy and power hungry applications such as spinning disk microscopy and holographic patterning.

  12. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.

    PubMed

    Li, Jian; Xu, Qiang; Teng, Bin; Yu, Chen; Li, Jian; Song, Liang; Lai, Yu-Xiao; Zhang, Jian; Zheng, Wei; Ren, Pei-Gen

    2016-09-15

    Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Ex-vivo multiphoton analysis of rabbit corneal wound healing following photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Wang, Tsung-Jen; Lo, Wen; Dong, Chen-Yuan; Hu, Fung-Rong

    2008-02-01

    The aim of this study is to assess the application of multiphoton autofluorescence and second harmonic generation (SHG) microscopy for investigating corneal wound healing after high myopic (-10.0D) photorefractive keratectomy (PRK) procedures on the rabbit eyes. The effect of PRK on the morphology and distribution of keratocytes were investigated using multiphoton excited autofluorescence imaging, while the effect of PRK on the arrangement of collagen fibers was monitored by second-harmonic generation imaging. Without histological processing, multiphoton microscopy is able to characterize corneal damage and wound healing from PRK. Our results show that this technique has potential application in the clinical evaluation of corneal damage due to refractive surgery, and may be used to study the unwanted side effects of these procedures.

  14. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.

  15. Multiphoton lithography using a high-repetition rate microchip laser.

    PubMed

    Ritschdorff, Eric T; Shear, Jason B

    2010-10-15

    Multiphoton lithography (MPL) provides a means to create prototype, three-dimensional (3D) materials for numerous applications in analysis and cell biology. A major impediment to the broad adoption of MPL in research laboratories is its reliance on high peak-power light sources, a requirement that typically has been met using expensive femtosecond titanium:sapphire lasers. Development of affordable microchip laser sources has the potential to substantially extend the reach of MPL, but previous lasers have provided relatively low pulse repetition rates (low kilohertz range), thereby limiting the rate at which microforms could be produced using this direct-write approach. In this report, we examine the MPL capabilities of a new, high-repetition-rate (36.6 kHz) microchip Nd:YAG laser. We show that this laser enables an approximate 4-fold decrease in fabrication times for protein-based microforms relative to the existing state-of-the-art microchip source and demonstrate its utility for creating complex 3D microarchitectures.

  16. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.

    PubMed

    Wu, Yue; Zhang, Zhili; Ombrello, Timothy M

    2013-07-01

    Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O(2)(a(1)Δ(g)), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O(2)(a(1)Δ(g)) generation. The d(1)Π(g)←a(1)Δ(g) (3-0) and d(1)Π(g)←a(1)Δ(g) (1-0) bands of O(2)(a(1)Δ(g)) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 10(14) molecules/cm(3) but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique.

  17. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  18. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    NASA Astrophysics Data System (ADS)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3-D printing of full length proteins in collagen, fibrin and gelatin methacrylate scaffolds, as well as printing in agarose and agarose methacrylate scaffolds. We also present a novel method for 3-D printing collagen scaffolds at unprecedented speeds, up to 14layers per second, generating complex shapes in seconds with sub-micron resolution. Finally, we demonstrate that 3-D printing of scaffold architecture and protein cues inside the scaffold can be combined, for the first time enabling structures with complex sub-micron architectures and chemical cues for directing development. We believe that the ultra-rapid printing technology presented in this thesis will be a key enabler in the development of complex, artificially engineered tissues and organs. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  19. Two-photon or higher-order absorbing optical materials and methods of use

    NASA Technical Reports Server (NTRS)

    Perry, Joseph (Inventor); Marder, Seth (Inventor)

    2001-01-01

    Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.

  20. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were used for generating the 3D images/spectral information. We found that this novel imaging approach can provide spatially resolved 3D images with spectral specificities from frozen inflated lungs that are sensitive enough to identity the micro-structural details of fibrillar collagens and elastin fibers in alveolar walls in both healthy and diseased tissues.

  1. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.

    PubMed

    Lee, Jyh-Tsung; George, Matthew C; Moore, Jeffrey S; Braun, Paul V

    2009-08-19

    We demonstrate a facile method for fabricating novel 3D microfluidic channels by using two-photon-activated chemistry to locally switch the interior surface of a porous host from a hydrophobic state to a hydrophilic state. The 3D structures can be infilled selectively with water and/or hydrophobic oil with a minimum feature size of only a few micrometers. We envision that this approach may enable the fabrication of complex microfluidic structures that cannot be easily formed via current technologies.

  2. Two-photon autofluorescence/FLIM/SHG endoscopy to study the oral cavity and wound healing in humans (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2016-03-01

    Monitoring the oral cavity noninvasively with superior 3D resolution is realized by clinical multiphoton tomography and high NA two-photon endoscopy without the need of additional contrast agents. The technology behind this investigation is based on nonlinear optical contrast of the multiphoton tomograph MPTflex®. Furthermore, the miniaturized GRIN endoscope was used to realize more accessibility for more demanding wound conditions in skin. The MPTflex® distinguishes autofluorescence (AF) signals from second harmonic generation (SHG) signals simultaneously. Fluorescence lifetime imaging (FLIM) based on time correlated single photon counting (TCSPC) technology offers additional information on the functional level of the intratissue fluorophores, their binding status, and the contribution of SHG signals in chronic wounds.

  3. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  4. Compensation of temporal and spatial dispersion for multiphoton acousto-optic laser-scanning microscopy

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Saggau, Peter

    2003-10-01

    In laser-scanning microscopy, acousto-optic (AO) deflection provides a means to quickly position a laser beam to random locations throughout the field-of-view. Compared to conventional laser-scanning using galvanometer-driven mirrors, this approach increases the frame rate and signal-to-noise ratio, and reduces time spent illuminating sites of no interest. However, random-access AO scanning has not yet been combined with multi-photon microscopy, primarily because the femtosecond laser pulses employed are subject to significant amounts of both spatial and temporal dispersion upon propagation through common AO materials. Left uncompensated, spatial dispersion reduces the microscope"s spatial resolution while temporal dispersion reduces the multi-photon excitation efficacy. In previous work, we have demonstrated, 1) the efficacy of a single diffraction grating scheme which reduces the spatial dispersion at least 3-fold throughout the field-of-view, and 2) the use of a novel stacked-prism pre-chirper for compensating the temporal dispersion of a pair of AODs using a shorter mechanical path length (2-4X) than standard prism-pair arrangements. In this work, we demonstrate for the first time the use of these compensation approaches with a custom-made large-area slow-shear TeO2 AOD specifically suited for the development of a high-resolution 2-D random-access AO scanning multi-photon laser-scanning microscope (AO-MPLSM).

  5. Progress in ultrafast laser processing and future prospects

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  6. Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry.

    PubMed

    Schwertner, M; Booth, M J; Neil, M A A; Wilson, T

    2004-01-01

    Confocal or multiphoton microscopes, which deliver optical sections and three-dimensional (3D) images of thick specimens, are widely used in biology. These techniques, however, are sensitive to aberrations that may originate from the refractive index structure of the specimen itself. The aberrations cause reduced signal intensity and the 3D resolution of the instrument is compromised. It has been suggested to correct for aberrations in confocal microscopes using adaptive optics. In order to define the design specifications for such adaptive optics systems, one has to know the amount of aberrations present for typical applications such as with biological samples. We have built a phase stepping interferometer microscope that directly measures the aberration of the wavefront. The modal content of the wavefront is extracted by employing Zernike mode decomposition. Results for typical biological specimens are presented. It was found for all samples investigated that higher order Zernike modes give only a small contribution to the overall aberration. Therefore, these higher order modes can be neglected in future adaptive optics sensing and correction schemes implemented into confocal or multiphoton microscopes, leading to more efficient designs.

  7. 5D-intravital tomography as a novel tool for non-invasive in-vivo analysis of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans G.; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; Schwarz, Martin; Riemann, Iris; Stracke, Frank; Huck, Volker; Gorzelanny, Christian; Schneider, Stefan W.

    2010-02-01

    Some years ago, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched. These tomographs provide optical biopsies with submicron resolution based on two-photon excited autofluorescence (NAD(P)H, flavoproteins, keratin, elastin, melanin, porphyrins) and second harmonic generation by collagen. The 3D tomograph was now transferred into a 5D imaging system by the additional detection of the emission spectrum and the fluorescence lifetime based on spatially and spectrally resolved time-resolved single photon counting. The novel 5D intravital tomograph (5D-IVT) was employed for the early detection of atopic dermatitis and the analysis of treatment effects.

  8. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation.

    PubMed

    Arakawa, Christopher K; Badeau, Barry A; Zheng, Ying; DeForest, Cole A

    2017-10-01

    A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less

  10. Brain morphology imaging by 3D microscopy and fluorescent Nissl staining.

    PubMed

    Lazutkin, A A; Komissarova, N V; Toptunov, D M; Anokhin, K V

    2013-07-01

    Modern optical methods (multiphoton and light-sheet fluorescent microscopy) allow 3D imaging of large specimens of the brain with cell resolution. It is therefore essential to refer the resultant 3D pictures of expression of transgene, protein, and other markers in the brain to the corresponding structures in the atlas. This implies counterstaining of specimens with morphological dyes. However, there are no methods for contrasting large samples of the brain without their preliminary slicing. We have developed a method for fluorescent Nissl staining of whole brain samples. 3D reconstructions of specimens of the hippocampus, olfactory bulbs, and cortex were created. The method can be used for morphological control and evaluation of the effects of various factors on the brain using 3D microscopy technique.

  11. Investigation of Rho Signaling Pathways in 3-D Collagen Matrices with Multidimensional Microscopy and Visualization Techniques

    DTIC Science & Technology

    2008-03-01

    most prevalent cancer among women .1 Therefore, tech- ologies to detect, classify, study, and combat breast cancer re of great significance. Among these...M. Sidani , J. Wyckoff, C. Xue, J. E. Segall, and J. Condeelis, “Prob- ing the microenvironment of mammary tumors using multiphoton microscopy,” J

  12. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  13. Three-Dimensional Photoactivated Localization Microscopy with Genetically Expressed Probes

    PubMed Central

    Temprine, Kelsey; York, Andrew G.; Shroff, Hari

    2017-01-01

    Photoactivated localization microscopy (PALM) and related single-molecule imaging techniques enable biological image acquisition at ~20 nm lateral and ~50–100 nm axial resolution. Although such techniques were originally demonstrated on single imaging planes close to the coverslip surface, recent technical developments now enable the 3D imaging of whole fixed cells. We describe methods for converting a 2D PALM into a system capable of acquiring such 3D images, with a particular emphasis on instrumentation that is compatible with choosing relatively dim, genetically expressed photoactivatable fluorescent proteins (PA-FPs) as PALM probes. After reviewing the basics of 2D PALM, we detail astigmatic and multiphoton imaging approaches well suited to working with PA-FPs. We also discuss the use of open-source localization software appropriate for 3D PALM. PMID:25391803

  14. Multiphoton tomography to detect chemo- and biohazards

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2015-03-01

    In vivo high-resolution multiphoton/CARS tomography provides optical biopsies with 300 nm lateral resolution with chemical fingerprints. Thousands of volunteers and patients have been investigated for early cancer diagnosis, evaluation of anti-ageing cosmetic products, and changes of cellular metabolism by UV exposure and decreased oxygen supply. The skin as the outermost and largest organ is also the major target of CB agents. Current UV-based sensors are useful for bio-aerosol sensing but not for evaluating exposed in vivo skin. Here we evaluate the use of 4D multiphoton/CARS tomographs based on near infrared femtosecond laser radiation, time-correlated single photon counting (FLIM) and white light generation by photonic crystal fibers to detect bio- and chemohazards in human in vivo skin using twophoton fluorescence, SHG, and Raman signals.

  15. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  16. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  17. Watching stem cells at work with a flexible multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Hoffmann, Robert; Weinigel, Martin; König, Karsten

    2012-03-01

    There is a high demand for non-invasive imaging techniques that allow observation of stem cells in their native environment without significant input on cell metabolism, reproduction, and behavior. Easy accessible hair follicle pluripotent stem cells in the bulge area and dermal papilla are potential sources for stem cell based therapy. It has been shown that these cells are able to generate hair, non-follicle skin cells, nerves, vessels, smooth muscles etc. and may participate in wound healing processes. We report on the finding of nestin-GFP expressing stem cells in their native niche in the bulge of the hair follicle of living mice by using high-resolution in-vivo multiphoton tomography. The 3D imaging with submicron resolution was based on two-photon induced fluorescence and second harmonic generation (SHG) of collagen. Migrating stem cells from the bulge to their microenvironment have been detected inside the skin during optical deep tissue sectioning.

  18. Three-dimensional gold nanorods-doped multicolor microstructures

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Cho, K.-C.; Kuo, W.-S.; Lin, C.-Y.; Chui, C.-L.; Chen, S.-J.

    2012-03-01

    In this study, three-dimensional (3D) crosslinked bovine serum albumin (BSA) microstructures containing gold nanorods (AuNRs) at different absorption wavelengths were fabricated via multiphoton excited photochemistry using rose Bengal (RB) as the photoactivator. After the processing, a higher laser power, greater than the threshold of the AuNR photothermal damage at the matched wavelength for the longitudinal plasmon resonance of AuNR, is adopted to reshape the AuNRs into gold nanospheres at the designed positions of the 3D structure. As a result, 3D BSA microstructures containing different color AuNRs at the designed positions can be successfully fabricated. The AuNRs-doped BSA multicolor microstructures not only can be applied in biomedical scaffolds with plasmonic properties such as two-photon luminescence imaging and photothermal therapy but also can be a specific 3D biomaterial microdevice for plasmonic field.

  19. 3D nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres.

    PubMed

    Lölsberg, Jonas; Linkhorst, John; Cinar, Arne; Jans, Alexander; Kuehne, Alexander J C; Wessling, Matthias

    2018-05-01

    Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.

  20. Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

    NASA Astrophysics Data System (ADS)

    Tong, Ming Hui; Huang, Nan; Zhang, Wei; Zhou, Zhuo Long; Ngan, Alfonso Hing Wan; Du, Yanan; Chan, Barbara Pui

    2016-01-01

    Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.

  1. Compact three-dimensional super-resolution system based on fluorescence emission difference microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu

    2017-12-01

    A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.

  2. Mobile glasses-free 3D using compact waveguide hologram

    NASA Astrophysics Data System (ADS)

    Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.

    2013-02-01

    The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.

  3. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning of thick tissues

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Chung; Chang, Chia-Yuan; Yen, Wei-Chung; Chen, Shean-Jen

    2012-10-01

    Conventional multiphoton microscopy employs beam scanning; however, in this study a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. The microscope integrates a 10 kHz repetition rate ultrafast amplifier featuring strong instantaneous peak power (maximum 400 μJ/pulse at 90 fs pulse width) with a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled device camera. This configuration can produce multiphoton excited images with an excitation area larger than 200 × 100 μm2 at a frame rate greater than 100 Hz. Brownian motions of fluorescent microbeads as small as 0.5 μm have been instantaneously observed with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Moreover, we combine the widefield multiphoton microscopy with structure illuminated technique named HiLo to reject the background scattering noise to get better quality for bioimaging.

  4. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  5. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.

    PubMed

    Schmid, Volker J; Cremer, Marion; Cremer, Thomas

    2017-07-01

    Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution

    PubMed Central

    Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai

    2015-01-01

    Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry–Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10−14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm−2 under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950

  7. First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Wang, Bagui; Krauss, Oliver; Riemann, Iris; Schubert, Harald; Kirste, Sigrun; Fischer, Peter

    2004-07-01

    We report on a method for refractive laser surgery based on low-energy femtosecond laser pulses provided by ultracompact turn-key non-amplified laser systems. An additional excimer laser is not required for ablation of the stroma. The novel method has the potential to be used for (i) optical flap creation as well as stroma ablation and (ii) for non-invasive flap-free intrastromal ablation. In addition, 3D multiphoton imaging of the cornea can be performed. In particular, we used sub-nanojoule near infrared 80 MHz femtosecond laser pulses for multiphoton imaging of corneal structures with ultrahigh resolution (< 1μm) as well as for highly precise intraocular refractive surgery. Imaging based on two-photon excited cellular autofluorescence and SHG formation in collagen structures was performed at GW/cm2 intensities, whereas destructive optical breakdown for nanoprocessing occurred at TW/cm2 light intensities. These high intensities were realized with sub-nJ pulses within a subfemtoliter intrastromal volume by diffraction-limited focussing with high NA objectives and beam scanning 50 to 140 μm below the epithelial surface. Multiphoton tomography of the cornea was used to determine the target of interest and to visualize intraocular post-laser effects. Histological examination with light- and electron microscopes of laser-exposed porcine and rabbit eyes reveal a minimum intratissue cut size below 1 μm without destructive effects to surrounding collagen structures. LASIK flaps and intracorneal cavities could be realized with high precision using 200 fs, 80 MHz, sub-nanojoule pulses at 800 nm. First studies on 80 MHz femtosecond laser surgery on living rabbits have been performed.

  8. Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).

    PubMed

    Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F

    2013-03-15

    We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.

  9. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.

    PubMed

    Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi

    2017-04-14

    Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.

  10. Optical Spectroscopy and Multiphoton Imaging for the Diagnosis and Characterization of Hyperplasias in the Mouse Mammary

    DTIC Science & Technology

    2006-09-01

    was inhibited with 3 - bromopyruvate , which inhibits glyceraldehyde- 3 -phosphate dehydrogenase and 3 -phosphoglycerate kinase in a competitive manner (8...consistent with FAD fluorescence (12). Multiphoton FLIM of NADH showed that 3 - bromopyruvate caused an increase in the fluorescence lifetime of protein...images from 4 dishes), cells treated with 3 - bromopyruvate (n=6 images from 2 dishes), which inhibits glycolysis, and cells treated with CoCl2 (n=6

  11. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    PubMed

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  12. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator.

    PubMed

    Shao, Yonghong; Qin, Wan; Liu, Honghai; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-07-01

    We present an ultrafast, large-field multiphoton excitation fluorescence microscope with high lateral and axial resolutions based on a two-dimensional (2-D) acousto-optical deflector (AOD) scanner and spatial light modulator (SLM). When a phase-only SLM is used to shape the near-infrared light from a mode-locked titanium:sapphire laser into a multifocus array including the 0-order beam, a 136 μm × 136 μm field of view is achieved with a 60× objective using a 2-D AOD scanner without any mechanical scan element. The two-photon fluorescence image of a neuronal network that was obtained using this system demonstrates that our microscopy permits observation of dynamic biological events in a large field with high-temporal and -spatial resolution.

  13. Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wollina, Uwe; Riemann, Iris; Peukert, Christiane; Halbhuber, Karl-Juergen; Konrad, Helga; Fischer, Peter; Fuenfstueck, Veronika; Fischer, Tobias W.; Elsner, Peter

    2002-06-01

    We describe the novel high resolution imaging tool DermaInspect 100 for non-invasive diagnosis of dermatological disorders based on multiphoton autofluorescence imaging (MAI)and second harmonic generation. Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vitro and in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Second harmonic generation was observed in the stratum corneum and in the dermis. The system with a wavelength-tunable compact 80 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezoelectric objective positioner, fast photon detector and time-resolved single photon counting unit was used to perform optical sectioning and 3D autofluorescence lifetime imaging (t-mapping). In addition, a modified femtosecond laser scanning microscope was involved in autofluorescence measurements. Tissues of patients with psoriasis, nevi, dermatitis, basalioma and melanoma have been investigated. Individual cells and skin structures could be clearly visualized. Intracellular components and connective tissue structures could be further characterized by tuning the excitation wavelength in the range of 750 nm to 850 nm and by calculation of mean fluorescence lifetimes per pixel and of particular regions of interest. The novel non-invasive imaging system provides 4D (x,y,z,t) optical biopsies with subcellular resolution and offers the possibility to introduce a further optical diagnostic method in dermatology.

  14. The 700-1500 cm{sup −1} region of the S{sub 1} (A{sup ~1}B{sub 2}) state of toluene studied with resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy (ZEKE) spectroscopy, and time-resolved slow-electron velocity-map imaging (tr-SEVI) spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Adrian M.; Green, Alistair M.; Tamé-Reyes, Victor M.

    We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond) zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-SEVI) spectra of fully hydrogenated toluene (Tol-h{sub 8}) and the deuterated-methyl group isotopologue (α{sub 3}-Tol-d{sub 3}). Vibrational assignments are made making use of the activity observed in the ZEKE and tr-SEVI spectra, together with the results from quantum chemical and previous experimental results. Here, we examine the 700–1500 cm{sup −1} region of the REMPI spectrum, extending our previous work on the region ≤700 cm{sup −1}. We provide assignments for the majority of the S{sub 1} and cation bands observed, and in particular wemore » gain insight regarding a number of regions where vibrations are coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in this molecule.« less

  15. Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Cooke, William; Tracy, Eugene

    2008-05-01

    We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.

  16. A giant enhancement of multiphoton absorption in single-layer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Ji, Wei

    Identifying light absorption mechanisms in nanoscale materials, which are more efficient than those observed in bulk semiconductors, are of paramount importance to next-generation, infrared photo-detection. Here, we report considerable enhancement of degenerate two-photon absorption (2PA) and three-photon absorption (3PA) through two-dimensional (2D) excitonic effects in single-layer molybdenum disulfide (1L-MoS2) . We theoretically predict that both degenerate 2PA and 3PA coefficients of 1L-MoS2 are enhanced by 10-1000 times in the near-infrared (NIR), as compared with those of bulk semiconductors. Our theoretical prediction is validated by measuring photocurrents induced by 2PA or 3PA in a 1L-MoS2 photo-detector at room temperature where excitons in the immediate vicinity of the bandgap are transferred to the conduction band by a very small amount of thermal energy and dissociated under an external electric field. Our finding lays theoretical foundation and provides experimental evidence for developing sensitive infrared multiphoton detectors for nano-photonics. This work was supported by National University of Singapore through a research Grant: R144-000-327-112.

  17. Wavelength dependent photoelectron circular dichroism of limonene studied by femtosecond multiphoton laser ionization and electron-ion coincidence imaging

    NASA Astrophysics Data System (ADS)

    Rafiee Fanood, Mohammad M.; Janssen, Maurice H. M.; Powis, Ivan

    2016-09-01

    Enantiomers of the monoterpene limonene have been investigated by (2 + 1) resonance enhanced multiphoton ionization and photoelectron circular dichroism employing tuneable, circularly polarized femtosecond laser pulses. Electron imaging detection provides 3D momentum measurement while electron-ion coincidence detection can be used to mass-tag individual electrons. Additional filtering, by accepting only parent ion tagged electrons, can be then used to provide discrimination against higher energy dissociative ionization mechanisms where more than three photons are absorbed to better delineate the two photon resonant, one photon ionization pathway. The promotion of different vibrational levels and, tentatively, different electronic ion core configurations in the intermediate Rydberg states can be achieved with different laser excitation wavelengths (420 nm, 412 nm, and 392 nm), in turn producing different state distributions in the resulting cations. Strong chiral asymmetries in the lab frame photoelectron angular distributions are quantified, and a comparison made with a single photon (synchrotron radiation) measurement at an equivalent photon energy.

  18. Quantitative multiphoton imaging

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  19. Multi-focal multiphoton lithography.

    PubMed

    Ritschdorff, Eric T; Nielson, Rex; Shear, Jason B

    2012-03-07

    Multiphoton lithography (MPL) provides unparalleled capabilities for creating high-resolution, three-dimensional (3D) materials from a broad spectrum of building blocks and with few limitations on geometry, qualities that have been key to the design of chemically, mechanically, and biologically functional microforms. Unfortunately, the reliance of MPL on laser scanning limits the speed at which fabrication can be performed, making it impractical in many instances to produce large-scale, high-resolution objects such as complex micromachines, 3D microfluidics, etc. Previously, others have demonstrated the possibility of using multiple laser foci to simultaneously perform MPL at numerous sites in parallel, but use of a stage-scanning system to specify fabrication coordinates resulted in the production of identical features at each focal position. As a more general solution to the bottleneck problem, we demonstrate here the feasibility for performing multi-focal MPL using a dynamic mask to differentially modulate foci, an approach that enables each fabrication site to create independent (uncorrelated) features within a larger, integrated microform. In this proof-of-concept study, two simultaneously scanned foci produced the expected two-fold decrease in fabrication time, and this approach could be readily extended to many scanning foci by using a more powerful laser. Finally, we show that use of multiple foci in MPL can be exploited to assign heterogeneous properties (such as differential swelling) to micromaterials at distinct positions within a fabrication zone.

  20. Adaptive optics improves multiphoton super-resolution imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari

    2018-02-01

    Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.

  1. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  2. Dynamics of the reactions of O(1D) with HCl, DCl, and Cl2

    NASA Astrophysics Data System (ADS)

    Matsumi, Yutaka; Tonokura, Kenichi; Kawasaki, Masahiro; Tsuji, Kazuhide; Obi, Kinichi

    1993-05-01

    The reactions O(1D)+HCl→OH+Cl (1a) and OCl+H (1b), O(1D)+DCl→OD+Cl (2a) and OCl+D (2b), and O(1D)+Cl2→OCl+Cl (3) are studied at an average collision energy of 7.6, 7.7, and 8.8 kcal/mol for (1), (2), and (3), respectively. H, D, and Cl atoms are detected by the resonance-enhanced multiphoton ionization technique. The average kinetic energies released to the products are estimated from Doppler profile measurements of the product atoms. The relative yields [OCl+H]/[OH+Cl] and [OCl+D]/[OD+Cl] are directly measured, and a strong isotope effect (H/D) on the relative yields is found. The fine-structure branding ratios [Cl(2P1/2]/[Cl(2P3/2)] of the reaction products are also measured. The results suggest that nonadiabatic couplings take place at the exit channels of the reactions (1a) and (2a), while the reaction (3) is totally adiabatic.

  3. Phase singularities in 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Danilov, Artem; Aristov, Andrey I.; Manousidaki, Maria; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2017-02-01

    Plasmonic biosensors form the core label-free technology for studies of biomolecular interactions, but they still need a drastic improvement of sensitivity and novel nano-architectural implementations to match modern trends of nanobiotechnology. Here, we consider the generation of resonances in light reflected from 3D woodpile plasmonic crystal metamaterials fabricated by Direct Laser Writing by Multi-Photon Polymerization, followed by silver electroless plating. We show that the generation of these resonances is accompanied by the appearance of singularities of phase of reflected light and examine the response of phase characteristics to refractive index variations inside the metamaterial matrix. The recorded phase sensitivity (3*104 deg. of phase shift per RIU change) outperforms most plasmonic counterparts and is attributed to particular conditions of plasmon excitation in 3D plasmonic crystal geometry. Combined with a large surface for biomolecular immobilizations offered by the 3D woodpile matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.

  4. Lanthanide heterometallic terephthalates: Concentration quenching and the principles of the "multiphotonic emission"

    NASA Astrophysics Data System (ADS)

    Utochnikova, V. V.; Grishko, A. Yu.; Koshelev, D. S.; Averin, A. A.; Lepnev, L. S.; Kuzmina, N. P.

    2017-12-01

    The principles of the "multiphotonic emission", i.e. multiple emission from one lanthanide ion, in heterometallic lanthanide terephthalates were determined. Thanks to it, another system with the same effect, namely EuxY1-x(dbm)3(Phen) (Hdbm - dibenzoylmethanate, Phen - o-phenanthroline (mistape)) was found. The criteria for concentration quenching appearance were formulated and demonstrated.

  5. Novel D-π-A-π-D type organic chromophores for second harmonic generation and multi-photon absorption applications

    NASA Astrophysics Data System (ADS)

    Aditya, Pusala; Kumar, Hari; Kumar, Sunil; Rajashekar, Muralikrishna, M.; Muthukumar, V. Sai; Kumar, B. Siva; Sai, S. Siva Sankara; Rao, G. Nageshwar

    2013-06-01

    We report here the optical and non-linear optical properties of six different novel bis-chalcones of D-π-A-π-D derivatives of diarylideneacetone (DBA). These derivatives have been synthesized by Claisen-Schmidt condensation reaction and were well characterized by using FTIR, 1HNMR, 13CNMR, UV-Visible absorption and mass spectroscopic techniques. The optical bandgap for each of the DBA derivatives were determined both experimentally (UV-Visible spectra & Tauc Plot) and theoretically by ab intio DFT calculations using SIESTA software package. They were found to be in close agreement with each other. The Second Harmonic Generation from these organic chromophores were studied by standard Kurtz and Perry Powder SHG method at 1064 nm. They were found to have superior SHG conversion efficiency when compared to urea (standard sample). Further, we investigated the Multi-Photon absorption properties were using conventional open aperture z-scan technique. These DBA derivatives exhibited strong two photon absorption in the order of 1e-11m/W. Hence, these are potential candidate for various photonic applications like optical power limiting, photonic switching and frequency conversion.

  6. Fluorescence lifetime imaging of induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Batista, Ana; König, Karsten

    2014-02-01

    The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.

  7. Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source

    PubMed Central

    2017-01-01

    Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600

  8. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    PubMed

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  10. A Compact Low-loss Magic-T using Microstrip-Slotline Transitions

    NASA Technical Reports Server (NTRS)

    U-yen, Kongpop; Wollack, Edward J.; Moseley, Samuel H.; Papapolymerou, John; Laskar, Joy

    2007-01-01

    The design of a compact low-loss magic-T is proposed. The planar magic-T incorporates the compact microstrip-slotline tee junction and small microstrip-slotline transition area to reduce slotline radiation. The experimental results show that the magic-T produces broadband in-phase and out-of-phase power combiner/divider responses, has an average in-band insertion loss of 0.3 dB and small in-band phase and amplitude imbalance of less than plus or minus 1.6 deg. and plus or minus 0.3 dB, respectively.

  11. In vivo, two-color multiphoton microscopy using a femtosecond diamond Raman laser

    NASA Astrophysics Data System (ADS)

    Jarrett, Jeremy W.; Perillo, Evan P.; Hassan, Ahmed; Miller, David R.; Dunn, Andrew K.

    2018-02-01

    Multiphoton microscopy is an essential tool for detailed study of neurovascular structure and function. Wavelength mixing of synchronized laser sources—two-color multiphoton microscopy—increases the spectral window of excitable fluorophores without the need for wavelength tuning. However, implementation of two-color microscopy requires a dual output laser source, which is typically costly and complicated. We have developed a relatively simple and low-cost diamond Raman laser pumped with a ytterbium fiber amplifier. The dual output system generates excitation light at both 1060 nm (pump wavelength) and 1250 nm (first Stokes emission of diamond laser) which, when temporally and spatially overlapped, yield an effective two-color excitation wavelength of 1160 nm. This source provides an almost complete coverage of fluorophores excitable within the range of 1000-1300 nm. When compared with 1060 nm excitation, twocolor excitation at 1160 nm offers a 90% increase in signal for many far-red emitting fluorescent proteins (e.g. tdKatushka2). We demonstrate multicolor imaging of tdKatushka2 and Hoechst 33342 via simultaneous two-color twophoton, and two-color three-photon microscopy in engineered 3-D multicellular spheroids. Additionally, we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation. This system can also be used to excite genetically encoded calcium indicators (e.g. RCaMP and GCaMP), which will be paramount in studying neuronal activity.

  12. Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator.

    PubMed

    Ji, Q; Lin, C-J; Tindall, C; Garcia-Sciveres, M; Schenkel, T; Ludewigt, B A

    2017-05-01

    Tagging of neutrons (2.45 MeV) with their associated 3 He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3 He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3 He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3 He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.

  13. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning.

    PubMed

    Cheng, Li-Chung; Chang, Chia-Yuan; Lin, Chun-Yu; Cho, Keng-Chi; Yen, Wei-Chung; Chang, Nan-Shan; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2012-04-09

    In this study, a microscope based on spatiotemporal focusing offering widefield multiphoton excitation has been developed to provide fast optical sectioning images. Key features of this microscope are the integrations of a 10 kHz repetition rate ultrafast amplifier featuring high instantaneous peak power (maximum 400 μJ/pulse at a 90 fs pulse width) and a TE-cooled, ultra-sensitive photon detecting, electron multiplying charge-coupled camera into a spatiotemporal focusing microscope. This configuration can produce multiphoton images with an excitation area larger than 200 × 100 μm² at a frame rate greater than 100 Hz (current maximum of 200 Hz). Brownian motions of fluorescent microbeads as small as 0.5 μm were observed in real-time with a lateral spatial resolution of less than 0.5 μm and an axial resolution of approximately 3.5 μm. Furthermore, second harmonic images of chicken tendons demonstrate that the developed widefield multiphoton microscope can provide high resolution z-sectioning for bioimaging.

  15. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  16. Molecular symmetry group analysis of the low-wavenumber torsions and vibration-torsions in the S1 state and ground state cation of p-xylene: An investigation using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Tuttle, William D.; Groner, Peter; Wright, Timothy G.

    2017-03-01

    For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene are investigated using resonance-enhanced multiphoton ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate on the 0-350 cm-1 region, where there are a number of torsional and vibtor bands and we discuss the assignment of this region. In Paper II [W. D. Tuttle et al., J. Chem. Phys. 146, 124309 (2017)], we examine the 350-600 cm-1 region where vibtor levels are observed as part of a Fermi resonance. The similarity of much of the observed spectral activity to that in the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, which has been designated G72, but we shall also designate [{3,3}]D2h and we include the symmetry operations, character table, and direct product table for this. We also discuss the symmetries of the internal rotor (torsional) levels and the selection rules for the particular electronic transition of p-xylene investigated here.

  17. Multi-Photon Micro-Spectroscopy of Biological Specimens

    DTIC Science & Technology

    2000-07-01

    Micro-spectroscopy, multi-photon fluorescence spectroscopy, second harmonic generation, plant tissues, stem, chloroplast, protoplast, maize, Arabidopsis...harmonic generation (SHG) in the plant cell 5wall. In this case, micro-spectroscopy provides a means of verification that, indeed, SHG occurs in plant ...fluorescence microscopy -the response of plant cells to high intensity illumination," Micron (in press) 2000. 3. H.-C. Huang and C. -C Chen, "Genome

  18. Design and experimental evaluation of compact radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.

    1991-01-01

    The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.

  19. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  20. Evaluating quantitative 3-D image analysis as a design tool for low enriched uranium fuel compacts for the transient reactor test facility: A preliminary study

    DOE PAGES

    Kane, J. J.; van Rooyen, I. J.; Craft, A. E.; ...

    2016-02-05

    In this study, 3-D image analysis when combined with a non-destructive examination technique such as X-ray computed tomography (CT) provides a highly quantitative tool for the investigation of a material’s structure. In this investigation 3-D image analysis and X-ray CT were combined to analyze the microstructure of a preliminary subsized fuel compact for the Transient Reactor Test Facility’s low enriched uranium conversion program to assess the feasibility of the combined techniques for use in the optimization of the fuel compact fabrication process. The quantitative image analysis focused on determining the size and spatial distribution of the surrogate fuel particles andmore » the size, shape, and orientation of voids within the compact. Additionally, the maximum effect of microstructural features on heat transfer through the carbonaceous matrix of the preliminary compact was estimated. The surrogate fuel particles occupied 0.8% of the compact by volume with a log-normal distribution of particle sizes with a mean diameter of 39 μm and a standard deviation of 16 μm. Roughly 39% of the particles had a diameter greater than the specified maximum particle size of 44 μm suggesting that the particles agglomerate during fabrication. The local volume fraction of particles also varies significantly within the compact although uniformities appear to be evenly dispersed throughout the analysed volume. The voids produced during fabrication were on average plate-like in nature with their major axis oriented perpendicular to the compaction direction of the compact. Finally, the microstructure, mainly the large preferentially oriented voids, may cause a small degree of anisotropy in the thermal diffusivity within the compact. α∥/α⊥, the ratio of thermal diffusivities parallel to and perpendicular to the compaction direction are expected to be no less than 0.95 with an upper bound of 1.« less

  1. Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture

    NASA Astrophysics Data System (ADS)

    Hassan, Ahmed M.; Wu, Xu; Jarrett, Jeremy W.; Xu, Shihan; Miller, David R.; Yu, Jiangbo; Perillo, Evan P.; Liu, Yen-Liang; Chiu, Daniel T.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2018-02-01

    Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep multiphoton imaging has never before been demonstrated. Here we characterize the multiphoton properties of three pdot variants (CNPPV, PFBT, and PFPV) and demonstrate deep imaging of cortical microvasculature in C57 mice. Specifically, we measure the two- versus three-photon power dependence of these pdots and observe a clear three-photon excitation signature at wavelengths longer than 1300 nm, and a transition from two-photon to three-photon excitation within a 1060 - 1300 nm excitation range. Furthermore, we show that pdots enable in vivo two-photon imaging of cerebrovascular architecture in mice up to 850 μm beneath the pial surface using 800 nm excitation. In contrast with traditional multiphoton probes, we also demonstrate that the broad multiphoton absorption spectrum of pdots permits imaging at longer wavelengths (λex = 1,060 and 1225 nm). These wavelengths approach an ideal biological imaging wavelength near 1,300 nm and confer compatibility with a high-power ytterbium-fiber laser and a high pulse energy optical parametric amplifier, resulting in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths of 900 μm and 1300 μm. Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, which will undoubtedly unlock the ability to interrogate deep structures in vivo.

  2. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    PubMed

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  3. Ophthalmic imaging using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Teng, Shu-Wen; Peng, Ju-Li; Lin, Huei-Hsing; Wu, Hai-Yin; Lo, Wen; Sun, Yen; Lin, Wei-Chou; Lin, Sung-Jan; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2005-04-01

    This purpose of this study is to demonstrate the feasibility of using multiphoton microscopy in ophthalmologic imaging. Without the introduction of extrinsic fluorescence molecules, multiphoton induced autofluorescence and second harmonic generation signals can be used to obtain useful structural information of normal and diseased corneas. Our work can potentially lead to the in vivo application of multiphoton microscopy in investigating corneal physiology and pathologies.

  4. Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors.

    PubMed

    Drummond, D R; Carter, N; Cross, R A

    2002-05-01

    Multiphoton excitation was originally projected to improve live cell fluorescence imaging by minimizing photobleaching effects outside the focal plane, yet reports suggest that photobleaching within the focal plane is actually worse than with one photon excitation. We confirm that when imaging enhanced green fluorescent protein, photobleaching is indeed more acute within the multiphoton excitation volume, so that whilst fluorescence increases as predicted with the square of the excitation power, photobleaching rates increase with a higher order relationship. Crucially however, multiphoton excitation also affords unique opportunities for substantial improvements to fluorescence detection. By using a Pockels cell to minimize exposure of the specimen together with multiple nondescanned detectors we show quantitatively that for any particular bleach rate multiphoton excitation produces significantly more signal than one photon excitation confocal microscopy in high resolution Z-axis sectioning of thin samples. Both modifications are readily implemented on a commercial multiphoton microscope system.

  5. WE-DE-BRA-10: Development of a Novel Scanning Beam Low-Energy Intraoperative Radiation Therapy (SBIORT) System for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wears, B; Mohiuddin, I; Flynn, R

    2016-06-15

    Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compactmore » collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding Initiatives.« less

  6. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

    NASA Astrophysics Data System (ADS)

    Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping

    2018-06-01

    Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.

  7. Second harmonic generation microscopy of the living human cornea

    NASA Astrophysics Data System (ADS)

    Artal, Pablo; Ávila, Francisco; Bueno, Juan

    2018-02-01

    Second Harmonic Generation (SHG) microscopy provides high-resolution structural imaging of the corneal stroma without the need of labelling techniques. This powerful tool has never been applied to living human eyes so far. Here, we present a new compact SHG microscope specifically developed to image the structural organization of the corneal lamellae in living healthy human volunteers. The research prototype incorporates a long-working distance dry objective that allows non-contact three-dimensional SHG imaging of the cornea. Safety assessment and effectiveness of the system were firstly tested in ex-vivo fresh eyes. The maximum average power of the used illumination laser was 20 mW, more than 10 times below the maximum permissible exposure (according to ANSI Z136.1-2000). The instrument was successfully employed to obtain non-contact and non-invasive SHG of the living human eye within well-established light safety limits. This represents the first recording of in vivo SHG images of the human cornea using a compact multiphoton microscope. This might become an important tool in Ophthalmology for early diagnosis and tracking ocular pathologies.

  8. Comparison of higher-order multiphoton signal generation and collection at the 1700-nm window based on transmittance measurement of objective lenses.

    PubMed

    Wen, Wenhui; Wang, Yuxin; Liu, Hongji; Wang, Kai; Qiu, Ping; Wang, Ke

    2018-01-01

    One benefit of excitation at the 1700-nm window is the more accessible modalities of multiphoton signal generation. It is demonstrated here that the transmittance performance of the objective lens is of vital importance for efficient higher-order multiphoton signal generation and collection excited at the 1700-nm window. Two commonly used objective lenses for multiphoton microscopy (MPM) are characterized and compared, one with regular coating and the other with customized coating for high transmittance at the 1700-nm window. Our results show that, fourth harmonic generation imaging of mouse tail tendon and 5-photon fluorescence of carbon quantum dots using the regular objective lens shows an order of magnitude signal higher than those using the customized objective lens. Besides, the regular objective lens also enables a 3-photon fluorescence imaging depth of >1600 μm in mouse brain in vivo. Our results will provide guidelines for objective lens selection for MPM at the 1700-nm window. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters.

    PubMed

    Cremer, Marion; Schmid, Volker J; Kraus, Felix; Markaki, Yolanda; Hellmann, Ines; Maiser, Andreas; Leonhardt, Heinrich; John, Sam; Stamatoyannopoulos, John; Cremer, Thomas

    2017-08-07

    The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.

  10. Bio-optic signatures for advanced glycation end products in the skin in streptozotocin (STZ) Induced Diabetes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saidian, Mayer; Ponticorvo, Adrien; Rowland, Rebecca A.; Balbado, Melisa L.; Lentsch, Griffin; Balu, Mihaela; Alexander, Micheal; Shiri, Li; Lakey, Jonathan R. T.; Durkin, Anthony J.; Kohen, Roni; Tromberg, Bruce J.

    2017-02-01

    Type 1diabetes (T1D) is an autoimmune disorder that occurs due to the rapid destruction of insulin-producing beta cells, leading to insulin deficiency and the inability to regulate blood glucose levels and leads to destructive secondary complications. Advanced glycation end (AGEs) products, the result of the cross-linking of reducing sugars and proteins within the tissues, are one of the key causes of major complications associated with diabetes such as renal failure, blindness, nerve damage and vascular changes. Non-invasive techniques to detect AGEs are important for preventing the harmful effects of AGEs during diabetes mellitus. In this study, we utilized multiphoton microscopy to image biopsies taken from control rats and compared them to biopsies taken from streptozotocin (STZ) induced adult male diabetic rats. This was done at two and four weeks after the induction of hyperglycemia (>400 mg/dL) specifically to evaluate the effects of glycation on collagen. We chose to use an in-situ multiphoton microscopy method that combines multiphoton auto-florescence (AF) and second harmonic generation (SHG) to detect the microscopic influence of glycation. Initial results show high auto-florescence levels were present on the collagen, as a result of the accumulation of AGEs only two weeks after the STZ injection and considerably higher levels were present four weeks after the STZ injection. Future projects could involve evaluating advanced glycation end products in a clinical trial of diabetic patients.

  11. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  12. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    PubMed

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Holographic duals of 3d S-fold CFTs

    NASA Astrophysics Data System (ADS)

    Assel, Benjamin; Tomasiello, Alessandro

    2018-06-01

    We construct non-geometric AdS4 solutions of IIB string theory where the fields in overlapping patches are glued by elements of the S-duality group. We obtain them by suitable quotients of compact and non-compact geometric solutions. The quotient procedure suggests CFT duals as quiver theories with links involving the so-called T [U( N)] theory. We test the validity of the non-geometric solutions (and of our proposed holographic duality) by computing the three-sphere partition function Z of the CFTs. A first class of solutions is obtained by an S-duality quotient of Janus-type non-compact solutions and is dual to 3d N=4 SCFTs; for these we manage to compute Z of the dual CFT at finite N, and it agrees perfectly with the supergravity result in the large N limit. A second class has five-branes, it is obtained by a Möbius-like S-quotient of ordinary compact solutions and is dual to 3d N=3 SCFTs. For these, Z agrees with the supergravity result if one chooses the limit carefully so that the effect of the fivebranes does not backreact on the entire geometry. Other limits suggest the existence of IIA duals.

  14. Optimizing ultrafast wide field-of-view illumination for high-throughput multi-photon imaging and screening of mutant fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb; Mikhailov, Alexandr; Rebane, Aleksander

    2017-02-01

    Fluorescence induced by 1wo-photon absorption (2PA) and three-photon absorption (3PA) is becoming an increasingly important tool for deep-tissue microscopy, especially in conjunction with genetically-encoded functional probes such as fluorescent proteins (FPs). Unfortunately, the efficacy of the multi-photon excitation of FPs is notoriously low, and because relations between a biological fluorophore's nonlinear-optical properties and its molecular structure are inherently complex, there are no practical avenues available that would allow boosting the performance of current FPs. Here we describe a novel method, where we apply directed evolution to optimize the 2PA properties of EGFP. Key to the success of this approach consists in high-throughput screening of mutants that would allow selection of variants with promising 2PA and 3PA properties in a broad near-IR excitation range of wavelength. For this purpose, we construct and test a wide field-of-view (FOV), femtosecond imaging system that we then use to quantify the multi-photon excited fluorescence in the 550- 1600 nm range of tens of thousands of E. coli colonies expressing randomly mutated FPs in a standard 10 cm diameter Petri dish configuration. We present a quantitative analysis of different factors that are currently limiting the maximum throughput of the femtosecond multi-photon screening techniques and also report on quantitative measurement of absolute 2PA and 3PA cross sections spectra.

  15. A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy.

    PubMed

    Kirkby, Paul A; Srinivas Nadella, K M Naga; Silver, R Angus

    2010-06-21

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 mum; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space.

  16. Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals.

    PubMed

    Wang, Baoju; Zhan, Qiuqiang; Zhao, Yuxiang; Wu, Ruitao; Liu, Jing; He, Sailing

    2016-01-25

    Further development of multiphoton microscopic imaging is confronted with a number of limitations, including high-cost, high complexity and relatively low spatial resolution due to the long excitation wavelength. To overcome these problems, for the first time, we propose visible-to-visible four-photon ultrahigh resolution microscopic imaging by using a common cost-effective 730-nm laser diode to excite the prepared Nd(3+)-sensitized upconversion nanoparticles (Nd(3+)-UCNPs). An ordinary multiphoton scanning microscope system was built using a visible CW diode laser and the lateral imaging resolution as high as 161-nm was achieved via the four-photon upconversion process. The demonstrated large saturation excitation power for Nd(3+)-UCNPs would be more practical and facilitate the four-photon imaging in the application. A sample with fine structure was imaged to demonstrate the advantages of visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals. Combining the uniqueness of UCNPs, the proposed visible-to-visible four-photon imaging would be highly promising and attractive in the field of multiphoton imaging.

  17. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  18. Multiphoton microscopy observations of 3D elastin and collagen fiber microstructure changes during pressurization in aortic media.

    PubMed

    Sugita, Shukei; Matsumoto, Takeo

    2017-06-01

    Elastin and collagen fibers play important roles in the mechanical properties of aortic media. Because knowledge of local fiber structures is required for detailed analysis of blood vessel wall mechanics, we investigated 3D microstructures of elastin and collagen fibers in thoracic aortas and monitored changes during pressurization. Using multiphoton microscopy, autofluorescence images from elastin and second harmonic generation signals from collagen were acquired in media from rabbit thoracic aortas that were stretched biaxially to restore physiological dimensions. Both elastin and collagen fibers were observed in all longitudinal-circumferential plane images, whereas alternate bright and dark layers were observed along the radial direction and were recognized as elastic laminas (ELs) and smooth muscle-rich layers (SMLs), respectively. Elastin and collagen fibers are mainly oriented in the circumferential direction, and waviness of collagen fibers was significantly higher than that of elastin fibers. Collagen fibers were more undulated in longitudinal than in radial direction, whereas undulation of elastin fibers was equibiaxial. Changes in waviness of collagen fibers during pressurization were then evaluated using 2-dimensional fast Fourier transform in mouse aortas, and indices of waviness of collagen fibers decreased with increases in intraluminal pressure. These indices also showed that collagen fibers in SMLs became straight at lower intraluminal pressures than those in EL, indicating that SMLs stretched more than ELs. These results indicate that deformation of the aorta due to pressurization is complicated because of the heterogeneity of tissue layers and differences in elastic properties of ELs, SMLs, and surrounding collagen and elastin.

  19. Modeling of the initiation and evolution of a laser-ionized column in the lower atmosphere - 314.5 nm wavelength resonant multiphoton ionization of naturally occurring argon

    NASA Technical Reports Server (NTRS)

    Fetzer, G. J.; Stockley, J. E.

    1992-01-01

    A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.

  20. Multiphoton Rydberg and valence dynamics of CH3Br probed by mass spectrometry and slice imaging.

    PubMed

    Hafliðason, Arnar; Glodic, Pavle; Koumarianou, Greta; Samartzis, Peter C; Kvaran, Ágúst

    2018-06-18

    The multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra. Kinetic energy release spectra (KERs) were derived from slice and photoelectron images and anisotropy parameters were extracted from the angular distributions of the ions to identify the processes and the dynamics involved. At all wavelengths we observe three-photon excitations, via the two-photon resonant transitions to molecular Rydberg states, forming metastable, superexcited (CH3Br#) states which dissociate to form CH3 Rydberg states (CH3**) along with Br/Br*. A correlation between the parent Rydberg states excited and CH3** formed is evident. For the three highest excitation energies used, the CH3Br# metastable states also generate high kinetic energy fragments of CH3(X) and Br/Br*. In addition for two out of these three wavelengths we also measure one-photon photolysis of CH3Br in the A band forming CH3(X) in various vibrational modes and bromine atoms in the ground (Br) and spin-orbit excited (Br*) states.

  1. From 3 d duality to 2 d duality

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Razamat, Shlomo S.; Willett, Brian

    2017-11-01

    In this paper we discuss 3 d N = 2 supersymmetric gauge theories and their IR dualities when they are compactified on a circle of radius r, and when we take the 2 d limit in which r → 0. The 2 d limit depends on how the mass parameters are scaled as r → 0, and often vacua become infinitely distant in the 2 d limit, leading to a direct sum of different 2 d theories. For generic mass parameters, when we take the same limit on both sides of a duality, we obtain 2 d dualities (between gauge theories and/or Landau-Ginzburg theories) that pass all the usual tests. However, when there are non-compact branches the discussion is subtle because the metric on the moduli space, which is not controlled by supersymmetry, plays an important role in the low-energy dynamics after compactification. Generally speaking, for IR dualities of gauge theories, we conjecture that dualities involving non-compact Higgs branches survive. On the other hand when there is a non-compact Coulomb branch on at least one side of the duality, the duality fails already when the 3 d theories are compactified on a circle. Using the valid reductions we reproduce many known 2 d IR dualities, giving further evidence for their validity, and we also find new 2 d dualities.

  2. Adaptive compensation of aberrations in ultrafast 3D microscopy using a deformable mirror

    NASA Astrophysics Data System (ADS)

    Sherman, Leah R.; Albert, O.; Schmidt, Christoph F.; Vdovin, Gleb V.; Mourou, Gerard A.; Norris, Theodore B.

    2000-05-01

    3D imaging using a multiphoton scanning confocal microscope is ultimately limited by aberrations of the system. We describe a system to adaptively compensate the aberrations with a deformable mirror. We have increased the transverse scanning range of the microscope by three with compensation of off-axis aberrations.We have also significantly increased the longitudinal scanning depth with compensation of spherical aberrations from the penetration into the sample. Our correction is based on a genetic algorithm that uses second harmonic or two-photon fluorescence signal excited by femtosecond pulses from the sample as the enhancement parameter. This allows us to globally optimize the wavefront without a wavefront measurement. To improve the speed of the optimization we use Zernike polynomials as the basis for correction. Corrections can be stored in a database for look-up with future samples.

  3. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  4. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    PubMed

    Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  5. Spectroscopic Constants of the Known Electronic States of Lead Monofluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRaven, C.P.; Sivakumar, P.; Shafer-Ray, N.E.

    2010-08-01

    Based on measurements made by mass-resolved 1 + 1{prime} + 1{double_prime} resonance-enhanced multiphoton ionization spectroscopy, we have determined new molecular constants describing the rotational and fine structure levels of the B, D, E, and F states of the most abundant isotopic variant {sup 208}Pb{sup 19}F, and we summarize the spectroscopic constants for all the know electronic states of the radical. Many spectroscopic constants for the isotopologues {sup 206}Pb{sup 19}F and {sup 207}Pb{sup 19}F have also been determined. The symmetry of the D-state is found to be {sup 2}{pi}{sub 1/2}, and the F-state is found to be an {Omega} = 3/2more » state.« less

  6. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy

    PubMed Central

    Kirkby, Paul A.; Naga Srinivas, N.K.M.; Silver, R. Angus

    2010-01-01

    We describe a high speed 3D Acousto-Optic Lens Microscope (AOLM) for femtosecond 2-photon imaging. By optimizing the design of the 4 AO Deflectors (AODs) and by deriving new control algorithms, we have developed a compact spherical AOL with a low temporal dispersion that enables 2-photon imaging at 10-fold lower power than previously reported. We show that the AOLM can perform high speed 2D raster-scan imaging (>150 Hz) without scan rate dependent astigmatism. It can deflect and focus a laser beam in a 3D random access sequence at 30 kHz and has an extended focusing range (>137 μm; 40X 0.8NA objective). These features are likely to make the AOLM a useful tool for studying fast physiological processes distributed in 3D space PMID:20588506

  7. Multiphoton dynamics of qutrits in the ultrastrong coupling regime with a quantized photonic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetissian, H. K., E-mail: avetissian@ysu.am; Avetissian, A. K.; Mkrtchian, G. F.

    2015-12-15

    Multiphoton resonant excitation of a three-state quantum system (a qutrit) with a single-mode photonic field is considered in the ultrastrong coupling regime, when the qutrit–photonic field coupling rate is comparable to appreciable fractions of the photon frequency. For ultrastrong couplings, the obtained solutions of the Schrödinger equation that reveal multiphoton Rabi oscillations in qutrits with the interference effects leading to the collapse and revival of atomic excitation probabilities at the direct multiphoton resonant transitions.

  8. High-precision two-dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system

    NASA Astrophysics Data System (ADS)

    Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.

  9. Compact 3D Camera for Shake-the-Box Particle Tracking

    NASA Astrophysics Data System (ADS)

    Hesseling, Christina; Michaelis, Dirk; Schneiders, Jan

    2017-11-01

    Time-resolved 3D-particle tracking usually requires the time-consuming optical setup and calibration of 3 to 4 cameras. Here, a compact four-camera housing has been developed. The performance of the system using Shake-the-Box processing (Schanz et al. 2016) is characterized. It is shown that the stereo-base is large enough for sensible 3D velocity measurements. Results from successful experiments in water flows using LED illumination are presented. For large-scale wind tunnel measurements, an even more compact version of the system is mounted on a robotic arm. Once calibrated for a specific measurement volume, the necessity for recalibration is eliminated even when the system moves around. Co-axial illumination is provided through an optical fiber in the middle of the housing, illuminating the full measurement volume from one viewing direction. Helium-filled soap bubbles are used to ensure sufficient particle image intensity. This way, the measurement probe can be moved around complex 3D-objects. By automatic scanning and stitching of recorded particle tracks, the detailed time-averaged flow field of a full volume of cubic meters in size is recorded and processed. Results from an experiment at TU-Delft of the flow field around a cyclist are shown.

  10. Global smooth solutions of 3-D null-form wave equations in exterior domains with Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Jun, Li; Huicheng, Yin

    2018-05-01

    The paper is devoted to investigating long time behavior of smooth small data solutions to 3-D quasilinear wave equations outside of compact convex obstacles with Neumann boundary conditions. Concretely speaking, when the surface of a 3-D compact convex obstacle is smooth and the quasilinear wave equation fulfills the null condition, we prove that the smooth small data solution exists globally provided that the Neumann boundary condition on the exterior domain is given. One of the main ingredients in the current paper is the establishment of local energy decay estimates of the solution itself. As an application of the main result, the global stability to 3-D static compressible Chaplygin gases in exterior domain is shown under the initial irrotational perturbation with small amplitude.

  11. Separation and identification of structural isomers by quadrupole collision-induced dissociation-hydrogen/deuterium exchange-infrared multiphoton dissociation (QCID-HDX-IRMPD).

    PubMed

    Gucinski, Ashley C; Somogyi, Arpád; Chamot-Rooke, Julia; Wysocki, Vicki H

    2010-08-01

    A new approach that uses a hybrid Q-FTICR instrument and combines quadrupole collision-induced dissociation, hydrogen-deuterium exchange, and infrared multiphoton dissociation (QCID-HDX-IRMPD) has been shown to effectively separate and differentiate isomeric fragment ion structures present at the same m/z. This method was used to study protonated YAGFL-OH (free acid), YAGFL-NH(2) (amide), cyclic YAGFL, and YAGFL-OCH(3) (methyl ester). QCID-HDX of m/z 552.28 (C(29)H(38)N(5)O(6)) from YAGFL-OH reveals at least two distributions of ions corresponding to the b(5) ion and a non-C-terminal water loss ion structure. Subsequent IRMPD fragmentation of each population shows distinct fragmentation patterns, reflecting the different structures from which they arise. This contrasts with data for YAGFL-NH(2) and YAGFL-OCH(3), which do not show two distinct H/D exchange populations for the C(29)H(38)N(5)O(6) structure formed by NH(3) and HOCH(3) loss, respectively. Relative extents of exchange for C(29)H(38)N(5)O(6) ions from six sequence isomers (YAGFL, AGFLY, GFLYA, FLYAG, LYAGF, and LFGAY) show a sequence dependence of relative isomer abundance. Supporting action IRMPD spectroscopy data are also presented herein and also show that multiple structures are present for the C(29)H(38)N(5)O(6) species from YAGFL-OH. Copyright 2010. Published by Elsevier Inc.

  12. Label-free in vivo in situ diagnostic imaging by cellular metabolism quantification with a flexible multiphoton endomicroscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Leclerc, Pierre; Hage, Charles-Henri; Fabert, Marc; Brevier, Julien; O'Connor, Rodney P.; Bardet-Coste, Sylvia M.; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frederic

    2017-02-01

    Multiphoton microscopy is a cutting edge imaging modality leading to increasing advances in biology and also in the clinical field. To use it at its full potential and at the very heart of clinical practice, there have been several developments of fiber-based multiphoton microendoscopes. The application for those probes is now limited by few major restrictions, such as the difficulty to collect autofluorescence signals from tissues and cells theses being inherently weak (e.g. the ones from intracellular NADH or FAD metabolites). This limitation reduces the usefulness of microendoscopy in general, effectively restraining it to morphological imaging modality requiring staining of the tissues. Our aim is to go beyond this limitation, showing for the first time label-free cellular metabolism monitoring, in vivo in situ in real time. The experimental setup is an upgrade of a recently published one (Ducourthial et.al, Scientific Reports, 2016) where femtosecond pulse fiber delivery is further optimized thank's to a new transmissive-GRISM-based pulse stretcher permitting high energy throughput and wide bandwidth. This device allows fast sequential operation with two different excitation wavelengths for efficient two-photon excited NADH and FAD autofluorescence endoscopic detection (i.e. 860 nm for FAD and 760 nm for NADH), enabling cellular optical redox ratio quantification at 8 frames/s. The obtained results on cell models in vitro and also on animal models in vivo (e.g. neurons of a living mouse) prove that we accurately assess the level of NADH and FAD at subcellular resolution through a 3-meters-long fiber with our miniaturized probe (O.D. =2.2 mm).

  13. In vivo multimodal nonlinear optical imaging of mucosal tissue

    NASA Astrophysics Data System (ADS)

    Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie

    2004-05-01

    We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.

  14. ALMA reveals starburst-like interstellar medium conditions in a compact star-forming galaxy at z 2 using [CI] and CO

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Decarli, Roberto; Man, Allison W. S.; Nelson, Erica J.; Béthermin, Matthieu; De Breuck, Carlos; Mainieri, Vincenzo; van Dokkum, Pieter G.; Gullberg, Bitten; van Kampen, Eelco; Spaans, Marco; Trager, Scott C.

    2017-06-01

    We present ALMA detections of the [CI] 1-0, CO J = 3-2, and CO J = 4-3 emission lines, as well as the ALMA band 4 continuum for a compact star-forming galaxy (cSFG) at z = 2.225, 3D-HST GS30274. As is typical for cSFGs, this galaxy has a stellar mass of 1.89 ± 0.47 × 1011M⊙, with a star formation rate (SFR) of 214 ± 44 M⊙ yr-1 putting it on the star-forming "main-sequence", but with an H-band effective radius of 2.5 kpc, making it much smaller than the bulk of "main-sequence" star-forming galaxies. The intensity ratio of the line detections yield an ISM density ( 6 × 104 cm-3) and a UV-radiation field ( 2 × 104G0), similar to the values in local starburst and ultra-luminous infrared galaxy environments. A starburst phase is consistent with the short depletion times (tH2,dep ≤ 140 Myr) we find in 3D-HST GS30274 using three different proxies for the H2 mass ([CI], CO, dust mass). This depletion time is significantly shorter than in more extended SFGs with similar stellar masses and SFRs. Moreover, the gas fraction of 3D-HST GS30274 is smaller than typically found in extended galaxies. We measure the CO and [CI] kinematics and find a FWHM line width of 750 ± 41 km s-1. The CO and [CI] FWHM are consistent with a previously measured Hα FWHM for this source. The line widths are consistent with gravitational motions, suggesting we are seeing a compact molecular gas reservoir. A previous merger event, as suggested by the asymmetric light profile, may be responsible for the compact distribution of gas and has triggered a central starburst event. This event gives rise to the starburst-like ISM properties and short depletion times in 3D-HST GS30274. The centrally located and efficient star formation is quickly building up a dense core of stars, responsible for the compact distribution of stellar light in 3D-HST GS30274.

  15. An evaluation of three-dimensional modeling of compaction cycles by analyzing the densification behavior of binary and ternary mixtures.

    PubMed

    Picker, K M; Bikane, F

    2001-08-01

    The aim of the study is to use the 3D modeling technique of compaction cycles for analysis of binary and ternary mixtures. Three materials with very different deformation and densification characteristics [cellulose acetate (CAC), dicalcium phosphate dihydrate (EM) and theophylline monohydrate (TM)] have been tableted at graded maximum relative densities (rhorel, max) on an eccentric tableting machine. Following that, graded binary mixtures from CAC and EM have been compacted. Finally, the same ratios of CAC and EM have been tableted in a ternary mixture with 20 vol% TM. All compaction cycles have been analyzed by using different data analysis methods. Three-dimensional modeling, conventional determination of the slope of the Heckel function, determination of the elastic recovery during decompression, and calculations according to the pressure-time function were the methods of choice. The results show that the 3D model technique is able to gain the information in one step instead of three different approaches, which is an advantage for formulation development. The results show that this model enables one to better distinguish the compaction properties of mixtures and the interaction of the components in the tablet than 2D models. Furthermore, the information by 3D modeling is more precise since in the slope K of the Heckel-plot (in die) elasticity is included, and in the parameters of the pressure-time function beta and gamma plastic deformation due to pressure is included. The influence of time and pressure on the displacement can now be differentiated.

  16. QED theory of multiphoton transitions in atoms and ions

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  17. Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas

    PubMed Central

    Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander

    2016-01-01

    Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530

  18. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid.

    PubMed

    Wang, Xiangke; Chen, Yixue; Wu, Yican

    2004-06-01

    The effect of pH, Eu(III) solution concentration and humic acid on the diffusion of Eu(III) in compacted bentonite (rho(b) = 1000 +/- 30 kg/m(3)) was studied with "in-diffusion" method at an ionic strength of 0.1M NaClO(4). The results (K(d) values from the first slice and theoretical calculation, apparent and effective diffusion coefficients) derived from the new capillary method are in good agreement with the literature data under similar conditions, and fit the Fick's second law very well. The results suggest that the diffusion of Eu(III) is dependent on pH values and independent on solution concentration in our experimental conditions. Humic acid forms precipitation/complexation with Eu(III) at the surface of compacted bentonite and thus deduces the diffusion/transport of Eu(III) in compacted bentonite. The K(d) values in compacted bentonite are in most cases lower than those in powdered bentonite obtained from batch experiments. The difference between the K(d) values from powdered and compacted bentonite is a strong function of the bulk density of the bentonite. The results suggest that the content of interlaminary space plays a very important role to the diffusion, sorption and migration of Eu(III) in compacted bentonite.

  19. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    NASA Astrophysics Data System (ADS)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  20. Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Labh, Shreya; Barker, Jayk E.; Sapia, Ryan J.; Richardson, Gerald D.; Rivero-Baleine, Clara; Gleason, Benn; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2016-03-01

    This work reports a detailed study of the processing and photo-patterning of two chalcogenide glasses (ChGs) - arsenic trisulfide (As2S3) and a new composition of germanium-doped arsenic triselenide Ge5(As2Se3)95 - as well as their use for creating functional optical structures. ChGs are materials with excellent infrared (IR) transparency, large index of refraction, low coefficient of thermal expansion, and low change in refractive index with temperature. These features make them well suited for a wide range of commercial and industrial applications including detectors, sensors, photonics, and acousto-optics. Photo-patternable films of As2S3 and Ge5(As2Se3)95 were prepared by thermally depositing the ChGs onto silicon substrates. For some As2S3 samples, an anti-reflection layer of arsenic triselenide (As2Se3) was first added to mitigate the effects of standing-wave interference during laser patterning. The ChG films were photo-patterned by multi-photon lithography (MPL) and then chemically etched to remove the unexposed material, leaving free-standing structures that were negative-tone replicas of the photo-pattern in networked-solid ChG. The chemical composition and refractive index of the unexposed and photo-exposed materials were examined using Raman spectroscopy and near-IR ellipsometry. Nano-structured arrays were photo-patterned and the resulting nano-structure morphology and chemical composition were characterized and correlated with the film compositions, conditions of thermal deposition, patterned irradiation, and etch processing. Photo-patterned Ge5(As2Se3)95 was found to be more resistant than As2S3 toward degradation by formation of surface oxides.

  1. Highly Resolved Intravital Striped-illumination Microscopy of Germinal Centers

    PubMed Central

    Andresen, Volker; Sporbert, Anje

    2014-01-01

    Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 µm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells – on the level of a few protein molecules in germinal centers. PMID:24748007

  2. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of bromobenzene and its perdeuterated isotopologue: Assignment of the vibrations of the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states of bromobenzene and the S{sub 0} and D{sub 0}{sup +} states of iodobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrejeva, Anna; Tuttle, William D.; Harris, Joe P.

    2015-12-28

    We report vibrationally resolved spectra of the S{sub 1}←S{sub 0} transition of bromobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study bromobenzene-h{sub 5} as well as its perdeuterated isotopologue, bromobenzene-d{sub 5}. The form of the vibrational modes between the isotopologues and also between the S{sub 0} and S{sub 1} electronic states is discussed for each species, allowing assignment of the bands to be achieved and the activity between states and isotopologues to be established. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts. Previous work and assignments of the S{sub 1} spectra are discussed. Additionally, themore » vibrations in the ground state cation, D{sub 0}{sup +}, are considered, since these have also been used by previous workers in assigning the excited neutral state spectra. We also examine the vibrations of iodobenzene in the S{sub 0} and D{sub 0}{sup +} states and comment on the previous assignments of these. In summary, we have been able to assign the corresponding vibrations across the whole monohalobenzene series of molecules, in the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states, gaining insight into vibrational activity and vibrational couplings.« less

  3. Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal

    2018-02-01

    The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.

  4. Amplitudes for multiphoton quantum processes in linear optics

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  5. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  6. Compact Q-balls in the complex signum-Gordon model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2008-05-15

    We discuss Q-balls in the complex signum-Gordon model in d-dimensional space for d=1, 2, 3. The Q-balls have strictly finite size. Their total energy is a powerlike function of the conserved U(1) charge with the exponent equal to (d+2)(d+3){sup -1}. In the cases d=1 and d=3 explicit analytic solutions are presented.

  7. A comparison of UVb compact lamps in enabling cutaneous vitamin D synthesis in growing bearded dragons.

    PubMed

    Diehl, J J E; Baines, F M; Heijboer, A C; van Leeuwen, J P; Kik, M; Hendriks, W H; Oonincx, D G A B

    2018-02-01

    The effect of exposure to different UVb compact lamps on the vitamin D status of growing bearded dragons (Pogona vitticeps) was studied. Forty-two newly hatched bearded dragons (<24 h old) were allocated to six treatment groups (n = 7 per group). Five groups were exposed to different UVb compact lamps for two hours per day, with a control group not exposed to UVb radiation. At 120 days of age, blood samples were obtained and concentrations of 25(OH)D 3 , Ca, P and uric acid were determined. In addition, plasma 25(OH)D 3 concentration was determined in free-living adult bearded dragons to provide a reference level. Only one treatment resulted in elevated levels of 25(OH)D 3 compared to the control group (41.0 ± 12.85 vs. 2.0 ± 0.0 nmol/L). All UVb-exposed groups had low 25(OH)D 3 plasma levels compared to earlier studies on captive bearded dragons as well as in comparison with the free-living adult bearded dragons (409 ± 56 nmol/L). Spectral analysis indicated that all treatment lamps emitted UVb wavelengths effective for some cutaneous vitamin D synthesis. None of these lamps, under this regime, appeared to have provided a sufficient UVb dose to enable synthesis of plasma 25(OH)D 3 levels similar to those of free-living bearded dragons in their native habitat. © 2017 The Authors. Journal of Animal Physiology and Animal Nutrition Published by Blackwell Verlag GmbH.

  8. Multi-photon EIT

    NASA Astrophysics Data System (ADS)

    Laarits, Toomas; O'Gorman, Bryan; Crescimanno, Michael

    2008-03-01

    We describe and solve a quantum optics models for multiphoton interrogation of an electromagnetically induced transparency (EIT) resonance. Multiphoton EIT, like its well studied Lambda-system EIT progenitor, is a generalization of the N-resonance process recently studied for atomic time keeping. The solution of these models allows a preliminary determination of this processes utility as the basis of a frequency standard.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    The multiphoton resonant excitation of three-level atoms by the two laser fields of different frequencies is investigated. The time evolution of the system and analytical solutions expressing Rabi oscillations of the probability amplitudes at the two-color multiphoton resonant excitation are found using a nonperturbative resonant approach. The specific examples for experimental implementation of two-color multiphoton resonant excitation of hydrogen atoms are considered.

  10. Global embeddings for branes at toric singularities

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki

    2012-10-01

    We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.

  11. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Liu, Kopin

    2018-01-01

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them—including partially and fully deuterated isotopologs—four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands—CHD2(611), CH2D(311), CH2D(511), and CH2D(611)—are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  12. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.

  13. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  14. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    NASA Astrophysics Data System (ADS)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.

  15. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  16. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope.

    PubMed

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2016-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy.

  17. How much land for your sand: effects of vegetation and compaction on crevasse splay formation

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Tornqvist, T. E.; Esposito, C. R.

    2016-12-01

    Crevasse splays, failed avulsions that make up a significant portion of fluvio-deltaic overbank architecture in the Mississippi River Delta, are a natural analog for sediment diversions that are being planned to rebuild or sustain coastal wetlands. Here we use Delft3D to study the rates and mechanisms of crevasse splay growth. Because crevasse splays often form in peat-rich and vegetated environments, we have modified Delft3D to include simple formulations for the dynamic interaction between morphodynamics, vegetation, and soil compaction. Detailed stratigraphic data from prehistoric splays in the Mississippi River Delta provide useful constraints on long-term compaction rates, sedimentology, and splay volumes. We find that compaction and the absence of vegetation increase the lifespan of crevasse splays, sometimes from 900 to 4000 flood days (days during which the crevasse is geomorphically active, equivalent to model days in our simulations). Additionally, we find that in a few tested scenarios vegetation primarily acts to increase channel depths and flush out fine-grained sediment towards the flood-basin, decreasing the bulk mud capture efficiency of the splay. One model experiment with moderate vegetation heights and low susceptibility for soil compaction was a particularly "efficient" sediment diversion: every 1 m3 of imported sediment resulted in 2.55 m2 of new land.

  18. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  19. Strong-field ionization of Li and Be: a time-dependent density functional theory with self-interaction correction

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.

    2011-11-01

    In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.

  20. Conjugate adaptive optics with remote focusing in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Tao, Xiaodong; Lam, Tuwin; Zhu, Bingzhao; Li, Qinggele; Reinig, Marc R.; Kubby, Joel

    2018-02-01

    The small correction volume for conventional wavefront shaping methods limits their application in biological imaging through scattering media. In this paper, we take advantage of conjugate adaptive optics (CAO) and remote focusing (CAORF) to achieve three-dimensional (3D) scanning through a scattering layer with a single correction. Our results show that the proposed system can provide 10 times wider axial field of view compared with a conventional conjugate AO system when 16,384 segments are used on a spatial light modulator. We demonstrate two-photon imaging with CAORF through mouse skull. The fluorescent microspheres embedded under the scattering layers can be clearly observed after applying the correction.

  1. Photoelectron spectrometer for liquid and gas-phase attosecond spectroscopy with field-free and magnetic bottle operation modes

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Jain, Arohi; Gaumnitz, Thomas; Ma, Jun; Wörner, Hans Jakob

    2018-05-01

    A compact time-of-flight spectrometer for applications in attosecond spectroscopy in the liquid and gas phases is presented. It allows for altering the collection efficiency by transitioning between field-free and magnetic-bottle operation modes. High energy resolution (ΔE/E = 0.03 for kinetic energies >20 eV) is achieved despite the short flight-tube length through a homogeneous deceleration potential at the beginning of the flight tube. A closing mechanism allows isolating the vacuum system of the flight tube from the interaction region in order to efficiently perform liquid-microjet experiments. The capabilities of the instrument are demonstrated through photoelectron spectra from multiphoton ionization of argon and xenon, as well as photoelectron spectra of liquid and gaseous water generated by an attosecond pulse train.

  2. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  3. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy.

    PubMed

    Bueno, Juan M; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J; Schaeffel, Frank; Artal, Pablo

    2014-03-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes.

  4. Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy

    PubMed Central

    Bueno, Juan M.; Palacios, Raquel; Giakoumaki, Anastasia; Gualda, Emilio J.; Schaeffel, Frank; Artal, Pablo

    2014-01-01

    Abnormal eye growth induced by visual deprivation can modify the structure and density of the retinal cells. We have used an adaptive optics multiphoton microscope to image photoreceptors (PRs) and ganglion cells (GCs) at different retinal locations in unstained retinas of chicken eyes with about 10D of myopia and their normal-sighted fellow eyes. In all samples, the local averaged inter-PR distance increased with eccentricity. No significant differences in PR density were found between control and myopic eyes. GC density declined in myopic eyes compared to control eyes and the inter-cell distance increased. In normal eyes, the size of the GC cell bodies increased approximately two-fold between the area centralis and the peripheral retina. In myopic eyes, this trend was preserved but the GC bodies were larger at each retinal location, compared to control eyes. Obviously, GC morphology is changing when the retinal area is enlarged in myopic eyes. PMID:24688804

  5. Multiphoton entanglement concentration and quantum cryptography.

    PubMed

    Durkin, Gabriel A; Simon, Christoph; Bouwmeester, Dik

    2002-05-06

    Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.

  6. Roles of Tunneling, Multiphoton Ionization, and Cascade Ionization for Femtosecond Optical Breakdown in Aqueous Media

    DTIC Science & Technology

    2009-09-01

    observed in the wavelength dependence of femtosecond breakdown would indicate a significant role of multiphoton ionization compared to tunneling ...relevant for femtosecond breakdown, and tunnel ionization featuring no Ith() dependence becomes ever more with decreasing pulse duration. However, it...c) Figure 4.22 Wavelength dependence of ionization probabilities by a) avalanche, b) multiphoton, and c) tunneling ionization. 1

  7. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

    PubMed Central

    Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.

    2015-01-01

    We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724

  8. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  9. Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.

    2002-10-01

    We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference.

  10. A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range

    NASA Astrophysics Data System (ADS)

    Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.

    2017-05-01

    We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.

  11. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    PubMed

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review

    PubMed Central

    Yew, Elijah; Rowlands, Christopher

    2014-01-01

    This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance. PMID:25075226

  13. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  14. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherencemore » and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.« less

  15. Where are compact groups in the local Universe?

    NASA Astrophysics Data System (ADS)

    Díaz-Giménez, Eugenia; Zandivarez, Ariel

    2015-06-01

    Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A61

  16. Multiphotonic Confocal Microscopy 3D imaging: Application to mantle sulfides in sub-arc environment (Avacha Volcano, Kamchatka)

    NASA Astrophysics Data System (ADS)

    Antoine, Bénard; Luc-Serge, Doucet; Sabine, Palle; Dmitri A., Ionov

    2010-05-01

    Petrogenetic relations in igneous rocks are usually studied in natural samples using classical optical microscopy and subsequent geochemical data acquisition. Multiphotonic Laser Scanning Confocal Microscopy (MLSCM) can be a powerful tool to section geological materials optically with sub-micrometric resolution and then generate a three-dimensional (3D) reconstruction (ca. 106 μm3 stack). MLSCM is used here to investigate textural relations of Monosulfide Solid Solution (MSS) with silicate phases in fresh spinel harzburgite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia). The xenoliths contain MSS disseminated in olivine and orthopyroxene (opx) neoblasts as well as MSS-rich quenched magmatic opx veins [1]. First, Reflection Mode (RM) was tested on vein sulfides in resin-impregnated thick (120 μm) polished rock sections. Then we used a combination of Differential Interference Contrast (DIC) with a transmitted light detector, two photons-excited fluorescence (2PEF) and Second Harmonic Generation (SHG). Sequential imaging feature of the Leica TCS-SP2 software was applied. The excitation laser used for 2PEF was a COHERENT MIRA 900 with a 76Hz repetition rate and 800nm wavelength. Image stacks were analysed using ImageJ software [2]. The aim of the tests was to try to discriminate sulfides in silicate matrix as a tool for a better assessment of equilibrium conditions between the two phases. Preliminary results show that Fe-Ni rich MSS from vein and host rock have a strong auto-fluorescence in the Near UV-VIS domain (392-715 nm) whereas silicate matrix is only revealed through DIC. SHG is obtained only from dense nanocentrosymmetrical structures such as embedded medium (organic matter like glue and resin). The three images were recorded sequentially enabling efficient discrimination between the different components of the rock slices. RM permits reconstruction of the complete 3D structure of the rock slice. High resolution (ca. 0.2 μm along X-Y axis vs. 0.4 along Z axis) 2PEF enables analysis of 3D textural relations of tiny individual MSS globules (˜10 μm) in their various habitus. Statistical microgeometric descriptions can be derived from volumetric image data. These results may permit refinement of models concerning (re-) crystallisation kinetics and miscibility conditions of sulphur species in various media likely to act in different mantle environments: silicate melt, fluid-rich silicate melt, silicate-rich fluid. Furthermore, this study provides 3D images with improved resolution of several components (silicate phases, sulfides, silicate glass) over the full thickness (>100 μm) of rock slices which cannot be done with classical methods. Besides 3D imaging of ‘hidden' phases in mantle rocks, it opens up new possibilities for other domains in geosciences like crystallography or petrophysics. [1] Bénard & Ionov (2010) GRA, this volume [2] Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophoton. Int., 11, 36-42

  17. Spatial-Temporal Mapping of the T Cell Receptor NF-kappaB Signaling Pathway

    DTIC Science & Technology

    2006-05-30

    Lasos), a 700/488-nm excitation filter and a 500– 550-nm emission filter. Multiphoton PA-GFP activation was performed using the Aim software bleach ...Bcl10 was fused to a PA-GFP [65], and MALT1 was fused to the reef coral fluorescent protein, monomeric Kusabira-Orange (mKO) [70]. D10 T-cells

  18. Exploration of the Memory Effect on the Photon-Assisted Tunneling via a Single Quantum Dot:. a Generalized Floquet Theoretical Approach

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ta; Ho, Tak-San; Chu, Shih-I.

    The generalized Floquet approach is developed to study memory effect on electron transport phenomena through a periodically driven single quantum dot in an electrode-multi-level dot-electrode nanoscale quantum device. The memory effect is treated using a multi-function Lorentzian spectral density (LSD) model that mimics the spectral density of each electrode in terms of multiple Lorentzian functions. For the symmetric single-function LSD model involving a single-level dot, the underlying single-particle propagator is shown to be related to a 2×2 effective time-dependent Hamiltonian that includes both the periodic external field and the electrode memory effect. By invoking the generalized Van Vleck (GVV) nearly degenerate perturbation theory, an analytical Tien-Gordon-like expression is derived for arbitrary order multi-photon resonance d.c. tunneling current. Numerically converged simulations and the GVV analytical results are in good agreement, revealing the origin of multi-photon coherent destruction of tunneling and accounting for the suppression of the staircase jumps of d.c. current due to the memory effect. Specially, a novel blockade phenomenon is observed, showing distinctive oscillations in the field-induced current in the large bias voltage limit.

  19. Two-step design method for highly compact three-dimensional freeform optical system for LED surface light source.

    PubMed

    Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi

    2014-10-20

    Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

  20. Construction of Compact Polyelectrolyte Multilayers Inspired by Marine Mussel: Effects of Salt Concentration and pH As Observed by QCM-D and AFM.

    PubMed

    Wang, Weina; Xu, Yisheng; Backes, Sebastian; Li, Ang; Micciulla, Samantha; Kayitmazer, A Basak; Li, Li; Guo, Xuhong; von Klitzing, Regine

    2016-04-12

    Biomimetic multilayers based on layer-by-layer (LbL) assembly were prepared as functional films with compact structure by incorporating the mussel-inspired catechol cross-linking. Dopamine-modified poly(acrylic acid) (PAADopa) was synthesized as a polyanion to offer electrostatic interaction with the prelayer polyethylenimine (PEI) and consecutively cross-linked by zinc to generate compact multilayers with tunable physicochemical properties. In situ layer-by-layer growth and cross-linking were monitored by a quartz crystal microbalance with dissipation (QCM-D) to reveal the kinetics of the process and the influence of Dopa chemistry. Addition of Dopa enhanced the mass adsorption and led to the formation of a more compact structure. An increase of ionic strength induced an increase in mass adsorption in the Dopa-cross-linked multilayers. This is a universal approach for coating of various surfaces such as Au, SiO2, Ti, and Al2O3. Roughness observed by AFM in both wet and dry conditions was compared to confirm the compact morphology of Dopa-cross-linked multilayers. Because of the pH sensitivity of Dopa moiety, metal-chelated Dopa groups can be turned into softer structure at higher pH as revealed by reduction of Young's modulus determined by MFP-3D AFM. A deeper insight into the growth and mechanical properties of Dopa-cross-linked polyelectrolyte multilayers was addressed in the present study. This allows a better control of these systems for bioapplications.

  1. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope☆

    PubMed Central

    Fernández-Alfonso, Tomás; Nadella, K.M. Naga Srinivas; Iacaruso, M. Florencia; Pichler, Bruno; Roš, Hana; Kirkby, Paul A.; Silver, R. Angus

    2014-01-01

    Background Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated. New method Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca2+] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800–920 nm). Results We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma. Comparison with existing methods These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown. Conclusions Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials. PMID:24200507

  2. Laser separation of lithium isotopes by double resonance enhanced multiphoton ionization of Li/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balz, J.G.; Bernheim, R.A.; Gold, L.P.

    1987-01-01

    Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.

  3. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  4. Generation of single- and two-mode multiphoton states in waveguide QED

    NASA Astrophysics Data System (ADS)

    Paulisch, V.; Kimble, H. J.; Cirac, J. I.; González-Tudela, A.

    2018-05-01

    Single- and two-mode multiphoton states are the cornerstone of many quantum technologies, e.g., metrology. In the optical regime, these states are generally obtained combining heralded single photons with linear optics tools and post-selection, leading to inherent low success probabilities. In a recent paper [A. González-Tudela et al., Phys. Rev. Lett. 118, 213601 (2017), 10.1103/PhysRevLett.118.213601], we design several protocols that harness the long-range atomic interactions induced in waveguide QED to improve fidelities and protocols of single-mode multiphoton emission. Here, we give full details of these protocols, revisit them to simplify some of their requirements, and also extend them to generate two-mode multiphoton states, such as Yurke or NOON states.

  5. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  6. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  7. Disentangling the intragroup HI in Compact Groups of galaxies by means of X3D visualization

    NASA Astrophysics Data System (ADS)

    Verdes-Montenegro, Lourdes; Vogt, Frederic; Aubery, Claire; Duret, Laetitie; Garrido, Julián; Sánchez, Susana; Yun, Min S.; Borthakur, Sanchayeeta; Hess, Kelley; Cluver, Michelle; Del Olmo, Ascensión; Perea, Jaime

    2017-03-01

    As an extreme kind of environment, Hickson Compact groups (HCGs) have shown to be very complex systems. HI-VLA observations revealed an intrincated network of HI tails and bridges, tracing pre-processing through extreme tidal interactions. We found HCGs to show a large HI deficiency supporting an evolutionary sequence where gas-rich groups transform via tidal interactions and ISM (interstellar medium) stripping into gas-poor systems. We detected as well a diffuse HI component in the groups, increasing with evolutionary phase, although with uncertain distribution. The complex net of detected HI as observed with the VLA seems hence so puzzling as the missing one. In this talk we revisit the existing VLA information on the HI distribution and kinematics of HCGs by means of X3D visualization. X3D constitutes a powerful tool to extract the most from HI data cubes and a mean of simplifying and easing the access to data visualization and publication via three-dimensional (3-D) diagrams.

  8. Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy

    PubMed Central

    Clendenon, Sherry G.; Young, Pamela A.; Ferkowicz, Michael; Phillips, Carrie; Dunn, Kenneth W.

    2015-01-01

    In scattering specimens, multiphoton excitation and nondescanned detection improve imaging depth by a factor of 2 or more over confocal microscopy; however, imaging depth is still limited by scattering. We applied the concept of clearing to deep tissue imaging of highly scattering specimens. Clearing is a remarkably effective approach to improving image quality at depth using either confocal or multiphoton microscopy. Tissue clearing appears to eliminate the need for multiphoton excitation for deep tissue imaging. PMID:21729357

  9. Engineering integrated photonics for heralded quantum gates

    NASA Astrophysics Data System (ADS)

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-06-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  10. Engineering integrated photonics for heralded quantum gates

    PubMed Central

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-01-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process. PMID:27282928

  11. Engineering integrated photonics for heralded quantum gates.

    PubMed

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  12. Compact 3D quantum memory

    NASA Astrophysics Data System (ADS)

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  13. Quantum Information Processing with Large Nuclear Spins in GaAs Semiconductors

    NASA Astrophysics Data System (ADS)

    Leuenberger, Michael N.; Loss, Daniel; Poggio, M.; Awschalom, D. D.

    2003-03-01

    We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins I=3/2 in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the nonequidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the nonperturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally observable regime for multiphoton Rabi oscillations. In the nonlinear regime, we find Berry phase interference. Ref: PRL 89, 207601 (2002).

  14. Characterizing lamina propria of human gastric mucosa by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Y. C.; Yang, H. Q.; Chen, G.; Zhuo, S. M.; Chen, J. X.; Yan, J.

    2011-01-01

    Lamina propria (LP) of gastric mucosa plays an important role in progression of gastric cancer because of the site at where inflammatory reactions occur. Multiphoton imaging has been recently employed for microscopic examination of intact tissue. In this paper, using multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG), high resolution multiphoton microscopic images of lamina propria (LP) are obtained in normal human gastric mucosa at excitation wavelength λex = 800 nm. The main source of tissue TPEF originated from the cells of gastric glands, and loose connective tissue, collagen, produced SHG signals. Our results demonstrated that MPM can be effective for characterizing the microstructure of LP in human gastric mucosa. The findings will be helpful for diagnosing and staging early gastric cancer in the clinics.

  15. In vivo microscopy of the mouse brain using multiphoton laser scanning techniques

    NASA Astrophysics Data System (ADS)

    Yoder, Elizabeth J.

    2002-06-01

    The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.

  16. A review of biomedical multiphoton microscopy and its laser sources

    NASA Astrophysics Data System (ADS)

    Lefort, Claire

    2017-10-01

    Multiphoton microscopy (MPM) has been the subject of major development efforts for about 25 years for imaging biological specimens at micron scale and presented as an elegant alternative to classical fluorescence methods such as confocal microscopy. In this topical review, the main interests and technical requirements of MPM are addressed with a focus on the crucial role of excitation source for optimization of multiphoton processes. Then, an overview of the different sources successfully demonstrated in literature for MPM is presented, and their physical parameters are inventoried. A classification of these sources in function with their ability to optimize multiphoton processes is proposed, following a protocol found in literature. Starting from these considerations, a suggestion of a possible identikit of the ideal laser source for MPM concludes this topical review. Dedicated to Martin.

  17. Spatially confined photoinactivation of bacteria: towards novel tools for detailed mechanistic studies

    NASA Astrophysics Data System (ADS)

    Thomsen, Hanna; James, Jeemol; Farewell, Anne; Ericson, Marica B.

    2018-02-01

    Antimicrobial resistance is a serious global threat fueling an accelerated field of research aimed at developing novel antimicrobial therapies. A particular challenge is the treatment of microbial biofilms formed upon bacterial growth and often associated with chronic infections. Biofilms comprise bacteria that have adhered to a surface and formed 3D microcolonies, and demonstrate significantly increased antimicrobial resistance compared to the planktonic counterpart. A challenge in developing novel strategies for fighting these chronic infections is a lack of mechanistic understanding of what primarily contributes to enhanced drug resistance. Tools for noninvasive study of live biofilms are necessary to begin to understand these mechanisms on both a single cell and 3D level. Herein, a method by which multiphoton microscopy is implemented to study a biofilm model of Staphylococcus epidermidis to noninvasively visualize and measure penetration of compounds in 3D biofilm structure and two photon excitation was exploited for spatially confined photoinactivation and microscopy optimized for evaluation of microbiological viability at a microscopic level. Future studies are aimed at future development of the proposed techniques for detailed studies of, e.g., quorum sensing and mechanisms contributing to antimicrobial resistance.

  18. Multimodal microscopy and the stepwise multi-photon activation fluorescence of melanin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua

    The author's work is divided into three aspects: multimodal microscopy, stepwise multi-photon activation fluorescence (SMPAF) of melanin, and customized-profile lenses (CPL) for on-axis laser scanners, which will be introduced respectively. A multimodal microscope provides the ability to image samples with multiple modalities on the same stage, which incorporates the benefits of all modalities. The multimodal microscopes developed in this dissertation are the Keck 3D fusion multimodal microscope 2.0 (3DFM 2.0), upgraded from the old 3DFM with improved performance and flexibility, and the multimodal microscope for targeting small particles (the "Target" system). The control systems developed for both microscopes are low-cost and easy-to-build, with all components off-the-shelf. The control system have not only significantly decreased the complexity and size of the microscope, but also increased the pixel resolution and flexibility. The SMPAF of melanin, activated by a continuous-wave (CW) mode near-infrared (NIR) laser, has potential applications for a low-cost and reliable method of detecting melanin. The photophysics of melanin SMPAF has been studied by theoretical analysis of the excitation process and investigation of the spectra, activation threshold, and photon number absorption of melanin SMPAF. SMPAF images of melanin in mouse hair and skin, mouse melanoma, and human black and white hairs are compared with images taken by conventional multi-photon fluorescence microscopy (MPFM) and confocal reflectance microscopy (CRM). SMPAF images significantly increase specificity and demonstrate the potential to increase sensitivity for melanin detection compared to MPFM images and CRM images. Employing melanin SMPAF imaging to detect melanin inside human skin in vivo has been demonstrated, which proves the effectiveness of melanin detection using SMPAF for medical purposes. Selective melanin ablation with micrometer resolution has been presented using the Target system. Compared to the traditional selective photothermolysis, this method demonstrates higher precision, higher specificity and deeper penetration. Therefore, the SMPAF guided selective ablation of melanin is a promising tool of removing melanin for both medical and cosmetic purposes. Three CPLs have been designed for low-cost linear-motion scanners, low-cost fast spinning scanners and high-precision fast spinning scanners. Each design has been tailored to the industrial manufacturing ability and market demands.

  19. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.

    PubMed

    DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S

    2011-12-05

    We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.

  20. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  1. TRIO Platform: A Novel Low Profile In vivo Imaging Support and Restraint System for Mice.

    PubMed

    Voziyanov, Vladislav; Kemp, Benjamin S; Dressel, Chelsea A; Ponder, Kayla; Murray, Teresa A

    2016-01-01

    High resolution, in vivo optical imaging of the mouse brain over time often requires anesthesia, which necessitates maintaining the animal's body temperature and level of anesthesia, as well as securing the head in an optimal, stable position. Controlling each parameter usually requires using multiple systems. Assembling multiple components into the small space on a standard microscope stage can be difficult and some commercially available parts simply do not fit. Furthermore, it is time-consuming to position an animal in the identical position over multiple imaging sessions for longitudinal studies. This is especially true when using an implanted gradient index (GRIN) lens for deep brain imaging. The multiphoton laser beam must be parallel with the shaft of the lens because even a slight tilt of the lens can degrade image quality. In response to these challenges, we have designed a compact, integrated in vivo imaging support system to overcome the problems created by using separate systems during optical imaging in mice. It is a single platform that provides (1) sturdy head fixation, (2) an integrated gas anesthesia mask, and (3) safe warm water heating. This THREE-IN-ONE (TRIO) Platform has a small footprint and a low profile that positions a mouse's head only 20 mm above the microscope stage. This height is about one half to one third the height of most commercially available immobilization devices. We have successfully employed this system, using isoflurane in over 40 imaging sessions with an average of 2 h per session with no leaks or other malfunctions. Due to its smaller size, the TRIO Platform can be used with a wider range of upright microscopes and stages. Most of the components were designed in SOLIDWORKS® and fabricated using a 3D printer. This additive manufacturing approach also readily permits size modifications for creating systems for other small animals.

  2. TRIO Platform: A Novel Low Profile In vivo Imaging Support and Restraint System for Mice

    PubMed Central

    Voziyanov, Vladislav; Kemp, Benjamin S.; Dressel, Chelsea A.; Ponder, Kayla; Murray, Teresa A.

    2016-01-01

    High resolution, in vivo optical imaging of the mouse brain over time often requires anesthesia, which necessitates maintaining the animal's body temperature and level of anesthesia, as well as securing the head in an optimal, stable position. Controlling each parameter usually requires using multiple systems. Assembling multiple components into the small space on a standard microscope stage can be difficult and some commercially available parts simply do not fit. Furthermore, it is time-consuming to position an animal in the identical position over multiple imaging sessions for longitudinal studies. This is especially true when using an implanted gradient index (GRIN) lens for deep brain imaging. The multiphoton laser beam must be parallel with the shaft of the lens because even a slight tilt of the lens can degrade image quality. In response to these challenges, we have designed a compact, integrated in vivo imaging support system to overcome the problems created by using separate systems during optical imaging in mice. It is a single platform that provides (1) sturdy head fixation, (2) an integrated gas anesthesia mask, and (3) safe warm water heating. This THREE-IN-ONE (TRIO) Platform has a small footprint and a low profile that positions a mouse's head only 20 mm above the microscope stage. This height is about one half to one third the height of most commercially available immobilization devices. We have successfully employed this system, using isoflurane in over 40 imaging sessions with an average of 2 h per session with no leaks or other malfunctions. Due to its smaller size, the TRIO Platform can be used with a wider range of upright microscopes and stages. Most of the components were designed in SOLIDWORKS® and fabricated using a 3D printer. This additive manufacturing approach also readily permits size modifications for creating systems for other small animals. PMID:27199633

  3. Noninvasive Assessment of Collagen Gel Microstructure and Mechanics Using Multiphoton Microscopy

    PubMed Central

    Raub, Christopher B.; Suresh, Vinod; Krasieva, Tatiana; Lyubovitsky, Julia; Mih, Justin D.; Putnam, Andrew J.; Tromberg, Bruce J.; George, Steven C.

    2007-01-01

    Multiphoton microscopy of collagen hydrogels produces second harmonic generation (SHG) and two-photon fluorescence (TPF) images, which can be used to noninvasively study gel microstructure at depth (∼1 mm). The microstructure is also a primary determinate of the mechanical properties of the gel; thus, we hypothesized that bulk optical properties (i.e., SHG and TPF) could be used to predict bulk mechanical properties of collagen hydrogels. We utilized polymerization temperature (4–37°C) and glutaraldehyde to manipulate collagen hydrogel fiber diameter, space-filling properties, and cross-link density. Multiphoton microscopy and scanning electron microscopy reveal that as polymerization temperature decreases (37–4°C) fiber diameter and pore size increase, whereas hydrogel storage modulus (G′, from 23 ± 3 Pa to 0.28 ± 0.16 Pa, respectively, mean ± SE) and mean SHG decrease (minimal change in TPF). In contrast, glutaraldehyde significantly increases the mean TPF signal (without impacting the SHG signal) and the storage modulus (16 ± 3.5 Pa before to 138 ± 40 Pa after cross-linking, mean ± SD). We conclude that SHG and TPF can characterize differential microscopic features of the collagen hydrogel that are strongly correlated with bulk mechanical properties. Thus, optical imaging may be a useful noninvasive tool to assess tissue mechanics. PMID:17172303

  4. In vivo multiphoton microscopy of deep tissue with gradient index lenses

    NASA Astrophysics Data System (ADS)

    Levene, Michael J.; Dombeck, Daniel A.; Williams, Rebecca M.; Skoch, Jesse; Hickey, Gregory A.; Kasischke, Karl A.; Molloy, Raymond P.; Ingelsson, Martin; Stern, Edward A.; Klucken, Jochen; Bacskai, Brian J.; Zipfel, Warren R.; Hyman, Bradley T.; Webb, Watt W.

    2004-06-01

    Gradient index lenses enable multiphoton microscopy of deep tissues in the intact animal. In order to assess their applicability to clinical research, we present in vivo multiphoton microscopy with gradient index lenses in brain regions associated with Alzheimer's disease and Parkinson's disease in both transgenic and wild-type mice. We also demonstrate microscopy of ovary in wild type mouse using only intrinsic fluorescence and second harmonic generation, signal sources which may prove useful for both the study and diagnosis of cancer.

  5. In vivo multiphoton microscopy beyond 1 mm in the brain

    NASA Astrophysics Data System (ADS)

    Miller, David R.; Medina, Flor A.; Hassan, Ahmed; Perillo, Evan P.; Hagan, Kristen; Kazmi, S. M. Shams; Zemelman, Boris V.; Dunn, Andrew K.

    2017-02-01

    We perform high-resolution, non-invasive, in vivo deep-tissue imaging of the mouse neocortex using multiphoton microscopy with a high repetition rate optical parametric amplifier laser source tunable between λ=1,100 and 1,400 nm. We demonstrate an imaging depth of 1,200 μm in vasculature and 1,160 μm in neurons. We also demonstrate deep-tissue imaging using Indocyanine Green (ICG), which is FDA approved and a promising route to translate multiphoton microscopy to human applications.

  6. Buchdahl compactness limit for a pure Lovelock static fluid star

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Chakraborty, Sumanta

    2017-03-01

    We obtain the Buchdahl compactness limit for a pure Lovelock static fluid star and verify that the limit following from the uniform-density Schwarzschild's interior solution, which is universal irrespective of the gravitational theory (Einstein or Lovelock), is true in general. In terms of surface potential Φ (r ) , it means at the surface of the star r =r0, Φ (r0)<2 N (d -N -1 )/(d -1 )2, where d and N indicate spacetime dimensions and Lovelock order, respectively. For a given N , Φ (r0) is maximum for d =2 N +2 , while it is always 4 /9 , Buchdahl's limit, for d =3 N +1 . It is also remarkable that for N =1 Einstein gravity, or for pure Lovelock in d =3 N +1 , Buchdahl's limit is equivalent to the criterion that gravitational field energy exterior to the star must be less than half its gravitational mass, having no reference to the interior at all.

  7. Measurement of {pi}{sup -}p{yields}{eta}n from threshold to p{sub {pi}}{sub {sup -}}=747 MeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakhov, S.; Nefkens, B.M.K.; Clajus, M.

    2005-07-01

    The differential cross section for {eta} production in reaction {pi}{sup -}p{yields}{eta}n has been measured over the full angular range at seven incident {pi}{sup -} beam momenta from threshold to p{sub {pi}}{sub {sup -}}=747 MeV/c using the Crystal Ball multiphoton spectrometer. The angular distributions are S wave dominated. At 10 MeV/c above threshold, a small D-wave contribution appears that interferes with the main S wave. The total {eta} production cross section {sigma}{sup tot} is obtained by integration of d{sigma}/d{omega}. Starting at threshold, {sigma}{sup tot} rises rapidly, as expected for S-wave-dominated production. The features of the {pi}{sup -}p{yields}{eta}n cross section are strikinglymore » similar to those of the SU(3) flavor-related process K{sup -}p{yields}{eta}{lambda}. Comparison of the {pi}{sup -}p{yields}{eta}n reaction is made with {eta} photoproduction.« less

  8. A Compact Bulk Acousto-Optic Time Integrating Correlator.

    DTIC Science & Technology

    1984-11-01

    AD-A156 668 A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING 1/1 CORRELATOR(U) ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) D A FOGG NOV 84 ERL-9323-TR...DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. FOGG...LABORATORY TECHNICAL REPORT ERL-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. Fogg SUMMARY This report describes the design and

  9. National Dam Safety Program. Potake Lake Dam (Inventory Number N.Y. 970), Passaic River Basin, Lower Hudson River Area, Rockland County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-14

    facilitate thedischarge of storm flows. 2. The animal burrows, depressions , and tire ruts onthe crest of the dam should be filled, compacted and seeded. 3...storm flows. 2. The animal burrows, depressions , and tire ruts on the crest of the dam should be filled, compacted, and seeded...defined by the Recommended Guidelines for Safety Inspection of Dams (Reference 13, Appendix D). d. Hazard Classifications - Cranberry Lake Dam is one mile

  10. Computational electronics and electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  11. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  12. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Anel A.; Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used formore » this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.« less

  13. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material.

    PubMed

    Roberts, Anel A; Shimaoka, Takayuki

    2008-12-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  14. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, S. M.; Chen, J. X.; Jiang, X. S.; Lu, K. C.; Xie, S. S.

    2008-08-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered-resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer.

  15. 30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide.

    PubMed

    Feng, Ning-Ning; Feng, Dazeng; Liao, Shirong; Wang, Xin; Dong, Po; Liang, Hong; Kung, Cheng-Chih; Qian, Wei; Fong, Joan; Shafiiha, Roshanak; Luo, Ying; Cunningham, Jack; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2011-04-11

    We demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.0 × 45 µm(2), a total insertion loss of 2.5-5 dB and an extinction ratio of 4-7.5 dB over a wavelength range of 1610-1640 nm with -4V(pp) bias. The estimated Δα/α value is in the range of 2-3.3. The 3 dB bandwidth measurements show that the device is capable of operating at more than 30 GHz. Clear eye-diagram openings at 12.5 Gbps demonstrates large signal modulation at high transmission rate. © 2011 Optical Society of America

  16. Multicellular tumor spheroids as an in vivo-like tumor model for three-dimensional imaging of chemotherapeutic and nano material cellular penetration.

    PubMed

    Ma, Hui-li; Jiang, Qiao; Han, Siyuan; Wu, Yan; Cui Tomshine, Jin; Wang, Dongliang; Gan, Yaling; Zou, Guozhang; Liang, Xing-Jie

    2012-01-01

    We present a flexible and highly reproducible method using three-dimensional (3D) multicellular tumor spheroids to quantify chemotherapeutic and nanoparticle penetration properties in vitro. We generated HeLa cell-derived spheroids using the liquid overlay method. To properly characterize HeLa spheroids, scanning electron microscopy, transmission electron microscopy, and multiphoton microscopy were used to obtain high-resolution 3D images of HeLa spheroids. Next, pairing high-resolution optical characterization techniques with flow cytometry, we quantitatively compared the penetration of doxorubicin, quantum dots, and synthetic micelles into 3D HeLa spheroid versus HeLa cells grown in a traditional two-dimensional culturing system. Our data revealed that 3D cultured HeLa cells acquired several clinically relevant morphologic and cellular characteristics (such as resistance to chemotherapeutics) often found in human solid tumors. These characteristic, however, could not be captured using conventional two-dimensional cell culture techniques. This study demonstrated the remarkable versatility of HeLa spheroid 3D imaging. In addition, our results revealed the capability of HeLa spheroids to function as a screening tool for nanoparticles or synthetic micelles that, due to their inherent size, charge, and hydrophobicity, can penetrate into solid tumors and act as delivery vehicles for chemotherapeutics. The development of this image-based, reproducible, and quantifiable in vitro HeLa spheroid screening tool will greatly aid future exploration of chemotherapeutics and nanoparticle delivery into solid tumors.

  17. On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides

    NASA Astrophysics Data System (ADS)

    Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.

    2016-10-01

    In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.

  18. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  19. Reconstruction of shapes of near symmetric and asymmetric objects

    DOEpatents

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng

    2013-03-26

    A system processes 2D images of 2D or 3D objects, creating a model of the object that is consistent with the image and as veridical as the perception of the 2D image by humans. Vertices of the object that are hidden in the image are recovered by using planarity and symmetry constraints. The 3D shape is recovered by maximizing 3D compactness of the recovered object and minimizing its surface area. In some embodiments, these two criteria are weighted by using the geometric mean.

  20. THE CELL CENTERED DATABASE PROJECT: AN UPDATE ON BUILDING COMMUNITY RESOURCES FOR MANAGING AND SHARING 3D IMAGING DATA

    PubMed Central

    Martone, Maryann E.; Tran, Joshua; Wong, Willy W.; Sargis, Joy; Fong, Lisa; Larson, Stephen; Lamont, Stephan P.; Gupta, Amarnath; Ellisman, Mark H.

    2008-01-01

    Databases have become integral parts of data management, dissemination and mining in biology. At the Second Annual Conference on Electron Tomography, held in Amsterdam in 2001, we proposed that electron tomography data should be shared in a manner analogous to structural data at the protein and sequence scales. At that time, we outlined our progress in creating a database to bring together cell level imaging data across scales, The Cell Centered Database (CCDB). The CCDB was formally launched in 2002 as an on-line repository of high-resolution 3D light and electron microscopic reconstructions of cells and subcellular structures. It contains 2D, 3D and 4D structural and protein distribution information from confocal, multiphoton and electron microscopy, including correlated light and electron microscopy. Many of the data sets are derived from electron tomography of cells and tissues. In the five years since its debut, we have moved the CCDB from a prototype to a stable resource and expanded the scope of the project to include data management and knowledge engineering. Here we provide an update on the CCDB and how it is used by the scientific community. We also describe our work in developing additional knowledge tools, e.g., ontologies, for annotation and query of electron microscopic data. PMID:18054501

  1. Transverse correlations in multiphoton entanglement

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Rubin, Morton H.; Shih, Yanhua

    2007-10-01

    We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N -photon state. The Klyshko’s two-photon advanced-wave picture is generalized to the N -photon case.

  2. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  3. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  4. Quantum cryptography with perfect multiphoton entanglement.

    PubMed

    Luo, Yuhui; Chan, Kam Tai

    2005-05-01

    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  5. Remote focusing for programmable multi-layer differential multiphoton microscopy

    PubMed Central

    Hoover, Erich E.; Young, Michael D.; Chandler, Eric V.; Luo, Anding; Field, Jeffrey J.; Sheetz, Kraig E.; Sylvester, Anne W.; Squier, Jeff A.

    2010-01-01

    We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes. PMID:21326641

  6. Hybrid reflecting objectives for functional multiphoton microscopy in turbid media

    PubMed Central

    Vučinić, Dejan; Bartol, Thomas M.; Sejnowski, Terrence J.

    2010-01-01

    Most multiphoton imaging of biological specimens is performed using microscope objectives optimized for high image quality under wide-field illumination. We present a class of objectives designed de novo without regard for these traditional constraints, driven exclusively by the needs of fast multiphoton imaging in turbid media: the delivery of femtosecond pulses without dispersion and the efficient collection of fluorescence. We model the performance of one such design optimized for a typical brain-imaging setup and show that it can greatly outperform objectives commonly used for this task. PMID:16880851

  7. CANDELS+3D-HST: Compact SFGs at z ∼ 2-3, the progenitors of the first quiescent galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barro, G.; Faber, S. M.; Koo, D. C.

    We analyze the star-forming and structural properties of 45 massive (log(M/M{sub ☉}) >10) compact star-forming galaxies (SFGs) at 2 < z < 3 to explore whether they are progenitors of compact quiescent galaxies at z ∼ 2. The optical/NIR and far-IR Spitzer/Herschel colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray-bright active galactic nucleus (AGN). In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally concentrated light profiles and spheroidal morphologies similar to quiescent galaxies and are thus strikingly different from other SFGs, which typically aremore » disk-like and sometimes clumpy or irregular. Most compact SFGs lie either within the star formation rate (SFR)-mass main sequence (65%) or below it (30%), on the expected evolutionary path toward quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (τ) star formation histories (SFHs) or physically motivated SFHs drawn from semianalytic models (SAMs). SAMs predict longer formation timescales and older ages ∼2 Gyr, which are nearly twice as old as the estimates of the τ models. Both models yield good spectral energy distribution fits, indicating that the systematic uncertainty in the age due to degeneracies in the SFH is of that order of magnitude. However, SAM SFHs better match the observed slope and zero point of the SFR-mass main sequence. Contrary to expectations, some low-mass compact SFGs (log(M/M{sub ☉}) =10-10.6) have younger ages but lower specific SFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities (DIs) are both able to shrink galaxies, but DIs are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.« less

  8. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or othermore » photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.« less

  10. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  11. Phase Sensitive Demodulation in Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Fisher, Walt G.; Piston, David W.; Wachter, Eric A.

    2002-06-01

    Multiphoton laser scanning microscopy offers advantages in depth of penetration into intact samples over other optical sectioning techniques. To achieve these advantages it is necessary to detect the emitted light without spatial filtering. In this nondescanned (nonconfocal) approach, ambient room light can easily contaminate the signal, forcing experiments to be performed in absolute darkness. For multiphoton microscope systems employing mode-locked lasers, signal processing can be used to reduce such problems by taking advantage of the pulsed characteristics of such lasers. Specifically, by recovering fluorescence generated at the mode-locked frequency, interference from stray light and other ambient noise sources can be significantly reduced. This technology can be adapted to existing microscopes by inserting demodulation circuitry between the detector and data collection system. The improvement in signal-to-noise ratio afforded by this approach yields a more robust microscope system and opens the possibility of moving multiphoton microscopy from the research lab to more demanding settings, such as the clinic.

  12. Processing multiphoton states through operation on a single photon: Methods and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Qing; He Bing; Bergou, Janos A.

    2009-10-15

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inversemore » transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.« less

  13. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-09-07

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems.

  14. Characterizing and modeling organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cesarano, J. III; Cochran, R.J.

    New characterization and computational techniques have been developed to evaluate and simulate binder burnout from pressed powder compacts. Using engineering data and a control volume finite element method (CVFEM) thermal model, a nominally one dimensional (1-D) furnace has been designed to test, refine, and validate computer models that simulate binder burnout assuming a 1-D thermal gradient across the ceramic body during heating. Experimentally, 1-D radial heat flow was achieved using a rod-shaped heater that directly heats the inside surface of a stack of ceramic annuli surrounded by thermal insulation. The computational modeling effort focused on producing a macroscopic model formore » binder burnout based on continuum approaches to heat and mass conservation for porous media. Two increasingly complex models have been developed that predict the temperature and mass of a porous powder compact as a function of time during binder burnout. The more complex model also predicts the pressure within a powder compact during binder burnout. Model predictions are in reasonably good agreement with experimental data on binder burnout from a 57--65% relative density pressed powder compact of a 94 wt% alumina body containing {approximately}3 wt% binder. In conjunction with the detailed experimental data from the prototype binder burnout furnace, the models have also proven useful for conducting parametric studies to elucidate critical i-material property data required to support model development.« less

  15. Flow and Compaction During the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiao-Lan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2001-01-01

    The flow of an epoxy resin and compaction behavior of carbon fiber preform during vacuum- assisted resin transfer molding (VARTM) infiltration was measured using an instrumented tool. Composite panels were fabricated by the VARTM process using SAERTEX(R)2 multi-axial non- crimp carbon fiber fabric and the A.T.A.R.D. SI-ZG-5A epoxy resin. Resin pressure and preform thickness variation was measured during infiltration. The effects of the resin on the compaction behavior of the preform were measured. The local preform compaction during the infiltration is a combination of wetting and spring-back deformations. Flow front position computed by the 3DINFIL model was compared with the experimental data.

  16. Uniform GTD solution for the diffraction by metallic tapes on panelled compact-range reflectors

    NASA Technical Reports Server (NTRS)

    Somers, G. A.; Pathak, P. H.

    1992-01-01

    Metallic tape is commonly used to cover the interpanel gaps which occur in paneled compact-range reflectors. It is therefore of interest to study the effect of the scattering by the tape on the field in the target zone of the range. An analytical solution is presented for the target zone fields scattered by 2D metallic tapes. It is formulated by the generalized scattering matrix technique in conjunction with the Wiener-Hopf procedure. An extension to treat 3D tapes can be accomplished using the 2D solution via the equivalent current concept. The analytical solution is compared with a reference moment method solution to confirm the accuracy of the former.

  17. Nonlinear multi-photon laser wave-mixing optical detection in microarrays and microchips for ultrasensitive detection and separation of biomarkers for cancer and neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.

    2015-09-01

    Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.

  18. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  19. Clinical Study of the 3D-Master Color System among the Spanish Population.

    PubMed

    Gómez-Polo, Cristina; Gómez-Polo, Miguel; Martínez Vázquez de Parga, Juan Antonio; Celemín-Viñuela, Alicia

    2017-01-12

    To study whether the shades of the 3D-Master System were grouped and represented in the chromatic space according to the three-color coordinates of value, chroma, and hue. Maxillary central incisor color was measured on tooth surfaces through the Easyshade Compact spectrophotometer using 1361 participants aged between 16 and 89. The natural (not bleached teeth) color of the middle thirds was registered in the 3D-Master System nomenclature and in the CIELCh system. Principal component analysis and cluster analysis were applied. 75 colors of the 3D-Master System were found. The statistical analysis revealed the existence of 5 cluster groups. The centroid, the average of the 75 samples, in relation to lightness (L*) was 74.64, 22.87 for chroma (C*), and 88.85 for hue (h*). All of the clusters, except cluster 3, showed significant statistical differences with the centroid for the three-color coordinates (p <0.001). The results of this study indicated that 75 shades in the 3D-Master System were grouped into 5 clusters following coordinates L*, C*, and h* resulting from the dental spectrophotometer Vita Easyshade compact. The shades that composed each cluster did not belong to the same lightness color dimension groups. There was no special uniform chromatic distribution among the colors of the 3D-Master System. © 2017 by the American College of Prosthodontists.

  20. Optical 3D printing: bridging the gaps in the mesoscale

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2018-05-01

    Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial-scale production.

  1. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration

    NASA Astrophysics Data System (ADS)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  2. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  3. Reassigning the CaH+ 11Σ → 21Σ vibronic transition with CaD+

    NASA Astrophysics Data System (ADS)

    Condoluci, J.; Janardan, S.; Calvin, A. T.; Rugango, R.; Shu, G.; Sherrill, C. D.; Brown, K. R.

    2017-12-01

    We observe vibronic transitions in CaD+ between the 11Σ and 21Σ electronic states by resonance enhanced multiphoton photodissociation spectroscopy in a Coulomb crystal. The vibronic transitions are compared with previous measurements on CaH+. The result is a revised assignment of the CaH+ vibronic levels and a disagreement with multi-state-complete-active-space second-order perturbation theory theoretical calculations by approximately 700 cm-1. Updated high-level coupled-cluster calculations that include core-valence correlations reduce the disagreement between theory and experiment to 300 cm-1.

  4. Operating single quantum emitters with a compact Stirling cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlehahn, A.; Krüger, L.; Gschrey, M.

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, wemore » perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.« less

  5. Operating single quantum emitters with a compact Stirling cryocooler.

    PubMed

    Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  6. State of the art in electromagnetic modeling for the Compact Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less

  7. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor.

    PubMed

    Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V

    2018-06-07

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  8. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor

    NASA Astrophysics Data System (ADS)

    Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.

    2018-06-01

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  9. Multiphoton microscopic imaging of human normal and cancerous oesophagus tissue.

    PubMed

    Chen, W S; Wang, Y; Liu, N R; Zhang, J X; Chen, R

    2014-01-01

    In this paper, microstructures of human oesophageal submucosa are evaluated using multiphoton microscopy, based on two-photon excited fluorescence and second harmonic generation. The content and distribution of collagen, elastic fibers and cancer cells in normal and cancerous submucosa layer have been distinctly obtained and briefly discussed. The variation of these components is very relevant to the pathology in oesophagus, especially in early oesophageal cancer. Our results further indicate that the multiphoton microscopy technique has the potential application in vivo in clinical diagnosis and monitoring of early oesophageal cancer. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  10. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  11. Experimental observation of multiphoton Thomson scattering

    NASA Astrophysics Data System (ADS)

    Yan, Wenchao; Golovin, Grigory; Fruhling, Colton; Haden, Daniel; Zhang, Ping; Zhang, Jun; Zhao, Baozhen; Liu, Cheng; Chen, Shouyuan; Banerjee, Sudeep; Umstadter, Donald

    2016-10-01

    With the advent of high-power lasers, several multiphoton processes have been reported involving electrons in strong fields. For electrons that were initially bound to atoms, both multiphoton ionization and scattering have been reported. However, for free electrons, only low-order harmonic generation has been observed until now. This limitation stems from past difficulty in achieving the required ultra-high-field strengths in scattering experiments. Highly relativistic laser intensities are required to reach the multiphoton regime of Thomson scattering, and generate high harmonics from free electrons. The scaling parameter is the normalized vector potential (a0). Previous experiments have observed phenomena in the weakly relativistic case (a0 >> 1). In ultra-intense fields (a0 >>1), the anomalous electron trajectory is predicted to produce a spectrum characterized by the merging of multiple high-order harmonic generation into a continuum. This may be viewed as the multiphoton Thomson scattering regime analogous to the wiggler of a synchrotron. Thus, the light produced reflects the electrons behavior in an ultra-intense lase field. We discuss the first experiments in the highly relativistic case (a0 15). This material is based upon work supported by NSF No. PHY-153700; US DOE, Office of Science, BES, # DE-FG02-05ER15663; AFOSR # FA9550-11-1-0157; and DHS DNDO # HSHQDC-13-C-B0036.

  12. Laser spectroscopic study of the Rydberg state structure of atomic lithium

    NASA Astrophysics Data System (ADS)

    Ballard, M. Kent

    1998-07-01

    Pulsed laser induced fluorescence spectroscopy was performed on both isotopic species of atomic lithium. Nonresonant multiphoton excitation spectra were recorded. The laser induced fluorescence of the lithium vapor was measured following excitation with a tunable, pulsed, nanosecond laser. Both two- and three-photon allowed transitions were observed resulting in four different transition series originating from the 22S and 22P levels, the latter likely originating from photodissociation products of the lithium dimer, Li2. Forty-seven identifiable transitions were assigned for 6Li. Evidence for a parity forbidden multiphoton transition is also present. For 7Li, fifty-three identifiable transitions were assigned including an additional series of parity forbidden multiphoton transitions. Laser polarization and power dependencies were measured and found to be consistent with the multiphoton transition probabilities. Due to the intense laser fields needed to produce the nonresonant multiphoton excitations, the lithium vapor was subjected to the laser induced ac Stark effect. The Autler-Townes doublets observed for the nF gets 2P transition series were found to exhibit normal asymmetry. The observed asymmetrical Autler-Townes profiles are explained in terms of the two-level and the three-level atomic systems which are based on different excitation schemes. A new computerized data acquisition system was developed as well as associated computer programs needed to analyze spectra.

  13. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less

  14. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  15. Detection of the multiphoton signals in stained tissue using nonlinear optical microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yaping; Xu, Jian; Kang, Deyong; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging, has become a powerful, important tool for tissue imaging at the molecular level. Recently, MPM is also used to image hematoxylin and eosin (H and E)-stained sections in cancer diagnostics. However, several studies have showed that the MPM images of tissue stained with H and E are significantly different from unstained tissue sections. Our aim was to detect of the multiphoton signals in stained tissue by using MPM. In this paper, MPM was used to image histological sections of esophageal invasive carcinoma tissues stained with H, E, H and E and fresh tissue. To detect of the multiphoton signals in stained tissue, the emission spectroscopic of tissue stained with H, E, H and E were obtained. For comparison, the fresh tissues were also investigated. Our results showed that the tissue stained with H, E, H and E could be detected by their TPEF signals. While the tissue stained with H and fresh tissue could be detected by their TPEF and SHG signals. In this work, we detect of the multiphoton signals in stained tissue. These findings will be useful for choosing suitable staining method so to improve the quality of MPM imaging in the future.

  16. Photon Shot Noise Limited Radio Frequency Electric Field Sensing Using Rydberg Atoms in Vapor Cells

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Jahangiri, Akbar J.; Fan, Haoquan; Kuebler, Harald; Shaffer, James P.

    2017-04-01

    We report Rydberg atom-based radio frequency (RF) electrometry measurements at a sensitivity limited by probe laser photon shot noise. By utilizing the phenomena of electromagnetically induced transparency (EIT) in room temperature atomic vapor cells, Rydberg atoms can be used for absolute electric field measurements that significantly surpass conventional methods in utility, sensitivity and accuracy. We show that by using a Mach-Zehnder interferometer with homodyne detection or using frequency modulation spectroscopy with active control of residual amplitude modulation we can achieve a RF electric field detection sensitivity of 3 μVcm-1Hz/2. The sensitivity is limited by photon shot noise on the detector used to readout the probe laser of the EIT scheme. We suggest a new multi-photon scheme that can mitigate the effect of photon shot noise. The multi-photon approach allows an increase in probe laser power without decreasing atomic coherence times that result from collisions caused by an increase in Rydberg atom excitation. The multi-photon scheme also reduces Residual Doppler broadening enabling more accurate measurements to be carried out. This work is supported by DARPA, and NRO.

  17. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D.

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamicsmore » of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.« less

  18. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Ruth, A. A.; Gash, E. W.; Mansfield, M. W. D.

    2013-08-01

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.

  19. Field enhancement of multiphoton induced luminescence processes in ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Hyyti, Janne; Perestjuk, Marko; Mahler, Felix; Grunwald, Rüdiger; Güell, Frank; Gray, Ciarán; McGlynn, Enda; Steinmeyer, Günter

    2018-03-01

    The near-ultraviolet photoluminescence of ZnO nanorods induced by multiphoton absorption of unamplified Ti:sapphire pulses is investigated. Power dependence measurements have been conducted with an adaptation of the ultrashort pulse characterization method of interferometric frequency-resolved optical gating. These measurements enable the separation of second harmonic and photoluminescence bands due to their distinct coherence properties. A detailed analysis yields fractional power dependence exponents in the range of 3-4, indicating the presence of multiple nonlinear processes. The range in measured exponents is attributed to differences in local field enhancement, which is supported by independent photoluminescence and structural measurements. Simulations based on Keldysh theory suggest contributions by three- and four-photon absorption as well as avalanche ionization in agreement with experimental findings.

  20. Quasi-lattices of qubits for generating inequivalent multipartite entanglements

    NASA Astrophysics Data System (ADS)

    Ian, Hou

    2016-06-01

    The mesoscopic scale of superconducting qubits makes their inter-spacings comparable to the scale of wavelength of a circuit cavity field to which they commonly couple. This comparability results in inhomogeneous coupling strengths for each qubit and hence asynchronous Rabi excitation cycles among the qubits that form a quasi-lattice. We find that such inhomogeneous coupling benefits the formation of multi-photon resonances between the single-mode cavity field and the quasi-lattice. The multi-photon resonances lead, in turn, to the simultaneous generation of inequivalent |\\text{GHZ}> and |W> types of multipartite entanglement states, which are not transformable to each other through local operations with classical communications. Applying the model on the 3-qubit quasi-lattice and using the entanglement measures of both concurrence and 3-tangle, we verify that the inhomogeneous coupling specifically promotes the generation of the totally inseparable |\\text{GHZ}> state.

  1. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  2. De-embedding technique for accurate modeling of compact 3D MMIC CPW transmission lines

    NASA Astrophysics Data System (ADS)

    Pohan, U. H.; KKyabaggu, P. B.; Sinulingga, E. P.

    2018-02-01

    Requirement for high-density and high-functionality microwave and millimeter-wave circuits have led to the innovative circuit architectures such as three-dimensional multilayer MMICs. The major advantage of the multilayer techniques is that one can employ passive and active components based on CPW technology. In this work, MMIC Coplanar Waveguide(CPW)components such as Transmission Line (TL) are modeled in their 3D layouts. Main characteristics of CPWTL suffered from the probe pads’ parasitic and resonant frequency effects have been studied. By understanding the parasitic effects, then the novel de-embedding technique are developed accurately in order to predict high frequency characteristics of the designed MMICs. The novel de-embedding technique has shown to be critical in reducing the probe pad parasitic significantly from the model. As results, high frequency characteristics of the designed MMICs have been presented with minimumparasitic effects of the probe pads. The de-embedding process optimises the determination of main characteristics of Compact 3D MMIC CPW transmission lines.

  3. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-11-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m-1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m-1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/μɛ.

  4. Partially coherent lensfree tomographic microscopy⋄

    PubMed Central

    Isikman, Serhan O.; Bishara, Waheb; Ozcan, Aydogan

    2012-01-01

    Optical sectioning of biological specimens provides detailed volumetric information regarding their internal structure. To provide a complementary approach to existing three-dimensional (3D) microscopy modalities, we have recently demonstrated lensfree optical tomography that offers high-throughput imaging within a compact and simple platform. In this approach, in-line holograms of objects at different angles of partially coherent illumination are recorded using a digital sensor-array, which enables computing pixel super-resolved tomographic images of the specimen. This imaging modality, which forms the focus of this review, offers micrometer-scale 3D resolution over large imaging volumes of, for example, 10–15 mm3, and can be assembled in light weight and compact architectures. Therefore, lensfree optical tomography might be particularly useful for lab-on-a-chip applications as well as for microscopy needs in resource-limited settings. PMID:22193016

  5. Three-dimensional mapping of microcircuit correlation structure

    PubMed Central

    Cotton, R. James; Froudarakis, Emmanouil; Storer, Patrick; Saggau, Peter; Tolias, Andreas S.

    2013-01-01

    Great progress has been made toward understanding the properties of single neurons, yet the principles underlying interactions between neurons remain poorly understood. Given that connectivity in the neocortex is locally dense through both horizontal and vertical connections, it is of particular importance to characterize the activity structure of local populations of neurons arranged in three dimensions. However, techniques for simultaneously measuring microcircuit activity are lacking. We developed an in vivo 3D high-speed, random-access two-photon microscope that is capable of simultaneous 3D motion tracking. This allows imaging from hundreds of neurons at several hundred Hz, while monitoring tissue movement. Given that motion will induce common artifacts across the population, accurate motion tracking is absolutely necessary for studying population activity with random-access based imaging methods. We demonstrate the potential of this imaging technique by measuring the correlation structure of large populations of nearby neurons in the mouse visual cortex, and find that the microcircuit correlation structure is stimulus-dependent. Three-dimensional random access multiphoton imaging with concurrent motion tracking provides a novel, powerful method to characterize the microcircuit activity in vivo. PMID:24133414

  6. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

    PubMed

    Botchway, Stanley W; Reynolds, Pamela; Parker, Anthony W; O'Neill, Peter

    2012-01-01

    The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h in addition to those induced at replication demonstrating the broad range of timescales taken to repair DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Spin Multiphoton Antiresonance at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Hicke, Christian; Dykman, Mark

    2007-03-01

    Weakly anisotropic S>1 spin systems display multiphoton antiresonance. It occurs when an Nth overtone of the radiation frequency coincides with the distance between the ground and the Nth excited energy level (divided by ). The coherent response of the spin displays a sharp minimum or maximum as a function of frequency, depending on which state was initially occupied. We find the spectral shape of the response dips/peaks. We also study the stationary response for zero and finite temperatures. The response changes dramatically with increasing temperature, when excited states become occupied even in the absence of radiation. The change is due primarily to the increasing role of single-photon resonances between excited states, which occur at the same frequencies as multiphoton resonances. Single-photon resonances are broad, because the single-photon Rabi frequencies largely exceed the multi-photon ones. This allows us to separate different resonances and to study their spectral shape. We also study the change of the spectrum due to relaxational broadening of the peaks, with account taken of both decay and phase modulation.

  8. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  9. ARTICLES: Variation of the absorption cross section of high-power infrared laser radiation in homologous series of CnH2n+1OH molecules

    NASA Astrophysics Data System (ADS)

    Bagratashvili, Viktor N.; Brodskaya, E. A.; Vereshchagina, Lyudmila N.; Kuz'min, M. V.; Osmanov, R. R.; Putilin, F. N.; Stuchebryukhov, A. A.

    1984-11-01

    An experimental investigation was made of variation of the characteristics of infrared multiphoton absorption in a homologous series of CnH2n+1OH alcohols (n = 1-5) excited with CO2 laser pulses. The dependences of the energy absorbed by the molecules on the frequency and energy density of laser radiation were determined by the optoacoustic method. It was found that the multiphoton absorption cross section decreases on increase in the radiation energy density at a rate which becomes slower on increase in the molecular size. A model is proposed for multiphoton excitation of molecules in a homologous series. This model is based on an analysis of a resonant mode interacting with the infrared radiation field and coupled to a reservoir of modes that do not interact with the field. The model predicts correctly the change in the multiphoton absorption cross section on increase in the number of the degrees of freedom of a molecule.

  10. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast.

    PubMed

    Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei

    2012-08-01

    Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes.

  11. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast

    PubMed Central

    Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei

    2012-01-01

    Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes. PMID:22876358

  12. Echocardiography Comparison Between Two and Three Dimensional Echocardiograms

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.

  13. Space Product Development (SPD)

    NASA Image and Video Library

    2003-06-01

    Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.

  14. High-resolution multiphoton microscopy with a low-power continuous wave laser pump.

    PubMed

    Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen

    2018-02-15

    Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.

  15. Mapping the spatial patterns of field traffic and traffic intensity to predict soil compaction risks at the field scale

    NASA Astrophysics Data System (ADS)

    Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael

    2015-04-01

    Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.

  16. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections whichmore » is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)« less

  17. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  18. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  19. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  20. Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.

    PubMed

    Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2012-09-10

    An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.

  1. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Compact and broadband antenna based on a step-shaped metasurface.

    PubMed

    Li, Ximing; Yang, Jingjing; Feng, Yun; Yang, Meixia; Huang, Ming

    2017-08-07

    A metasurface (MS) is highly useful for improving the performance of patch antennae and reducing their size due to their inherent and unique electromagnetic properties. In this paper, a compact and broadband antenna based on a step-shaped metasurface (SMS) at an operating frequency of 4.3 GHz is presented, which is fed by a planar monopole and enabled by selecting an SMS with high selectivity. The SMS consists of an array of metallic step-shaped unit cells underneath the monopole, which provide footprint miniaturization and bandwidth expansion. Numerical results show that the SMS-based antenna with a maximum size of 0.42λ02 (where λ 0 is the operating wavelength in free space) exhibits a 22.3% impedance bandwidth (S11 < -10 dB) and a high gain of more than 7.15 dBi within the passband. Experimental results at microwave frequencies verify the performance of the proposed antenna, demonstrating substantial consistency with the simulation results. The compact and broadband antenna therefore predicts numerous potential applications within modern wireless communication systems.

  3. Design and Experimental Investigation of a Compact Circularly Polarized Integrated Filtering Antenna for Wearable Biotelemetric Devices.

    PubMed

    Jiang, Zhi Hao; Gregory, Micah D; Werner, Douglas H

    2016-04-01

    A compact circularly polarized (CP) integrated filtering antenna is reported for wearable biotelemetric devices in the 2.4 GHz ISM band. The design is based on a mutual synthesis of a CP patch antenna connected to a bandpass filter composed of coupled stripline open-loop resonators, which provides an integrated low-profile radiating and filtering module with a compact form factor of 0.44λ(0)×0.44λ(0)×0.04λ(0). The optimized filtering antenna is fabricated and measured, achieving an S11 < -14 dB, an axial ratio of less than 3 dB and gain higher than 3.5 dBi in the targeted ISM band. With the integrated filtering functionality, the antenna exhibits good out-of-band rejection over an ultra-wide frequency range of 1-6 GHz. Further full-wave simulations and experiments were carried out, verifying that the proposed filtering antenna maintains these desirable properties even when mounted in close proximity to the human body at different positions. The stable impedance performance and the simultaneous wide axial ratio and radiated power beam widths make it an ideal candidate as a wearable antenna for off-body communications. The additional integrated filtering functionality further improves utility by greatly reducing interference and crosstalk with other existing wireless systems.

  4. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.

    PubMed

    Li, Pan; Yu, Haibo; Liu, Na; Wang, Feifei; Lee, Gwo-Bin; Wang, Yuechao; Liu, Lianqing; Li, Wen Jung

    2018-05-23

    The development of microengineered hydrogels co-cultured with cells in vitro could advance in vivo bio-systems in both structural complexity and functional hierarchy, which holds great promise for applications in regenerative tissues or organs, drug discovery and screening, and bio-sensors or bio-actuators. Traditional hydrogel microfabrication technologies such as ultraviolet (UV) laser or multiphoton laser stereolithography and three-dimensional (3D) printing systems have advanced the development of 3D hydrogel micro-structures but need either expensive and complex equipment, or harsh material selection with limited photoinitiators. Herein, we propose a simple and flexible hydrogel microfabrication method based on a ubiquitous visible-light projection system combined with a custom-designed photosensitive microfluidic chip, to rapidly (typically several to tens of seconds) fabricate various two-dimensional (2D) hydrogel patterns and 3D hydrogel constructs. A theoretical layer-by-layer model that involves continuous polymerizing-delaminating-polymerizing cycles is presented to explain the polymerization and structural formation mechanism of hydrogels. A large area of hydrogel patterns was efficiently fabricated without the usage of costly laser systems or photoinitiators, i.e., a stereoscopic mesh-like hydrogel network with intersecting hydrogel micro-belts was fabricated via a series of dynamic-changing digital light projections. The pores and gaps of the hydrogel network are tunable, which facilitates the supply of nutrients and discharge of waste in the construction of 3D thick bio-models. Cell co-culture experiments showed the effective regulation of cell spreading by hydrogel scaffolds fabricated by the new method presented here. This visible light enabled hydrogel microfabrication method may provide new prospects for designing cell-based units for advanced biomedical studies, e.g., for 3D bio-models or bio-actuators in the future.

  5. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EGGS

    EPA Science Inventory

    Multiphoton laser scanning microscopy (MPLSM) is a promising tool to study the tissue distribution of environmental chemical contaminants during fish early life stages. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon that a...

  6. Multiphoton Imaging of Rabbit Cornea Treated with Mitomycin C after Photorefractive Keratectomy

    NASA Astrophysics Data System (ADS)

    Hsueh, Chiu-Mei; Lo, Wen; Wang, Tsung-Jen; Hu, Fung-Rong; Dong, Chen-Yuan

    2007-07-01

    In this work we use multiphoton microscopy to observe the post surgery structure variation of rabbit cornea after photorefractive keratectomy (PRK). In addition, we added mitomycin C (MMC) to the post surgery rabbit cornea in order to investigate the effect of MMC treatment on the postoperative regeneration.

  7. Verification Results of Jet Resonance-enhanced Multiphoton Ionization as a Real-time PCDD/F Emission Monitor

    EPA Science Inventory

    The Jet REMPI (Resonance Enhanced Multiphoton Ionization) monitor was tested on a hazardous waste firing boiler for its ability to determine concentrations of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs). Jet REMPI is a real time instrument capable of highly selec...

  8. A CANDLE for a deeper in vivo insight

    PubMed Central

    Coupé, Pierrick; Munz, Martin; Manjón, Jose V; Ruthazer, Edward S; Louis Collins, D.

    2012-01-01

    A new Collaborative Approach for eNhanced Denoising under Low-light Excitation (CANDLE) is introduced for the processing of 3D laser scanning multiphoton microscopy images. CANDLE is designed to be robust for low signal-to-noise ratio (SNR) conditions typically encountered when imaging deep in scattering biological specimens. Based on an optimized non-local means filter involving the comparison of filtered patches, CANDLE locally adapts the amount of smoothing in order to deal with the noise inhomogeneity inherent to laser scanning fluorescence microscopy images. An extensive validation on synthetic data, images acquired on microspheres and in vivo images is presented. These experiments show that the CANDLE filter obtained competitive results compared to a state-of-the-art method and a locally adaptive optimized nonlocal means filter, especially under low SNR conditions (PSNR<8dB). Finally, the deeper imaging capabilities enabled by the proposed filter are demonstrated on deep tissue in vivo images of neurons and fine axonal processes in the Xenopus tadpole brain. PMID:22341767

  9. Compact FPGA-based beamformer using oversampled 1-bit A/D converters.

    PubMed

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-05-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.

  10. Multilayered nonuniform sampling for three-dimensional scene representation

    NASA Astrophysics Data System (ADS)

    Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren

    2015-09-01

    The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.

  11. Study of the most frequent natural tooth colors in the Spanish population using spectrophotometry

    PubMed Central

    2015-01-01

    PURPOSE To identify the most frequent natural tooth colors using the Easyshade Compact (Vita -Zahnfabrik) spectrophotometer on a sample of the Spanish population according to the 3D Master System. MATERIALS AND METHODS The middle third of the facial surface of natural maxillary central incisors was measured with an Easyshade Compact spectrophotometer (Vita Zahnfabrik) in 1361 Caucasian Spanish participants aged between 16 and 89 years. Natural tooth color was recorded using the 3D Master System nomenclature. The program used for the present descriptive statistical analysis of the results was SAS 9.1.3. RESULTS The results show that the most frequent dental color in the total sample studied is 3M1 (7.05%), followed by the intermediate shade 1M1.5 (6.91%) and 2L1.5 (6.02%). CONCLUSION According to the research methodology used, and taking into account the limitations of this study, it can be proposed that the most frequent color among the Spanish population is 3M1; the most common lightness group is 2; the most frequent hue group according to the 3D Master System is M and the most frequent chroma group is 1.5. PMID:26816571

  12. Experimental test of fidelity limits in six-photon interferometry and of rotational invariance properties of the photonic six-qubit entanglement singlet state.

    PubMed

    Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed

    2009-10-09

    Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.

  13. Massive Star Formation of the SGR a East H (sub II) Regions Near the Galactic Center

    NASA Technical Reports Server (NTRS)

    Yusef-Zadeh, F.; Lacy, J. H.; Wardle, M.; Whitney, B.; Bushouse, H.; Roberts, D. A.; Arendt, R. G.

    2010-01-01

    A group of four compact H II regions associated with the well-known 50 km/s molecular cloud is the closest site of on-going star formation to the dynamical center of the Galaxy, at a projected distance of approximately 6 pc. We present a study of ionized gas based on the [Ne II] (12.8 micron) line, as well as multi-frequency radio continuum, Hubble Space Telescope Pa alpha, and Spitzer Infrared Array Camera observations of the most compact member of the H II group, Sgr A East H II D. The radio continuum image at 6 cm shows that this source breaks up into two equally bright ionized features, D1 and D2. The spectral energy distribution of the D source is consistent with it being due to a 25 =/- 3 solar mass star with a luminosity of 8 +/- 3 x 10(exp 4) Solar luminosity . The inferred mass, effective temperature of the UV source, and the ionization rate are compatible with a young O9-B0 star. The ionized features D1 and D2 are considered to be ionized by UV radiation collimated by an accretion disk. We consider that the central massive star photoevaporates its circumstellar disk on a timescale of 3x (exp 4) years giving a mass flux approximately 3 x 10(exp -5) Solar Mass / year and producing the ionized material in D1 and D2 expanding in an inhomogeneous medium. The ionized gas kinematics, as traced by the [Ne II] emission, is difficult to interpret, but it could be explained by the interaction of a bipolar jet with surrounding gas along with what appears to be a conical wall of lower velocity gas. The other H II regions, Sgr A East A-C, have morphologies and kinematics that more closely resemble cometary flows seen in other compact H II regions, where gas moves along a paraboloidal surface formed by the interaction of a stellar wind with a molecular cloud.

  14. Tunable multiphoton Rabi oscillations in an electronic spin system

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.

    2011-10-01

    We report on multiphoton Rabi oscillations and controlled tuning of a multilevel system at room temperature (S=5/2 for Mn2+:MgO) in and out of a quasiharmonic level configuration. The anisotropy is much smaller than the Zeeman splittings, e.g., the six-level scheme shows only a small deviation from an equidistant diagram. This allows us to tune the spin dynamics by compensating for the cubic anisotropy with either a precise static-field orientation or a microwave field intensity. Using the rotating-frame approximation, the experiments are explained very well by both an analytical model and a generalized numerical model. The calculated multiphoton Rabi frequencies are in excellent agreement with the experimental data.

  15. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  16. Applications of multiphoton microscopy in the field of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Li, Lianhuang; Zhu, Xiaoqin; Zheng, Liqin; Zhuo, Shuangmu; Chen, Jianxin

    2018-06-01

    Multiphoton microscopy (MPM) is a powerful tool for visualizing cellular and subcellular details within living tissue by its unique advantages of being label-free, its intrinsic optical sectioning ability, near-infrared excitation for deep penetration depth into tissue, reduced photobleaching and phototoxicity in the out-of-focus regions, and being capable of providing quantitative information. In this review, we focus on applications of MPM in the field of colorectal cancer, including monitoring cancer progression, detecting tumor metastasis and microenvironment, evaluating the cancer therapy response, and visualizing and ablating pre-invasive cancer cells. We also present one of the major challenges and the future research direction to exploit a colorectal multiphoton endoscope.

  17. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  18. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.

    PubMed

    Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A

    2008-06-01

    Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.

  19. HPC in Basin Modeling: Simulating Mechanical Compaction through Vertical Effective Stress using Level Sets

    NASA Astrophysics Data System (ADS)

    McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.

    2017-12-01

    In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.

  20. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  1. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EARLY LIFE STAGES

    EPA Science Inventory

    Multiphoton laser scanning micrsocopy holds promise as a tool to study the tissue distribution of environmental chemical contaminants during fish early life stage development. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polyaromatic hydrocarbon that a...

  2. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    DTIC Science & Technology

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  3. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  4. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue.

    PubMed

    Yoshitake, Tadayuki; Giacomelli, Michael G; Cahill, Lucas C; Schmolze, Daniel B; Vardeh, Hilde; Faulkner-Jones, Beverly E; Connolly, James L; Fujimoto, James G

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  5. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    PubMed Central

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    Abstract. Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue. PMID:28032121

  6. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    PubMed

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  7. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  8. Multiphoton Absorption is Probably Not the Primary Threshold Damage Mechanism for Femtosecond Laser Pulse Exposures in the Retinal Pigment Epithelium

    DTIC Science & Technology

    2004-01-01

    Tromberg, and E. Gratton, "Two-photon excited lifetime imaging of autofluorescence in cells during UTVA and NIR photostress", J. Micros. 183, pp. 197-204...1996. 4. K. Konig, Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, " Autofluorescence spectroscopy of optically trapped cells", Photochem...34, Photochem. Photobiol. 70, pp. 146-151, 1999. 10. R. D. Glickman, "Phototoxicity to the retina : Mechanisms of damage", International Journal of

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuang, Chihpin; Singh, Dileep; Kenesei, Peter

    The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix.

  10. Raman Microscopy: A Noninvasive Method to Visualize the Localizations of Biomolecules in the Cornea.

    PubMed

    Kaji, Yuichi; Akiyama, Toshihiro; Segawa, Hiroki; Oshika, Tetsuro; Kano, Hideaki

    2017-11-01

    In vivo and in situ visualization of biomolecules without pretreatment will be important for diagnosis and treatment of ocular disorders in the future. Recently, multiphoton microscopy, based on the nonlinear interactions between molecules and photons, has been applied to reveal the localizations of various molecules in tissues. We aimed to use multimodal multiphoton microscopy to visualize the localizations of specific biomolecules in rat corneas. Multiphoton images of the corneas were obtained from nonlinear signals of coherent anti-Stokes Raman scattering, third-order sum frequency generation, and second-harmonic generation. The localizations of the adhesion complex-containing basement membrane and Bowman layer were clearly visible in the third-order sum frequency generation images. The fine structure of type I collagen was observed in the corneal stroma in the second-harmonic generation images. The localizations of lipids, proteins, and nucleic acids (DNA/RNA) was obtained in the coherent anti-Stokes Raman scattering images. Imaging technologies have progressed significantly and been applied in medical fields. Optical coherence tomography and confocal microscopy are widely used but do not provide information on the molecular structure of the cornea. By contrast, multiphoton microscopy provides information on the molecular structure of living tissues. Using this technique, we successfully visualized the localizations of various biomolecules including lipids, proteins, and nucleic acids in the cornea. We speculate that multiphoton microscopy will provide essential information on the physiological and pathological conditions of the cornea, as well as molecular localizations in tissues without pretreatment.

  11. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    NASA Astrophysics Data System (ADS)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  13. Improvement of depth resolution on photoacoustic imaging using multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Fujiwara, Katsuji; Takamatsu, Tetsuro

    2007-07-01

    Commercial imaging systems, such as computed tomography and magnetic resonance imaging, are frequently used powerful tools for observing structures deep within the human body. However, they cannot precisely visualized several-tens micrometer-sized structures for lack of spatial resolution. In this presentation, we propose photoacoustic imaging using multiphoton absorption technique to generate ultrasonic waves as a means of improving depth resolution. Since the multiphoton absorption occurs at only the focus point and the employed infrared pulses deeply penetrate living tissues, it enables us to extract characteristic features of structures embedded in the living tissue. When nanosecond pulses from a 1064-nm Nd:YAG laser were focused on Rhodamine B/chloroform solution (absorption peak: 540 nm), the peak intensity of the generated photoacoustic signal was proportional to the square of the input pulse energy. This result shows that the photoacoustic signals can be induced by the two-photon absorption of infrared nanosecond pulse laser and also can be detected by a commercial low-frequency MHz transducer. Furthermore, in order to evaluate the depth resolution of multiphoton-photoacoustic imaging, we investigated the dependence of photoacoustic signal on depth position using a 1-mm-thick phantom in a water bath. We found that the depth resolution of two-photon photoacoustic imaging (1064 nm) is greater than that of one-photon photoacoustic imaging (532 nm). We conclude that evolving multiphoton-photoacoustic imaging technology renders feasible the investigation of biomedical phenomena at the deep layer in living tissue.

  14. Clinical multiphoton FLIM tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  15. Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion.

    PubMed

    Zhou, Jiajia; Teng, Yu; Liu, Xiaofeng; Ye, Song; Xu, Xiaoqiu; Ma, Zhijun; Qiu, Jianrong

    2010-10-11

    We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500 nm into near-infrared emission by a Ca(8)Mg(SiO(4))(4)Cl(2): Eu(2+), Er(3+) phosphor. Efficient 1530-1560 nm Er(3+) emission ((4)I(13/2)-->(4)I(15/2)) was detected under the excitation of Eu(2+) (4f?5d) absorption band as a result of energy transfer from Eu(2+) to Er(3+), which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu(2+) to Er(3+) followed by a multi-photon quantum cutting of Er(3+) is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er(3+): (4)I(13/2)-->(4)I(15/2) transition matches well with the bandgap of Ge (Eg~0.785 eV).

  16. Microfabrication of extracellular matrix structures using multipohoton-excited photochemistry: Application to modeling ovarian tissue in vitro

    NASA Astrophysics Data System (ADS)

    Ajeti, Visar

    The extracellular matrix plays a crucial role in tissue development, differentiation and homeostasis by providing the necessary biophysical and biochemical cues for the cells. In tumors, the composition and the structure of the microenvironment is thought to be manipulated by the cancers cells to support proliferative growth and enhanced migration as means of facilitated metastasis. Current in vitro tools to address these mechanistic events in tumor progression are lacking in part due to the difficulty in recapitulating the complexity of the composition and nanoarchitecture of the tumor microenvironment. In this thesis, we explore the feasibility of multiphoton-excited photochemistry as a fabrication tool for generating in vitro scaffolds that are highly repeatable, biologically relevant and relatively affordable in a research setting. The power of this technique lays in the capabilities of crosslinking whole extracellular matrix proteins in three dimensions (3D) to recreate key topographical features of the tissue with sub-micron resolution and high fidelity. The technological developments we present here enable direct translation of matrix topographies by using the high resolution image data of the tissue samples as a fabrication template. To this effect, we have applied the fabrication technique to generate gradients of crosslinked proteins as means of studying the role of haptotaxis in ovarian and breast cancers. Our findings show that cancer cells modulate their migration velocity and persistence in response to the changes in the composition of the extracellular matrix. In addition, we have examined structural features of the stroma in relation to cancer migration dynamics. We find that by recreating highly aligned nanoarchitectural features prevalent in cancer stroma, we see permissive and enhanced cell migration with cell morphologies similar to in vivo. We believe multiphoton fabrication to be an enabling tool in the next generation of tissue scaffolding. Having the means to carefully recreate complex topographies can ultimately enhance our knowledge of cancer migration in 3D environments as well as provide valued insights in developing novel therapies aim at treating this disease.

  17. 3D Cones Acquisition of Human Extremity Imaging Using a 1.5T Superconducting Magnet and an Unshielded Gradient Coil Set.

    PubMed

    Setoi, Ayana; Kose, Katsumi

    2018-05-16

    We developed ultrashort echo-time (UTE) imaging sequences with 3D Cones trajectories for a home-built compact MRI system using a 1.5T superconducting magnet and an unshielded gradient coil set. We achieved less than 7 min imaging time and obtained clear in vivo images of a human forearm with a TE of 0.4 ms. We concluded that UTE imaging using 3D Cones acquisition was successfully implemented in our 1.5T MRI system.

  18. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Powis, Ivan; Janssen, Maurice H M

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations. Qualitative agreement is observed between the experimental results and the theoretical calculations of the Legendre moments representing the angular distribution for the two enantiomers. The electron-ion coincidence technique using multiphoton ionization opens new directions in table-top analytical mass-spectrometric applications of mixtures of chiral molecules.

  19. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flightmore » mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations. Qualitative agreement is observed between the experimental results and the theoretical calculations of the Legendre moments representing the angular distribution for the two enantiomers. The electron-ion coincidence technique using multiphoton ionization opens new directions in table-top analytical mass-spectrometric applications of mixtures of chiral molecules.« less

  20. System Construction of the Stilbene Compact Neutron Scatter Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).

  1. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    PubMed Central

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  2. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  3. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  4. System design for 3D wound imaging using low-cost mobile devices

    NASA Astrophysics Data System (ADS)

    Sirazitdinova, Ekaterina; Deserno, Thomas M.

    2017-03-01

    The state-of-the art method of wound assessment is a manual, imprecise and time-consuming procedure. Per- formed by clinicians, it has limited reproducibility and accuracy, large time consumption and high costs. Novel technologies such as laser scanning microscopy, multi-photon microscopy, optical coherence tomography and hyper-spectral imaging, as well as devices relying on the structured light sensors, make accurate wound assessment possible. However, such methods have limitations due to high costs and may lack portability and availability. In this paper, we present a low-cost wound assessment system and architecture for fast and accurate cutaneous wound assessment using inexpensive consumer smartphone devices. Computer vision techniques are applied either on the device or the server to reconstruct wounds in 3D as dense models, which are generated from images taken with a built-in single camera of a smartphone device. The system architecture includes imaging (smartphone), processing (smartphone or PACS) and storage (PACS) devices. It supports tracking over time by alignment of 3D models, color correction using a reference color card placed into the scene and automatic segmentation of wound regions. Using our system, we are able to detect and document quantitative characteristics of chronic wounds, including size, depth, volume, rate of healing, as well as qualitative characteristics as color, presence of necrosis and type of involved tissue.

  5. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models

    PubMed Central

    Lakner, Pirmin H.; Monaghan, Michael G.; Möller, Yvonne; Olayioye, Monilola A.; Schenke-Layland, Katja

    2017-01-01

    Fluorescence lifetime imaging microscopy (FLIM) can measure and discriminate endogenous fluorophores present in biological samples. This study seeks to identify FLIM as a suitable method to non-invasively detect a shift in cellular metabolic activity towards glycolysis or oxidative phosphorylation in 3D Caco-2 models of colorectal carcinoma. These models were treated with potassium cyanide or hydrogen peroxide as controls, and epidermal growth factor (EGF) as a physiologically-relevant influencer of cell metabolic behaviour. Autofluorescence, attributed to nicotinamide adenine dinucleotide (NADH), was induced by two-photon laser excitation and its lifetime decay was analysed using a standard multi-exponential decay approach and also a novel custom-written code for phasor-based analysis. While both methods enabled detection of a statistically significant shift of metabolic activity towards glycolysis using potassium cyanide, and oxidative phosphorylation using hydrogen peroxide, employing the phasor approach required fewer initial assumptions to quantify the lifetimes of contributing fluorophores. 3D Caco-2 models treated with EGF had increased glucose consumption, production of lactate, and presence of ATP. FLIM analyses of these cultures revealed a significant shift in the contribution of protein-bound NADH towards free NADH, indicating increased glycolysis-mediated metabolic activity. This data demonstrate that FLIM is suitable to interpret metabolic changes in 3D in vitro models. PMID:28211922

  6. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models.

    PubMed

    Lakner, Pirmin H; Monaghan, Michael G; Möller, Yvonne; Olayioye, Monilola A; Schenke-Layland, Katja

    2017-02-13

    Fluorescence lifetime imaging microscopy (FLIM) can measure and discriminate endogenous fluorophores present in biological samples. This study seeks to identify FLIM as a suitable method to non-invasively detect a shift in cellular metabolic activity towards glycolysis or oxidative phosphorylation in 3D Caco-2 models of colorectal carcinoma. These models were treated with potassium cyanide or hydrogen peroxide as controls, and epidermal growth factor (EGF) as a physiologically-relevant influencer of cell metabolic behaviour. Autofluorescence, attributed to nicotinamide adenine dinucleotide (NADH), was induced by two-photon laser excitation and its lifetime decay was analysed using a standard multi-exponential decay approach and also a novel custom-written code for phasor-based analysis. While both methods enabled detection of a statistically significant shift of metabolic activity towards glycolysis using potassium cyanide, and oxidative phosphorylation using hydrogen peroxide, employing the phasor approach required fewer initial assumptions to quantify the lifetimes of contributing fluorophores. 3D Caco-2 models treated with EGF had increased glucose consumption, production of lactate, and presence of ATP. FLIM analyses of these cultures revealed a significant shift in the contribution of protein-bound NADH towards free NADH, indicating increased glycolysis-mediated metabolic activity. This data demonstrate that FLIM is suitable to interpret metabolic changes in 3D in vitro models.

  7. Compact Encoding of Robot-Generated 3D Maps for Efficient Wireless Transmission

    DTIC Science & Technology

    2003-01-01

    Lempel - Ziv -Welch (LZW) and Ziv - Lempel (LZ77) respectively. Image based compression can also be based on dic- tionaries... compression of the data , without actually displaying a 3D model, printing statistical results for comparison of the different algorithms . 1http... compression algorithms , and wavelet algorithms tuned to the specific nature of the raw laser data . For most such applications, the usage of lossless

  8. Wide field of view common-path lateral-shearing digital holographic interference microscope

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.

  9. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  10. A compact D-band monolithic APDP-based sub-harmonic mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Shengzhou; Sun, Lingling; Wang, Xiang; Wen, Jincai; Liu, Jun

    2017-11-01

    The paper presents a compact D-band monolithic sub-harmonic mixer (SHM) with 3 μm planar hyperabrupt schottky-varactor diodes offered by 70 nm GaAs mHEMT technology. According to empirical equivalent-circuit models, a wide-band large signal equivalent circuit model of the diode is proposed. Based on the extracted model, the mixer is implemented and optimized with a shunt-mounted anti-parallel diode pair (APDP) to fulfill the sub-harmonic mixing mechanism. Furthermore, a modified asymmetric three-transmission-line coupler is devised to achieve high-level coupling and minimize the chip size. The measured results show that the conversion gain varies between -13.9 dB and -17.5 dB from 110 GHz to 145 GHz, with a local oscillator (LO) power level of 14 dBm and an intermediate frequency (IF) of 1 GHz. The total chip size including probe GSG pads is 0.57 × 0.68mm2. In conclusion, the mixer exhibits outstanding figure-of-merits.

  11. 3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology

    NASA Astrophysics Data System (ADS)

    Canavesi, Cristina; Cogliati, Andrea; Hayes, Adam; Tankam, Patrice; Santhanam, Anand; Rolland, Jannick P.

    2017-02-01

    Real-time volumetric high-definition wide-field-of-view in-vivo cellular imaging requires micron-scale resolution in 3D. Compactness of the handheld device and distortion-free images with cellular resolution are also critically required for onsite use in clinical applications. By integrating a custom liquid lens-based microscope and a dual-axis MEMS scanner in a compact handheld probe, Gabor-domain optical coherence microscopy (GD-OCM) breaks the lateral resolution limit of optical coherence tomography through depth, overcoming the tradeoff between numerical aperture and depth of focus, enabling advances in biotechnology. Furthermore, distortion-free imaging with no post-processing is achieved with a compact, lightweight handheld MEMS scanner that obtained a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Approaching the holy grail of medical imaging - noninvasive real-time imaging with histologic resolution - GD-OCM demonstrates invariant resolution of 2 μm throughout a volume of 1 x 1 x 0.6 mm3, acquired and visualized in less than 2 minutes with parallel processing on graphics processing units. Results on the metrology of manufactured materials and imaging of human tissue with GD-OCM are presented.

  12. On dual and three space problems for the compact approximation property

    NASA Astrophysics Data System (ADS)

    Choi, Changsun; Kim, Ju Myung

    2006-11-01

    We introduce the properties W*D and BW*D for the dual space of a Banach space. And then solve the dual problem for the compact approximation property (CAP): if X* has the CAP and the W*D, then X has the CAP. Also, we solve the three space problem for the CAP: for example, if M is a closed subspace of a Banach space such that M[perpendicular] is complemented in X* and X* has the W*D, then X has the CAP whenever X/M has the CAP and M has the bounded CAP. Corresponding problems for the bounded compact approximation property are also addressed.

  13. Explaining compact groups as change alignments

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams & Rood 1987; Sulentic 1987; Hickson & Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke & Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups.

  14. Design, Implementation, and Characterization of a Dedicated Breast Computed Mammo Tomography System for Enhanced Lesion Imaging

    DTIC Science & Technology

    2007-03-01

    common FOV of each system. 64 SPECT System Our current emission tomography system uses a compact 16x20cm 2 field of view Cadmium Zinc Telluride (CZT...Brzymialkiewicz, M.P. Tornai, R.L. McKinley, J.E. Bowsher. “Evaluation of Fully 3D Emission Mammotomography with a Compact Cadmium Zinc Telluride Detector...conclusions. Stacks of breast tissue equivalent plates, each 2.0cm thick (CIRS Inc., Norfolk, VA) having either 100% glandular or 100% adipose composition

  15. Nonlinear Analysis of Airfoil High-Intensity Gust Response Using a High-Order Prefactored Compact Code

    NASA Technical Reports Server (NTRS)

    Crivellini, A.; Golubev, V.; Mankbadi, R.; Scott, J. R.; Hixon, R.; Povinelli, L.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    The nonlinear response of symmetric and loaded airfoils to an impinging vortical gust is investigated in the parametric space of gust dimension, intensity, and frequency. The study, which was designed to investigate the validity limits for a linear analysis, is implemented by applying a nonlinear high-order prefactored compact code and comparing results with linear solutions from the GUST3D frequency-domain solver. Both the unsteady aerodynamic and acoustic gust responses are examined.

  16. Modeling extracellular matrix (ECM) alterations in ovarian cancer by multiphoton excited fabrication of stromal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh

    2016-04-01

    A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.

  17. Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities

    PubMed Central

    Kozai, Takashi D.Y.; Vazquez, Alberto L.

    2015-01-01

    Bioelectronics, electronic technologies that interface with biological systems, are experiencing rapid growth in terms of technology development and applications, especially in neuroscience and neuroprosthetic research. The parallel growth with optogenetics and in vivo multi-photon microscopy has also begun to generate great enthusiasm for simultaneous applications with bioelectronic technologies. However, emerging research showing artefact contaminated data highlight the need for understanding the fundamental physical principles that critically impact experimental results and complicate their interpretation. This review covers four major topics: 1) material dependent properties of the photoelectric effect (conductor, semiconductor, organic, photoelectric work function (band gap)); 2) optic dependent properties of the photoelectric effect (single photon, multiphoton, entangled biphoton, intensity, wavelength, coherence); 3) strategies and limitations for avoiding/minimizing photoelectric effects; and 4) advantages of and applications for light-based bioelectronics (photo-bioelectronics). PMID:26167283

  18. High-resolution, 2- and 3-dimensional imaging of uncut, unembedded tissue biopsy samples.

    PubMed

    Torres, Richard; Vesuna, Sam; Levene, Michael J

    2014-03-01

    Despite continuing advances in tissue processing automation, traditional embedding, cutting, and staining methods limit our ability for rapid, comprehensive visual examination. These limitations are particularly relevant to biopsies for which immediate therapeutic decisions are most necessary, faster feedback to the patient is desired, and preservation of tissue for ancillary studies is most important. The recent development of improved tissue clearing techniques has made it possible to consider use of multiphoton microscopy (MPM) tools in clinical settings, which could address difficulties of established methods. To demonstrate the potential of MPM of cleared tissue for the evaluation of unembedded and uncut pathology samples. Human prostate, liver, breast, and kidney specimens were fixed and dehydrated by using traditional histologic techniques, with or without incorporation of nucleic acid fluorescent stains into dehydration steps. A benzyl alcohol/benzyl benzoate clearing protocol was substituted for xylene. Multiphoton microscopy was performed on a home-built system. Excellent morphologic detail was achievable with MPM at depths greater than 500 μm. Pseudocoloring produced images analogous to hematoxylin-eosin-stained images. Concurrent second-harmonic generation detection allowed mapping of collagen. Subsequent traditional section staining with hematoxylin-eosin did not reveal any detrimental morphologic effects. Sample immunostains on renal tissue showed preservation of normal reactivity. Complete reconstructions of 1-mm cubic samples elucidated 3-dimensional architectural organization. Multiphoton microscopy on cleared, unembedded, uncut biopsy specimens shows potential as a practical clinical tool with significant advantages over traditional histology while maintaining compatibility with gold standard techniques. Further investigation to address remaining implementation barriers is warranted.

  19. Solitonic guide and multiphoton absorption processes in photopolymerizable materials for optical integrated circuits

    NASA Astrophysics Data System (ADS)

    Klein, Stephane; Barsella, Alberto; Acker, D.; Sutter, C.; Beyer, N.; Andraud, Chantal; Fort, Alain F.; Dorkenoo, Kokou D.

    2004-09-01

    Up to now, most of the optical integrated devices are realized on glass or III-V substrates and the waveguides are usually obtained by photolithography techniques. We present here a new approach based on the use of photopolymerizable compounds. The conditions of self-written channel creation by solitonic propagation inside the bulk of these photopolymerizable formulations are analyzed. Both experimental and theoretical results of the various stages of self-written guide propagation are presented. A further step has been achieved by using a two-photon absorption process for the polymerization via a confocal microscopy technique. Combined with the solitonic guide creation, this technique allows to draw 3D optical circuits. Finally, by doping the photopolymerizable mixtures with push-pull chromophores having a controlled orientation, it will be possible to create active optical integrated devices.

  20. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  1. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 2012 MULTIPHOTON PROCESSES GRC, JUNE 3-8, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Barry

    2012-03-08

    The sessions will focus on:  Attosecond science;  Strong-field processes in molecules and solids;  Generation of harmonics and attosecond pulses;  Free-electron laser experiments and theory;  Ultrafast imaging;  Applications of very high intensity lasers;  Propagation of intense laser fields.

  3. R&D Nuggets

    Science.gov Websites

    Origin of the Chemical Elements and Their Discoveries [added 1/2007] National Laboratories and Other to the content of DOE R&D Accomplishments. Celebrating Einstein - series of articles about Albert Einstein and his work [added 3/2005] Compact Portable Electric Power Sources [added 1/2007] History of the

  4. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  5. IR and visible luminescence studies in the infrared multiphoton dissociation of 1,2-dibromo-1,1-difluoroethane

    NASA Astrophysics Data System (ADS)

    Pushpa, K. K.; Kumar, Awadhesh; Vatsa, R. K.; Naik, P. D.; Annaji Rao, K.; Mittal, J. P.; Parthasarathy, V.; Sarkar, S. K.

    1995-07-01

    The infrared multiphoton dissociation of 1,2-dibromo-1,1-difluoroethane gives rise to IR and visible luminescence. Vibrationally excited parent molecules dissociate via two primary channels yielding bromine and vibrationally excited HBr. The strong visible emission observed between 350 to 750 nm has been assigned to electronically excited carbene CF 2Br CH.

  6. Mitochondrial Permeability Transition in Pathogenesis of Hemorrhagic Injury: Targeted Therapy with Minocycline

    DTIC Science & Technology

    2012-03-01

    minocy- cline treatment (Figures 1-4). Minocycline also improved mitochondrial function as assessed by intravital multiphoton imaging of the...will make direct measurements by intravital multiphoton microscopy to determine whether onset of the mitochondrial permeability transition and...oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization were assessed by intravital microscopy. After H/R with vehicle or

  7. Visualizing Viral Infection In Vivo by Multi-Photon Intravital Microscopy.

    PubMed

    Sewald, Xaver

    2018-06-20

    Viral pathogens have adapted to the host organism to exploit the cellular machinery for virus replication and to modulate the host cells for efficient systemic dissemination and immune evasion. Much of our knowledge of the effects that virus infections have on cells originates from in vitro imaging studies using experimental culture systems consisting of cell lines and primary cells. Recently, intravital microscopy using multi-photon excitation of fluorophores has been applied to observe virus dissemination and pathogenesis in real-time under physiological conditions in living organisms. Critical steps during viral infection and pathogenesis could be studied by direct visualization of fluorescent virus particles, virus-infected cells, and the immune response to viral infection. In this review, I summarize the latest research on in vivo studies of viral infections using multi-photon intravital microscopy (MP-IVM). Initially, the underlying principle of multi-photon microscopy is introduced and experimental challenges during microsurgical animal preparation and fluorescent labeling strategies for intravital imaging are discussed. I will further highlight recent studies that combine MP-IVM with optogenetic tools and transcriptional analysis as a powerful approach to extend the significance of in vivo imaging studies of viral pathogens.

  8. Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.

    2007-02-01

    A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.

  9. Transfer, Imaging, and Analysis Plate for Facile Handling of 384 Hanging Drop 3D Tissue Spheroids

    PubMed Central

    Cavnar, Stephen P.; Salomonsson, Emma; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi

    2014-01-01

    Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated highfidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type–dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging. PMID:24051516

  10. Transfer, imaging, and analysis plate for facile handling of 384 hanging drop 3D tissue spheroids.

    PubMed

    Cavnar, Stephen P; Salomonsson, Emma; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2014-04-01

    Three-dimensional culture systems bridge the experimental gap between in vivo and in vitro physiology. However, nonstandardized formation and limited downstream adaptability of 3D cultures have hindered mainstream adoption of these systems for biological applications, especially for low- and moderate-throughput assays commonly used in biomedical research. Here we build on our recent development of a 384-well hanging drop plate for spheroid culture to design a complementary spheroid transfer and imaging (TRIM) plate. The low-aspect ratio wells of the TRIM plate facilitated high-fidelity, user-independent, contact-based collection of hanging drop spheroids. Using the TRIM plate, we demonstrated several downstream analyses, including bulk tissue collection for flow cytometry, high-resolution low working-distance immersion imaging, and timely reagent delivery for enzymatic studies. Low working-distance multiphoton imaging revealed a cell type-dependent, macroscopic spheroid structure. Unlike ovarian cancer spheroids, which formed loose, disk-shaped spheroids, human mammary fibroblasts formed tight, spherical, and nutrient-limited spheroids. Beyond the applications we describe here, we expect the hanging drop spheroid plate and complementary TRIM plate to facilitate analyses of spheroids across the spectrum of throughput, particularly for bulk collection of spheroids and high-content imaging.

  11. In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin.

    PubMed

    Liang, Xing; Graf, Benedikt W; Boppart, Stephen A

    2011-06-01

    The biomechanical properties of living cells depend on their molecular building blocks, and are important for maintaining structure and function in cells, the extracellular matrix, and tissues. These biomechanical properties and forces also shape and modify the cellular and extracellular structures under stress. While many studies have investigated the biomechanics of single cells or small populations of cells in culture, or the properties of organs and tissues, few studies have investigated the biomechanics of complex cell populations in vivo. With the use of advanced multiphoton microscopy to visualize in vivo cell populations in human skin, the biomechanical properties are investigated in a depth-dependent manner in the stratum corneum and epidermis using quasi-static mechanical deformations. A 2D elastic registration algorithm was used to analyze the images before and after deformation to determine displacements in different skin layers. In this feasibility study, the images and results from one human subject demonstrate the potential of the technique for revealing differences in elastic properties between the stratum corneum and the rest of the epidermis. This interrogational imaging methodology has the potential to enable a wide range of investigations for understanding how the biomechanical properties of in vivo cell populations influence function in health and disease.

  12. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  13. Overview of recent results and future plans on the Compact Toroidal Hybrid experiment

    NASA Astrophysics Data System (ADS)

    Maurer, D. A.; Archmiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Goals of the Compact Toroidal Hybrid (CTH) experiment are to: (1) investigate the dependence of plasma disruptive behavior on the level of applied 3D magnetic shaping, (2) test and advance 3D computational modeling tools in strongly shaped plasmas, and (3) study the implementation of a new island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit is observed to exceed the Greenwald limit as the vacuum transform is increased, but a threshold for disruption avoidance is not observed. Low q operation is routine, with low q disruptions avoided when the vacuum transform is raised to the value of 0.07 or above. Application of vacuum transform has been demonstrated to reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Current efforts at improved equilibrium reconstruction and diagnostic development will beoverviewed. NIMROD is used to model the current ramp phase of CTH and 3D shaped sawtooth behavior. An island divertor design has begun with connection length studies and initial EMC3-Eirene results to model energy deposition on divertor plates located in an edge 1/3 island. This work is supported by U.S. Department of Energy Grant No. DE- FG02-00ER54610.

  14. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  15. 3D sorghum reconstructions from depth images identify QTL regulating shoot architecture

    DOE PAGES

    Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.

    2016-08-15

    Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less

  16. Direct-Write 3D Nanoprinting of Plasmonic Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less

  17. Direct-Write 3D Nanoprinting of Plasmonic Structures

    DOE PAGES

    Winkler, Robert; Schmidt, Franz-Philipp; Karl-Franzens Univ.; ...

    2016-11-23

    During the past decade, significant progress has been made in the field of resonant optics ranging from fundamental aspects to concrete applications. And while several techniques have been introduced for the fabrication of highly defined metallic nanostructures, the synthesis of complex, free-standing three-dimensional (3D) structures is still an intriguing, but so far intractable, challenge. Here, we demonstrate a 3D direct-write synthesis approach that addresses this challenge. Specifically, we succeeded in the direct-write fabrication of 3D nanoarchitectures via electron-stimulated reactions, which are applicable on virtually any material and surface morphology. Furthermore, by that, complex 3D nanostructures composed of highly compact, puremore » gold can be fabricated, which reveal strong plasmonic activity and pave the way for a new generation of 3D nanoplasmonic architectures that can be printed on-demand.« less

  18. Multiphoton tomography of intratissue tattoo nanoparticles

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  19. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  20. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell interactions in the airways. The method also holds the potential to be used during diagnostic procedures in humans if integrated into a bronchoscope.

  1. Multiphoton near-infrared femtosecond laser pulse-induced DNA damage with and without the photosensitizer proflavine.

    PubMed

    Shafirovich, V; Dourandin, A; Luneva, N P; Singh, C; Kirigin, F; Geacintov, N E

    1999-03-01

    The excitation of pBr322 supercoiled plasmid DNA with intense near-IR 810 nm fs laser pulses by a simultaneous multiphoton absorption mechanism results in single-strand breaks after treatment of the irradiated samples with Micrococcus luteus UV endonuclease. This enzyme cleaves DNA strands at sites of cyclobutane dimers that are formed by the simultaneous absorption of three (or more) 810 nm IR photons (pulse width approximately 140 fs, 76 MHz pulse repetition, average power output focused through 10x microscope objective is approximately 1.2 MW/cm2). Direct single-strand breaks (without treatment with M. luteus) were not observed under these conditions. However, in the presence of 6 microM of the intercalator proflavine (PF), both direct single- and double-strand breaks are observed under conditions where substantial fractions of undamaged supercoiled DNA molecules are still present. The fraction of direct double-strand breaks is 30 +/- 5% of all measurable strand cleavage events, is independent of dosage (up to 6.4 GJ/cm2) and is proportional to In, where I is the average power/area of the 810 nm fs laser pulses, and n = 3 +/- 1. The nicking of two DNA strands in the immediate vicinity of the excited PF molecules gives rise to this double-strand cleavage. In contrast, excitation of the same samples under low-power, single-photon absorption conditions (approximately 400-500 nm) gives rise predominantly to single-strand breaks, but some double-strand breaks are observed at the higher dosages. Thus, single-photon excitation with 400-500 nm light and multiphoton activation of PF by near-IR fs laser pulses produces different distributions of single- and double-strand breaks. These results suggest that DNA strand cleavage originates from unrelaxed, higher excited states when PF is excited by simultaneous IR multiphoton absorption processes.

  2. Compact passively Q-switched single-frequency Er3+/Yb3+ codoped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Wang, Simin; Lin, Wei; Mo, Shupei; Zhao, Qilai; Yang, Changsheng; Feng, Zhouming; Deng, Huaqiu; Peng, Mingying; Yang, Zhongmin; Xu, Shanhui

    2017-05-01

    We present a compact passively Q-switched single-frequency fiber laser based on a 12-mm-long laboratory-built highly Er3+/Yb3+ codoped phosphate fiber (EYDPF) and a semiconductor saturable absorber mirror (SESAM). An effective cavity length of less than 20 mm ensures the stable single-frequency operation of the Q-switched fiber laser. By employing a SESAM for Q-switching, a single-pulse energy of more than 34.4 nJ is realized with the narrowest pulse duration of 95 ns, and the repetition rate of the Q-switched fiber laser reaches over 600 kHz. In addition, the optical signal-to-noise ratio of the output laser is as high as 68.0 dB.

  3. The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.

    PubMed

    Kaupp, Martin

    2007-01-15

    The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.

  4. Wave maps from Gödel's universe

    NASA Astrophysics Data System (ADS)

    Barletta, Elisabetta; Dragomir, Sorin; Magliaro, Marco

    2014-10-01

    Using a result by Koch (1988 Trans. Am. Math. Soc. 307 827-41) we realize Gödel's universe G_{α }^{4}=({{{R}}^{4}},{{g}_{α}}) as the total space of a principal {R}-bundle over a strictly pseudo-convex CR manifold M3 and exploit the analogy between {{g}_{Yalpha;}} and Fefferman's metric {{F}_{θ}} (Fefferman 1976 Ann. Math. 103 395-416 104 393-4) to show that for any {R}-invariant wave map Φ of G_{α}^{4} into a Riemannian manifold N, the corresponding base map φ :{{M}^{3}}\\to N is subelliptic harmonic, with respect to a canonical choice of contact form θ on M3. We show that the subelliptic Jacobi operator J_{b}^{φ} of ϕ has a discrete Dirichlet spectrum on any bounded domain D\\subset {{M}^{3}} supporting the Poincaré inequality on \\mathop{W}\\limits^{\\circ }{}_{H}^{1,2}(D,{{φ}^{-1}}TN) and Kondrakov compactness, i.e. compactness of the embedding \\mathop{W}\\limits^{\\circ }{}_{H}^{1,2}(D,{{φ }^{-1}}TN)\\hookrightarrow {{L}^{2}}(D,{{φ}^{-1}}TN). We exhibit an explicit solution π :G_{α}^{4}\\to {{M}^{3}} to the wave map system on G_{α}^{4}, of index in{{d}^{Ω}}(π)\\geqslant 1 for any bounded domain Ω \\subset G_{α}^{4}. Mounoud's distance (Mounoud 2001 Differ. Geom. Appl. 15 47-57) d_{{{G}_{0}}, Ω }^{∞}({{g}_{α }}, {{F}_{θ}}) is bounded below by a constant depending only on the rotation frequency of Gödel's universe, thus giving a measure of the bias of {{g}_{α}} from being Fefferman like in the region Ω \\subset {{{R}}^{4}}.

  5. Compact LED-based full-field optical coherence microscopy for high-resolution high-speed in vivo imaging

    NASA Astrophysics Data System (ADS)

    Ogien, Jonas; Dubois, Arnaud

    2017-02-01

    This work reports on a compact full-field optical coherence microscopy (FF-OCM) setup specifically designed to meet the needs for in vivo imaging, illuminated by a high-brightness broadband light emitting diode (LED). Broadband LEDs have spectra potentially large enough to provide imaging spatial resolutions similar to those reached using conventional halogen lamps, but their radiance can be much higher, which leads to high speed acquisition and makes in vivo imaging possible. We introduce a FF-OCM setup using a 2.3 W broadband LED, with an interferometer designed to be as compact as possible in order to provide the basis for a portable system that will make it possible to fully benefit from the capacity for in vivo imaging by providing the ability to image any region of interest in real-time. The interferometer part of the compact FF-OCM setup weighs 210 g for a size of 11x11x5 cm3. Using this setup, a sub-micron axial resolution was reached, with a detection sensitivity of 68 dB at an imaging rate of 250 Hz. Due to the high imaging rate, the sensitivity could be improved by accumulation while maintaining an acquisition time short enough for in vivo imaging. It was possible to reach a sensitivity of 75 dB at a 50 Hz imaging rate. High resolution in vivo human skin images were obtained with this setup and compared with images of excised human skin, showing high similarity.

  6. Compact SOI optimized slot microring coupled phase-shifted Bragg grating resonator for sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Chao Ying; Zhang, Lei; Zhang, Cheng Mei

    2018-05-01

    We propose a novel sensor structure composed of a slot microring and a phase-shifted sidewall Bragg gratings in a slot waveguide. We first present a theoretical analysis of transmission by using the transfer matrix. Then, the mode-field distributions of transmission spectrum obtained from 3D simulations based on FDTD method demonstrates that our sensor exhibit theoretical sensitivity of 297 . 13 nm / RIU, a minimum detection limit of 1 . 1 × 10-4 RIU, the maximum extinction ratio of 20 dB, the quality factor of 2 × 103 and a compact dimension-theoretical structure of 15 μm × 8 . 5 μm. Finally, the sensor's performance is simulated for NaCl solution.

  7. Mass Spectroscopy of Neutral Metal Oxide Clusters Using a Desk-Top Soft X-Ray Laser

    NASA Astrophysics Data System (ADS)

    Dong, F.; Heinbuch, S.; Bernstein, E. R.; Rocca, J. J.

    We report the use of a compact 46.9 nm capillary discharge soft x-ray laser in the study of metal-oxide nanoclusters using mass spectroscopy. Transition metal oxides are widely used as heterogeneous catalysts and catalytic supports in industrial processes. There are numerous applications for transition metal oxide catalysts, and although they are widely used, there is a lack of fundamental understanding of the complicated processes that occur on the metal oxide surface during catalysis. Conventional nanocluster spectroscopy techniques have used 193 nm radiation from an ArF excimer laser corresponding to a photon energy of 6.4 eV in order to photoionize a sample. Typical metal oxide nanocluster ionization energies fall into the range of 7-12 eV while some have even higher energies. Therefore a single 6.4 eV photon can not ionize the cluster making multiphoton processes the dominant ionization method. A major problem associated with mass spectroscopy can become evident during the multiphoton ionization of clusters. Specifically, the clusters may fragment during the ionization process and the identification of the neutral parent cluster can become difficult. In the present experiment neutral vanadium, niobium and tantalum oxide clusters are studied by single photon ionization with the 26.5 eV photons produced by a capillary discharge soft x-ray laser.1 During ionization, the metal oxide clusters are observed to be almost free of serious fragmentation. The most stable neutral cluster of vanadium, niobium, and tantalum oxide growth in a saturated oxygen condition are identified as MO2, M2O4/M2O5, M3O7, M4O10, M5O12, M6O15, M7O17, M8O20, and M9O22, which can be represented as a form (MO2)0,1(M2O5)y. M2O5 is identified as a basic unit to build-up the three kinds of metal oxide clusters. In the case of niobium and tantalum oxide clusters, the oxygen-deficient clusters with a structure of (MO2)2(M2O5)y are detected for groups that contain an even number of metal atoms. For vanadium oxide clusters, the oxygen-deficient clusters are detected for every family, indicating a stable structure of (VO2)x(V2O5)y. The stoichiometry of oxygen-rich clusters can be expressed as (MO2)0,1(M2O5)yO1-3 and their structures are consistent with chemically bonded species.

  8. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Commercial and laboratory-prepared V2O5–WO3/TiO2-based catalysts with different compositions were tested for catalytic decomposition of chlorobenzene (ClBz) in simulated flue gas. Resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) was employe...

  9. Spectral evidence for multi-pathway contribution to the upconversion pathway in NaYF4:Yb3+,Er3+ phosphors.

    PubMed

    Cho, Youngho; Song, Si Won; Lim, Soo Yeong; Kim, Jae Hun; Park, Chan Ryang; Kim, Hyung Min

    2017-03-08

    Although upconversion phosphors have been widely used in nanomedicine, laser engineering, bioimaging, and solar cell technology, the upconversion luminescence mechanism of the phosphors has been fiercely debated. A comprehensive understanding of upconversion photophysics has been significantly impeded because the number of photons incorporated in the process in different competitive pathways could not be resolved. Few convincing results to estimate the contribution of each of the two-, three-, and four-photon channels of near-infrared (NIR) energy have been reported in yielding upconverted visible luminescence. In this study, we present the energy upconversion process occurring in NaYF 4 :Yb 3+ ,Er 3+ phosphors as a function of excitation frequency and power density. We investigated the upconversion mechanism of lanthanide phosphors by comparing UV/VIS one-photon excitation spectra and NIR multi-photon spectra. A detailed analysis of minor transitions in one-photon spectra and luminescence decay enables us to assign electronic origins of individual bands in multi-photon upconversion luminescence and provides characteristic transitions representing the corresponding upconversion channel. Furthermore, we estimated the quantitative contribution of multiple channels with respect to irradiation power and excitation energy.

  10. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.

    PubMed

    Brinks, Daan; Adam, Yoav; Kheifets, Simon; Cohen, Adam E

    2016-11-15

    Photons are a fascinating reagent, flowing and reacting quite differently compared to more massive and less ephemeral particles of matter. The optogenetic palette comprises an ever growing set of light-responsive proteins, which open the possibility of using light to perturb and to measure biological processes with great precision in space and time. Yet there are limits on what light can achieve. Diffraction limits the smallest features, and scattering in tissue limits the largest. Photobleaching, diffusion of photogenerated products, and optical crosstalk between overlapping absorption spectra further muddy the optogenetic picture, particularly when one wants to use multiple optogenetic tools simultaneously. But these obstacles are surmountable. Most light-responsive proteins and small molecules undergo more than one light-driven transition, often with different action spectra and kinetics. By overlapping multiple laser beams, carefully patterned in space, time, and wavelength, one can steer molecules into fluorescent or nonfluorescent, active or inactive conformations. By doing so, one can often circumvent the limitations of simple one-photon excitation and achieve new imaging and stimulation capabilities. These include subdiffraction spatial resolution, optical sectioning, robustness to light scattering, and multiplexing of more channels than can be achieved with simple one-photon excitation. The microbial rhodopsins are a particularly rich substrate for this type of multiphoton optical control. The natural diversity of these proteins presents a huge range of starting materials. The spectroscopy and photocycles of microbial rhodopsins are relatively well understood, providing states with absorption maxima across the visible spectrum, which can be accessed on experimentally convenient time scales. A long history of mutational studies in microbial rhodopsins allows semirational protein engineering. Mutants of Archaerhodopsin 3 (Arch) come in all the colors of the rainbow. In a solution of purified Arch-eGFP, a focused green laser excites eGFP fluorescence throughout the laser path, while a focused red laser excites fluorescence of Arch only near the focus, indicative of multiphoton fluorescence. This nonlinearity occurs at a laser intensity ∼10 10 -fold lower than in conventional two-photon microscopy! The mutant Arch(D95H) shows photoswitchable optical bistability. In a lawn of E. coli expressing this mutant, illumination with patterned blue light converts the molecule into a state that is fluorescent. Illumination with red light excites this fluorescence, and gradually resets the molecules back to the non-fluorescent state. This review describes the new types of molecular logic that can be implemented with multi-photon control of microbial rhodopsins, from whole-brain activity mapping to measurements of absolute membrane voltage. Part of our goal in this Account is to describe recent work in nonlinear optogenetics, but we also present a variety of interesting things one could do if only the right optogenetic molecules were available. This latter component is intended to inspire future spectroscopic, protein discovery, and protein engineering work.

  11. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

    PubMed

    Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P

    2010-01-01

    Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub-micrometre size area of damage in viable cells using both immuno-fluorescent staining of gamma-H2AX (a marker for DSBs) and real-time imaging of GFP-labelled repair proteins including ATM, p53 binding protein 1 (53BP1), RAD51 and Ku 70/80 to elucidate the interaction of the two DNA DSB repair pathways, homologous recombination and the non-homologous end joining pathway. 2010 Elsevier B.V. All rights reserved.

  12. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks.

    PubMed

    Medishetty, Raghavender; Zaręba, Jan K; Mayer, David; Samoć, Marek; Fischer, Roland A

    2017-08-14

    The building block modular approach that lies behind coordination polymers (CPs) and metal-organic frameworks (MOFs) results not only in a plethora of materials that can be obtained but also in a vast array of material properties that could be aimed at. Optical properties appear to be particularly predetermined by the character of individual structural units and by the intricate interplay between them. Indeed, the "design principles" shaping the optical properties of these materials seem to be well explored for luminescence and second-harmonic generation (SHG) phenomena; these have been covered in numerous previous reviews. Herein, we shine light on CPs and MOFs as optical media for state-of-the-art photonic phenomena such as multi-photon absorption, triplet-triplet annihilation (TTA) and stimulated emission. In the first part of this review we focus on the nonlinear optical (NLO) properties of CPs and MOFs, with a closer look at the two-photon absorption property. We discuss the scope of applicability of most commonly used measurement techniques (Z-scan and two-photon excited fluorescence (TPEF)) that can be applied for proper determination of the NLO properties of these materials; in particular, we suggest recommendations for their use, along with a discussion of the best reporting practices of NLO parameters. We also outline design principles, employing both intramolecular and intermolecular strategies, that are necessary for maximizing the NLO response. A review of recent literature on two-, three- and multi-photon absorption in CPs and MOFs is further supplemented with application-oriented processes such as two-photon 3D patterning and data storage. Additionally, we provide an overview of the latest achievements in the field of frequency doubling (SHG) and tripling (third-harmonic generation, THG) in these materials. Apart from nonlinear processes, in the next sections we also target the photonic properties of MOFs that benefit from their porosity, and resulting from this their ability to serve as containers for optically-active molecules. Thus, we survey dye@MOF composites as novel media in which efficient upconversion via triplet energy migration (TEM) occurs as well as materials for stimulated emission and multi-photon pumped lasing. Prospects for producing lasing as an intrinsic property of MOFs has also been discussed. Overall, further development of the optical processes highlighted herein should allow for realization of various photonic, data storage, biomedical and optoelectronic applications.

  13. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    DTIC Science & Technology

    2008-03-01

    Biomedical Optics May/June 2008 Vol. 133031220-1 the most prevalent cancer among women . 1 Therefore, tech- nologies to detect, classify, study, and...and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. Treat. 31, 41–46 2001. 3. M. Sidani , J. Wyckoff

  14. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  15. Quantitative 4D analyses of epithelial folding during Drosophila gastrulation.

    PubMed

    Khan, Zia; Wang, Yu-Chiun; Wieschaus, Eric F; Kaschube, Matthias

    2014-07-01

    Understanding the cellular and mechanical processes that underlie the shape changes of individual cells and their collective behaviors in a tissue during dynamic and complex morphogenetic events is currently one of the major frontiers in developmental biology. The advent of high-speed time-lapse microscopy and its use in monitoring the cellular events in fluorescently labeled developing organisms demonstrate tremendous promise in establishing detailed descriptions of these events and could potentially provide a foundation for subsequent hypothesis-driven research strategies. However, obtaining quantitative measurements of dynamic shapes and behaviors of cells and tissues in a rapidly developing metazoan embryo using time-lapse 3D microscopy remains technically challenging, with the main hurdle being the shortage of robust imaging processing and analysis tools. We have developed EDGE4D, a software tool for segmenting and tracking membrane-labeled cells using multi-photon microscopy data. Our results demonstrate that EDGE4D enables quantification of the dynamics of cell shape changes, cell interfaces and neighbor relations at single-cell resolution during a complex epithelial folding event in the early Drosophila embryo. We expect this tool to be broadly useful for the analysis of epithelial cell geometries and movements in a wide variety of developmental contexts. © 2014. Published by The Company of Biologists Ltd.

  16. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  17. Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2017-10-01

    Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.

  18. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750

  19. Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  20. OSA (Optical Society of America) Proceedings on Short Wavelength Coherent Radiation: Generation and Applications Held in North Falmouth, Massachusetts on 26-29 September 1988. Volume 2

    DTIC Science & Technology

    1988-09-01

    obtained using CVI 6d-2p line 142 Axial as a reference line[5]. The maximum en- hancement factor of 4.2 and corresponding cv1 gain length product of...C. Solem, and C. K. Rhodes ..... .............. 220 Multiphoton Ionization for the Production of X-Ray Laser Plasmas by P. B. Corkum and N. H...Diffraction Using Synchrotron Radiation by Rudolf Ruffer ......... ............................... 400 The Production of Long Coherence-Length Hard X

  1. Raman Spectrum of Pressure Compacted Fused Silica.

    DTIC Science & Technology

    1981-01-21

    Spectrum of Pressure Compacted Fused Silica" bj G. E. Walrafen Department of Chemistry Howard University Washington, D. C. 20059 and P. N. Krishnan...RESEA,CH Task No. NR-0)1-733 T ’echnical opset No. 2 / Raman Spectrum of Pressure Compacted Fustd Si I ica, by G. E./Walrafen P. N./Krishnan Howard ... University Department of Chemistry Washington, D. C. 20059 Reproduction in whole or in part is permitted for any purpose of the United States

  2. Torsional, Vibrational and Vibration-Torsional Levels in the S_{1} and Ground Cationic D_{0}^{+} States of Para-Xylene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Tuttle, William Duncan; Groner, Peter; Wright, Timothy G.

    2017-06-01

    Insight gained from examining the "pure" torsional, vibrational and vibration-torsional (vibtor) levels of the single rotor molecules: toluene (methylbenzene) and para-fluorotoluene (pFT), is applied to the double rotor para-xylene (p-dimethylbenzene) molecule . Resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy are employed in order to investigate the S_{1} and ground cationic states of para-xylene. Observed transitions are assigned in the full molecular symmetry group (G_{72}) for the first time. J. R. Gascooke, E. A. Virgo, and W. D. Lawrance, J. Chem. Phys., 143, 044313 (2015). A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). A. M. Gardner, W. D. Tuttle, P. Groner and T. G. Wright, J. Chem. Phys., (2017, in press).

  3. Design of a fiber-optic multiphoton microscopy handheld probe

    PubMed Central

    Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo

    2016-01-01

    We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module. PMID:27699109

  4. Design of a fiber-optic multiphoton microscopy handheld probe.

    PubMed

    Zhao, Yuan; Sheng, Mingyu; Huang, Lin; Tang, Shuo

    2016-09-01

    We have developed a fiber-optic multiphoton microscopy (MPM) system with handheld probe using femtosecond fiber laser. Here we present the detailed optical design and analysis of the handheld probe. The optical systems using Lightpath 352140 and 352150 as objective lens were analyzed. A custom objective module that includes Lightpath 355392 and two customized corrective lenses was designed. Their performances were compared by wavefront error, field curvature, astigmatism, F-θ error, and tolerance in Zemax simulation. Tolerance analysis predicted the focal spot size to be 1.13, 1.19 and 0.83 µm, respectively. Lightpath 352140 and 352150 were implemented in experiment and the measured lateral resolution was 1.22 and 1.3 µm, respectively, which matched with the prediction. MPM imaging by the handheld probe were conducted on leaf, fish scale and rat tail tendon. The MPM resolution can potentially be improved by the custom objective module.

  5. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  6. Carrier-envelope-phase control of asymmetries in the multiphoton ionization of xenon atoms by ultrashort bichromatic fields

    NASA Astrophysics Data System (ADS)

    Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.

    2018-06-01

    We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.

  7. Improvement of axial excitation confinement in temporal focusing-based multiphoton microscopy via spatially modulated illumination

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yuan; Chen, Shean-Jen

    2017-02-01

    Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement (AEC) of a few microns. Herein, a developed TFMPEM with a digital micromirror device (DMD), acting as the blazed grating for light spatial dispersion and simultaneous patterned illumination, has been extended to implement spatially modulated illumination at structured frequency and orientation. By implementing the spatially modulated illumination, the beam coverage at the back-focal aperture of the objective lens can be increased. As a result, the AEC can be condensed from 3.0 μm to 1.5 μm in full width at half maximum for a 2-fold enhancement. Furthermore, by using HiLo microscopy with two structured illuminations at the same spatial frequency but different orientation, biotissue images according to the structured illumination with condensed AEC is obviously superior in contrast and scattering suppression.

  8. 2010 MULTIPHOTON PROCESSES GORDON RESEARCH CONFERENCE, JUNE 6-11, 2010, TILTON, NH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mette Gaarde

    2010-06-11

    The Gordon Research Conference on Multiphoton Processes will be held for the 15th time in 2010. The meeting continues to evolve as it embraces both the rapid technological and intellectual growth in the field as well as the multi-disciplinary expertise of the participants. This time the sessions will focus on: (1) Ultrafast coherent control; (2) Free-electron laser experiments and theory; (3) Generation of harmonics and attosecond pulses; (4) Ultrafast imaging; (5) Applications of very high intensity laser fields; (6) Strong-field processes in molecules and solids; (7) Attosecond science; and (8) Controlling light. The scientific program will blur traditional disciplinary boundariesmore » as the presenters and discussion leaders involve chemists, physicists, and optical engineers, representing both experiment and theory. The broad range of expertise and different perspectives of attendees should provide a stimulating and unique environment for solving problems and developing new ideas in this rapidly evolving field.« less

  9. High-performance and power-efficient 2×2 optical switch on Silicon-on-Insulator.

    PubMed

    Han, Zheng; Moille, Grégory; Checoury, Xavier; Bourderionnet, Jérôme; Boucaud, Philippe; De Rossi, Alfredo; Combrié, Sylvain

    2015-09-21

    A compact (15µm × 15µm) and highly-optimized 2×2 optical switch is demonstrated on a CMOS-compatible photonic crystal technology. On-chip insertion loss are below 1 dB, static and dynamic contrast are 40 dB and >20 dB respectively. Owing to efficient thermo-optic design, the power consumption is below 3 mW while the switching time is 1 µs.

  10. 78 FR 79638 - Energy Conservation Program for Consumer Products: Proposed Determination of Hearth Products as a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... a compact disc (CD), in which case it is not necessary to include printed copies. Hand Delivery... on a CD, in which case it is not necessary to include printed copies. Instructions: All submissions... v. Department of Energy, et al., 706 F.3d 499 (D.C. Cir. 2013). DOE has not previously conducted an...

  11. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  12. Towards in vivo breast skin characterization using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Uchugonova, Aisada; Breunig, Hans Georg; König, Karsten

    2017-02-01

    Breast cancer, the most common type of cancer in women worldwide, as well as its treatment (e.g. radiation therapy) can affect the human skin. Multiphoton imaging could provide new insights into these skin alterations non-invasively and with high-resolution. As a preparation for a later investigation involving patients, areas of the breast and forearm skin of healthy volunteers were imaged using the clinically certified multiphoton imaging tomograph MPTflex based on endogenous skin autofluorescence and second-harmonic signals. Depth-resolved image stacks were acquired in consecutive weeks to explore the influence of hormonal variations on the skin properties. Both breasts were considered and up to three different areas were imaged per session. Acquisition parameters were optimized to minimize artifacts caused by breathing-motion. As a first result, skin properties, such as the epidermal thickness, appear to be influenced by hormonal variations.

  13. Photoelectron circular dichroism in different ionization regimes

    NASA Astrophysics Data System (ADS)

    Wollenhaupt, Matthias

    2016-12-01

    Photoelectron circular dichroism (PECD) describes an asymmetry in the photoelectron angular distribution (PAD) from photoionization of randomly oriented enantiomers with circularly polarized light. Beaulieu et al present a comprehensive set of measured PADs from multiphoton ionization of limonene and fenchone in different ionization regimes (multiphoton and tunneling) and analyze the resulting PECD (Beaulieu et al 2016 New J. Phys. 18 102002). From their observations the authors conclude that the PECD is universal in the sense that the molecular chirality is encoded in the PAD independent of the ionization regime. The analysis is supplemented by a classical model based on electron scattering in a chiral potential. The paper presents beautiful data and is an important step towards a more complete physical picture of PECD. The results and their interpretation stimulate the ongoing vivid debate on the role of resonances in multiphoton PECD.

  14. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    NASA Astrophysics Data System (ADS)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  15. Assessing and benchmarking multiphoton microscopes for biologists

    PubMed Central

    Corbin, Kaitlin; Pinkard, Henry; Peck, Sebastian; Beemiller, Peter; Krummel, Matthew F.

    2017-01-01

    Multiphoton microscopy has become staple tool for tracking cells within tissues and organs due to superior depth of penetration, low excitation volumes, and reduced phototoxicity. Many factors, ranging from laser pulse width to relay optics to detectors and electronics, contribute to the overall ability of these microscopes to excite and detect fluorescence deep within tissues. However, we have found that there are few standard ways already described in the literature to distinguish between microscopes or to benchmark existing microscopes to measure the overall quality and efficiency of these instruments. Here, we discuss some simple parameters and methods that can either be used within a multiphoton facility or by a prospective purchaser to benchmark performance. This can both assist in identifying decay in microscope performance and in choosing features of a scope that are suited to experimental needs. PMID:24974026

  16. Rapid in vivo vertical tissue sectioning by multiphoton tomography

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; König, Karsten

    2018-02-01

    A conventional tool in the pathological field is histology which involves the analysis of thin sections of tissue in which specific cellular structures are stained with different dyes. The process to obtain these stained tissue sections is time consuming and invasive as it requires tissue removal, fixation, sectioning, and staining. Moreover, imaging of live tissue is not possible. We demonstrate that multiphoton tomography can provide within seconds, non-invasive, label-free, vertical images of live tissue which are in quality similar to conventional light micrographs of histologic stained specimen. In contrast to conventional setups based on laser scanning which image horizontally sections, the vertical in vivo images are directly recorded by combined line scanning and timed adjustments of the height of the focusing optics. In addition, multiphoton tomography provides autofluorescence lifetimes which can be used to determine the metabolic states of cells.

  17. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  18. Combined experimental and theoretical study of the benzocaine/Ar van der Waals system in supersonic expansions.

    PubMed

    León, Iker; Aguado, Edurne; Lesarri, Alberto; Fernández, José A; Castaño, Fernando

    2009-02-12

    The electronic spectra of Benzocaine x Ar(n), n = 0-4 were obtained using two-color resonance enhanced multiphoton ionization; the 1:1 and 1:2 clusters were investigated by ultraviolet/ultraviolet hole burning, stimulated emission pumping, and other laser spectroscopies. A single isomer was found for the 1:1 cluster, while two isomers of the 1:2 cluster were found: one with the two Ar atoms on the same side of the chromophore, and the other with the two Ar atoms sitting on opposite sides of the chromophore. The observed shifts point to the existence of a single isomer for the 1:3 and 1:4 species. Dissociation energies for the neutral ground and first excited electronic state and the ion ground electronic state of the complexes have been determined by the fragmentation threshold method and by ab initio calculations conducted at the MP2 level with 6-31++g(2d, p), 6-311++g(2d, p) and AUG-cc-pVTZ basis sets. The results are compared with those obtained for other similar systems.

  19. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  20. Reflective afocal broadband adaptive optics scanning ophthalmoscope.

    PubMed

    Dubra, Alfredo; Sulai, Yusufu

    2011-06-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.

  1. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics.

    PubMed

    Pomo, Joseph M; Taylor, Robert M; Gullapalli, Rama R

    2016-01-01

    Spheroid based culture methods are gaining prominence to elucidate the role of the microenvironment in liver carcinogenesis. Additionally, the phenomenon of epithelial-mesenchymal transition also plays an important role in determining the metastatic potential of liver cancer. Tumor spheroids are thus important models to understand the basic biology of liver cancer. We cultured, characterized and examined the formation of compact 3-D micro-tumor spheroids in five hepatocellular carcinoma (HCC) cell lines, each with differing TP53 mutational status (wt vs mutant vs null). Spheroid viability and death was systematically measured over a course of a 10 day growth period using various assays. We also examined the TP53 and E-cadherin (CDH1) mRNA and protein expression status in each cell line of the 2-D and 3-D cell models. A novel finding of our study was the identification of variable 3-D spheroid morphology in individual cell lines, ranging from large and compact, to small and unstable spheroid morphologies. The observed morphological differences between the spheroids were robust and consistent over the duration of spheroid culture growth of 10 days in a repeatable manner. Highly variable CDH1 expression was identified depending on the TP53 mutational status of the individual HCC cell line, which may explain the variable spheroid morphology. We observed consistent patterns of TP53 and CDH1 expression in both 2-D and 3-D culture models. In conclusion, we show that 3-D spheroids are a useful model to determine the morphological growth characteristics of cell lines which are not immediately apparent in routine 2-D culture methods. 3-D culture methods may provide a better alternative to study the process of epithelial-mesenchymal transition (EMT) which is important in the process of liver cancer metastasis.

  2. Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei

    2016-12-01

    In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.

  3. Explaining the discrepancy between forced fold amplitude and sill thickness.

    NASA Astrophysics Data System (ADS)

    Hoggett, Murray; Jones, Stephen M.; Reston, Timothy; Magee, Craig; Jackson, Christopher AL

    2017-04-01

    Understanding the behaviour of Earth's surface in response to movement and emplacement of magma underground is important because it assists calculation of subsurface magma volumes, and could feed into eruption forecasting. Studies of seismic reflection data have observed that the amplitude of a forced fold above an igneous sill is usually smaller than the thickness of the sill itself. This observation implies that fold amplitude alone provides only a lower bound for magma volume, and an understanding of the mechanism(s) behind the fold amplitude/sill thickness discrepancy is also required to obtain a true estimate of magma volume. Mechanisms suggested to explain the discrepancy include problems with seismic imaging and varying strain behaviour of the host rock. Here we examine the extent to which host-rock compaction can explain the fold amplitude/sill thickness discrepancy. This mechanism operates in cases where a sill is injected into the upper few kilometres of sedimentary rock that contain significant porosity. Accumulation of sediment after sill intrusion reduces the amplitude of the forced fold by compaction, but the sill itself undergoes little compaction since its starting porosity is almost zero. We compiled a database of good-quality 2D and 3D seismic observations where sill thickness has been measured independently of forced fold geometry. We then backstripped the post-intrusion sedimentary section to reconstruct the amplitude of the forced fold at the time of intrusion. We used the standard compaction model in which porosity decays exponentially below the sediment surface. In all examples we studied, post-sill-emplacement compaction can explain all of the fold amplitude/sill thickness discrepancy, subject to uncertainty in compaction model parameters. This result leads directly to an improved method of predicting magma volume from fold amplitude, including how uncertainty in compaction parameters maps onto uncertainty in magma volume. Our work implies that host-rock deformation at the time of magma intrusion is less important than post-intrusion pure-shear compaction in response to ongoing sediment accumulation. This inference could be tested in cases where an independent direct measurement of the porosity-depth profile overlying the sill is available to better constrain compaction model parameters.

  4. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    NASA Astrophysics Data System (ADS)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  5. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    DTIC Science & Technology

    2007-03-01

    spectral and lifetime characterization of NADH may be used to reveal metabolic changes in vivo and has potential to be used as an early diagnostic...combined spectral lifetime imaging modality will help for 5 characterization of breast cancer cells from cell culture based models to a relevant in... spectral and lifetime system and integrated into a multiphoton fluorescence excitation microscopy system 7 • Calibrated and characterized this

  6. Continuum generation in ultra high numerical aperture fiber with application to multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sayler, Nicholas

    Nonlinear microscopy benefits from broadband laser sources, enabling efficient excitation of an array of fluorophores, for example. This work demonstrates broadening of a narrow band input pulse (6 nm to 40 nm) centered at 1040 nm with excellent shot-to-shot stability. In a preliminary demonstration, multiphoton imaging with pulses from the fiber is performed. In particular second harmonic imaging of corn starch is performed.

  7. First multiphoton tomography of brain in man

    NASA Astrophysics Data System (ADS)

    König, Karsten; Kantelhardt, Sven R.; Kalasauskas, Darius; Kim, Ella; Giese, Alf

    2016-03-01

    We report on the first two-photon in vivo brain tissue imaging study in man. High resolution in vivo histology by multiphoton tomography (MPT) including two-photon FLIM was performed in the operation theatre during neurosurgery to evaluate the feasibility to detect label-free tumor borders with subcellular resolution. This feasibility study demonstrates, that MPT has the potential to identify tumor borders on a cellular level in nearly real-time.

  8. Label-free multiphoton microscopy reveals altered tissue architecture in hippocampal sclerosis.

    PubMed

    Uckermann, Ortrud; Galli, Roberta; Leupold, Susann; Coras, Roland; Meinhardt, Matthias; Hallmeyer-Elgner, Susanne; Mayer, Thomas; Storch, Alexander; Schackert, Gabriele; Koch, Edmund; Blümcke, Ingmar; Steiner, Gerald; Kirsch, Matthias

    2017-01-01

    The properties and structure of tissue can be visualized without labeling or preparation by multiphoton microscopy combining coherent anti-Stokes Raman scattering (CARS), addressing lipid content, second harmonic generation (SHG) showing collagen, and two-photon excited fluorescence (TPEF) of endogenous fluorophores. We compared samples of sclerotic and nonsclerotic human hippocampus to detect pathologic changes in the brain of patients with pharmacoresistant temporomesial epilepsy (n = 15). Multiphoton microscopy of cryosections and bulk tissue revealed hippocampal layering and micromorphologic details in accordance with reference histology: CARS displayed white and gray matter layering and allowed the assessment of axonal myelin. SHG visualized blood vessels based on adventitial collagen. In addition, corpora amylacea (CoA) were found to be SHG-active. Pyramidal cell bodies were characterized by intense cytoplasmic endogenous TPEF. Furthermore, diffuse TPEF around blood vessels was observed that co-localized with positive albumin immunohistochemistry and might indicate degeneration-associated vascular leakage. We present a label-free and fast optical approach that analyzes pathologic aspects of HS. Hippocampal layering, loss of pyramidal cells, and presence of CoA indicative of sclerosis are visualized. Label-free multiphoton microscopy has the potential to extend the histopathologic armamentarium for ex vivo assessment of changes of the hippocampal formation on fresh tissue and prospectively in vivo. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  9. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  10. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  11. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  12. Comparison of Cornea Module and DermaInspect for noninvasive imaging of ocular surface pathologies

    NASA Astrophysics Data System (ADS)

    Steven, Philipp; Müller, Maya; Koop, Norbert; Rose, Christian; Hüttmann, Gereon

    2009-11-01

    Minimally invasive imaging of ocular surface pathologies aims at securing clinical diagnosis without actual tissue probing. For this matter, confocal microscopy (Cornea Module) is in daily use in ophthalmic practice. Multiphoton microscopy is a new optical technique that enables high-resolution imaging and functional analysis of living tissues based on tissue autofluorescence. This study was set up to compare the potential of a multiphoton microscope (DermaInspect) to the Cornea Module. Ocular surface pathologies such as pterygia, papillomae, and nevi were investigated in vivo using the Cornea Module and imaged immediately after excision by DermaInspect. Two excitation wavelengths, fluorescence lifetime imaging and second-harmonic generation (SHG), were used to discriminate different tissue structures. Images were compared with the histopathological assessment of the samples. At wavelengths of 730 nm, multiphoton microscopy exclusively revealed cellular structures. Collagen fibrils were specifically demonstrated by second-harmonic generation. Measurements of fluorescent lifetimes enabled the highly specific detection of goblet cells, erythrocytes, and nevus-cell clusters. At the settings used, DermaInspect reaches higher resolutions than the Cornea Module and obtains additional structural information. The parallel detection of multiphoton excited autofluorescence and confocal imaging could expand the possibilities of minimally invasive investigation of the ocular surface toward functional analysis at higher resolutions.

  13. Weak-field multiphoton femtosecond coherent control in the single-cycle regime.

    PubMed

    Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar

    2011-03-28

    Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments.

  14. Torsional, Vibrational and Vibration-Torsional Levels in the S_{1} and Ground Cationic D_{0}^{+} States of Para-Fluorotoluene

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Tuttle, William Duncan; Whalley, Laura E.; Claydon, Andrew; Carter, Joseph H.; Wright, Timothy G.

    2017-06-01

    The S_{1} electronic state and ground state of the cation of para-fluorotoluene (pFT) have been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy. Here we focus on the low wavenumber region where a number of "pure" torsional, fundamental vibrational and vibration-torsional levels are expected; assignments of observed transitions are discussed, which are compared to results of published work on toluene (methylbenzene) from the Lawrance group. The similarity in the activity observed in the excitation spectrum of the two molecules is striking. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). J. R. Gascooke, E. A. Virgo, and W. D. Lawrance J. Chem. Phys., 143, 044313 (2015).

  15. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming

    2017-09-01

    Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heslar, John; Chu, Shih-I.

    Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less

  17. UV-visible-NIR light generation through frequency upconversion in Tm3+-doped low silica calcium aluminosilicate glasses using multiple excitation around 1.2 μm

    NASA Astrophysics Data System (ADS)

    Trindade, C. M.; Rego-Filho, F. G.; Astrath, N. G. C.; Jacinto, C.; Gouveia-Neto, A. S.

    2018-04-01

    Intense ultraviolet upconversion emission was produced in single Tm3+-doped OH--free low silica calcium aluminosilicate glasses. A new excitation route based upon multi-Stokes Raman emissions generated in an optical fiber pumped at 1.064 μm, and exploiting the absorption band around 1.2 μm by means of the 3H5 thulium excited state, was used. Furthermore, the other bands of the stimulated Raman scattering spectrum resonantly enhances all the upconversion processes, resulting in efficient ultraviolet (295 nm, 360 nm), blue (456 nm, 480 nm), red (650 nm, 667 nm), and near-infrared (800 nm) emissions. The population of the 1P0, 1D2, 1G4, 3F2 and 3H4 excited-state emitting levels was accomplished through stepwise multi-photon absorption. Results indicate competing cross-relaxation processes involving Tm3+ ion-pairs producing UV emission population quenching Simplified energy-level diagram of Tm3+- doped sample excited using multi-stokes emissions. The λp indication describes all excitation wavelengths, represented by a single arrow for the sake of simplicity.

  18. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    PubMed Central

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  19. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  20. An Improved 3D Joint Inversion Method of Potential Field Data Using Cross-Gradient Constraint and LSQR Method

    NASA Astrophysics Data System (ADS)

    Joulidehsar, Farshad; Moradzadeh, Ali; Doulati Ardejani, Faramarz

    2018-06-01

    The joint interpretation of two sets of geophysical data related to the same source is an appropriate method for decreasing non-uniqueness of the resulting models during inversion process. Among the available methods, a method based on using cross-gradient constraint combines two datasets is an efficient approach. This method, however, is time-consuming for 3D inversion and cannot provide an exact assessment of situation and extension of anomaly of interest. In this paper, the first attempt is to speed up the required calculation by substituting singular value decomposition by least-squares QR method to solve the large-scale kernel matrix of 3D inversion, more rapidly. Furthermore, to improve the accuracy of resulting models, a combination of depth-weighing matrix and compacted constraint, as automatic selection covariance of initial parameters, is used in the proposed inversion algorithm. This algorithm was developed in Matlab environment and first implemented on synthetic data. The 3D joint inversion of synthetic gravity and magnetic data shows a noticeable improvement in the results and increases the efficiency of algorithm for large-scale problems. Additionally, a real gravity and magnetic dataset of Jalalabad mine, in southeast of Iran was tested. The obtained results by the improved joint 3D inversion of cross-gradient along with compacted constraint showed a mineralised zone in depth interval of about 110-300 m which is in good agreement with the available drilling data. This is also a further confirmation on the accuracy and progress of the improved inversion algorithm.

  1. Soil fate of agricultural fumigants in raised-bed, plasticulture systems in the southeastern United States.

    PubMed

    Chellemi, Dan O; Ajwa, Husein A; Sullivan, David A; Alessandro, Rocco; Gilreath, James P; Yates, Scott R

    2011-01-01

    Soil concentrations and degradation rates of methyl isothio-cyanate (MITC), chloropicrin (CP), 1,3-dichloropropene (1,3-D), and dimethyl disulfide (DMDS) were determined under fumigant application scenarios representative of commercial raised bed, plastic mulched vegetable production systems. Five days after application, 1,3-D, MITC, and CP were detected at concentrations up to 3.52, 0.72, and 2.45 μg cm, respectively, in the soil atmosphere when applications were made in uniformly compacted soils with a water content >200% of field capacity and covered by a virtually impermeable or metalized film. By contrast, DMDS, MITC, and CP concentrations in the soil atmosphere were 0.81, 0.02, and 0.05 μg cm, respectively, 5 d after application in soil containing undecomposed plant residue, numerous large (>3 mm) clods, and water content below field capacity and covered by low-density polyethylene. Ranked in order of impact on the persistence of fumigants in soil were soil water content (moisture), soil tilth (the physical condition of soil as related to its fitness as a planting bed), the type of plastic film used to cover fumigated beds, and soil texture. Fumigants were readily detected 13 d after application when applied in uniformly compacted soils with water contents >200% of capacity and covered by a virtually impermeable or metalized film. By contrast, 1,3-D and MITC had dissipated 5 d after application in soils with numerous large (>3 mm) clods and water contents below field capacity that were covered by low-density polyethylene. Soil degradation of CP, DMDS, and MITC were primarily attributed to biological mechanisms, whereas degradation of 1,3-D was attributed principally to abiotic factors. This study demonstrates improved soil retention of agricultural fumigants in application scenarios representative of good agricultural practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Volumetric bioimaging based on light field microscopy with temporal focusing illumination

    NASA Astrophysics Data System (ADS)

    Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen

    2018-02-01

    Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.

  3. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: Evidence for multiphoton initiation via an intermediate state

    NASA Astrophysics Data System (ADS)

    Linz, Norbert; Freidank, Sebastian; Liang, Xiao-Xuan; Vogelmann, Hannes; Trickl, Thomas; Vogel, Alfred

    2015-04-01

    Investigation of the wavelength dependence (725-1025 nm) of the threshold for nanosecond optical breakdown in water revealed steps consistent with breakdown initiation by multiphoton ionization, with an initiation energy of about 6.6 eV. This value is considerably smaller than the autoionization threshold of about 9.5 eV, which can be regarded as band gap relevant for avalanche ionization. Breakdown initiation is likely to occur via excitation of a valence band electron into a solvated state, followed by rapid excitation into the conduction band. Theoretical analysis based on these assumptions suggests that the seed electron density required for initiating avalanche ionization amounts to 2.5 ×1015c m-3 at 725 nm and drops to 1.1 ×1012c m-3 at 1025 nm. These results demand changes of future breakdown modeling for water, including the use of a larger band gap than previously employed, the introduction of an intermediate energy level for initiation, and consideration of the wavelength dependence of seed electron density.

  4. Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark

    1998-01-01

    A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.

  5. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  6. A three-dimensional radiation image display on a real space image created via photogrammetry

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  7. Investigation into the Combined Effects of Compaction, Strain Rate Sensitivity, and Anisotropic Damage of a Geologic Target on the Trajectory Stability of Rigid Penetrators

    DTIC Science & Technology

    2007-05-01

    32579, E-mail: cazacu@reef.ufl.edu 2 Laboratoire de Math~matiques, Universit6 de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France E...1971) is that at rest the granular material obeys a Coulomb yield condition. Once the flow develops the state of stress is a function of the rate of...then a (d,e,p) = P(d,e,p), /3(d,e,p) = -Q( de ,p) (19) V3 c Next, these expressions for a and 3 are substituted in the compatibility restrictions (5

  8. Fiber-optic multiphoton flow cytometry in whole blood and in vivo

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.

    2010-07-01

    Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.

  9. A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar

    2017-07-01

    In this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559-1.610 GHz), GSM1800, WLAN/WiFi (2.4-2.49 GHz) and WiMAX (2.5-2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ0× 0.11λ0 (where λ0 is free space wavelength at zeroth order resonance (ZOR) frequency 2.7 GHz).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, G. H.; Heitzenroeder, P.; Lyon, J.

    Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less

  11. The use of suction blisters to measure sunscreen protection against UVR-induced DNA damage.

    PubMed

    Josse, Gwendal; Douki, Thierry; Le Digabel, Jimmy; Gravier, Eleonore; Questel, Emmanuel

    2018-02-01

    The formation of DNA photoproducts caused by solar UVR exposure needs to be investigated in-vivo and in particular in order to assess sunscreens' level of protection against solar genotoxicity. The study's purposes were: i) to evaluate if the roof of suction blisters is an appropriate sampling method for measuring photoproducts, and ii) to measure in-vivo sunscreen protection against cyclobutane pyrimidine dimers. Skin areas on the interior forearms of eight healthy volunteers were exposed in-vivo to 2 MED of simulated solar radiation (SSR) and to 15 MED on a sunscreen protected area. After irradiation, six suction blisters were induced and the blister roofs were collected. Analysis of SSR-induced CPDs was performed by two independent methods: a chromatography coupled to mass spectroscopy (HPLC-MS/MS) approach and a 3D-imaging of CPD immunostaining by multiphoton microscopy on floating epidermal sheets. HPLC-MS/MS analyses showed that SSR-unexposed skin presented no CPD dimers, whereas 2 MED SSR-exposed skin showed a significant number of TT-CPD. The sunscreen covered skin exposed to 15 MED appeared highly protected from DNA damage, as the amount of CPD-dimers remained below the detection limit. The multiphoton-immunostaining analysis consistently showed that no CPD staining was observed on the non-SSR-exposed skin. A significant increase of CPD staining intensity and number of CPD-positive cells were observed on the 2 MED SSR-exposed skin. Sunscreen protected skin presented a very low staining intensity and the number of CPD-positive cells remained very close to non-SSR-exposed skin. This study showed that suction blister samples are very appropriate for measuring CPD dimers in-vivo, and that sunscreens provide high protection against UVR-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Grabill, Chris N.; Richardson, Gerald D.; Labh, Shreya; Lewis, Anna M.; Vyas, Aadit; Gleason, Benn; Rivero-Baleine, Clara; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2017-04-01

    A detailed study of multiphoton lithography (MPL) in arsenic trisulfide (As2S3) films and the effects on nanoscale morphology, chemical networking, and the appearance of the resulting features by the chemical composition, deposition rate, etch processing, and inclusion of an antireflection (AR) layer of As2Se3 between the substrate and the As2S3 layer is reported. MPL was used to photo-pattern nanostructured arrays in single- and multilayer films. The variation in chemical composition for laser-exposed, UV-exposed, and unexposed films is correlated with the etch response, nanostructure formation, and deposition conditions. Reflection of the focused beam at the substrate back into the film produces standing wave interference that modulates the exposure with distance from the substrate and produces nanobead structures. The interference and the modulation can be controlled by the addition of an AR layer of As2Se3 deposited between the substrate and the As2S3 film. Relative to structures produced in a single-layer As2S3 film having no AR layer, photo-patterning in the multilayer As2S3-on-As2Se3 film yields pillar-shaped structures that are closer to the targeted shape and are narrower (120 versus 320 nm), more uniform, and better adhering to the substrate. Processing methods are demonstrated for fabricating large-area arrays with diffractive optical function.

  13. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S b 3. Thismore » enables us to see clearly, at the level of partition function, to what extent G C complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  14. Visualized macrophage dynamics and significance of S100A8 in obese fat

    PubMed Central

    Sekimoto, Ryohei; Fukuda, Shiro; Maeda, Norikazu; Tsushima, Yu; Matsuda, Keisuke; Mori, Takuya; Nakatsuji, Hideaki; Nishizawa, Hitoshi; Kishida, Ken; Kikuta, Junichi; Maijima, Yumiko; Funahashi, Tohru; Ishii, Masaru; Shimomura, Iichiro

    2015-01-01

    Chronic low-grade inflammation of adipose tissue plays a crucial role in the pathophysiology of obesity. Immunohistological microscopic analysis in obese fat tissue has demonstrated the infiltration of several immune cells such as macrophages, but dynamics of immune cells have not been fully elucidated and clarified. Here, by using intravital multiphoton imaging technique, to our knowledge for the first time, we analyzed and visualized the inflammatory processes in adipose tissue under high-fat and high-sucrose (HF/HS) diet with lysozyme M-EGFP transgenic (LysMEGFP) mice whose EGFP was specifically expressed in the myelomonocytic lineage. Mobility of LysMEGFP-positive macrophages was shown to be activated just 5 d after HF/HS diet, when the distinct hypertrophy of adipocytes and the accumulation of macrophages still have not become prominent. Significant increase of S100A8 was detected in mature adipocyte fraction just 5 d after HF/HS diet. Recombinant S100A8 protein stimulated chemotactic migration in vitro and in vivo, as well as induced proinflammatory molecules, both macrophages and adipocytes, such as TNF-α and chemokine (C-C motif) ligand 2. Finally, an antibody against S100A8 efficiently suppressed the HF/HS diet-induced initial inflammatory change, i.e., increased mobilization of adipose LysMEGFP-positive macrophages, and ameliorated HF/HS diet-induced insulin resistance. In conclusion, time-lapse intravital multiphoton imaging of adipose tissues identified the very early event exhibiting increased mobility of macrophages, which may be triggered by increased expression of adipose S100A8 and results in progression of chronic inflammation in situ. PMID:25848057

  15. SU-F-T-41: 3D MTP-TRUS for Prostate Implant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, P

    Purpose: Prostate brachytherapy is an effective treatment for early prostate cancer. The current prostate implant is limited to using 2D transrectal ultrassound (TRUS) or machenical motor driven 2D array either in the end or on the side. Real-time 3D images can improve the accuracy of the guidance of prostate implant. The concept of our system is to allow realtime full visualization of the entire prostate with the multiple transverse scan. Methods: The prototype of 3D Multiple-Transverse-Plane Transrectal Ultrasound probe (MTP-TRUS) has been designed by us and manufactured by Blatek inc. It has 7 convex linear arrays and each array hasmore » 96 elements. It is connected to cQuest Fire bird research system (Cephasonics inc.) which is a flexible and configurable ultrasound-development platform. The size of cQuest Firebird system is compact and supports the real-time wireless image transferring. A relay based mux board is designed for the cQuest Firebird system to be able to connect 672 elements. Results: The center frequency of probe is 6MHz±10%. The diameter of probe is 3cm and the length is 20cm. The element pitch is 0.205 mm. Array focus is 30mm and spacing 1.6cm. The beam data for each array was measured and met our expectation. The interface board of MTP-TURS is made and able to connect to cQuest Firebird system. The image display interface is still under the development. Our real-time needle tracking algorithm will be implemented too. Conclusion: Our MTP-TRUS system for prostate implant will be able to acquire real-time 3D images of prostate and do the real-time needle segmentation and tracking. The system is compact and have wireless function.« less

  16. The Estimation of Compaction Parameter Values Based on Soil Properties Values Stabilized with Portland Cement

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Pasaribu, M. I.

    2017-03-01

    The strength and durability of pavement construction is highly dependent on the properties and subgrade bearing capacity. This then led to the idea of the selection methods to estimate the density of the soil with the proper implementation of the system, fast and economical. This study aims to estimate the compaction parameter value namely the maximum dry unit weight (γd max) and optimum moisture content (wopt) of the soil properties value that stabilized with Portland Cement. Tests conducted in the laboratory of soil mechanics to determine the index properties (fines and liquid limit) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) between 0-15% then mixed with Portland Cement (PC) with variations of 2%, 4%, 6%, 8% and 10%, each 10 samples. The results showed that the maximum dry unit weight (γd max) and wopt has a significant relationship with percent fines, liquid limit and the percentation of cement. Equation for the estimated maximum dry unit weight (γd max) = 1.782 - 0.011*LL + 0,000*F + 0.006*PS with R2 = 0.915 and the estimated optimum moisture content (wopt) = 3.441 + 0.594*LL + 0,025*F + 0,024*PS with R2 = 0.726.

  17. 78 FR 63410 - Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... items on a compact disc (CD), in which case it is not necessary to include printed copies. Hand Delivery... on a CD, in which case it is not necessary to include printed copies. For detailed instructions on... opinion. Hearth, Patio & Barbecue Association v. U.S. Department of Energy, 706 F.3d 499, 509 (D.C. Cir...

  18. Conductivity percolation in loosely compacted microcrystalline cellulose: An in situ study by dielectric spectroscopy during densification.

    PubMed

    Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria

    2006-10-19

    The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.

  19. Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling

    DTIC Science & Technology

    2014-01-01

    surfaces throughout the electrode structure (Fig. 5D–I). The positive Zn@ZnO sponge exhibits a compact morphology uniformly distributed throughout (Fig...monolithic, three-dimensional (3D) aperiodic architecture. Utilization approaches 90% (728 mA h gZn 1) when the zinc “ sponge ” is used as the anode in...a primary (single-use) zinc–air cell. To probe rechargeability of the 3D Zn sponge , we cycled Zn–vs.–Zn symmetric cells and Ag–Zn full cells under

  20. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  1. A velocity-map imaging study of methyl non-resonant multiphoton ionization from the photodissociation of CH3I in the A-band

    PubMed Central

    Poullain, Sonia Marggi; Chicharro, David V.; Rubio-Lago, Luis; García-Vela, Alberto

    2017-01-01

    Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump–probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables—the product vibrational, translational and angular distributions—and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available ab initio potential-energy surfaces using a four-dimensional model. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320907

  2. Snow as building material for construction of technological along-the-route roads of main pipelines

    NASA Astrophysics Data System (ADS)

    Merdanov, S. M.; Egorov, A. L.; Kostyrchenko, V. A.; Madyarov, T. M.

    2018-05-01

    The article deals with the process of compacting snow in a closed volume with the use of vacuum processing for the construction of technological along-the-route roads of main pipelines. The relevance of the chosen study is substantiated; methods and designs for snow compaction are considered. The publication activity and defenses of doctoral and candidate dissertations on the research subject are analyzed. Patent analysis of existing methods and equipment for snow compaction with indication of their disadvantages is carried out. A design calculation was carried out using computer programs in which a strength calculation was performed to identify the most stressed places in the construction of a vibrating hydraulic tyre-type roller. A 3D model of the experimental setup was developed.

  3. A polygon soup representation for free viewpoint video

    NASA Astrophysics Data System (ADS)

    Colleu, T.; Pateux, S.; Morin, L.; Labit, C.

    2010-02-01

    This paper presents a polygon soup representation for multiview data. Starting from a sequence of multi-view video plus depth (MVD) data, the proposed representation takes into account, in a unified manner, different issues such as compactness, compression, and intermediate view synthesis. The representation is built in two steps. First, a set of 3D quads is extracted using a quadtree decomposition of the depth maps. Second, a selective elimination of the quads is performed in order to reduce inter-view redundancies and thus provide a compact representation. Moreover, the proposed methodology for extracting the representation allows to reduce ghosting artifacts. Finally, an adapted compression technique is proposed that limits coding artifacts. The results presented on two real sequences show that the proposed representation provides a good trade-off between rendering quality and data compactness.

  4. Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.

    PubMed

    Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan

    2011-02-22

    Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein.

  5. Label-Free 3D Visualization of Cellular and Tissue Structures in Intact Muscle with Second and Third Harmonic Generation Microscopy

    PubMed Central

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2011-01-01

    Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy. PMID:22140560

  6. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  8. Effect Of Molecular Rotations On High Intensity Absorption In CO2

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Claveau, Lorraine

    1986-10-01

    In intense fields, the Rabi frequency ωR = pE/h can easily be of the order of rotational and vibrational energies of molecules. This means that rotations as well as vibrations become strongly perturbed so that perturbative methods no longer apply. We will show that nonperturbative methods can be derived from the concept of the dressed molecule. This leads to coupled equations which are used ko simulate numerically the multiphoton processes which will occur at intensities > 108 W/cm2. Furthermore, for multiphoton rotational tran-sitions, one can derive analytical models which help one understand the temporal behaviour of energy flow in a molecule in terms of its dressed spectrum, such as chaotic or regular (nonchaotic) behaviour. These results are of relevance to the manifestation of multiphoton coherences in a CO2 spectrum at very high intensities (I % 1012 W/cm2).

  9. Pushing the Limit of Infrared Multiphoton Dissociation to Megadalton-Size DNA Ions.

    PubMed

    Doussineau, Tristan; Antoine, Rodolphe; Santacreu, Marion; Dugourd, Philippe

    2012-08-16

    We report the use of infrared multiphoton dissociation (IRMPD) for the determination of relative activation energies for unimolecular dissociation of megadalton DNA ions. Single ions with masses in the megadalton range were stored in an electrostatic ion trap for a few tens of milliseconds and the image current generated by the roundtrips of ions in the trap was recorded. While being trapped, single ions were irradiated by a CO2 laser and fragmented, owing to multiphoton IR activation. The analysis of the single-ion image current during the heating period allows us to measure changes in the charge of the trapped ion. We estimated the activation energy associated with the dissociation of megadalton-size DNA ions in the frame of an Arrhenius-like model by analyzing a large set of individual ions in order to construct a frequency histogram of the dissociation rates for a collection of ions.

  10. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  11. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  12. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  13. Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity.

    PubMed

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyung-Jin; Choi, Seong-Gon; Hong, Jong-Phil

    2017-08-31

    We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.

  14. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  15. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.

    PubMed

    Chen, Zhixing; Wei, Lu; Zhu, Xinxin; Min, Wei

    2012-08-13

    It is highly desirable to be able to optically probe biological activities deep inside live organisms. By employing a spatially confined excitation via a nonlinear transition, multiphoton fluorescence microscopy has become indispensable for imaging scattering samples. However, as the incident laser power drops exponentially with imaging depth due to scattering loss, the out-of-focus fluorescence eventually overwhelms the in-focal signal. The resulting loss of imaging contrast defines a fundamental imaging-depth limit, which cannot be overcome by increasing excitation intensity. Herein we propose to significantly extend this depth limit by multiphoton activation and imaging (MPAI) of photo-activatable fluorophores. The imaging contrast is drastically improved due to the created disparity of bright-dark quantum states in space. We demonstrate this new principle by both analytical theory and experiments on tissue phantoms labeled with synthetic caged fluorescein dye or genetically encodable photoactivatable GFP.

  16. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, G.; Wei, J.; Zheng, Z.; Ye, J.; Zeng, S.

    2014-06-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM.

  17. Explicit and implicit compact high-resolution shock-capturing methods for multidimensional Euler equations 1: Formulation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1995-01-01

    Two classes of explicit compact high-resolution shock-capturing methods for the multidimensional compressible Euler equations for fluid dynamics are constructed. Some of these schemes can be fourth-order accurate away from discontinuities. For the semi-discrete case their shock-capturing properties are of the total variation diminishing (TVD), total variation bounded (TVB), total variation diminishing in the mean (TVDM), essentially nonoscillatory (ENO), or positive type of scheme for 1-D scalar hyperbolic conservation laws and are positive schemes in more than one dimension. These fourth-order schemes require the same grid stencil as their second-order non-compact cousins. One class does not require the standard matrix inversion or a special numerical boundary condition treatment associated with typical compact schemes. Due to the construction, these schemes can be viewed as approximations to genuinely multidimensional schemes in the sense that they might produce less distortion in spherical type shocks and are more accurate in vortex type flows than schemes based purely on one-dimensional extensions. However, one class has a more desirable high-resolution shock-capturing property and a smaller operation count in 3-D than the other class. The extension of these schemes to coupled nonlinear systems can be accomplished using the Roe approximate Riemann solver, the generalized Steger and Warming flux-vector splitting or the van Leer type flux-vector splitting. Modification to existing high-resolution second- or third-order non-compact shock-capturing computer codes is minimal. High-resolution shock-capturing properties can also be achieved via a variant of the second-order Lax-Friedrichs numerical flux without the use of Riemann solvers for coupled nonlinear systems with comparable operations count to their classical shock-capturing counterparts. The simplest extension to viscous flows can be achieved by using the standard fourth-order compact or non-compact formula for the viscous terms.

  18. Order of multiphoton excitation of sulfonium photo-acid generators used in photoresists based on SU-8

    NASA Astrophysics Data System (ADS)

    Williams, Henry E.; Diaz, Carlos; Padilla, Gabriel; Hernandez, Florencio E.; Kuebler, Stephen M.

    2017-06-01

    Multiphoton lithography (MPL), Z-scan spectroscopy, and quantum chemical calculations were employed to investigate the order of multiphoton excitation that occurs when femtosecond laser pulses are used to excite two sulfonium photo-acid generators (PAGs) commonly used in photoresists based on the cross-linkable epoxide SU-8. The mole-fractions of the mono- and bis-sulfonium forms of these PAGs were determined for the commercially available photoresist SU-8 2075 and for the PAGs alone from a separate source. Both were found to contain similar fractions of the mono- and bis-forms, with the mono form present in the majority. Reichert's method was used to determine the solvatochromic strength of the SU-8 matrix, so that results obtained for the PAGs in SU-8 and in solution could be reliably compared. The PAGs were found to exhibit a minimal solvatochromic shift for a series of solvents that span across the solvatochromic strength of SU-8 itself. Sub-micron-sized features were fabricated in SU-8 2075 by MPL using amplified and continuous-wave mode-locked laser pulses. Analysis of the features as a function of average laser power, scan speed, and excitation wavelength shows that the PAGs can be activated by both two- and three-photon absorption (2PA and 3PA). Which activation mode dominates depends principally upon the excitation wavelength because the average laser powers that can be used with the photoresist are limited by practical considerations. The power must be high enough to effect sufficient cross-linking, yet not so high as to exceed the damage threshold of the material. When the laser pulses have a duration on the order of 100 fs, 3PA dominates at wavelengths near 800 nm, whereas 2PA becomes dominant at wavelengths below 700 nm. These findings are corroborated by open-aperture Z-scan measurements and quantum chemical calculations of the cross-sections for 2PA and 3PA as a function of wavelength.

  19. Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks.

    PubMed

    Jiang, Zhi Hao; Cui, Zheng; Yue, Taiwei; Zhu, Yong; Werner, Douglas H

    2017-08-01

    A compact and flexible circularly polarized (CP) wearable antenna is introduced for wireless body-area network systems at the 2.4 GHz industrial, scientific, and medical (ISM) band, which is implemented by employing a low-loss composite of polydimethylsiloxane (PDMS) and silver nanowires (AgNWs). The circularly polarized radiation is enabled by placing a planar linearly polarized loop monopole above a finite anisotropic artificial ground plane. By truncating the anisotropic artificial ground plane to contain only 2 by 2 unit cells, an integrated antenna with a compact form factor of 0.41λ 0 × 0.41λ 0 × 0.045λ 0 is obtained, all while possessing an improved angular coverage of CP radiation. A flexible prototype was fabricated and characterized, experimentally achieving S 11 <- 15 dB, an axial ratio of less than 3 dB, a gain of around 5.2 dBi, and a wide CP angular coverage in the targeted ISM band. Furthermore, this antenna is compared to a conventional CP patch antenna of the same physical size, which is also comprised of the same PDMS and AgNW composite. The results of this comparison reveal that the proposed antenna has much more stable performance under bending and human body loading, as well as a lower specific absorption rate. In all, the demonstrated wearable antenna offers a compact, flexible, and robust solution which makes it a strong candidate for future integration into body-area networks that require efficient off-body communications.

  20. Advantages and drawbacks of Thiol-ene based resins for 3D-printing

    NASA Astrophysics Data System (ADS)

    Leonards, Holger; Engelhardt, Sascha; Hoffmann, Andreas; Pongratz, Ludwig; Schriever, Sascha; Bläsius, Jana; Wehner, Martin; Gillner, Arnold

    2015-03-01

    The technology of 3D printing is conquering the world and awakens the interest of many users in the most varying of applications. New formulation approaches for photo-sensitive thiol-ene resins in combination with various printing technologies, like stereolithography (SLA), projection based printing/digital light processing (DLP) or two-photon polymerization (TPP) are presented. Thiol-ene polymerizations are known for its fast and quantitative reaction and to form highly homogeneous polymer networks. As the resins are locally and temporally photo-curable the polymerization type is very promising for 3D-printing. By using suitable wavelengths, photoinitiator-free fabrication is feasible for single- and two photon induced polymerization. In this paper divinyl ethers of polyethylene glycols in combination with star-shaped tetrathiols were used to design a simple test-system for photo-curable thiol-ene resins. In order to control and improve curing depth and lateral resolution in 3D-polymerization processes, either additives in chemical formulation or process parameters can be changed. The achieved curing depth and resolution limits depend on the applied fabrication method. While two-/multiphoton induced lithography offers the possibility of micron- to sub-micron resolution it lacks in built-up speed. Hence single-photon polymerization is a fast alternative with optimization potential in sub-10-micron resolution. Absorber- and initiator free compositions were developed in order to avoid aging, yellowing and toxicity of resulting products. They can be cured with UV-laser radiation below 300 nm. The development at Fraunhofer ILT is focusing on new applications in the field of medical products and implants, technical products with respect to mechanical properties or optical properties of 3D-printed objects. Recent process results with model system (polyethylene glycol divinylether/ Pentaerithrytol tetrakis (3-mercaptopropionat), Raman measurements of polymer conversion and surface modifications using bifunctional crosslinkers are presented with advantages, drawbacks and a general outlook.

  1. Area-Efficient 60 GHz +18.9 dBm Power Amplifier with On-Chip Four-Way Parallel Power Combiner in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Farahabadi, Payam Masoumi; Basaligheh, Ali; Saffari, Parvaneh; Moez, Kambiz

    2017-06-01

    This paper presents a compact 60-GHz power amplifier utilizing a four-way on-chip parallel power combiner and splitter. The proposed topology provides the capability of combining the output power of four individual power amplifier cores in a compact die area. Each power amplifier core consists of a three-stage common-source amplifier with transformer-coupled impedance matching networks. Fabricated in 65-nm CMOS process, the measured gain of the 0.19-mm2 power amplifier at 60 GHz is 18.8 and 15 dB utilizing 1.4 and 1.0 V supply. Three-decibel band width of 4 GHz and P1dB of 16.9 dBm is measured while consuming 424 mW from a 1.4-V supply. A maximum saturated output power of 18.3 dBm is measured with the 15.9% peak power added efficiency at 60 GHz. The measured insertion loss is 1.9 dB at 60 GHz. The proposed power amplifier achieves the highest power density (power/area) compared to the reported 60-GHz CMOS power amplifiers in 65 nm or older CMOS technologies.

  2. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect

    NASA Astrophysics Data System (ADS)

    Pominova, Daria V.; Ryabova, Anastasia V.; Grachev, Pavel V.; Romanishkin, Igor D.; Kuznetsov, Sergei V.; Rozhnova, Julia A.; Yasyrkina, Daria S.; Fedorov, Pavel P.; Loschenov, Victor B.

    2016-09-01

    The great interest in upconversion nanoparticles exists due to their high efficiency under multiphoton excitation. However, when these particles are used in scanning microscopy, the upconversion luminescence causes a streaking effect due to the long lifetime. This article describes a method of upconversion microparticle luminescence lifetime determination with help of modified Lucy-Richardson deconvolution of laser scanning microscope (LSM) image obtained under near-IR excitation using nondescanned detectors. Determination of the upconversion luminescence intensity and the decay time of separate microparticles was done by intensity profile along the image fast scan axis approximation. We studied upconversion submicroparticles based on fluoride hosts doped with Yb3+-Er3+ and Yb3+-Tm3+ rare earth ion pairs, and the characteristic decay times were 0.1 to 1.5 ms. We also compared the results of LSM measurements with the photon counting method results; the spread of values was about 13% and was associated with the approximation error. Data obtained from live cells showed the possibility of distinguishing the position of upconversion submicroparticles inside and outside the cells by the difference of their lifetime. The proposed technique allows using the upconversion microparticles without shells as probes for the presence of OH- ions and CO2 molecules.

  3. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.

    PubMed

    Hein, Stephanie; Picker-Freyer, Katharina M; Langridge, John

    2008-01-01

    Tablets are by far the most common solid oral dosage forms, and many drugs need to be granulated before they can be tableted. Increasingly roller compaction is being used as a dry granulation technique; however it is a very time and material intensive method. Thus some mini roller compactors and simulations of the roller compaction process have been developed as a means of studying the technique at small scale. An important factor in the selection of materials for roller compaction is their ability to be recompressed into tablets after the initial roller compaction and milling steps. In this paper the roller compaction process was simulated on the basis of some models by Gereg and Cappola (2002) and Zinchuk et al. (2004). An eccentric tableting machine was used to make compacts from alpha-lactose monohydrate, anhydrous beta-lactose, spray-dried lactose and microcrystalline cellulose at different maximum relative densities (rho rel,max 0.6-0.9). These compacts were milled immediately to granules with a rotary granulator. The properties of the granules were analyzed and compared to the properties of the original powders. These granules and powders were then tableted at different maximum relative densities (rho rel,max 0.75-0.95) and their properties including elastic recovery, crushing force and 3D-model were analyzed. The properties of the tablets made from the granules were compared to the properties of the tablets made from the powders to determine which excipients are most suitable for the roller compaction process. The study showed that anhydrous beta-lactose is the preferred form of lactose for use in roller compaction since compaction did not affect tablet crushing force to a large extent. With the simulation of roller compaction process one is able to find qualified materials for use in roller compaction without the necessity of a great deal of material and time.

  4. 4D Hyperspherical Harmonic (HyperSPHARM) Representation of Multiple Disconnected Brain Subcortical Structures

    PubMed Central

    Hosseinbor, A. Pasha; Chung, Moo K.; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matt; Alexander, Andrew L.; Davidson, Richard J.

    2014-01-01

    We present a novel surface parameterization technique using hyperspherical harmonics (HSH) in representing compact, multiple, disconnected brain subcortical structures as a single analytic function. The proposed hyperspherical harmonic representation (HyperSPHARM) has many advantages over the widely used spherical harmonic (SPHARM) parameterization technique. SPHARM requires flattening 3D surfaces to 3D sphere which can be time consuming for large surface meshes, and can’t represent multiple disconnected objects with single parameterization. On the other hand, HyperSPHARM treats 3D object, via simple stereographic projection, as a surface of 4D hypersphere with extremely large radius, hence avoiding the computationally demanding flattening process. HyperSPHARM is shown to achieve a better reconstruction with only 5 basis compared to SPHARM that requires more than 441. PMID:24505716

  5. Note: A monoenergetic proton backlighter for the National Ignition Facility

    DOE PAGES

    Rygg, J. R.; Zylstra, A. B.; Seguin, F. H.; ...

    2015-11-12

    Here, a monoenergetic, isotropic proton source suitable for proton radiography applications has been demonstrated at the National Ignition Facility (NIF). A deuterium and helium-3 gas-filled glass capsule was imploded with 39 kJ of laser energy from 24 of NIF’s 192 beams. Spectral, spatial, and temporal measurements of the 15-MeV proton product of the 3He(d,p) 4He nuclear reaction reveal a bright (10 10 protons/sphere), monoenergetic (ΔE/E = 4%) spectrum with a compact size (80 µm) and isotropic emission (~13% proton fluence variation and <0.4% mean energy variation). Simultaneous measurements of products produced by the D(d,p)T and D(d,n) 3He reactions also showmore » 2 × 10 10 isotropically distributed 3-MeV protons.« less

  6. Dynamic Stall Suppression Using Combustion-Powered Actuation (COMPACT)

    NASA Technical Reports Server (NTRS)

    Matalanis, Claude G.; Bowles, Patrick O.; Jee, Solkeun; Min, Byung-Young; Kuczek, Andrzej E.; Croteau, Paul F.; Wake, Brian E.; Crittenden, Thomas; Glezer, Ari; Lorber, Peter F.

    2016-01-01

    Retreating blade stall is a well-known phenomenon that limits rotorcraft speed, maneuverability, and efficiency. Airfoil dynamic stall is a simpler problem, which demonstrates many of the same flow phenomena. Combustion Powered Actuation (COMPACT) is an active flow control technology, which at the outset of this work, had been shown to mitigate static and dynamic stall at low Mach numbers. The attributes of this technology suggested strong potential for success at higher Mach numbers, but such experiments had never been conducted. The work detailed in this report documents a 3-year effort focused on assessing the effectiveness of COMPACT for dynamic stall suppression at freestream conditions up to Mach 0.5. The work done has focused on implementing COMPACT on a high-lift rotorcraft airfoil: the VR-12. This selection was made in order to ensure that any measured benefits are over and above the capabilities of state-of-the-art high-lift rotorcraft airfoils. The detailed Computational Fluid Dynamics (CFD) simulations, wind-tunnel experiments, and system-level modeling conducted have shown the following: (1) COMPACT, in its current state of development, is capable of reducing the adverse effects of deep dynamic stall at Mach numbers up to 0.4; (2) The two-dimensional (2D) CFD results trend well compared to the experiments; and (3) Implementation of the CFD results into a system-level model suggest that significant rotor-level benefits are possible.

  7. Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian

    2013-04-15

    We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less

  8. Compact filtering monopole patch antenna with dual-band rejection.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a compact ultra-wideband patch antenna with dual-band rejection is proposed. The proposed antenna filters 3.3-3.8 GHz WiMAX and 5.15-5.85 GHz WLAN by respectively rejecting these bands through a C-shaped slit and a λg/4 resonator. The λg/4 resonator is positioned as a pair, centered around the microstrip line, and a C-type slit is inserted into an elliptical patch. The impedance bandwidth of the proposed antenna is 2.9-9.3 GHz, which satisfies the bandwidth for ultra-wideband communication systems. Further, the proposed antenna provides dual-band rejection at two bands: 3.2-3.85 and 4.7-6.03 GHz. The radiation pattern of the antenna is omnidirectional, and antenna gain is maintained constantly while showing -8.4 and -1.5 dBi at the two rejected bands, respectively.

  9. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A; Kabel, A.; Lee, L.

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  10. Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhar, Ping; Dong, Lifang

    1996-01-01

    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential.

  11. Development of injector/amplifier XUV lasers and initial studies of ultrashort pulse UV multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Key, Michael H.; Blyth, W. J.; Cairns, Gerald F.; Damerell, A. R.; Dangor, A. E.; Danson, Colin N.; Evans, J. M.; Hirst, Graeme J.; Holden, M.; Hooker, Chris J.; Houliston, J. R.; Krishnan, J.; Lewis, Ciaran L. S.; Lister, J. M. D.; MacPhee, Andrew G.; Najmudin, Z.; Neely, David; Norreys, Peter A.; Offenberger, Allen A.; Osvay, Karoly; Pert, Geoffrey J.; Preston, S. G.; Ramsden, Stuart A.; Ross, Ian N.; Sibbett, Wilson; Tallents, Gregory J.; Smith, C.; Wark, Justin S.; Zhang, Jie

    1994-02-01

    An injector-amplifier architecture for XUV lasers has been developed and demonstrated using the Ge XXIII collisional laser. Results are described for injection into single and double plasma amplifiers. Prismatic lens-like and higher order aberrations in the amplifier are considered. Limitations on ultimate brightness are discussed and also scaling to operation at shorter wavelengths. A preliminary study has been made of UV multiphoton ionization using 300 fs pulses at high intensity.

  12. Multiphoton spectroscopy of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  13. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  14. Determination of polycyclic aromatic hydrocarbons and their nitro-, amino-derivatives absorbed on particulate matter 2.5 by multiphoton ionization mass spectrometry using far-, deep-, and near-ultraviolet femtosecond lasers.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2016-06-01

    Multiphoton ionization processes of parent-polycyclic aromatic hydrocarbons (PPAHs), nitro-PAHs (NPAHs), and amino-PAHs (APAHs) were examined by gas chromatography combined with time-of-flight mass spectrometry using a femtosecond Ti:sapphire laser as the ionization source. The efficiency of multiphoton ionization was examined using lasers emitting in the far-ultraviolet (200 nm), deep-ultraviolet (267 nm), and near-ultraviolet (345 nm) regions. The largest signal intensities were obtained when the far-ultraviolet laser was employed. This favorable result can be attributed to the fact that these compounds have the largest molar absorptivities in the far-ultraviolet region. On the other hand, APAHs were ionized more efficiently than NPAHs in the near-ultraviolet region because of their low ionization energies. A sample extracted from a real particulate matter 2.5 (PM2.5) sample was measured, and numerous signal peaks arising from PAH and its analogs were observed at 200 nm. On the other hand, only a limited number of signed peaks were observed at 345 nm, some of which were signed to PPAHs, NPAHs, and APAHs. Thus, multiphoton ionization mass spectrometry has potential for the use in comprehensive analysis of toxic environmental pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. All-near-infrared multiphoton microscopy interrogates intact tissues at deeper imaging depths than conventional single- and two-photon near-infrared excitation microscopes

    PubMed Central

    Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher

    2013-01-01

    Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100  μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500  μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231

  16. Video-rate resonant scanning multiphoton microscopy

    PubMed Central

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  17. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  18. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo.

    PubMed

    Tsai, Tsung-Hua; Lin, Sung-Jan; Lee, Woan-Ruoh; Wang, Chun-Chin; Hsu, Chih-Ting; Chu, Thomas; Dong, Chen-Yuan

    2012-02-01

    Redundant skin laxity is a major feature of aging. Recently, radiofrequency has been introduced for nonablative tissue tightening by volumetric heating of the deep dermis. Despite the wide range of application based on this therapy, the effect of this technique on tissue and the subsequent tissue remodeling have not been investigated in detail. Our objective is to evaluate the potential of non-linear optics, including multiphoton autofluorescence and second harmonic generation (SHG) microscopy, as a non-invasive imaging modality for the real-time study of radiofrequency-tissue interaction. Electro-optical synergy device (ELOS) was used as the radiofrequency source in this study. The back skin of nude mouse was irradiated with radiofrequency at different passes. We evaluated the effect on skin immediately and 1 month after treatment with multiphoton microscopy. Corresponding histology was performed for comparison. We found that SHG is negatively correlated to radiofrequency passes, which means that collagen structural disruption happens immediately after thermal damage. After 1 month of collagen remodeling, SHG signals increased above baseline, indicating that collagen regeneration has occurred. Our findings may explain mechanism of nonablative skin tightening and were supported by histological examinations. Our work showed that monitoring the dermal heating status of RF and following up the detailed process of tissue reaction can be imaged and quantified with multiphoton microscopy non-invasively in vivo. Copyright © 2011. Published by Elsevier Ireland Ltd.

  19. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample, and strengthens the shale sufficiently to localize shear faults. These results are critical to robust assessment of deformation patterns in shale rocks in contexts such as nuclear waste storage, hydrocarbon recovery and groundwater access.

  20. F-theory and AdS3/CFT2 (2, 0)

    NASA Astrophysics Data System (ADS)

    Couzens, Christopher; Martelli, Dario; Schäfer-Nameki, Sakura

    2018-06-01

    We continue to develop the program initiated in [1] of studying supersymmetric AdS3 backgrounds of F-theory and their holographic dual 2d superconformal field theories, which are dimensional reductions of theories with varying coupling. Imposing 2d N=(0,2) supersymmetry,wederivethegeneralconditionsonthegeometryforTypeIIB AdS3 solutions with varying axio-dilaton and five-form flux. Locally the compact part of spacetime takes the form of a circle fibration over an eight-fold Y_8^{τ } , which is elliptically fibered over a base \\tilde{M}_6 . We construct two classes of solutions given in terms of a product ansatz \\tilde{M}_6}=Σ × {M}_4 , where Σ is a complex curve and \\tilde{M}_4 is locally a Kähler surface. In the first class \\tilde{M}_4 is globally a Kähler surface and we take the elliptic fibration to vary non-trivially over either of these two factors, where in both cases the metrics on the total space of the elliptic fibrations are not Ricci-flat. In the second class the metric on the total space of the elliptic fibration over either curve or surface are Ricci-flat. This results in solutions of the type AdS3 × K3 × ℳ 5 τ , dual to 2d (0, 2) SCFTs, and AdS3 × S 3/Γ × CY 3, dual to 2d (0, 4) SCFTs, respectively. In all cases we compute the charges for the dual field theories with varying coupling and find agreement with the holographic results. We also show that solutions with enhanced 2d N=(2,2) supersymmetry must have constant axio-dilaton. Allowing the internal geometry to be non-compact leads to the most general class of Type IIB AdS5 solutions with varying axio-dilaton, i.e. F-theoretic solutions, that are dual to 4d N=1 SCFTs.

Top