Science.gov

Sample records for compact neutron star

  1. Compactness of Neutron Stars.

    PubMed

    Chen, Wei-Chia; Piekarewicz, J

    2015-10-16

    Recent progress in the determination of both masses and radii of neutron stars is starting to place stringent constraints on the dense matter equation of state. In particular, new theoretical developments together with improved statistical tools seem to favor stellar radii that are significantly smaller than those predicted by models using purely nucleonic equations of state. Given that the underlying equation of state must also account for the observation of 2M⊙ neutron stars, theoretical approaches to the study of the dense matter equation of state are facing serious challenges. In response to this challenge, we compute the underlying equation of state associated with an assumed mass-radius template similar to the "common radius" assumption used in recent studies. Once such a mass-radius template is adopted, the equation of state follows directly from the implementation of Lindblom's algorithm; assumptions on the nature or composition of the dense stellar core are not required. By analyzing mass-radius profiles with a maximum mass consistent with observation and common radii in the 8-11 km range, a lower limit on the stellar radius of a 1.4M⊙ neutron star of RNS≳10.7  km is required to prevent the equation of state from violating causality.

  2. Probing crustal structures from neutron star compactness

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-10-01

    With various sets of the parameters that characterize the equation of state (EOS) of nuclear matter, we systematically examine the thickness of a neutron star crust and of the pasta phases contained therein. Then, with respect to the thickness of the phase of spherical nuclei, the thickness of the cylindrical phase and the crust thickness, we successfully derive fitting formulas that express the ratio of each thickness to the star's radius as a function of the star's compactness, the incompressibility of symmetric nuclear matter and the density dependence of the symmetry energy. In particular, we find that the thickness of the phase of spherical nuclei has such a strong dependence on the stellar compactness as the crust thickness, but both of them show a much weaker dependence on the EOS parameters. Thus, via determination of the compactness, the thickness of the phase of spherical nuclei as well as the crust thickness can be constrained reasonably, even if the EOS parameters remain to be well-determined.

  3. Compact Object Binaries with Spinning Neutron Stars in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nicholas A.

    The inspiral and merger of binary neutron stars (BNS) is one of the most promising potential sources of gravitational waves for ground-based detectors like Advanced LIGO. BNS mergers are also likely a source of counterpart electromagnetic radiation. It is important to perform simulations of BNS to better understand and model their gravitational wave emission as well as their electromagnetic emission. The parameter space of BNS binaries is quite large, and one aspect that has not been well studied in neutron star spin. In this thesis, we focus on investigating spinning neutron stars in compact object binaries. Using the SpEC code, developed by the SXS collaboration, we begin by presenting a new code to create initial data for binary neutron stars with arbitrary spins. We introduce a novel method of measuring neutron star spin, and show that it is accurate and robust. We evolve several spinning binary configurations and show that their properties agree remarkably well with Post-Newtonian predictions. We also show that we are able to control the eccentricity of the binaries to 0.1%. Thereafter, we proceed to extend our code to black hole.neutron star (BHNS) binaries. We create many data sets across the BHNS parameter space, varying neutron star spin magnitude, spin direction, compactness, and black hole mass, spin and spin direction. We are able to create initial data sets with neutron star spins near the mass shedding limit, and nearly extremal black hole spins. Finally, we investigate spurious gravitational radiation in binary black hole systems. We study its parameter space dependence, by introducing three diagnostics, investigating them as a function of black hole spin and black hole separation, and comparing two different methods of constructing initial data.

  4. The Fate of the Compact Remnant in Neutron Star Mergers

    DOE PAGES

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less

  5. The Fate of the Compact Remnant in Neutron Star Mergers

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  6. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  7. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  8. Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-06-01

    In one of its most bizarre images yet, NASA's Chandra X-ray Observatory shows the details of a compact nebula that resembles a gigantic cosmic crossbow. The nebula, located in the Vela supernova remnant, is created as a rapidly rotating neutron star, or pulsar, spins out rings and jets of high-energy particles while shooting through space. "What is fascinating is that the jets from the pulsar are directed exactly along the direction of the pulsar's motion," said Dr. George Pavlov of Penn State University, University Park today at the 196th national meeting of the American Astronomical Society in Rochester, New York. "The southern jet looks like a rocket exhaust!" The X-ray jet can be traced all the way in to the neutron star, and an inner ring is seen for the first time. This ring is thought to represent a shock wave due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce jets of particles that blast away at near the speed of light. Pavlov explained that shortly after the star exploded, jets with unequal thrust along the poles of the neutron star could have accelerated it like a rocket. The neutron star is enveloped in a cloud of high-energy particles emitting X rays as they spiral around magnetic field lines. This cloud, or nebula, is embedded in a much larger cloud produced by the supernova and has a swept-back, cometary shape because of its motion through the larger cloud. The dramatic bow-like structure at the leading edge of the nebula is perpendicular to the jets and has the appearance of a cosmic crossbow with the jets as the arrows. This bow and the smaller one inside it, are thought to be the near edges of tilted rings of X-ray emission from high-energy particles produced by the central neutron star. The neutron star-ring-jet system, which resulted from an explosion in the constellation Vela ten thousand or more years ago, is similar to the remarkable structure observed by Chandra in the Crab Nebula

  9. Nuclear gamma rays from compact objects. [nuclear interactions around neutron stars and black holes

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Ramaty, R.

    1978-01-01

    Accreting compact objects may be important gamma ray line sources and may explain recent observations of celestial gamma-ray line emission from a transient source in the direction of the galactic anti-center, from the galactic center, and possibly from the radio galaxy Centaurus A. The identification of the lines from the transient source requires a strong redshift. Such a redshift permits the identification of these lines with the most intense nuclear emission lines expected in nature, positron annihilation, and neutron capture on hydrogen and iron. Their production as a result of nuclear interactions in accreting gas around a neutron star is proposed. The gamma-ray line emission from the galactic center and possibly Centaurus A appears to have a surprisingly high luminosity, amounting to perhaps as much as 10% of the total luminosity of these sources. Such high gamma-ray line emission efficiencies could result from nuclear interactions in accreting gas around a massive black hole.

  10. Neutron Stars

    NASA Technical Reports Server (NTRS)

    Cottam, J.

    2007-01-01

    Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.

  11. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  12. The compactness of the isolated neutron star RX J0720.4-3125

    NASA Astrophysics Data System (ADS)

    Hambaryan, V.; Suleimanov, V.; Haberl, F.; Schwope, A. D.; Neuhäuser, R.; Hohle, M.; Werner, K.

    2017-05-01

    Aims: To estimate the compactness of the thermally-emitting isolated neutron star (INS) RX J0720.4-3125, an X-ray spin-phase-resolved spectroscopic study is conducted. In addition, to identify the genuine spin-period, an X-ray timing analysis is performed. Methods: The data from all observations of RX J0720.4-3125 conducted by XMM-Newton EPIC-pn with the same instrumental setup in 2000-2012 were reprocessed to form a homogenous dataset of solar barycenter corrected photon arrival times registered from RX J0720.4-3125. A Bayesian method for the search, detection, and estimation of the parameters of an unknown-shaped periodic signal was employed. A number of single- and double-peaked complex models of light curves from pulsating neutron stars were statistically analyzed. The distribution of phases for the registered photons was calculated by folding the arrival times with the derived spin-period and the resulting distribution of phases, which was approximated with a mixed von Mises distribution, and its parameters were estimated by using the expected maximization method. Spin-phase-resolved spectra were extracted, a number of highly magnetized atmosphere models of an INS were used to perform simultaneous fits, and the results were verified via an Markov chain Monte Carlo approach. Results: The phase-folded light curves in different energy bands with high signal-to-noise ratio show high complexity and variations that depend on time and energy. They can be parameterized with a mixed von Mises distribution, meaning with a double-peaked light curve profile that shows a dependence of the estimated parameters, such as the mean directions, concentrations, and proportion upon the energy band, indicating that radiation emerges from at least two emitting areas. Conclusions: We derive a most-likely genuine spin-period of the isolated neutron star RX J0720-3125 that is twice that reported in the literature, 16.78 s instead of 8.39 s. We determine the gravitational redshift of RX

  13. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  14. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  15. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  16. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  17. Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-09-01

    In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses ( M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass ( M com) to the NS mass ( M NS). For NS-NS binaries, the fractional errors (σ/ M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio ( M com/ M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.

  18. Superfluidity and Superconductivity in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chamel, N.

    2017-09-01

    Neutron stars, the compact stellar remnants of core-collapse supernova explosions, are unique cosmic laboratories for exploring novel phases of matter under extreme conditions. In particular, the occurrence of superfluidity and superconductivity in neutron stars will be briefly reviewed.

  19. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  20. Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Moldenhauer, Niclas; Johnson-McDaniel, Nathan K.; Bernuzzi, Sebastiano; Markakis, Charalampos M.; Brügmann, Bernd; Tichy, Wolfgang

    2015-12-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasiequilibrium configurations and dynamical evolutions. In this article, we construct quasiequilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the sgrid code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity-reduced data; we present the possibility of computing data for significantly unequal-mass binaries with mass ratios q ≃2 ; and we create equal-mass binaries with individual compactness up to C ≃0.23 . As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q =2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ˜10-2M⊙ is transferred between the two stars. This amount of mass accretion corresponds to ˜1051 ergs of accretion energy. This configuration also ejects a large amount of material during merger (˜7.6 ×1 0-2M⊙), imparting a substantial kick to the remnant neutron star. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity-reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies. However, one also needs to reduce other errors in the waveforms, notably truncation errors, in order for the improvement due to

  1. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  2. The Compact Central Object in Cassiopeia A: A Neutron Star with Hot Polar Caps or a Black Hole?

    PubMed

    Pavlov; Zavlin; Aschenbach; Trümper; Sanwal

    2000-03-01

    The central pointlike X-ray source of the Cassiopeia A supernova remnant was discovered in the Chandra first light observation and found later in the archival ROSAT and Einstein images. The analysis of these data does not show statistically significant variability of the source. Because of the small number of photons detected, different spectral models can fit the observed spectrum. The power-law fit yields the photon index gamma=2.6-4.1, and luminosity L(0.1-5.0 keV&parr0;=&parl0;2-60&parr0;x1034 ergs s-1 for d=3.4 kpc. The power-law index is higher, and the luminosity lower, than those observed from very young pulsars. One can fit the spectrum equally well with a blackbody model with T=6-8 MK, R=0.2-0.5 km, and Lbol=&parl0;1.4-1.9&parr0;x1033 ergs s-1. The inferred radii are too small, and the temperatures too high, for the radiation to be interpreted as emitted from the whole surface of a uniformly heated neutron star. Fits with the neutron star atmosphere models increase the radius and reduce the temperature, but these parameters are still substantially different from those expected for a young neutron star. One cannot exclude, however, the possibility that the observed emission originates from hot spots on a cooler neutron star surface. An upper limit on the (gravitationally redshifted) surface temperature is Tinfinitys<1.9-2.3 MK, depending on the chemical composition of the surface and the star's radius. Among several possible interpretations, we favor a model of a strongly magnetized neutron star with magnetically confined hydrogen or helium polar caps (Tinfinitypc approximately 2.8 MK, Rpc approximately 1 km) on a cooler iron surface (Tinfinitys approximately 1.7 MK). Such temperatures are consistent with the standard models of neutron star cooling. Alternatively, the observed radiation may be interpreted as emitted by a compact object (more likely, a black hole) accreting from a residual disk or from a late-type dwarf in a close binary.

  3. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  4. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  5. Grand unification of neutron stars.

    PubMed

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  6. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  7. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  8. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  9. A RAY-TRACING ALGORITHM FOR SPINNING COMPACT OBJECT SPACETIMES WITH ARBITRARY QUADRUPOLE MOMENTS. II. NEUTRON STARS

    SciTech Connect

    Bauboeck, Michi; Psaltis, Dimitrios; Oezel, Feryal; Johannsen, Tim E-mail: dpsaltis@email.arizona.edu E-mail: timj@email.arizona.edu

    2012-07-10

    A moderately spinning neutron star acquires an oblate shape and a spacetime with a significant quadrupole moment. These two properties affect its apparent surface area for an observer at infinity, as well as the light curve arising from a hot spot on its surface. In this paper, we develop a ray-tracing algorithm to calculate the apparent surface areas of moderately spinning neutron stars making use of the Hartle-Thorne metric. This analytic metric allows us to calculate various observables of the neutron star in a way that depends only on its macroscopic properties and not on the details of its equation of state. We use this algorithm to calculate the changes in the apparent surface area, which could play a role in measurements of neutron-star radii and, therefore, in constraining their equation of state. We show that whether a spinning neutron star appears larger or smaller than its non-rotating counterpart depends primarily on its equatorial radius. For neutron stars with radii {approx}10 km, the corrections to the Schwarzschild spacetime cause the apparent surface area to increase with spin frequency. In contrast, for neutron stars with radii {approx}15 km, the oblateness of the star dominates the spacetime corrections and causes the apparent surface area to decrease with increasing spin frequency. In all cases, the change in the apparent geometric surface area for the range of observed spin frequencies is {approx}<5% and hence only a small source of error in the measurement of neutron-star radii.

  10. The Zoo of neutron stars

    NASA Astrophysics Data System (ADS)

    Popov, S. B.

    2008-12-01

    In these lecture notes, I briefly discuss the present day situation and new discoveries in astrophysics of neutron stars focusing on isolated objects. The latter include soft gamma repeaters, anomalous x-ray pulsars, central compact objects in supernova remnants, the Magnificent Seven, and rotating radio transients. In the last part of the paper, I describe available tests of cooling curves of neutron stars and discuss different additional constraints that can help to confront theoretical calculations of cooling with observational data.

  11. Neutron skins and neutron stars

    SciTech Connect

    Piekarewicz, J.

    2013-11-07

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  12. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  13. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  14. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Technical Reports Server (NTRS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; hide

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT approximately 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kTe approximately 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 MHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a Kaline from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N(sub H) approximately 1.6 x 10(exp 23) cm(exp -2)).

  15. The Fate of Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of

  16. Hyperons in neutron stars

    SciTech Connect

    Glendenning, N.K.

    1986-04-01

    Generalized beta equilibrium involving nucleons, hyperons, and isobars is examined for neutron star matter. The hyperons produce a considerable softening of the equation of state. It is shown that the observed masses of neutron stars can be used to settle a recent controversy concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible with observed masses. 7 refs., 9 figs.

  17. Neutron stars - General review

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  18. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  19. Neutron Star Compared to Manhattan

    NASA Image and Video Library

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  20. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  1. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  2. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  3. Color Superconductivity in Compact Stars

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    After a brief review of the phenomena expected in cold dense quark matter, color superconductivity and color-flavor locking, we sketch some implications of recent developments in our understanding of cold dense quark matter for the physics of compact stars. We give a more detailed summary of our recent work on crystalline color superconductivity and the consequent realization that (some) pulsar glitches may originate in quark matter.We acknowledge helpful discussions with P. Bedaque, J. Berges, D. Blaschke, I. Bombaci, G. Carter, D. Chakrabarty, J. Madsen, C. Nayak, M. Prakash, D. Psaltis, S. Reddy, M. Ruderman, S.-J. Rey, T. Schäfer, A. Sedrakian, E. Shuryak, E. Shuster, D. Son, M. Stephanov, I. Wasserman, F. Weber and F. Wilczek. KR thanks the organizers of the ECT Workshop on Neutron Star Interiors for providing a stimulating environment within which many of the helpful discussions acknowledged above took place. This work is supported in part by the DOE under cooperative research agreement #DF-FC02-94ER40818. The work of JB was supported in part by an NDSEG Fellowship; that of KR was supported in part by a DOE OJI Award and by the A. P. Sloan Foundation.

  4. Neutron star evolutionary sequences

    NASA Technical Reports Server (NTRS)

    Richardson, M. B.; Van Horn, H. M.; Ratcliff, K. F.; Malone, R. C.

    1982-01-01

    Detailed numerical calculations which are solutions of the full set of general relativistic equations describing the evolution of a spherical star are presented, for the case of the evolution of neutron stars that are cooling over the central temperatures range of 10 to the 10th to 10 to the 7th K. The effects of nucleon superfluidity in the inner crust and core are included, and models are constructed with and without a pion condensate at high densities. It is found that the localized neutrino cooling which dominates the early evolution of neutron stars is so rapid that heat transport within the star cannot keep pace, and temperature distribution is not isothermal. The residual contraction of the neutron star during the early cooling phase contributes little to the heat budget of the star, and most of the gravitational energy released raises the Fermi energy of the degenerate nucleons. It is concluded that since calculations with and without pion condensate are consistent with the upper limits of current observations, these are not sufficient in distinguishing between the various models of neutron star cooling.

  5. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  6. New compact neutron polarizer

    NASA Astrophysics Data System (ADS)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  7. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  8. Neutron star crusts

    NASA Technical Reports Server (NTRS)

    Lorenz, C. P.; Ravenhall, D. G.; Pethick, C. J.

    1993-01-01

    We calculate properties of neutron star matter at subnuclear densities using an improved nuclear Hamiltonian. Nuclei disappear and the matter becomes uniform at a density of about 0.6n(s), where n(s) of about 0.16/cu fm is the saturation density of nuclear matter. As a consequence, the mass of matter in the crusts of neutron stars is only about half as large as previously estimated. In about half of that crustal mass, nuclear matter occurs in shapes very different from the roughly spherical nuclei familiar at lower densities. The thinner crust and the unusual nuclear shape have important consequences for theories of the rotational and thermal evolution of neutron stars, especialy theories of glitches.

  9. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  10. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  11. Neutrinos from neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    A calculation of the flux of ultra-high energy neutrinos from galactic neutron stars is presented. The calculation is used to determine the number of point sources detectable at the sensitivity threshold of a proposed deep underwater muon and neutrino detector array. The detector array would have a point source detection threshold of about 100 eV/sq cm-sec. Analysis of neutrino luminosities and the number of detectable sources suggests that the deep underwater detector may make a few discoveries. In particular, a suspected neutron star in the Cyg X-3 source seems a promising target for the deep underwater array.

  12. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  13. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  14. Sleuthing the Isolated Compact Stars

    NASA Astrophysics Data System (ADS)

    Drake, J. J.

    2004-08-01

    In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.

  15. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  16. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  17. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  18. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  19. Hyperons and neutron stars

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2015-02-01

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M⊙), PSR J1614-2230 (1.97±0.04M⊙), and PSR J0348+0432 (2.01±0.04M⊙). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  20. Hyperons in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac

    2016-01-01

    In this work I briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve because of the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667 ± 0.021M⊙), PSR J1614-2230 (1.97 ± 0.04M⊙), and PSR J0348+0432 (2.01 ± 0.04M⊙). Some of the solutions proposed to tackle this problem are discussed. Finally, I re-examine also the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  1. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  2. TOPICAL REVIEW: Coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1999-06-01

    Coalescing compact binaries with neutron star or black hole components provide the most promising sources of gravitational radiation for detection by the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact has motivated several different theoretical studies of the inspiral and hydrodynamic merging of compact binaries. Analytic analyses of the inspiral waveforms have been performed in the post-Newtonian approximation. Analytic and numerical treatments of the coalescence waveforms from binary neutron stars have been performed using Newtonian hydrodynamics and the quadrupole radiation approximation. Numerical simulations of coalescing black hole and neutron star binaries are also underway in full general relativity. Recent results from each of these approaches will be described and their virtues and limitations summarized.

  3. Do triaxial supramassive compact stars exist?

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Baiotti, Luca; Galeazzi, Filippo; Sugiyama, Noriyuki; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-11-01

    We study quasiequilibrium solutions of triaxially deformed rotating compact stars—a generalization of Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOSs). For relatively stiff (piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOSs. If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe phase transitions of high density nuclear matter using detections of gravitational waves from new born neutron stars or magnetars under fallback accretion.

  4. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  5. Isolated neutron stars in the galaxy: from magnetars to antimagnetars

    SciTech Connect

    Boldin, P. A.; Popov, S. B.

    2012-07-15

    Using the model with decaying magnetic fields it is possible to describe with one smooth (log-Gaussian) initial magnetic field distribution three types of isolated neutron stars: radiopulsar, magnetars, and cooling close-by compact objects. The same model is used here to make predictions for old accreting isolated neutron stars. It is shown that using the updated field distribution we predict a significant fraction of isolated neutron stars at the stage of accretion despite long subsonic propeller stage.

  6. Classification of radiating compact stars

    NASA Technical Reports Server (NTRS)

    Coppi, B.; Treves, A.

    1971-01-01

    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail.

  7. The physics of neutron stars.

    PubMed

    Lattimer, J M; Prakash, M

    2004-04-23

    Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.

  8. Numerical study of the properties of compact stars

    NASA Astrophysics Data System (ADS)

    Negreiros, Rodrigo Picanco

    2009-10-01

    Compact stars are formed in catastrophic astrophysical events such as supernova explosions and binary stellar collisions. These objects permanently harbor compressed ultra-dense nuclear matter in their interiors. This key feature, together with the ongoing progress in observational astrophysics, make compact stars superb astrophysical laboratories for a wide range of intriguing physicals studies. Several such studies are performed in this thesis. The first activity concerns the widely unknown nuclear equation of state and the core composition of compact stars. Particular attention is paid to the possible presence of hyperons in the cores of neutron stars as well as to stars made of unconfined up, down and strange quarks (strange quark stars). The effects of ultra-strong electric fields on the surfaces of the latter is explored. The second activity aims at investigating the structure and stability of rapidly rotating compact stars. Special attention is paid to the maximal stable rotational frequencies of rotating compact stars. The third activity focuses on the thermal evolution of compact stars, driven by neutrino emission from their cores and by photon emission from the surfaces. It is show that the thermal behavior depends very strongly on the stellar core composition. Moreover, it is found that the thermal evolution of neutron stars is significantly different to that of strange quark stars. The studies performed in this thesis are key for our understanding of the thermal evolution of isolated rotating neutron stars, anomalous X-ray pulsars and soft gamma repeaters, and provide most valuable information about the phase diagram of isospin-asymmetric ultra-dense nuclear matter which can not be probed in high-energy collision experiments.

  9. Relativistic Processes and the Internal Structure of Neutron Stars

    SciTech Connect

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-10-14

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  10. Electric field in neutron stars

    SciTech Connect

    Adam, R. I. Sulaksono, A.

    2016-04-19

    In a compact star, an electric field is generated by the charge polarization effect. We investigate the charge polarization effect due to a significant difference of core and crust densities in the form of a combination of two Gaussian functions. The results indicate that the electric field only occurs significantly on the crust of the compact star. As a consequence, the mass-radius relationship only affects compact stars with mass ≤ 1.0 M{sub ⊙}.

  11. Dark neutron stars

    NASA Astrophysics Data System (ADS)

    Jones, P. B.

    2017-06-01

    There is good evidence that electron-positron pair formation is not present in that section of the pulsar open magnetosphere, which is the source of coherent radio emission, but the possibility of two-photon pair creation in an outer gap remains. Calculation of transition rates for this process based on measured whole-surface temperatures, combined with a survey of γ-ray, X-ray and optical luminosities, expressed per primary beam lepton, shows that few Fermi-LAT pulsars have significant outer-gap pair creation. For radio-loud pulsars with positive polar-cap corotational charge density and an ion-proton plasma, there must be an outward flow of electrons from some other part of the magnetosphere to maintain a constant net charge on the star. In the absence of pair creation, it is likely that this current is the source of GeV γ-emission observed by the Fermi-LAT and its origin is in the region of the outer gap. With negative polar-cap corotational charge density, the compensating current in the absence of pair creation can consist only of ions or protons. These neutron stars are likely to be radio-quiet, have no observable γ-emission, and hence can be described as dark neutron stars.

  12. On magnetized neutron stars

    SciTech Connect

    Lopes, Luiz; Menezes, Debora E-mail: debora.p.m@ufsc.br

    2015-08-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron and quark stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach explores more deeply the concept of pressure, yielding the so called chaotic magnetic field formalism for the stress tensor. We also use a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density, which allows us to build a parameter free model.

  13. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.

    2015-01-01

    Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is

  14. Magnetic Fields of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan

    2017-09-01

    This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes of neutron stars. The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars.

  15. KAON CONDENSATION IN NEUTRON STARS.

    SciTech Connect

    RAMOS,A.; SCHAFFNER-BIELICH,J.; WAMBACH,J.

    2001-04-24

    We discuss the kaon-nucleon interaction and its consequences for the change of the properties of the kaon in the medium. The onset of kaon condensation in neutron stars under various scenarios as well its effects for neutron star properties are reviewed.

  16. Modeling the X-rays from the central compact object PSR J1852+0040 in Kesteven 79: Evidence for a strongly magnetized neutron star

    SciTech Connect

    Bogdanov, Slavko

    2014-08-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star (NS), a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a 'pencil plus fan' beam emission pattern, which is characteristic of ≳ 10{sup 12} G NS atmospheres, much greater than the ∼10{sup 10} G external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields (≳ 10{sup 14} G) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied high-temperature contrast across the stellar surface. This lends further observational evidence in support of the 'hidden' strong magnetic field scenario, in which CCOs possess submerged magnetic fields that are substantially stronger than the external dipole field, presumably due to burial by fallback of supernova ejecta. I also conduct phase-resolved X-ray spectroscopy and find no evidence for prominent spin-phase-dependent absorption features that could be produced by cyclotron absorption/scattering.

  17. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  18. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  19. General Relativistic Non-radial Oscillations of Compact Stars

    NASA Astrophysics Data System (ADS)

    Hall, Zack, II; Jaikumar, Prashanth

    2017-01-01

    Currently, we lack a means of identifying the type of matter at the core of compact stars, but in the future, we may be able to use gravitational wave signals produced by fluid oscillations inside compact stars to discover new phases of dense matter. To this end, we study the fluid perturbations inside compact stars such as Neutron Stars and Strange Quark Stars, focusing on modes that couple to gravitational waves. Using a modern equation of state for quark matter that incorporates interactions at moderately high densities, we implement an efficient computational scheme to solve the oscillation equations in the framework of General Relativity, and determine the complex eigenfrequencies that describe the oscillation and damping of the non-radial fluid modes. We discuss the significance of our results for future detection of these modes through gravitational waves. This work is supported in part by the CSULB Graduate Research Fellowship and by the National Science Foundation NSF PHY-1608959.

  20. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model

  1. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  2. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  3. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  4. Free fall onto magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Salpeter, E. E.

    Some compact X-ray sources show evidence of cyclotron line radiation from excited electron Landau orbits, powered by hydrogen and helium falling onto a neutron star atmosphere along the magnetic field. The slowing of the incident matter is discussed, including the spread in energy loss due to Coulomb scattering and direct nuclear reactions for disintegrating the α particles. The α disintegrations, followed by neutron capture, lead to nuclear γ rays; the γ-ray intensity is (indirectly) coupled to the Coulomb energy loss and the cyclotron line emission.

  5. Probing dense matter in neutron stars with axial w modes

    SciTech Connect

    Chatterjee, Debarati; Bandyopadhyay, Debades

    2009-07-15

    We study the problem of extracting information about composition and equation of state of dense matter in neutron star interior using axial w modes. We determine complex frequencies of axial w modes for a set of equations of state involving hyperons as well as Bose-Einstein condensates of antikaons adopting the continued fraction method. Hyperons and antikaon condensates result in softer equations of state leading to higher frequencies and lower damping times of first axial w modes than those of the nuclear matter case. The presence of condensates may lead to the appearance of a new stable branch of superdense stars beyond the neutron star branch called the third family. The existence of the same mass compact stars in both branches is known as neutron star twins. Further investigation of twins reveals that first axial w-mode frequencies of superdense stars in the third family are higher than those of the corresponding twins in the neutron star branch.

  6. Chandra Captures Neutron Star Action

    NASA Image and Video Library

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  7. Neutron stars : Seen my way

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    2001-09-01

    An unconventional survey is presented of the observable properties of neutron stars and of all astrophysical phenomena possibly related to them, such as their pulsing, clock irregularities, bursting, flickering, and occasional super-Eddington brightness, the generation of cosmic rays, of gamma-ray bursts, of jets, and of synchrotron nebulae, their birth, and their occasional transient appearance as 'supersoft' X-ray sources. The msec pulsars are argued to be born fast, the black-hole candidates to be neutron stars inside of massive disks, and the gamma-ray bursts to be sparks from dense 'blades' accreting spasmodically onto the surfaces of (generally old) neutron stars within " 0.3 Kpc from the Sun. Supernovae - the likely birth events of neutron stars - are thick-walled explosions, not to be described by Sedov-Taylor waves, which illuminate their gaseous environs via collisions of their 'splinters'.

  8. Cracking on anisotropic neutron stars

    NASA Astrophysics Data System (ADS)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  9. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  10. Neutron star news and puzzles

    NASA Astrophysics Data System (ADS)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  11. Cooling rates of neutron stars and the young neutron star in the Cassiopeia A supernova remnant

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitry G.; Ho, Wynn C. G.; Shternin, Peter S.; Heinke, Craig O.; Potekhin, Alexander Y.

    2011-03-01

    We explore the thermal state of the neutron star in the Cassiopeia A supernova remnant using the recent result of Ho & Heinke that the thermal radiation of this star is well described by a carbon atmosphere model and the emission comes from the entire stellar surface. Starting from neutron star cooling theory, we formulate a robust method to extract neutrino cooling rates of thermally relaxed stars at the neutrino cooling stage from observations of thermal surface radiation. We show how to compare these rates with the rates of standard candles - stars with non-superfluid nucleon cores cooling slowly via the modified Urca process. We find that the internal temperature of standard candles is a well-defined function of the stellar compactness parameter x=rg/R, irrespective of the equation of state of neutron star matter (R and rg are circumferential and gravitational radii, respectively). We demonstrate that the data on the Cassiopeia A neutron star can be explained in terms of three parameters: fℓ, the neutrino cooling efficiency with respect to the standard candle; the compactness x; and the amount of light elements in the heat-blanketing envelope. For an ordinary (iron) heat-blanketing envelope or a low-mass (≲ 10-13 M⊙) carbon envelope, we find the efficiency fℓ˜ 1 (standard cooling) for x≲ 0.5 and fℓ˜ 0.02 (slower cooling) for a maximum compactness x≈ 0.7. A heat blanket containing the maximum mass (˜10-8 M⊙) of light elements increases fℓ by a factor of 50. We also examine the (unlikely) possibility that the star is still thermally non-relaxed.

  12. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  13. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  14. Neutron stars structure in the context of massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  15. The effects of strong interaction on the observational discrimination between neutron and strange stars

    NASA Astrophysics Data System (ADS)

    Dai, Zi-gao; Lu, Tan

    1995-02-01

    Strange stars are compact objects similar to neutron stars composed of strange matter. This paper investigates the observational effects of the strong interaction between quarks. We believe: 1) that the conversion of a neutron star to a strange star is a large "period glitch" which is determined by the strong interaction; 2) that the strong interaction results in effective damping of oscillation of hot strange stars, which could be a new mechanism of driving supernova explosions; 3) that the strong interaction increases the difference in rotation between strange and neutron stars under high temperatures, making the minimum period for strange stars lower than that for neutron stars.

  16. Neutron star moments of inertia

    NASA Technical Reports Server (NTRS)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  17. Quark deconfinement in Neutron stars

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; Ouyed, R.; Jaikumar, P.

    2006-06-01

    We study the role of spin-down of isolated neutron stars in driving quark deconfinement in their high density core. Assuming spin-down to be solely due to magnetic braking, we obtain typical timescales to quark deconfinement for neutron stars that are born with Keplerian frequencies. Employing different equations of state (EOS), we determine the minimum and maximum neutron star masses that will allow for deconfinement via spin-down only. We find that the time to reach deconfinement is strongly dependent on the magnetic field and that this time is least for EOS that support the largest minimum mass at zero spin, unless rotational effects on stellar structure are large. For a fiducial critical density of five times nuclear saturation density for the transition to the quark phase, we find that neutron stars lighter than 1.5 solar masses cannot reach a deconfined phase. Depending on the EOS, neutron stars of more than 1.5 solar masses can enter a quark phase only if they are spinning faster than about 3 milliseconds as observed now, whereas larger spin periods imply that they are either already quark stars or will never become one.

  18. The nuclear physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2014-05-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  19. The nuclear physics of neutron stars

    SciTech Connect

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  20. Simulations of binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta

    2017-01-01

    The merger of a binary composed of a neutron star and/or a black hole is one of the most promising sources of gravitational waves. If we detected gravitational waves from them, it could tell us a validity of the general relativity in a strong gravitational field and the equation of state of neutron star matter. Furthermore, if gravitational waves from a compact binary merger and a short-hard gamma-ray burst are observed simultaneously, a long-standing puzzle on the central engine of short gamma-ray bursts could be resolved. In addition, compact binary mergers are a theoretical candidate of the rapid process nucleosynthesis site. Motivated by these facts, it is mandatory to build a physically reliable model of compact binary mergers and numerical relativity is a unique approach for this purpose. We are tackling this problem from several directions; the magneto-hydrodynamics, the neutrino radiation transfer, and a comprehensive study with simplified models. I will talk a current status of Kyoto Numerical Relativity group and future prospect on the compact binary mergers.

  1. Rotating compact star with superconducting quark matter

    SciTech Connect

    Panda, P.K.; Nataraj, H.S.

    2006-02-15

    A compact star with a superconducting quark core, a hadron crust, and a mixed phase between the two is considered. The quark-meson coupling model for hadron matter and the color-flavor-locked quark model for quark matter is used to construct the equation of state for the compact star. The effect of pairing of quarks in the color-flavor-locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.

  2. Possible radii of compact stars: A relativistic approach

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Molla, Sajahan

    2016-11-01

    The inner structure of compact stars is checked from theoretical as well as observational points of view. In this paper, we determine the possible radii of six compact stars: two binary millisecond pulsars, namely PSR J1614-2230 and PSR J1903+327, studied by [P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and W. T. Hessels, Nature 467, 1081 (2010)] and four X-ray binaries, namely Cen X-3, SMC X-1, Vela X-1 and Her X-1 studied by [M. L. Rawls et al., Astrophys. J. 730, 25 (2011)]. Interestingly, we see that density of the star does not vanishes at the boundary though it is maximum at the center which implies that these compact stars may be treated as strange stars rather than neutron stars. We propose a stiff equation of state (EoS) relating to pressure with matter density. We also obtain compactness (u) and surface redshift (Zs) for the above-mentioned stars and compare it with the recent observational data.

  3. Neutron Stars are Follicly Challenged

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolas; Yagi, Kent; Stein, Leo; Pappas, George; Apostolatos, Theocharis; Kyutoku, Koutarou

    2015-04-01

    Black holes satisfy certain no-hair relations through which all multipole moments of the spacetime can be specified in terms of just a few quantities, like their mass and spin angular momentum. I will describe how neutron stars and quark stars also satisfy similar no-hair relations that are approximately independent of their equation of state. I will show how these results hold for both slowly- and rapidly-rotating stars in full General Relativity, provided the stars are uniformly rotating and uncharged. I will then explain why such relations may be relevant to observations of the pulse profile of hot spots on rotating neutron stars with NICER, as well as how they could be used to test General Relativity with binary pulsar and gravitational wave observations. I acknowledge support from the NSF CAREER Award PHY-1250636.

  4. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  5. Innermost Stable Circular Orbits Around Rotating Compact Stars

    NASA Astrophysics Data System (ADS)

    Goluchová, Katerina

    2017-08-01

    Orbital motion close to a rotating neutron star (NS) is affected by effects of strong gravity. Keplerian frequency at the innermost stable circular orbit (ISCO frequency) depends on the interplay between relativistic effects and geometric Newtonian effects given by NS oblateness, and may increase as well as decrease when NS angular momentum increases. In this context we examine a large set of NS equations of state (EoS) as well as strange star (QS) EoS. We find simple approximative formulae determining the ISCO frequency for a given gravitational mass M and rotational frequency of the compact star (NS or QS).

  6. Neutron stars are gold mines

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  7. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  8. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  9. Generalised model for anisotropic compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Deb, Debabrata

    2016-12-01

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 ( SS1) and SAX J 1808.4-3658 ( SS2) are concerned.

  10. Measurement of neutron diffraction with compact neutron source RANS

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  11. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  12. Phase transition to hyperon matter in neutron stars.

    PubMed

    Schaffner-Bielich, Jürgen; Hanauske, Matthias; Stöcker, Horst; Greiner, Walter

    2002-10-21

    Recent progress in the understanding of the high density phase of neutron stars advances the view that a substantial fraction of the matter consists of hyperons. The possible impacts of a highly attractive interaction between hyperons on the properties of compact stars are investigated. We find that a hadronic equation of state with hyperons allows for a first order phase transition to hyperonic matter. The corresponding hyperon stars can have rather small radii of R approximately equal 8 km.

  13. Neutron Star Structure From Observations

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2006-10-01

    Neutron stars are laboratories for dense matter physics. Observations of neutron stars, in the form of radio pulsars, X-ray binaries, X-ray bursters, and thermally-emitting isolated stars, are rapidly accumulating. Especially interesting are the radio pulsars PSR J0751+1807, Terzan 5 I and Terzan 5 J (with suprisingly large measured masses of 2.1±0.2, 1.69±0.1 and 1.85±0.05 solar masses, respectively), the pulsar PSR J1748-2446ad with the most rapid spin rate of 716 Hz, and the radio pulsar binary PSR J0737-3039 for which a moment of inertia of one of the neutron stars might be measured within a few years. Extremely massive neutron stars are important because they set limits to the maximum mass and upper limits to the maximum density found in cold, static, objects, and might limit the appearance of exotic matter such as hyperons, Bose condensates or deconfined quarks in a star's interior. The spin rate sets an upper limit to the radius of a star of a given mass, and the moment of inertia, being roughly proportional to M R^2, is a sensitive measure of neutron star radius. While the maximum mass speaks to the relative stiffness of the high-density equation of state at several times nuclear matter density, the radius is a measure of the relative stiffness of the low-density equation of state in the vicinity of the nuclear saturation density. For the nearly pure neutron matter found in neutron stars, it is a direct measure of the density dependence of the nuclear symmetry energy. Other promising observational constraints might be obtained from neutron star seismology (which limits the relative crustal thickness) and Eddington limited fluxes observed from bursting sources, and from thermal emissions from cooling neutron stars. The latter have the potential of constraining R∞=R/√1-2GM/Rc^2 if the source's distance can be accurately assessed. The distances of two nearby isolated sources, RX J1856-3754 and Geminga, have been determined by parallax. However, there

  14. Compact star matter: EoS with new scaling law

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Lee, Hyun Kyu; Lee, Jaehyun

    In this paper, we present a simple discussion on the properties of compact stars using an EoS obtained in effective field theory anchored on scale and hidden-local symmetric Lagrangian endowed with topology change and a unequivocal prediction on the deformation of the compact star, that could be measured in gravitational waves. The objective is not to offer a superior or improved EoS for compact stars but to confront with a forthcoming astrophysical observable, the given model formulated in what is considered to be consistent with the premise of quantum chromodynamics (QCD). The model so obtained is found to satisfactorily describe the observation of a two-solar mass neutron star [P. B. Demorest et al., Nature 467 (2010) 1081, J. Antoniadis et al., Science 340 (2013) 1233232] with a minimum number of parameters. Specifically, the observable we are considering in this paper is the tidal deformability parameter λ (equivalently the Love number k2), which affects gravitational wave forms at the late period of inspiral stage. The forthcoming aLIGO and aVirgo observations of gravitational waves from binary neutron star system will provide a valuable guidance for arriving at a better understanding of highly compressed baryonic matter.

  15. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  16. Critical phenomena in head-on collisions of neutron stars.

    PubMed

    Jin, Ke-Jian; Suen, Wai-Mo

    2007-03-30

    We find type I critical collapses of compact objects modeled by a polytropic equation of state (EOS) with a polytropic index Gamma=2 without the ultrarelativistic assumption. The object is formed in head-on collisions of neutron stars. Further, we show that the critical collapse can occur due to a change of the EOS, without fine-tuning of initial data. This opens the possibility that a neutron-star-like compact object, not just those formed in a collision, may undergo a critical collapse in processes which slowly change the EOS, such as cooling.

  17. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  18. Star Formation in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Paramo, Jorge

    We propose to obtain NUV and FUV images of a sample of nearby compact groups and their neighborhoods with the GALEX imaging facility. The main goals for this proposal are: (1) explore whether a relationship between the total star formation rates and the evolutionary state of the group holds, and also to explore the existence of interaction induced nuclear starburst activity in compact group galaxies; (2) study the super star clusters content of the systems in our sample and the relationship to the group properties; (3) search for extended star forming regions in the intragroup medium and (4) perform a morphological multiwavelength study of the sample galaxies in order to quantitatively describe the induced star formation activity with morphological criteria. A sample of field galaxies (already available) will be used to investigate the role of the compact group environment on the UV properties of our sample of compact group galaxies.

  19. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  20. Development of compact accelerator neutron source

    NASA Astrophysics Data System (ADS)

    Letourneau, Alain; Marchix, Anthony; Tran, Ngoc-Hoang; Chauvin, Nicolas; Menelle, Alain; Ott, Frédéric; Schwindling, Jérôme

    2017-09-01

    There is a worldwide growing interest for small-scale and reduced-cost neutron sources not based on nuclear fission. High-intensity proton or deuteron beams impinging on light materials could be used to produce such neutron sources with intensities or brightness comparable to nuclear reactor for dedicated experiments. To develop such technologies several key technological issues have to be addressed. Among them the neutron production and the maximization of the neutron extraction and transport to the instrument is a key parameter for the design of high-brightness sources adapted for the required application. This issue have to be addressed with validated and predictive Monte-Carlo simulations. In this paper we present preliminary results on the use of Geant4 in the context of Compact Accelerator based Neutron Source (CANS) developments.

  1. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  2. Numerical relativity simulations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Thierfelder, Marcus; Bernuzzi, Sebastiano; Brügmann, Bernd

    2011-08-01

    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasiequilibrium equal-mass irrotational binary neutron star configurations in quasicircular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error bars on the numerically generated waveforms in the inspiral phase.

  3. Quasiequilibrium models for triaxially deformed rotating compact stars

    SciTech Connect

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-12-15

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  4. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  5. Hypernuclei and massive neutron stars

    NASA Astrophysics Data System (ADS)

    Fortin, M.; Avancini, S. S.; Providência, C.; Vidaña, I.

    2017-06-01

    Background: The recent accurate measurement of the mass of two pulsars close to or above 2 M⊙ has raised the question of whether such large pulsar masses allow for the existence of exotic degrees of freedom, such as hyperons, inside neutron stars. Purpose: In the present work, we will investigate, within a phenomenological relativistic mean field approach, how the existing hypernuclei properties may constrain the neutron star equation of state and confront the neutron star maximum masses obtained with equations of state calibrated to hypernuclei properties with the astrophysical 2 M⊙ constraint. Method: The study is performed using a relativistic mean field approach to describe both the hypernuclei and the neutron star equations of state. Unified equations of state are obtained. A set of five models that describe 2 M⊙ when only nucleonic degrees of freedom are employed. Some of these models also satisfy other well-established laboratory or theoretical constraints. Results: The Λ -meson couplings are determined for all the models considered, and the Λ potential in symmetric nuclear matter and Λ matter at saturation are calculated. Maximum neutron star masses are determined for two values of the Λ -ω meson coupling, gω Λ=2 gω N/3 and gω Λ=gω N , and a wide range of values for gϕ Λ. Hyperonic stars with the complete baryonic octet are studied, restricting the coupling of the Σ and Ξ hyperons to the ω ,ρ , and σ mesons due to the lack of experimental data, and maximum star masses calculated. Conclusions: We conclude that, within a phenomenological relativistic mean field approach, the currently available hypernuclei experimental data and the lack of constraints on the asymmetric equation of state of nuclear matter at high densities set only a limited number of constraints on the neutron star matter equation of state using the recent 2 M⊙ observations. It is shown that the Λ potential in symmetric nuclear matter takes a value of ˜30 -32 Me

  6. NSCool: Neutron star cooling code

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  7. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  8. Probing thermonuclear burning on accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  9. Mass radius relation of compact stars in the braneworld

    SciTech Connect

    Castro, Luis B.; Menezes, Débora P.; Alloy, Marcelo D. E-mail: alloy@uffs.edu.br

    2014-08-01

    The braneworld scenario, based on the fact that the four dimension space-time is a hyper-surface of a five dimensional manifold, was shown to deal in a satisfactory way with the hierarchy problem. In this work we study macroscopic stellar properties of compact stars from the braneworld point of view. Using neutron star equations of state, we test the possibility of extra dimensions by solving the brane Tolman-Oppenheimer-Volkoff equations obtained for three kinds of possible compact objects: hadronic, hybrid and quark stars. By comparing the macroscopic solutions with observational constraints, we establish a brane tension lower limit and the value for which the Tolman-Oppenheimer-Volkoff equations in the braneworld converge to the usual Tolman-Oppenheimer-Volkoff equations.

  10. Hadronic matter and rapidly rotating compact stars

    SciTech Connect

    Weber, F.; Kettner, C.; Glendenning, N.K.

    1994-03-01

    In part one of this paper the authors review the present status of neutron star matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon populations, pion condensation, possible transition of baryon matter to quark matter). Part two deals with the theoretical determination of the minimum possible rotational periods of neutron stars, performed in the framework of general relativity, whose knowledge serves to distinguish between pulsars that can be understood as rotating neutron stars and those that cannot. Likely candidates for the latter are hypothetical strange stars. Their properties are discussed in the third part of this contribution.

  11. Approximate universal relations for neutron stars and quark stars

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2017-04-01

    Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.

  12. Black holes and neutron stars in vector Galileons

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2017-08-01

    The direct detection of gravitational waves opens new perspectives for measuring properties of gravitationally bound compact objects. It is then important to investigate black holes and neutron stars in alternative theories of gravity, since they can have features that make them observationally distinguishable from their general relativity (GR) counterparts. In this work, we examine a special case of vector Galileons, a vector-tensor theory of gravity with interesting cosmological properties, which consists of a one parameter modification of the Einstein-Maxwell action. Within this theory, we study configurations describing asymptotically flat, spherically symmetric black holes and neutron stars. The set of black hole solutions in this theory is surprisingly rich, generalising results found in GR or in related scalar-tensor theories. We investigate the properties and conserved charges of black holes, using both analytical and numerical techniques, highlighting configurations that are more compact than in GR. We then study properties of neutron stars, showing how the vector profile can influence the star internal structure. Depending on properties of matter and fields inside the star, neutron stars can be more massive than in GR, and they can be even more compact than Schwarzschild black holes, making these objects observationally interesting. We also comment on possible extensions of our configurations to magnetically charged or rotating configurations.

  13. Tidal polarizability effects in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Bernuzzi, S.; Nagar, A.; Balmelli, S.; Dietrich, T.; Ujevic, M.

    2015-05-01

    Using the analytical effective-one-body model and nonlinear 3+1 numerical relativity simulations, we investigate binary neutron star mergers. It is found that, for nonspinning binaries, both the mass-rescaled gravitational wave frequency at merger and the specific binding energy at merger almost uniquely depend on the tidal coupling constants κT2, which are functions of the stars’ Love numbers, compactnesses and mass ratio. These relations are quasiuniversal in the sense that there is an additional dependence on the spins, which is linear for realistic spins values χ ≲ 0.1. In the effective-one-body model, the quasiuniversality is a direct consequence of the conservative dynamics of tidally interacting bodies. In the context of gravitational wave astronomy, our findings may be used to constrain the neutron stars’ equation of state using waveforms that accurately model the merger.

  14. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  15. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  16. Thermally driven neutron star glitches

    SciTech Connect

    Link, B. |; Epstein, R.I.

    1996-02-01

    We examine the thermal and dynamical response of a neutron star to a sudden perturbation of the inner crust temperature. During the star{close_quote}s evolution, starquakes and other processes may deposit {approx_gt}10{sup 42} ergs, causing significant internal heating and increased frictional coupling between the crust and the more rapidly rotating neutron superfluid the star is expected to contain. Through numerical simulation we study the propagation of the thermal wave created by the energy deposition, the induced motion of the interior superfluid, and the resulting spin evolution of the crust. We find that energy depositions of {approximately}10{sup 40} ergs produce gradual spin-ups above the timing noise level, while larger energy depositions produce sudden spin jumps resembling pulsar glitches. For a star with a temperature in the observed range of the Vela pulsar, an energy deposition of {approximately}10{sup 42} ergs produces a large spin-up taking place over minutes, similar to the Vela {open_quote}{open_quote}Christmas{close_quote}{close_quote} glitch. Comparable energy deposition in a younger and hotter {open_quote}{open_quote}Crab-like{close_quote}{close_quote} star produces a smaller spin-up taking place over {approximately}1{sup d}, similar to that seen during the partially time-resolved Crab glitch of 1989. {copyright} {ital 1996 The American Astronomical Society.}

  17. Novel neutron focusing mirrors for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Liu, D.; Robertson, L.; Crow, L.; Ramsey, B. D.; Moncton, D. E.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular collection. Using nesting, the relatively short optics can be made comparable to focusing guides in flux collection capabilities. We discuss how such optics can be used as polychromatic lenses to improve the performance of small-angle-scattering, imaging, and other instruments at compact neutron sources.

  18. Properties of neutron star critical collapses

    NASA Astrophysics Data System (ADS)

    Wan, Mew-Bing

    Critical phenomena in gravitational collapse opened a new mathematical vista into the theory of general relativity and may ultimately entail fundamental physical implication in the astrophysical realm, especially in gravitational collapse scenarios. However, at present, the dynamics of critical phenomena in realistic astrophysical gravitational collapse scenarios are still largely unknown. My thesis seeks to understand the properties of the neutron star critical solution, understand the properties of the threshold in the solution space of the Einstein field equations between the black hole and a neutron star phases, and clarify the implication these results on realistic astrophysical scenarios. We develop a new set of neutron star-like initial data to establish the universality of the neutron star critical solution and analyze the structure of neutron star and neutron star-like critical collapses via the framework of phase spaces. We also study the different time scales involved in the neutron star critical solution and analyze the properties of the critical index via comparisons between neutron star and neutron star-like initial data. Finally, we explore the boundary of the attraction basin of the neutron star critical solution and its transition to a known set of non-critical fixed points.

  19. Properties of Neutron Star Critical Collapses

    NASA Astrophysics Data System (ADS)

    Wan, Mew-Bing

    2010-01-01

    Critical phenomena in gravitational collapse opened a new mathematical vista into the theory of general relativity and may ultimately entail fundamental physical implication in observations. However, at present, the dynamics of critical phenomena in gravitational collapse scenarios are still largely unknown. My thesis seeks to understand the properties of the threshold in the solution space of the Einstein field equations between the black hole and neutron star phases, understand the properties of the neutron star critical solution and clarify the implication of these results on realistic astrophysical scenarios. We develop a new set of neutron star-like initial data to establish the universality of the neutron star critical solution and analyze the structure of neutron star and neutron star-like critical collapses via the study of the phase spaces. We also study the different time scales involved in the neutron star critical solution and analyze the properties of the critical index via comparisons between neutron star and neutron star-like initial data. Finally, we explore the boundary of the attraction basin of the neutron star critical solution and its transition to a known set of non-critical fixed points.

  20. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  1. Birth accelerations of neutron stars

    NASA Astrophysics Data System (ADS)

    Heras, Ricardo

    2013-03-01

    We suggest that neutron stars experienced at birth three related physical changes, which may originate in magneto-rotational instabilities: (i) an increase in period from the initial value P 0 to the current value Ps , implying a change of rotational energy Δ E rot; (ii) an exponential decay of its magnetic field from the initial value B 0 to the current surface value Bs , implying a change of radiative energy Δ E rad; and (iii) an increase of space velocity from the initial value v 0 to the current value v, implying a change of kinetic energy Δ E kin. These changes are assumed to be connected by Δ E rad + Δ E kin = Δ E rot. This means that the radiation loss and increase of kinetic energy are both at the expense of a rotational energy loss. It is shown that this energy conversion occurs during times of order of 10-4 s if the neutron stars are born with magnetic fields in the range of 1015-1016 G and initial periods in range 1-20 ms. It is shown that the birth accelerations of neutron stars are of the order of 108g.

  2. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  3. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  4. New compact neutron supermirror transmission polarizer

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, V. G.; Pusenkov, V. M.

    2017-06-01

    A new compact neutron supermirror transmission polarizer is suggested. The polarizer consists of a set of plates transparent to neutrons placed in the magnet gap. There are no air gaps between the plates. Polarizing supermirror coating without absorbing underlayer is deposited on the polished surfaces of the plates. Magnetic and nonmagnetic layers of the supermirror coating as well as the material of the plates have nearly equal neutron-optical potentials for spin-down neutrons. There is a considerable difference between neutron-optical potentials of layers in the supermirror structure for spin-up neutrons. As a result, spin-up neutrons reflect from the supermirror coating and deviate from their initial trajectories whereas spin-down neutrons do not practically reflect from the coating and, consequently, do not deviate from their initial trajectories. Thus, spin-down neutrons dominate near the axis of distribution of intensity on the angle for the beam transmitted through this polarizer, i.e., the beam is substantially polarized. Application is discussed of this polarizer in a research facility for small angle scattering of monochromatic neutrons with wavelengths λ = 4.5÷20 Å. The polarizing cross section of the beam of this facility is 30×30 mm2. Calculated parameters are presented of a polarizer on silicon plates with supermirror CoFe/TiZr (m = 2) coating. The suggested polarizer is compared with solid state bender, S-bender and widely known transmission neutron polarizer V- cavity in the same spectral range. Two polarizers are used to cover the wavelength range λ = 4.5 ÷20 Å: the first one whose length is 50 мм covers the range λ = 4.5 ÷10 Å and the second one whose length is 21.2 мм covers the range λ = 10 ÷20 Å. The length of each of these polarizers is more than 30 times smaller than that of V-cavity! On the other hand, basic parameters of the proposed polarizer, polarization of the beam falling on the sample P and transmission coefficient T

  5. Compact neutron source development at LBNL

    SciTech Connect

    Reijonen, Jani; Lou, Tak Pui; Tolmachoff, Bryan; Leung, K.N.

    2001-07-25

    A compact neutron generator based on D-D or D-T fusion reactions is being developed at the Lawrence Berkeley National Laboratory. The deuterium or tritium ions are produced in a radio-frequency (RF) driven multicusp plasma source. Seven beamlets are extracted and are accelerated to energy of 100 keV by means of a three-electrode electrostatic accelerator column. The ion beam then impinges on a titanium coated copper target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated by fusion reaction. The development of the neutron tube is divided into three phases. First, the accelerator column is operated at hydrogen beam intensity of 15 mA. Second phase consists of deuterium beam runs at pulsed, low duty cycle 150 mA operation. The third phase consists of deuterium or tritium operation at 1.5 A beam current. Phase one is completed and the results of hydrogen beam testing are discussed. Low duty cycle 150 mA deuterium operation is being investigated. Neutron flux will be measured. Finally the phase three operation and the advance neutron generator designs are described.

  6. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  7. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  8. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  9. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  10. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  11. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  12. Supernovae, compact stars and nuclear physics

    SciTech Connect

    Glendenning, N.K.

    1989-08-25

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs.

  13. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  14. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  15. Gravitomagnetic tidal currents in rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Douçot, Jean

    2017-02-01

    It was recently revealed that a rotating compact body responds dynamically when it is subjected to a gravitomagnetic tidal field, even when this field is idealized as time independent. The dynamical response is characterized by time-changing internal currents, and it was suspected to originate from zero-frequency g -modes and r -modes driven by the tidal forces. In this paper, we provide additional insights into the phenomenon by examining the tidal response of a rotating body within the framework of post-Newtonian gravity. This approach allows us to develop an intuitive picture for the phenomenon, which relies on the close analogy between post-Newtonian gravity and Maxwell's theory of electromagnetism. In this picture, the coupling between the gravitomagnetic tidal field and the body's rotational velocity is naturally expected to produce an unbalanced Lorentz-like force within the body, and it is this force that is responsible for the tidal currents. The simplicity of the fluid equations in the post-Newtonian setting allows us to provide a complete description of the zero-frequency modes and demonstrate their precise role in the establishment of the tidal currents. We estimate the amplitude of these currents, and find that for neutron-star binaries of relevance to LIGO, the scale of the velocity perturbation is measured in kilometers per second when the rotation period is comparable to 100 milliseconds. This estimate indicates that the tidal currents may have a significant impact on the physics of neutron stars near merger.

  16. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  17. Planetary Systems Around Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  18. Planetary Systems Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  19. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  20. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  1. Looking for extra dimensions in compact stars

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-06-01

    The properties of spherically symmetric static compact stars are studied in the Randall-Sundrum II type braneworld model assuming that the spacetime outside the star is described by a Schwarzschild metric. The integration of the stellar structure equations employing the so called causal limit equation of state (EoS) shows that the equilibrium solutions can violate the general relativistic causal limit. An analysis of the properties of hadronic and strange quark stars using standard EoSs confirm the same result: there is a branch in the mass-radius diagram that shows the typical behaviour found within the frame of General Relativity and another branch of stars that are supported against collapse by the nonlocal effects of the bulk on the brane. Stars belonging to the new branch can violate the general relativistic causal limit, may have an arbitrarily large mass, and are stable under small radial perturbations. If they exist in Nature, these objects could be hidden among the population of black hole candidates. The future observation of compact stars with masses and radii falling above the causal limit of General Relativity but below the Schwarzschild limit maybe a promising astrophysical evidence for the existence of extra dimensions.

  2. Predicting neutron star properties based on chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Laduke, Alison; Sammarruca, Francesca

    2016-09-01

    The energy per nucleon as a function of density, known as the nuclear equation of state, is the crucial input in the structure equations of neutron stars and thus establishes the connection between nuclear physics and compact astrophysical objects. More precisely, the pressure which supports the star against gravitational collapse is mostly determined by the nature of the equation of state of highly neutron-rich matter. In this contribution, we will report on our work in progress to calculate neutron star masses and radii. The equation of state is obtained microscopically from Brueckner-Hartree-Fock calculations based on state-of-the-art nuclear forces which have been developed within the framework of chiral effective field theory. The latter has become popular in recent years as a fundamental and systematic approach firmly connected to low-energy quantum chromodynamics. Supported by the Hill Undergraduate Fellowship and the U.S. Department of Energy.

  3. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  4. Neutron Star Interior Composition Explorer (NICE)

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  5. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  6. Thermonuclear runaways on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1979-01-01

    Thermonuclear runaways which develop when neutron stars of 0.476 solar masses accrete hydrogen-rich material at 10 to the -10th and 2 x 10 to the -9th solar masses/year have been followed using a numerical model. It is found that a thermal instability occurs at densities in excess of 10 to the 5th g/cu cm and that the maximum accumulated mass required to initiate the runaway is 0.7 x 10 to the -12th and 2.1 x 10 to the -12th solar masses for the mass accretion rates of 10 to the -10th and 2 x 10 to the -9th solar masses/year, respectively. Heating the of the neutron star envelope by hydrogen burning leads to the ignition of helium. The nonequilibrium burning of helium by a combination of (alpha, p), (p, gamma), and (alpha, gamma) reactions involving O-14, O-15, and other heavy nuclei provides the energy for an X-ray burst. The gross properties of these models bear suggestive resemblance to those observed for some X-ray burst sources.

  7. Close binary neutron star systems

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro

    1999-12-01

    We present a method to calculate solutions to the initial value problem in (3 + 1) general relativity corresponding to binary neutron-star systems (BNS) in irrotational quasi-equilibrium orbits. The initial value equations are solved using a conformally flat spatial metric tensor. The stellar fluid dynamics corresponds to that of systems with zero vorticity in the inertial reference frame. Irrotational systems like the ones analyzed in the present work are likely to resemble the final stages of the evolution of neutron-star binaries, thus providing insights on the inspiral process. The fluid velocity is derived from the gradient of a scalar potential. A numerical program was developed to solve the elliptic equations for the metric fields and the fluid velocity potential. We discuss the different numerical techniques employed to achieve high resolution across the stellar volume, as well as the methods used to find solutions to the Poisson-like equations with their corresponding boundary conditions. We present sequences of quasi-stable circular orbits which conserve baryonic mass. These sequences mimic the time evolution of the inspiral and are obtained without solving the complex evolution equations. They also provide sets of initial value data for future time evolution codes, which should be valid very close to the final merger. We evaluate the emission of gravitational radiation during the evolution through multipole expansions methods.

  8. Dark matter, neutron stars, and strange quark matter.

    PubMed

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  9. Analytic description of neutron star cooling

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Yakovlev, D. G.

    2017-05-01

    We have derived analytic expressions that describe cooling of isolated neutron stars with nucleon cores after reaching the state of internal thermal relaxation. The results are valid for a wide class of equations of state of nucleonic matter and, in this sense, are universal. Moreover, they accurately reproduce the evolution of neutron stars at the neutrino and photon cooling stages as well as during transition from one stage to the other. These results greatly simplify theoretical analysis of internal structure of cooling neutron stars. For illustration, we analyse the thermal state of the bright nearby neutron star RX J1856.5-3754 and present arguments that this star has already left the neutrino cooling stage and contains superfluidity of neutrons and protons inside. We discuss possible efficiency of its neutrino cooling and heat capacity of its core.

  10. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  11. Compact Stars and Magnetized Cfl Matter

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    The stability of the color flavor locked phase in the presence of a strong magnetic field is investigated within the phenomenological MIT bag model. It is found that the minimum value of the energy per baryon in a color flavor locked state at vanishing pressure is lower than the corresponding one for unpaired magnetized strange quark matter and, as the magnetic field increases, the energy per baryon decreases. This implies that magnetized color flavor locked matter is more stable and could become the ground state inside neutron stars. The anisotropy of the pressures is discussed. The mass-radius relation for such stars is also studied.

  12. Neutron star matter in an effective model

    SciTech Connect

    Jha, T. K.; Raina, P. K.; Panda, P. K.; Patra, S. K.

    2006-11-15

    We study an equation of state (EOS) for dense matter in the core of a compact star with hyperons and calculate the star's structure in an effective model using a mean-field approach. With varying incompressibility and effective nucleon mass, we analyze the resulting EOS with hyperons in {beta} equilibrium and their underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of a compact star lies in the range 1.21-1.96M{sub {center_dot}} for the different EOS obtained in the model.

  13. A propelling neutron star in the enigmatic Be-star γ Cassiopeia

    NASA Astrophysics Data System (ADS)

    Postnov, K.; Oskinova, L.; Torrejón, J. M.

    2017-02-01

    γ Cassiopeia (γ Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M ˜ 1 M⊙) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of γ Cas is a fast spinning neutron star, the key observational signatures of γ Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from γ Cas. We suggest that γ Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of γ Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from γ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.

  14. Parameters of rotating neutron stars with and without hyperons

    NASA Astrophysics Data System (ADS)

    Bejger, M.

    2013-04-01

    Context. The discovery of a 2 M⊙ neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observational result, several equations of state containing hyperons are consistent with it. Aims: We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Methods: Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Results: Approximate formulæ describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.

  15. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Arzoumanian, Zaven; Morsink, Sharon; Bauböck, Michi

    2016-11-01

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  16. Nonadiabatic oscillations of compact stars in general relativity

    SciTech Connect

    Gualtieri, L.; Pons, J.A.; Miniutti, G.

    2004-10-15

    We have developed a formalism to study nonadiabatic, nonradial oscillations of nonrotating compact stars in the frequency domain, including the effects of thermal diffusion in the framework of general relativistic perturbation theory. When a general equation of state depending on temperature is used, the perturbations of the fluid result in heat flux which is coupled with the space-time geometry through the Einstein field equations. Our results show that the frequency of the first pressure (p) and gravity (g) oscillation modes is significantly affected by thermal diffusion, while that of the fundamental (f) mode is basically unaltered due to the global nature of that oscillation. The damping time of the oscillations is generally much smaller than in the adiabatic case (more than 2 orders of magnitude for the p- and g-modes) reflecting the effect of thermal dissipation. Both the isothermal and adiabatic limits are recovered in our treatment and we study in more detail the intermediate regime. Our formalism finds its natural astrophysical application in the study of the oscillation properties of newly born neutron stars, neutron stars with a deconfined quark core phase, or strange stars which are all promising sources of gravitational waves with frequencies in the band of the first generation and advanced ground-based interferometric detectors.

  17. Final fate of compact boson star mergers

    NASA Astrophysics Data System (ADS)

    Bezares, Miguel; Palenzuela, Carlos; Bona, Carles

    2017-06-01

    Boson stars, self-gravitating objects made of a complex scalar field, have been proposed as simple models for very different scenarios, ranging from galaxy dark matter to black hole mimickers. Here we focus on a very compact type of boson stars to study binary mergers by varying different parameters, namely the phase shift, the direction of rotation, and the angular momentum. Our aim is to investigate the properties of the object resulting from the merger in these different scenarios by means of numerical evolutions. These simulations, performed by using a modification of the covariant conformal Z4 formalism of the Einstein equations that does not require the algebraic enforcing of any constraint, indicate that the final state after a head-on collision of low mass boson stars is another boson star. However, almost complete annihilation of the stars occurs during the merger of a boson-antiboson pair. The merger of orbiting boson stars form a rotating bar that quickly relaxes to a nonrotating boson star.

  18. QUARK MATTER IN MASSIVE COMPACT STARS

    SciTech Connect

    Weissenborn, Simon; Pagliara, Giuseppe; Schaffner-Bielich, Juergen; Sagert, Irina; Hempel, Matthias

    2011-10-10

    The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97 {+-} 0.04 M{sub sun} gives a strong constraint on the quark and nuclear matter equations of state (EoS). We explore the parameter ranges for a parameterized EoS for quark stars. We find that strange stars, made of absolutely stable strange quark matter, comply with the new constraint only if effects from the strong coupling constant and color-superconductivity are taken into account. Hybrid stars, compact stars with a quark matter core and a hadronic outer layer, can be as massive as 2 M{sub sun}, but only for a significantly limited range of parameters. We demonstrate that the appearance of quark matter in massive stars crucially depends on the stiffness of the nuclear matter EoS. We show that the masses of hybrid stars stay below the ones of hadronic and pure quark stars, due to the softening of the EoS at the quark-hadron phase transition.

  19. Quark Deconfinement in Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Mellinger, Richard; Weber, Fridolin; Spinella, William; Contrera, Gustavo; Orsaria, Milva

    2017-01-01

    In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  20. r-Process nucleosynthesis in neutron star merger disk outflows

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Fernandez, Rodrigo; Roberts, Luke; Foucart, Francois; Kasen, Dan; Metzger, Brian

    2017-01-01

    Neutron star mergers are the most promising site of heavy element synthesis via the rapid neutron-capture process (r-process). Just before the neutron stars merge, they tidally disrupt each other, which unbinds extremely neutron-rich material where nucleosynthesis can easily reach the third r-process peak. After the merger, an accretion disk forms around the central compact object, which is either a black hole or a hypermassive neutron star (HMNS). Neutrino emissions from the disk (and HMNS if there is one) and angular momentum transport processes within the disk drive a neutron-rich outflow off the disk's surface where r-process nucleosynthesis can take place. In this work we investigate r-process nucleosynthesis in the disk outflow and we pay special attention to how the nucleosynthesis depends on the lifetime of the HMNS. Increasing the lifetime of the HMNS not only results in a significantly larger ejecta mass, but also makes the ejecta less neutron-rich thus preventing the r-process from reaching the third peak.

  1. Equation-of-state-independent relations in neutron stars

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Cardoso, Vitor; Ferrari, Valeria; Gualtieri, Leonardo; Pani, Paolo

    2013-07-01

    Neutron stars are extremely relativistic objects which abound in our universe and yet are poorly understood, due to the high uncertainty on how matter behaves in the extreme conditions which prevail in the stellar core. It has recently been pointed out that the moment of inertia I, the Love number λ, and the spin-induced quadrupole moment Q of an isolated neutron star, are related through functions which are practically independent of the equation of state. These surprising universal I-λ-Q relations pave the way for a better understanding of neutron stars, most notably via gravitational-wave emission. Gravitational-wave observations will probe highly dynamical binaries and it is important to understand whether the universality of the I-λ-Q relations survives strong-field and finite-size effects. We apply a post-Newtonian-affine approach to model tidal deformations in compact binaries and show that the I-λ relation depends on the inspiral frequency, but is insensitive to the equation of state. We provide a fit for the universal relation, which is valid up to a gravitational wave frequency of ˜900Hz and accurate to within a few percent. Our results strengthen the universality of I-λ-Q relations, and are relevant for gravitational-wave observations with advanced ground-based interferometers. We also discuss the possibility of using the Love-compactness relation to measure the neutron-star radius with an uncertainty ≲10% from gravitational-wave observations.

  2. Observing Compact Stars with AstroSat

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2017-09-01

    This article presents a brief description of India's AstroSat mission which is a powerful space based observatory for compact star research. An account is given of observational constraints and spectral and timing capabilities as realised post-launch. Some preliminary results of observations of the Crab pulsar and an X-ray binary system GX 301-2 are presented to illustrate some of the capabilities of the mission.

  3. Design of optics for compact star sensors

    NASA Astrophysics Data System (ADS)

    Xu, Minyi; Shi, Rongbao; Shen, Weimin

    2016-10-01

    In order to adapt to small size and low cost space platform such as mini-satellites, this paper studies the design of optics for compact star sensor. At first, the relationship between limiting magnitude and optical system specifications which includes field of view and entrance pupil diameter is analyzed, based on its Pyramid identification algorithm and signal-to-noise ratio requirement. The specifications corresponding to different limiting magnitude can be obtained after the detector is selected, and both of the complexity of optical lens and the size of baffle can be estimated. Then the range of the limiting magnitude can be determined for the miniaturization of the optical system. Taking STAR1000 CMOS detector as an example, the compact design of the optical system can be realized when the limiting magnitude is in the interval of 4.9Mv 5.5Mv. At last, the lens and baffle of a CMOS compact star sensor is optimally designed, of which length and weight is respectively 124 millimeters and 300 grams.

  4. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  5. Black Holes and Neutron Stars in Nearby Galaxies: Insights with NuSTAR

    NASA Astrophysics Data System (ADS)

    Vulic, Neven; Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Zezas, Andreas; Lehmer, Bret

    2017-08-01

    There are a handful of diagnostics that permit determination of compact object identity in X-ray binaries (XRBs), and most of these are confined to bright Galactic sources for which a large number of photons can be gathered. We report on recent work using sensitive hard X-ray constraints to separate black holes from neutron stars in external galaxies with NuSTAR. Determining the ratio of XRBs that are black holes or neutron stars in different galactic environments reveals critical clues about the formation and evolution of binary systems. We analyze a NuSTAR-selected sample of ≈10 nearby galaxies within 5 Mpc that represent a range of star formation rates (0.1 - 10 M⊙ yr-1) and stellar masses (109-11 M⊙). Using color-color and color-intensity diagnostics we classify sources by their accretion states and compact object types. We analyze the 12-25 keV X-ray luminosity functions (XLFs) of our sample scaled by specific star formation rate and compare with the 0.5-8 keV analogues. Our diagnostic methods allow us to produce black hole-only and neutron star-only extragalactic XLFs for the first time.

  6. Cooling of Compact Stars with Color Superconducting Quark Matter

    NASA Astrophysics Data System (ADS)

    Noda, T.; Yasutake, N.; Hashimoto, M.; Maruyama, T.; Tatsumi, T.; Fujimoto, M. Y.

    2015-11-01

    We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A).The Cas A observation shows that the central source is a compact star with a high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of M ≥ 1.5 M_⊙.It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars.We assume the gap energy of CSC quark phase is large (Δ ≳ 10 MeV),and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

  7. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  8. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  9. Magnetic fields in superconducting neutron stars.

    PubMed

    Lander, S K

    2013-02-15

    The interior of a neutron star is likely to be predominantly a mixture of superfluid neutrons and superconducting protons. This results in the quantization of the star's magnetic field into an array of thin flux tubes, producing a macroscopic force very different from the Lorentz force of normal matter. We show that in an axisymmetric superconducting equilibrium the behavior of a magnetic field is governed by a single differential equation. Solving this, we present the first self-consistent superconducting neutron star equilibria with poloidal and mixed poloidal-toroidal fields and also give the first quantitative results for the corresponding magnetically induced distortions to the star. The poloidal component is dominant in all our configurations. We suggest that the transition from normal to superconducting matter in a young neutron star may cause a large-scale field rearrangement.

  10. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  11. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (φ – φ{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  12. Quasiequilibrium black hole-neutron star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2007-04-15

    We construct quasiequilibrium sequences of black hole-neutron star binaries in general relativity. We solve Einstein's constraint equations in the conformal thin-sandwich formalism, subject to black hole boundary conditions imposed on the surface of an excised sphere, together with the relativistic equations of hydrostatic equilibrium. In contrast to our previous calculations we adopt a flat spatial background geometry and do not assume extreme mass ratios. We adopt a {gamma}=2 polytropic equation of state and focus on irrotational neutron star configurations as well as approximately nonspinning black holes. We present numerical results for ratios of the black hole's irreducible mass to the neutron star's ADM mass in isolation of M{sub irr}{sup BH}/M{sub ADM,0}{sup NS}=1, 2, 3, 5, and 10. We consider neutron stars of baryon rest mass M{sub B}{sup NS}/M{sub B}{sup max}=83% and 56%, where M{sub B}{sup max} is the maximum allowed rest mass of a spherical star in isolation for our equation of state. For these sequences, we locate the onset of tidal disruption and, in cases with sufficiently large mass ratios and neutron star compactions, the innermost stable circular orbit. We compare with previous results for black hole-neutron star binaries and find excellent agreement with third-order post-Newtonian results, especially for large binary separations. We also use our results to estimate the energy spectrum of the outgoing gravitational radiation emitted during the inspiral phase for these binaries.

  13. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    SciTech Connect

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-15

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  14. Experimental approach to neutron stars

    SciTech Connect

    Leifels, Yvonne

    2014-05-09

    The equation of state (EOS) of nuclear matter is of fundamental importance in many areas of nuclear physics and astrophysics In the laboratory, there are different means to study the nuclearmatter equation of state and its density dependence in particular: nuclear masses, neutron skins, pygmy resonance, and nuclear structure at the drip line give access to nuclear matter properties at densities lower than and at saturation density ρ0. Heavy ion reactions at energies above 0.1 AGeV are the only means to study nuclear matter at densities larger than normal nuclear matter density ρ0. In the beamenergy range of 0.1 to 2A GeV nuclear matter is compressed upto three times ρ0. Access to nuclear matter properties is achieved by simulating nuclear collisions by means of microscopic transport codes, or statistical or hydrodynamicalmodels. Characteristics of heavy-ion collisions are discussed, and experimental observables which allow to constrain nuclear matter properties by comparing experimental results with those of transport codes are presented. Special emphasis will be given to the density dependence of the symmetry energy which is the most relevant connection between neutron stars and heavy ion collisions.

  15. Quark matter nucleation in neutron stars and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico; Vidaña, Isaac; Providência, Constança

    2016-03-01

    A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T=0 and hot β -stable hadronic matter. Assuming a first order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 1053erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.

  16. SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS

    SciTech Connect

    Tsang, David

    2013-11-10

    We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

  17. Uncovering the Properties of Young Neutron Stars and Their Surroundings

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Slane, Patrick

    2005-01-01

    The subject grant provides funding through the NASA LTSA program. This five-year grant involves the study of young neutron stars, particularly those in supernova remnants. In the fifth year of this program, the following studies have been undertaken in support of this effort and are discussed in this report. 1) 3C 58; 2) Chandra Survey for Compact Objects in Supernova Remnants; 3) G327.1-1.1; 4) Infrared Emission from Pulsar Wind Nebulae; and Cas A.

  18. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  19. Pulsar observations and neutron star models

    NASA Technical Reports Server (NTRS)

    Boerner, G.; Cohen, J. M.

    1972-01-01

    Information about the physical parameters of neutron stars is obtained from pulsar observations. The energy balance of the Crab nebula and the Vela X remnant allows derivation of limits for the masses of the Crab and Vela pulsars. Glitch observations provide further clues on the masses of these two pulsars. The degree of confidence in the derived numbers is pointed out. The possibility of observing neutron stars in binary systems as pulsating X-ray sources is discussed. The importance of observing redshifted gamma ray lines from the surface of neutron stars, and thus directly measuring either individual or statistical properties of these objects is pointed out.

  20. Observations of Neutron Stars with NICER

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity that will be deployed as an attached payload on the International Space Station in August of 2016. By virtue of its unprecedented combination of throughput and fast timing capabilities, NICER will enable an empirical determination of the neutron star equation of state via realistic modeling of the pulsed X-ray radiation from millisecond pulsars. In this talk, I will describe the NICER instrument and measurement techniques it will employ, as well as the expected constraints on neutron star structure, and by extension the behavior of matter at supra-nuclear densities.

  1. Position annihilation radiation from neutron stars

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G. A.; Cohen, J. M.

    1972-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to a couple hundred MeV/nucleon, depending on the neutron star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 + or - 30 keV spectral feature from the galactic center is gravitationally red-shifted positron annihilation radiation produced at the surfaces of old neutron stars. The principal observational tests of the model would be the detection of nuclear gamma ray lines from the galactic center and red-shifted positron annihilation radiation from the galactic disk.

  2. Positron-annihilation radiation from neutron stars.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Borner, G.; Cohen, J. M.

    1973-01-01

    Matter accreted on the surfaces of neutron stars consists of energetic particles of a few tens to one or two hundred MeV per nucleon, depending on the neutron-star mass. In addition to heat, such particles produce nuclear reactions with the surface material. It is proposed that the recently observed 473 plus or minus 30 keV spectral feature from the galactic center is gravitationally redshifted positron-annihilation radiation produced at the surfaces of neutron stars. The principal observational tests of the model would be the detection of nuclear gamma-ray lines from the galactic center.

  3. Stability of precessing superfluid neutron stars.

    PubMed

    Glampedakis, K; Andersson, N; Jones, D I

    2008-02-29

    We discuss a new superfluid instability occurring in the interior of mature neutron stars with implications for free precession. This instability is similar to the instability which is responsible for the formation of turbulence in superfluid helium. We demonstrate that the instability is unlikely to affect slowly precessing systems with weak superfluid coupling. In contrast, fast precession in systems with strong coupling appears to be generically unstable. This raises serious questions about our understanding of neutron star precession and complicates attempts to constrain neutron star interiors using such observations.

  4. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  5. Numerical Relativity Simulations of Black Holes Binaries, Neutron Star Binaries, and Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Rosofsky, Shawn; Gold, Roman; Chirenti, Cecilia; Miller, Cole

    2017-01-01

    We present the results of numerical relativity simulations, using the Einstein Toolkit, of black hole binaries, neutron star binaries, and neutron star oscillations. The black hole binary simulations represent the source of LIGO's first gravitational wave detection, GW150914. We compare the gravitational wave output of this simulation with the LIGO data LIGO on GW150914. The neutron star binaries we simulated have different mass ratios and equations of state. These simulations were compared with each other to illustrate the effect of different mass ratios and equations of state on binary evolution and gravitational wave emission. To perform the neutron star oscillation simulations, we applied pressure and density perturbations to the star using specific eigenmodes. These evolutions of the stars were then compared to the expected oscillation frequencies of those excited eigemodes and contrasted with simulations of unperturbed neutron stars.

  6. Neutron-star matter within the energy-density functional theory and neutron-star structure

    SciTech Connect

    Fantina, A. F.; Chamel, N.; Goriely, S.; Pearson, J. M.

    2015-02-24

    In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.

  7. The mass-radius relationship of massive compact stars

    SciTech Connect

    Chowdhury, Partha Roy

    2015-02-24

    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  8. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  9. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  10. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.

  11. Properties of phonons in the neutron star crust

    NASA Astrophysics Data System (ADS)

    di Gallo, L.; Oertel, M.

    2010-12-01

    Neutron stars are compact objects, created in supernova explosions at the end of the life of massive stars. They contain matter under extreme conditions, in particular concerning the density : starting from a lattice of (neutron rich) nuclei in the crust one reaches nuclear matter at several times the density of atomic nuclei in the center. One way to understand this object is to confront theoretical modelisation with observations. Among observations of pulsars there is the thermal emission of its surface. This observable, which depend on the heat transport properties, is very sensitive to the superfluid and superconducting character of the different sutructures inside the star. The presentation is focussed on the inner crust, where we can find an interesting nuclear structure called the ``Pasta Phase". Its excitation spectrum within a superfluid hydrodynamics approach will be discussed in view of calculating the contribution to the heat capacity.

  12. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  13. Transport coefficients in superfluid neutron stars

    SciTech Connect

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  14. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  15. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-chen; Kong, Xiao-jun; Wei, Cheng-wen; Ge, Yun-zhao

    1988-03-01

    There may exist quark matter inside early hot neutron stars. Using the general method of Baym and Chin, we evaluated the pressure and density at neutron matter — quark matter phase transition for different temperatures and compared the values for stable hot neutron stars. We found (1) that whenever the neutron star temperature exceeds (+10)K, there will be a core of quark matter; (2) that the bag constant B is the most important determining factor of the quark core size. For a given temperature, the core is the larger, the smaller B is; (3) that by the conservation of baryon number, the total energy released by a star during its cooling is about (+53) ergs.

  16. Extreme neutron stars from Extended Theories of Gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  17. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  18. Chandra Observations of Isolated Neutron Stars

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin

    2006-01-01

    We present a review of the first six years of Chandra X-ray Observatory observations of isolated neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present a (biased) overview of six years of these observations, highlighting new discoveries made possible by the Observatory's unique capabilities.

  19. Relativistic tidal properties of neutron stars

    SciTech Connect

    Damour, Thibault; Nagar, Alessandro

    2009-10-15

    We study the various linear responses of neutron stars to external relativistic tidal fields. We focus on three different tidal responses, associated to three different tidal coefficients: (i) a gravito-electric-type coefficient G{mu}{sub l}=[length]{sup 2l+1} measuring the lth-order mass multipolar moment GM{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-electric tidal field G{sub a{sub 1}}{sub ...a{sub I}}; (ii) a gravito-magnetic-type coefficient G{sigma}{sub l}=[length]{sup 2l+1} measuring the lth spin multipole moment GS{sub a{sub 1}}{sub ...a{sub I}} induced in a star by an external lth-order gravito-magnetic tidal field H{sub a{sub 1}}{sub ...a{sub I}}; and (iii) a dimensionless 'shape' Love number h{sub l} measuring the distortion of the shape of the surface of a star by an external lth-order gravito-electric tidal field. All the dimensionless tidal coefficients G{mu}{sub l}/R{sup 2l+1}, G{sigma}{sub l}/R{sup 2l+1}, and h{sub l} (where R is the radius of the star) are found to have a strong sensitivity to the value of the star's 'compactness'c{identical_to}GM/(c{sub 0}{sup 2}R) (where we indicate by c{sub 0} the speed of light). In particular, G{mu}{sub l}/R{sup 2l+1}{approx}k{sub l} is found to strongly decrease, as c increases, down to a zero value as c is formally extended to the 'black hole (BH) limit'c{sup BH}=1/2. The shape Love number h{sub l} is also found to significantly decrease as c increases, though it does not vanish in the formal limit c{yields}c{sup BH}, but is rather found to agree with the recently determined shape Love numbers of black holes. The formal vanishing of {mu}{sub l} and {sigma}{sub l} as c{yields}c{sup BH} is a consequence of the no-hair properties of black holes. This vanishing suggests, but in no way proves, that the effective action describing the gravitational interactions of black holes may not need to be augmented by nonminimal worldline couplings.

  20. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  1. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  2. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  3. Neutron star cooling: effects of envelope physics

    SciTech Connect

    Van Riper, K.A.

    1982-01-01

    Neutron star cooling calculations are reported which employ improved physics in the calculation of the temperature drop through the atmosphere. The atmosphere microphysics is discussed briefly. The predicted neutron star surface temperatures, in the interesting interval 200 less than or equal to t (yr) less than or equal to 10/sup 5/, do not differ appreciably from the earlier results of Van Riper and Lamb (1981) for a non-magnetic star; for a magnetic star, the surface temperature is lower than in the previous work. Comparison with observational limits show that an exotic cooling mechanism, such as neutrino emission from a pion condensate or in the presence of percolating quarks, is not required unless the existence of a neutron star in the Tycho or SN1006 SNRs is established.

  4. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  5. Compact stars in Eddington inspired gravity.

    PubMed

    Pani, Paolo; Cardoso, Vitor; Delsate, Térence

    2011-07-15

    A new, Eddington inspired theory of gravity was recently proposed by Bañados and Ferreira. It is equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new features that we report here. First, for a positive coupling parameter, the field equations have a dramatic impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong, near optimal constraint on the coupling parameter, which can even be improved by observations of the moment of inertia of the double pulsar.

  6. Compact stars with specific mass function

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Rahaman, Farook; Rahaman, Monsur; Banerjee, Ayan

    2017-10-01

    Aims: In the present work we search for a new model of compact star within embedding class one spacetime i.e., four dimensional spacetime embedded in five dimensional Pseudo Euclidean space. Methods: In particular we propose a new mass function to obtain an exact analytic solutions of the Einstein field equations. For this specific mass function, obtained solutions are well-behaved at the centre of the star, satisfy all energy conditions and the mass-radius relation fall within the limit proposed by Buchdahl (1959). Results: The static equilibrium condition has been maintained under different forces. We have discussed the solutions in detail and compare with a set of astrophysical objects like 4U1608-52, PSR J1903+327, PSR J1614-2230 and X-ray pulsar Vela X-1 is also explored.

  7. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  8. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  9. Cooling of Accretion-Heated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wijnands, Rudy; Degenaar, Nathalie; Page, Dany

    2017-09-01

    We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.

  10. Dynamical stability of nascent neutron stars

    NASA Astrophysics Data System (ADS)

    Liu, Yuk Tung

    This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs. Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27. Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value β d ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy. All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post- Newtonian (1PN) order. The structures of the ON models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these ON neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change

  11. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  12. Searching for X-ray Pulsations from Neutron Stars Using NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas

    2017-08-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.

  13. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  14. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  15. Further stable neutron star models from f(R) gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2013-12-01

    Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)

  16. Compact static stars in minimal dilatonic gravity

    NASA Astrophysics Data System (ADS)

    Fiziev, Plamen P.

    2017-09-01

    In the version1 of this paper we presented for the first time the basic equations and relations for relativistic static spherically symmetric stars (SSSS) in the model of minimal dilatonic gravity (MDG). This model is locally equivalent to the f(R) theory of gravity and gives an alternative description of the effects of dark matter and dark energy using the Brans-Dicke dilaton Φ. To outline the basic properties of the MDG model of SSSS and to compare them with general relativistic results, in this paper we use the relativistic equation of state (EOS) of neutron matter as an ideal Fermi neutron gas at zero temperature. We overcome the well-known difficulties of the physics of SSSS in the f(R) theories of gravity2,3 applying novel highly nontrivial nonlinear boundary conditions, which depend on the global properties of the solution and on the EOS. We also introduce two pairs of new notions: cosmological-energy-pressure densities and dilaton-energy-pressure densities, as well as two new EOSs for them: cosmological EOS (CEOS) and dilaton EOS (DEOS). Special attention is paid to the dilatonic sphere (in brief — disphere) of SSSS, introduced in this paper for the first time. Using several realistic EOS for neutron star (NS): SLy, BSk19, BSk20 and BSk21, and current observational two-solar-masses-limit, we derive an estimate for scalar-field-mass mΦ ˜ 10‑13eV/c2 ÷ 4 × 10‑11eV/c2. Thus, the present version of the paper reflects some of the recent developments of the topic.

  17. Local distribution of old neutron stars

    NASA Technical Reports Server (NTRS)

    Frei, Szolt; Huang, Xiaolan; Paczynski, Bohdan

    1992-01-01

    The local distribution of old disk neutron stars is approximated with a 1D model, in which the steady state distribution in the direction perpendicular to the Galactic plane is calculated, assuming a variety of the initial radio pulsar positions and velocities, and various Galactic potentials. It is found that the local distribution of old neutron stars is dominated by those that were born with very low velocities. The high-velocity neutron stars spend most of their lifetime far in the Galactic halo and do not contribute much to the local density. Therefore, the rms velocity at birth is not a good indicator of the scale height of the old population. The most likely half-density scale height for the old disk neutron stars is approximately 350 pc, the same as for the old disk G, K, and M stars. If gamma-ray bursts originate on old disk neutron stars, then 350 pc should also be the scale height for the bursters.

  18. Cyg X-1 - A massive neutron star

    NASA Technical Reports Server (NTRS)

    Goldman, I.

    1981-01-01

    The expected X-ray emission from Cyg X-1, considered a massive neutron star (8-15 solar masses) according to some gravity theories, is studied within the framework of Rosen's bimetric gravity theory (1973, 1974). It is shown that in such massive neutron stars, the innermost stable orbit lies far outside the star surface, and therefore the X-ray spectrum consists of two components: a soft one emitted from a cold accretion disk and a hard one emitted by the matter striking the neutron star surface after spiraling down freely from the disk. The proposed model is shown to be in good agreement with the observed luminosities. The model predicts a surface gravitational redshift of 3.16 which could be tested by the future X- and gamma-ray detectors.

  19. Forecasting neutron star temperatures: predictability and variability.

    PubMed

    Page, Dany; Reddy, Sanjay

    2013-12-13

    It is now possible to model thermal relaxation of neutron stars after bouts of accretion during which the star is heated out of equilibrium by nuclear reactions in its crust. Major uncertainties in these models can be encapsulated in modest variations of a handful of control parameters that change the fiducial crustal thermal conductivity, specific heat, and heating rates. Observations of thermal relaxation constrain these parameters and allow us to predict longer term variability in terms of the neutron star core temperature. We demonstrate this explicitly by modeling ongoing thermal relaxation in the neutron star XTE J1701-462. Its future cooling, over the next 5 to 30 years, is strongly constrained and depends mostly on its core temperature, uncertainties in crust physics having essentially been pinned down by fitting to the first three years of observations.

  20. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  1. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  2. HYPERACCRETING NEUTRON STAR DISKS AND NEUTRINO ANNIHILATION

    SciTech Connect

    Zhang Dong; Dai, Z. G. E-mail: dzg@nju.edu.c

    2009-09-20

    Newborn neutron stars surrounded by hyperaccreting and neutrino-cooled disks may exist in some gamma-ray bursts and/or supernovae. In this paper, we further study the structure of such a neutron star disk based on the two-region (i.e., inner and outer) disk scenario following our previous work, and calculate the neutrino annihilation luminosity from the disk in various cases. We investigate the effects of the viscosity parameter {alpha}, energy parameter {epsilon} (measuring the neutrino cooling efficiency of the inner disk), and outflow strength on the structure of the entire disk as well as the effect of emission from the neutron star surface boundary emission on the total neutrino annihilation rate. The inner disk satisfies the entropy-conservation self-similar structure for the energy parameter {epsilon} {approx_equal} 1 and the advection-dominated structure for {epsilon} < 1. An outflow from the disk decreases the density and pressure but increases the thickness of the disk. Moreover, compared with the black hole disk, the neutrino annihilation luminosity above the neutron star disk is higher, and the neutrino emission from the boundary layer could increase the neutrino annihilation luminosity by about one order of magnitude higher than the disk without boundary emission. The neutron star disk with the advection-dominated inner disk could produce the highest neutrino luminosity while the disk with an outflow has the lowest. Although a heavily mass-loaded outflow from the neutron star surface at early times of neutron star formation prevents the outflow material from being accelerated to a high bulk Lorentz factor, an energetic ultrarelativistic jet via neutrino annihilation can be produced above the stellar polar region at late times if the disk accretion rate and the neutrino emission luminosity from the surface boundary layer are sufficiently high.

  3. Prediction of Black Hole and Neutron Star Mesolensing Events

    NASA Astrophysics Data System (ADS)

    Harding, Alex; Di Stefano, Rosanne; Urama, Johnson; Pham, Dang

    2016-01-01

    Black holes and neutron stars are ideal gravitational lenses because they have large masses and dim optical magnitudes. Lensing induced by nearby stellar objects, typically within a few kpc, is known as mesolensing. We report on our study of the spatial paths of more than 200 compact objects with measured proper motions. We predict their close approaches on the sky to background stars whose positions and magnitudes have been drawn from the Hubble Source Catalog, and from the 2MASS and USNO-A catalogs. By plotting the paths of the stellar remnants many years into the future we make predictions on when detectable events will occur. The observations provide a way of measuring the masses of the neutron star/black hole lenses. We also investigate possible future lensing events that would be caused if the compact object is orbited by dark companions, including exoplanets. Mesolensing events may be caused by exoplanets even if the compact object is unlikely to produce its own event. Constraints can be derived for planet masses and orbits both in cases with event detections and in cases in which no detection is achieved.

  4. Limiting rotational period of neutron stars

    NASA Astrophysics Data System (ADS)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  5. Limiting rotational period of neutron stars

    SciTech Connect

    Glendenning, N.K. )

    1992-11-15

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a {ital M}=1.442{ital M}{sub {circle dot}} neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  6. Physics of systems containing neutron stars

    NASA Astrophysics Data System (ADS)

    Shaham, Jacob

    1995-01-01

    This grant deals with several topics related to the dynamics of systems containing a compact object. Most of our research in 1994 dealt with systems containing Neutron Stars (NS's), but we also addressed systems containing a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's) Low Mass X-Ray Binaries (LMX's) and Cataclysmic Variables (CV's). We also dealt with one aspect of NS structure, namely NS superfluidity. A large fraction of our research dealt with irradiation-driven winds from companions. These winds turned out to be of some importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's.

  7. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1995-01-01

    This grant deals with several topics related to the dynamics of systems containing a compact object. Most of our research in 1994 dealt with systems containing Neutron Stars (NS's), but we also addressed systems containing a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's) Low Mass X-Ray Binaries (LMX's) and Cataclysmic Variables (CV's). We also dealt with one aspect of NS structure, namely NS superfluidity. A large fraction of our research dealt with irradiation-driven winds from companions. These winds turned out to be of some importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's.

  8. Young Neutron Stars in Extragalactic Supernovae

    NASA Astrophysics Data System (ADS)

    Tehrani, Nathan; Lorimer, D. R.

    2012-01-01

    Pulsars are compact remnants of stellar cores left behind by supernova explosions. They spin rapidly and emit electromagnetic radiation from their magnetic poles, and gradually lose rotational energy. This project tests and expands upon a previous prediction by Perna et al. for the initial spin rates of neutron stars by attempting to model the x-ray emission from extragalactic supernovae. A computer simulation generated a set of pulsars of known initial rotational periods, magnetic field strengths, and ages, and will calculate the expected x-ray luminosities from the known relationship between magnetic field strengths, slow-down rates, and radio luminosities. This experiment expanded upon the original research by incorporating variability in the angle between the magnetic and rotational axes of each pulsar as well as the braking index value, which in the original publication were kept constant. This examines the effect of the angle on pulsars’ x-ray luminosities. The simulated x-ray luminosities were compared to the known x-ray luminosities of known supernova explosions, which served as an upper limit to determine the highest possible initial rotation speeds. Funding was provided through the WVU Summer Undergraduate Research Program.

  9. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  10. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  11. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  12. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    SciTech Connect

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  13. Neutron star accretion and the neutrino fireball

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling A.; Herant, Marc; Benz, Willy

    1993-05-01

    We suggest a mechanism for driving supernova explosions through neutrino energy deposition beyond the formation and the cooling of the neutron star. The mechanism depends upon convection next to the neutron star and terminates when the entropy of buoyant bubbles increases sufficiently due to neutrino heating to shut off the down flow of low entropy matter. This convection is initially caused by the heat deposited from neutrinos emitted by the cooling neutron star in a region gravitationally dominated by the neutron star. This convection by providing an efficient heat transport mechanism avoids the overheating and excessive neutrino energy losses in the regions close to the neutron stars and has been recently modeled by Herant, Benz and Colgate. In this model the explosion shock, initially driven by the bounce followed by neutron star derived neutrino heating is further driven by the up flow of the bouyant, high entropy bubbles. The down flow between the bubbles of low entropy matter originating from behind the bounce and later the explosion shock will build up a modest entropy atmosphere in pressure equilibrium with the surface of the cooling neutron star. For modest entropies, Srad ~ 10 or Stotal ~ 18 and condensed neutron stars, R/M ~ 10 km per solar mass, the total mass of such an atmosphere is small, 1.7 × 10-3 Msolar, but the temperature at the base of such an atmosphere is extremely high, T ~ 10 MeV. The paradoxical result of neutrino emission is to further condense the atmosphere and increase the temperature until the compression heating is exceeded by the neutrino emission. The absolute limit of compression heating is free fall collapse, which may be approached but not exceeded. Such an accretion event approaching this limit may reach a temperature high enough to create a neutrino ``fireball'', a region hot enough, ~ 11 MeV, so as to be partially opaque to its own (neutrino) radiation. The further heating of the already high entropy bubbles by the neutrino

  14. The population of highly magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Gomes, R. O.; Dexheimer, V.; Franzon, B.; Schramm, S.

    2017-06-01

    In this work, we study the effects of strong magnetic field configurations on the population of neutron stars. The stellar matter is described within a relativistic mean field formalism which considers many-body force contributions in the scalar couplings. We choose the parametrization of the model that reproduces nuclear matter properties at saturation and also describes massive hyperon stars. Hadronic matter is modeled at zero temperature, in beta-equilibrium, charge neutral and populated by the baryonic octet, electrons and muons. Magnetic effects are taken into account in the structure of stars by the solution of the Einstein-Maxwell equations with the assumption of a poloidal magnetic field distribution. Our results show that magnetic neutron stars are populated essencialy by nucleons and leptons, due to the fact that strong magnetic fields decrease the central density of stars and, hence, supress the appearance of exotic particles.

  15. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  16. The spectra of weakly magnetized neutron stars

    NASA Technical Reports Server (NTRS)

    Fu, Albert; Taam, Ronald E.

    1990-01-01

    The continuum spectrum of a rotating equatorial emitting region on the surface of an accreting neutron star is investigated within the Schwarzschild spacetime. It is found that the dominant general relativistic effect is the increase in apparent emission area from the neutron star surface due to gravitational light bending. For typical neutron star parameters, the apparent area of the accretion belt is remarkably independent of the viewing angle and, hence, the contribution for a boundary layer to the total X-ray luminosity is found to depend only weakly on the inclination angle of the binary system. For a blackbody spectrum in the local rest frame of the emitting surface, the distortion of the spectral shape by longitudinal and transverse Doppler shifts is minimal for neutron stars rotating at periods greater than about 2 ms. It is shown that the failure to detect a blackbody component from the weakly magnetized neutron star surface in some X-ray burst sources during their quiescent state may be related to the presence of temperature variations along the vertical extent of the boundary layer.

  17. Self-bound interacting QCD matter in compact stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Fogaça, D. A.; Navarra, F. S.; Horvath, J. E.

    2012-09-01

    The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.

  18. Nonequilibrium phase transition in compact stars through a violent shock

    NASA Astrophysics Data System (ADS)

    Mishustin, Igor; Mallick, Ritam; Nandi, Rana; Satarov, Leonid

    2015-05-01

    In this article we study the dynamics of a first-order phase transition from nucleonic to quark matter in neutron stars. Using standard equations of state for these two phases we find the density range where such a transition is possible. Then we study the transformation of the star assuming that the quark core is formed via a spherical shock wave. The thermodynamical conditions in the quark core are found from the conservation laws across the transition region. Their dependence on the density and velocity of the incoming nuclear matter are studied. It is found that the shock is especially violent in the beginning of the conversion process when the velocity of the in-falling matter is especially high. As the shock propagates further from the center, the front velocity first increases and reaches a maximum value when the incoming velocity is around 0.2 . Finally, the front velocity quickly goes to zero when incoming matter velocity approaches zero. We have shown that the density and pressure jumps are especially large in the beginning of the transition process. Such a shocklike phase transition in the compact star can manifest a neutrino burst and gravitational waves.

  19. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  20. Evolutions of magnetized and rotating neutron stars

    SciTech Connect

    Liebling, Steven L.; Lehner, Luis; Neilsen, David; Palenzuela, Carlos

    2010-06-15

    We study the evolution of magnetized and rigidly rotating neutron stars within a fully general relativistic implementation of ideal magnetohydrodynamics with no assumed symmetries in three spatial dimensions. The stars are modeled as rotating, magnetized polytropic stars, and we examine diverse scenarios to study their dynamics and stability properties. In particular, we concentrate on the stability of the stars and possible critical behavior. In addition to their intrinsic physical significance, we use these evolutions as further tests of our implementation, which incorporates new developments to handle magnetized systems.

  1. Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Patra, S. K.

    2017-01-01

    We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean gravitational wave signature in binary inspiral. These are characterized by various Love numbers kl(l =2 ,3 ,4 ), that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured through an advanced LIGO detector from the final stages of an inspiraling binary neutron star merger.

  2. Polymer quantum effects on compact stars models

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Hernandez-Hernandez, Héctor H.

    2015-03-01

    In this work we study a completely degenerate Fermi gas at zero temperature by a semiclassical approximation for a Hamiltonian that arises in polymer quantum mechanics. Polymer quantum systems are quantum mechanical models quantized in a similar way as in loop quantum gravity, allowing the study of the discreteness of space and other features of the loop quantization in a simplified way. We obtain the polymer modified thermodynamical properties for this system by noticing that the corresponding Fermi energy is exactly the same as if one directly polymerizes the momentum pF. We also obtain the expansion of the corresponding thermodynamical variables in terms of small values of the polymer length scale λ. We apply these results to study a simple model of a compact one-dimensional star where the gravitational collapse is supported by electron degeneracy pressure. As a consequence, polymer corrections to the mass of the object are found. By using bounds for the polymer length found in Bose-Einstein condensates experiments we compute the modification in the mass of the compact object due to polymer effects of order 10-8. This result is similar to the other order found by different approaches such as generalized uncertainty principle (GUP), and that certainly is within the error reported in typical measurements of white dwarf masses.

  3. Hybrid stars that masquerade as neutron stars

    SciTech Connect

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  4. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  5. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  6. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  7. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  8. Neutron star kicks and their relationship to supernovae ejecta mass

    NASA Astrophysics Data System (ADS)

    Bray, J. C.; Eldridge, J. J.

    2016-10-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume that the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship, we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values, and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. observed two-dimensional velocities, and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred three-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myr. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernova compact remnants, we suggest that it is a significant contributor and that the ejecta-based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  9. Magnetic field evolution in neutron stars

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Reisenegger, A.; Valdivia, J. A.

    2017-07-01

    Neutron stars contain the strongest magnetic fields known in the Universe. Using numerical simulations restricted to axially symmetric geometry, we study the long-term evolution of the magnetic field in the interior of an isolated neutron star under the effect of ambipolar diffusion, i.e. the drift of the magnetic field and the charged particles relative to the neutrons. We model the stellar interior as an electrically neutral fluid composed of neutrons, protons and electrons; these species can be converted into each other by weak interactions (beta decays), suffer binary collisions, and be affected by each other's macroscopic electromagnetic fields. We show that, in the restricted case of pure ambipolar diffusion, neglecting weak interactions, the magnetic fields evolves towards a stable MHD equilibria configuration, in the timescales analytically expected.

  10. Symmetry energy: nuclear masses and neutron stars

    NASA Astrophysics Data System (ADS)

    Pearson, J. M.; Chamel, N.; Fantina, A. F.; Goriely, S.

    2014-02-01

    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30MeV for the symmetry coefficient J , the corresponding root-mean square deviation being 0.549MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated ab initio our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.

  11. Neutron stars as type-I superconductors.

    PubMed

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  12. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  13. Neutron Star Seismology with Accreting Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod

    Neutron stars provide natural laboratories for the study of a number of important topics in fundamental physics, including the composition and equation of state (EOS) of cold matter at the highest densities achievable in nature. The physical conditions in their deep interiors cannot be replicated in terrestrial laboratories, and the nature of matter under such extreme conditions remains one of the major unsolved problems in physics. Direct measurement of the mass - radius relationship for neutron stars is very important for constraining the EOS of dense matter, however, since different phases of dense matter can have similar equations of state, mass and radius measurements alone are not very efficient in determining their interior composition. Additional, complementary observables are needed to more definitively probe the composition of neutron star cores. Asteroseismology, the measurement of the characteristic frequencies of the normal modes of oscillation of stars, can provide a powerful probe of their interiors. For example, helioseismology has provided unprecedented insights about the deep interior of the Sun. Comparable capabilities for neutron star seismology have not yet been achieved, but our recent work indicates that sensitive searches for the signatures of neutron star oscillations can be carried out using the high time resolution, pulse timing data obtained by the Rossi X-ray Timing Explorer (RXTE)-and in the case of a single source the XMM-Newton pn camera-from the population of accreting millisecond X-ray pulsars (AMXPs, Strohmayer & Mahmoodifar 2014a), and in some thermonuclear burst sources (Strohmayer & Mahmoodifar 2014b). It is the primary aim of this proposal to carry out the first such comprehensive search for global oscillation modes across this entire source class of neutron stars using approximately 6 M-sec of RXTE and 100 k-sec of XMMNewton archival data, and thereby significantly advance the nascent field of neutron star seismology. We will

  14. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  15. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  16. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  17. Photon and neutrino redshift in the field of braneworld compact stars

    SciTech Connect

    Hladík, Jan; Stuchlík, Zdeněk E-mail: zdenek.stuchlik@fpf.slu.cz

    2011-07-01

    We study gravitational redshift of photons and neutrinos radiated by the braneworld neutron or quark stars that are considered in the framework of the simple model of the internal spacetime with uniform distribution of energy density, and the external spacetime described by the Reissner-Nordström geometry characterized by the braneworld ''tidal'' charge b. For negative tidal charges, the external spacetime is of the black-hole type, while for positive tidal charges, the external spacetime can be of both black-hole and naked-singularity type. We consider also extremely compact stars allowing existence of trapped null geodesics in their interior. We assume radiation of photons from the surface at radius R, neutrinos from the whole compact star interior, and their motion along radial null geodesics of the spacetime. In dependency on the compact stars parameters b and R, the photon surface redshift is related to the range of the neutrino internal redshift and the signatures of the tidal charge and possible existence of extremely compact stars are discussed. When both surface (photon) and internal (neutrino) redshift are given by observations, both compact star parameters R and b can be determined in the framework of our simple model.

  18. Neutron stars. [quantum mechanical processes associated with magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  19. An instability in neutron stars at birth.

    PubMed

    Burrows, A; Fryxell, B A

    1992-10-16

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supemova explosion may be inadequate. Whether this "convective" instability is pivotal to the supemova mechanism, pulsar magnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  20. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  1. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  2. Chandra Observations of Neutron Stars: An Overview

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  3. ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.

    PubMed

    Schilling, G

    2000-09-01

    A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal.

  4. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  5. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-Chen; Kong, Xiao-Jun; Wei, Cheng-Wen; Ge, Yun-Zhao

    1988-03-01

    The existence of quark matter (QM) in hot early neutron stars is considered theoretically, using the method of Baym and Chin (1976) to calculate the pressure and density at the phase transition between neutron and quark matter for various temperatures. The results are presented in tables and graphs and discussed in detail. It is found that QM cores can exist whenever the temperature exceeds 10 to the 10th K, and that their radii increase with decreasing QM bag constant. The total energy emitted by a star during cooling is estimated as 10 to the 53rd erg, assuming conservation of baryon number.

  6. Radial modes of slowly rotating compact stars in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Mohanta, K. K.; Sahu, P. K.

    2016-09-01

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field.

  7. Neutron Star Cooling with Various Superfluid and Superconducting States

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Matsuo, Yasuhide; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka

    A neutron star is a highly dense object which lasts after a supernova explosion. The density of a neutron star overcomes the nuclear density, and the temperature is high at the beginning of its history. An isolated neutron star does not have any heat sources, and it cools down emitting thermal energy by neutrinos. The neutrino emission process depends on the state of interior matter of the neutron star. To compare theoretical simulations and observations of neutron stars, it can constrain the nuclear theory of high density region. We create a model of neutron stars with colour superconducting quark matter and nucleon superfluidity/superconductivity, to satisfy recent observations, including two 2M ⊙ neutron stars. We parameterize these super-states and demonstrate the cooling curves, which show heavy stars do not always cool faster than lighter stars.

  8. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  9. Gravitational wave background from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  10. Detecting neutrinos from black hole-neutron star mergers

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R.

    2009-12-15

    While it is well known that neutrinos are emitted from standard core collapse protoneutron star supernovae, less attention has been focused on neutrinos from accretion disks. These disks occur in some supernovae (i.e. collapsars) as well as in compact object mergers, and they emit neutrinos with similar properties to those from protoneutron star supernovae. These disks and their neutrinos play an important role in our understanding of gamma ray bursts as well as the nucleosynthesis they produce. We study a disk that forms in the merger of a black hole and a neutron star and examine the neutrino fluxes, luminosities and neutrino surfaces for the disk. We also estimate the number of events that would be registered in current and proposed supernova neutrino detectors if such an event were to occur in the Galaxy.

  11. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  12. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  13. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  14. Neutron stars - A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  15. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei

    2017-07-01

    Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should

  16. Constraining Neutron Star Matter with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  17. Constraining neutron star matter with quantum chromodynamics

    SciTech Connect

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-10

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  18. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  19. A new compact neutron/gamma ray scintillation detector

    NASA Astrophysics Data System (ADS)

    Buffler, A.; Comrie, A. C.; Smit, F. D.; Wörtche, H. J.

    2016-09-01

    Progress towards the realization of a new compact neutron spectrometer is described. The detector is based on EJ299-33 plastic scintillator coupled to silicon photomultipliers, and a digital implementation of pulse shape discrimination is used to separate events associated with neutrons from those associated with gamma rays. The spectrometer will be suitable over the neutron energy range 1-100 MeV, illustrated in this work with measurements made using an AmBe radioisotopic source and quasi-monoenergetic neutron beams produced using a cyclotron.

  20. Few-Body Effects in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Takibayev, N.

    2017-03-01

    Neutron resonances in systems of few nuclei, electron capture reactions with formation of excited nuclei, and density oscillation in the neutron star envelopes are investigated. These results allow to propose the special experiments to verify the neutron resonances in the few-body systems and understand the origin of some processes that are going in the neutron star crusts.

  1. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolas

    2016-03-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations, the three-hair relations, were found to hold in neutron stars that rotate rigidly, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). The resulting relations include the fourth moment, hence deemed the four-hair relations for differentially rotating neutron stars, and are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  2. Modelling of anisotropic compact stars of embedding class one

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Maurya, S. K.; Gupta, Y. K.; Manna, Tuhina

    2016-10-01

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift.

  3. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  4. Modeling of charged anisotropic compact stars in general relativity

    NASA Astrophysics Data System (ADS)

    Dayanandan, Baiju; Maurya, S. K.; T, Smitha T.

    2017-06-01

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e^{λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model.

  5. Compact neutron imaging system using axisymmetric mirrors

    SciTech Connect

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  6. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  7. The Mystery of the Lonely Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  8. Theoretical constraints on the properties of low-mass neutron stars from the equation of state of nuclear matter in the inner crust

    NASA Astrophysics Data System (ADS)

    Wen, Yong-Mei; Wen, De-Hua

    2017-06-01

    By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.

  9. Modern compact star observations and the quark matter equation of state

    NASA Astrophysics Data System (ADS)

    Klähn, T.; Blaschke, D.; Sandin, F.; Fuchs, Ch.; Faessler, A.; Grigorian, H.; Röpke, G.; Trümper, J.

    2007-10-01

    We present a hybrid equation of state (EoS) for dense matter that satisfies phenomenological constraints from modern compact star (CS) observations which indicate high maximum masses (M ∼ 2M⊙) and large radii (R > 12 km). The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy-ion collisions and a deconfinement transition at ∼ 0.55 fm-3. The quark matter phase is described by a 3-flavor Nambu-Jona-Lasinio model that accounts for scalar diquark condensation and vector meson interactions while the nuclear matter phase is obtained within the Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-A potential. We demonstrate that both pure neutron stars and neutron stars with quark matter cores are consistent with modern CS observations. Hybrid star configurations with a CFL quark core are unstable within the present model.

  10. Mergers of Black Hole -- Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela

    Motivated by the scenario that black hole-neutron star (BH-NS) mergers are viable progenitors of observed short Gamma-ray Bursts, we have used a 3D relativistic SPH (smoothed particle hydrodynamics) code to study mergers of such binary systems (with relatively low mass ratios). We have investigated a wide range of parameters for those binaries: mass ratio, Equation of State (EOS) for the NS, compactness of the NS. Most importantly, the BH's spin was varied in our simulations (from non-spinning to maximally spinning BHs), and so was the orbital inclination of the NS. We have found that the outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter a and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ˜60° lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger. Furthermore, we have investigated and we are presenting the gravitational waveforms and gravitational wave energy spectra from some representative cases. Despite using simply the quadrupole formula with post-Newtonian extensions (up to 3.5 terms) for radiation reaction, we were able to clearly see the impact of the BH's spin and NS's orbital inclination on the spectra and waveforms produced in our simulations.

  11. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  12. Temperature effects in pulsating superfluid neutron stars

    SciTech Connect

    Kantor, Elena M.; Gusakov, Mikhail E.

    2011-05-15

    We study the effects of finite stellar temperatures on the oscillations of superfluid neutron stars. The importance of these effects is illustrated with a simple example of a radially pulsating general relativistic star. Two main effects are taken into account: (i) temperature dependence of the entrainment matrix and (ii) the variation of the size of superfluid region with temperature. Four models are considered, which include either one or both of these two effects. Pulsation spectra are calculated for these models, and asymptotes for eigenfrequencies at temperatures close to critical temperature of neutron superfluidity are derived. It is demonstrated that models that allow for the temperature effect (ii) but disregard the effect (i), yield unrealistic results. Eigenfunctions for the normal- and superfluid-type pulsations are analyzed. It is shown that superfluid pulsation modes practically do not appear at the neutron-star surface and, therefore, can hardly be observed by measuring the modulation of the electromagnetic radiation from the star. The e-folding times for damping of pulsations due to the shear viscosity and nonequilibrium modified Urca processes are calculated and their asymptotes at temperatures close to the neutron critical temperature, are obtained. It is demonstrated that superfluid pulsation modes are damped by 1-3 orders of magnitude faster than normal modes.

  13. A relativistic two-fluid model of compact stars

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Rahaman, Farook; Mallick, Arkopriya

    2017-03-01

    We propose a relativistic model of compact star admitting conformal symmetry. Quark matter and baryonic matter which are considered as two different fluids, constitute the star. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. The measured value of the Bag constant is used to explore the spacetime geometry inside the star. From the observed values of the masses of some compact objects, we have obtained theoretical values of the radii. Theoretical values of the radii match well with the previous predictions for such compact objects.

  14. Quasiequilibrium sequences of black-hole-neutron-star binaries in general relativity

    SciTech Connect

    Taniguchi, Keisuke; Faber, Joshua A.; Shapiro, Stuart L.; Baumgarte, Thomas W.

    2006-08-15

    We construct quasiequilibrium sequences of black-hole-neutron-star binaries for arbitrary mass ratios by solving the constraint equations of general relativity in the conformal thin-sandwich decomposition. We model the neutron star as a stationary polytrope satisfying the relativistic equations of hydrodynamics and account for the black hole by imposing equilibrium boundary conditions on the surface of an excised sphere (the apparent horizon). In this paper we focus on irrotational configurations, meaning that both the neutron star and the black hole are approximately nonspinning in an inertial frame. We present results for a binary with polytropic index n=1, mass ratio M{sub irr}{sup BH}/M{sub B}{sup NS}=5, and neutron star compaction M{sub ADM,0}{sup NS}/R{sub 0}=0.0879, where M{sub irr}{sup BH} is the irreducible mass of the black hole, M{sub B}{sup NS} the neutron star baryon rest mass, and M{sub ADM,0}{sup NS} and R{sub 0} the neutron star Arnowitt-Deser-Misner mass and areal radius in isolation, respectively. Our models represent valid solutions to Einstein's constraint equations and may therefore be employed as initial data for dynamical simulations of black-hole-neutron-star binaries.

  15. Ultra compact stars: reconstructing the perturbation potential

    NASA Astrophysics Data System (ADS)

    Völkel, Sebastian H.; Kokkotas, Kostas D.

    2017-09-01

    In this work we demonstrate how different semi-classical methods can be combined in a novel way to reconstruct the perturbation potential of ultra compact stars. Besides rather general assumptions, the only specific information entering this approach is the spectrum of the trapped axial quasi-normal modes. In general it is not possible to find a unique solution for the potential in the inverse problem, but instead a family of potentials producing the same spectrum. Nevertheless, this already determines important properties of the involved potential and can be used to rule out many candidate models. A unique solution was found based on the additional natural assumption that the exterior part (r ≳ 3 M ) is described by the Regge–Wheeler potential. This is true in general relativity for any non-rotating spherically symmetric object. This technique can be potentially applied for the study of deviations from general relativity. The methods we demonstrate are easy to implement and rather general, therefore we expect them also to be interesting for other fields where inverse spectrum problems are studied, e.g. quantum physics and molecular spectroscopy.

  16. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star`s equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  17. Tidal Love Numbers of Neutron Stars

    SciTech Connect

    Hinderer, Tanja

    2008-04-20

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  18. Fallback Disks, Magnetars and Other Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali; Çalışkan, Ş.; Ertan, Ü.

    2013-02-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is in the 1012 G range. All properties of the SGR 0418+5729 at its present age can be explained by spindown under torques from a fallback disk. (iii) The anomalous braking index of PSR J1734-3333 can also be explained by the fallback disk model which gives the luminosity, period, period derivative and the period second derivative at the present age. (iv) These and all applications to a variety of other sources employ the same disk physics and evolution, differing only in the initial conditions of the disk.

  19. Constraining asymmetric dark matter through observations of compact stars

    SciTech Connect

    Kouvaris, Chris; Tinyakov, Peter

    2011-04-15

    We put constraints on asymmetric dark matter candidates with spin-dependent interactions based on the simple existence of white dwarfs and neutron stars in globular clusters. For a wide range of the parameters (WIMP mass and WIMP-nucleon cross section), weakly interacting massive particles (WIMPs) can be trapped in progenitors in large numbers and once the original star collapses to a white dwarf or a neutron star, these WIMPs might self-gravitate and eventually collapse forming a mini-black hole that eventually destroys the star. We impose constraints competitive to direct dark matter search experiments, for WIMPs with masses down to the TeV scale.

  20. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2011-09-01

    We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning

  1. Surface emission from neutron stars and implications for the physics of their interiors.

    PubMed

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  2. Tidal Love numbers of a slowly spinning neutron star

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Ferrari, Valeria

    2015-12-01

    By extending our recent framework to describe the tidal deformations of a spinning compact object, we compute for the first time the tidal Love numbers of a spinning neutron star to linear order in the angular momentum. The spin of the object introduces couplings between electric and magnetic distortions, and new classes of spin-induced ("rotational") tidal Love numbers emerge. We focus on stationary tidal fields, which induce axisymmetric perturbations. We present the perturbation equations for both electric-led and magnetic-led rotational Love numbers for generic multipoles and explicitly solve them for various tabulated equations of state and for a tidal field with an electric (even parity) and magnetic (odd parity) component with ℓ=2 , 3, 4. For a binary system close to the merger, various components of the tidal field become relevant. In this case we find that an octupolar magnetic tidal field can significantly modify the mass quadrupole moment of a neutron star. Preliminary estimates, assuming a spin parameter χ ≈0.05 , show modifications ≳10 % relative to the static case, at an orbital distance of five stellar radii. Furthermore, the rotational Love numbers as functions of the moment of inertia are much more sensitive to the equation of state than in the static case, where approximate universal relations at the percent level exist. For a neutron-star binary approaching the merger, we estimate that the approximate universality of the induced mass quadrupole moment deteriorates from 1% in the static case to roughly 6% when χ ≈0.05 . Our results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron-star binaries approaching the merger.

  3. Secondary neutron doses in a compact proton therapy system.

    PubMed

    Stichelbaut, F; Closset, M; Jongen, Y

    2014-10-01

    Proton therapy offers several advantages compared with classical radiotherapy owing to a better dose conformity to the tumour volume. However, proton interactions with beam transport elements and the human tissues lead to the production of secondary neutrons, resulting in an extra whole-body dose with some carcinogenic potential. In this study, the secondary neutron doses generated with an active beam scanning system and with two compact proton therapy systems recently appeared on the market are compared.

  4. A Compact Neutron Source for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.

    2017-01-01

    We propose a neutron generator scheme based on a high-current ion source with electron cyclotron resonance plasma heating by high-power millimeter-wave gyrotron radiation. The most promising application of this neutron generator is a medical one, namely, boron neutron capture therapy of oncological diseases. A possibility for using a multi-aperture extraction system for high-current ion beam generation to increase the total current is studied. It is shown that the parameters of the plasma flow leaving a magnetic trap permit the effective use of multi-aperture systems without a significant loss in the ion beam current density. Thus, the use of multi-aperture systems in the ion source of a neutron generator can significantly increase the total neutron yield.

  5. Antikaon condensation and deconfinement phase transition in neutron stars

    SciTech Connect

    Gu Jianfa; Guo Hua; Xu Furong; Li Xiguo; Liu Yuxin

    2006-05-15

    Antikaon condensation and deconfinement phase transition in neutron stars are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase and in the MIT bag model for the deconfined quark matter phase. It is shown that the existence of quark matter phase makes antikaon condensation impossible in neutron stars. The properties of neutron stars are sensitive to the bag constant. For the small values of the bag constant, the pure quark matter core appears and hyperons are strongly suppressed in neutron stars, whereas for the large bag constant, the hadron-quark mixed phase exists in the center of neutron stars. The maximum masses of neutron stars with the quark matter phase are lower than those without the quark matter phase; meanwhile, the maximum masses of neutron stars with the quark matter phase increase with the bag constant.

  6. Confirming a substellar companion candidate around a neutron star

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina; Luhman, Kevin

    2014-08-01

    In a search for substellar companions around young neutron stars, we found an indication for a very faint near-infrared source at the position of the isolated neutron star RXJ0806.4-4123. The suspected near-IR source cannot be the neutron star itself because the latter is much too faint to be detected. Recent Herschel 160 microm observations of the field point to an additional dusty belt around the neutron star. The outer location of the dusty belt could be explained by the presence of a substellar companion around the neutron star. We propose deeper near-infrared observations with FLAMINGOS-2 to confirm that the near-infrared source is real. The observation could provide the first direct detection of a substellar companion around a neutron star. However, even a non-detection would be interesting to constrain evolution models of the dusty belt around the neutron star.

  7. Perturbative Analysis of Universality and Individuality in Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tsui, L. K.; Leung, P. T.

    2005-09-01

    The universality observed in gravitational wave spectra of nonrotating neutron stars is analyzed here. We show that the universality in the axial oscillation mode can be reproduced with a simple stellar model, namely, the centrifugal barrier approximation (CBA), which captures the essence of the Tolman VII model of compact stars. Through the establishment of the scaled coordinate logarithmic perturbation theory (SCLPT), we are able to explain and quantitatively predict such universal behavior. In addition, quasi-normal modes of individual neutron stars characterized by different equations of state can be obtained from those of the CBA with the SCLPT.

  8. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-01

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  9. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    SciTech Connect

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-21

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  10. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  11. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  12. Non-identical neutron star twins

    SciTech Connect

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  13. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star's equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  14. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  15. Strange Stars, Neutron Stars and Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Horvath, J. E.

    1990-11-01

    RESUMEN. Se ha conjeturado que una partlecula de dieciocho quarks, sin Carga, sin espi'n y sin colar (quark-alfa) podri'a ser estable a ba5as tern peraturas y presiones aiTh COfl respecto a materia extrafla. Presentamos en este trabajo la estmctura de estrellas extraflas incluyendo los efectos y apariencia de parti'culas uark-alfa en las capas exteriores. La estruc tura interna ya no es hoinogenea del centro a la superficie, sino que muestra un centro de materia extrafla, capas s6lidas y una costra delgada de materia normal en la superficie. La superficie de materia nonnal permite la fornaci6n de una magnetosfera, la que se piensa sea el sitlo en donde ocurre la emisi6n del pulsar. La superficie de superflui'do ayuda a explicar el fen6rneno de `glitch', el cual ba sido observado en muchos pulsares. Se discute la ecuaci6n de estado para rnateria quark-alfa relevante en este regimen. ABSTIZACT:It has been conjectured that an quark, uncharged, spinless and colorless particle Cquark-alpha) could be stable at low pressures and temperatures even with respect to strange matter. We present in work tlie structure of stars including the effects of the appearance of quark-alpi' particles ii their outer layers. The internal structure is no longer from tlie center to the surface, but show a strange matter core, a solid and superfluid layers and a thin crust of normal matter at the surface. The normal matter surface allows tlie fon tion of a magnetosphere, whicl is to be tl place where pulsar emission occurs. A superfluid layer helps to explain tlie glitch , wlflch has been observed in . equation of state for quark-alpha matter relevant in regime is also discussed. Keq LA)OtL : ARY S - OF STATF - ?.ACT

  16. Neutron Stars in Binaries and in Isolation

    NASA Astrophysics Data System (ADS)

    Yancopoulos, Sophia

    1996-01-01

    This thesis is a study of neutron stars in three distinct classes. After a brief overview of neutron stars in Chapter 1, the three systems are discussed in order of decreasing luminosity. In Chapter 2, we present a new model for the normal branch of a class of low mass X-ray binaries which show quasiperiodic oscillations: a quasi -periodic modulation in the intensity of their X-ray signal. Chapter 3 discusses a particular radio pulsar which we observed in X-rays with the ROSAT PSPC. Chapter 4 rounds out the thesis with a discussion of a class of neutron stars which have not, to date, been definitively shown to exist. We describe a search for these isolated old neutron stars in the Einstein database, and present the results of our finds. As part of a search for thermal surface radiation from nearby neutron stars, we have carried out a 45,000 s observation of the nearby radio pulsar PSR 1929+10 with the ROSAT PSPC. After background subtraction, a net of 420+/-25 photons in the 0.1-2.0 keV band were detected at the position of the pulsar, corresponding to a luminosity of position of the pulsar, corresponding to a luminosity of 1.2 times 1030 erg/s for a source distance of 250 pc, or {~}3 times 10^{-4} of the pulsar's spin-down luminosity. We find coherent pulsations from PSR 1929+10 at the radio period of 0.2265 s. The folded light curve is well fit by a sinusoidal oscillation with a pulsed fraction of about 30%. The total spectrum is fit by a blackbody with a temperature T_ infty~3.2times10^6 K; the implied emitting area has a radius of less than 50 meters. The maximum of the X-ray light curve coincides with the radio pulse, suggesting we are detecting the hot magnetic polar cap of the star. We discuss the implications of our results for the temperature distribution over the surface of the star, and use this detection to constrain various heating mechanisms for rotation-powered neutron stars. We also use a simple model of general relativistic light bending near the

  17. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-12-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105-106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  18. Relativistic simulations of eccentric binary neutron star mergers: One-arm spiral instability and effects of neutron star spin

    NASA Astrophysics Data System (ADS)

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans; Shapiro, Stuart L.

    2016-01-01

    We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Furthermore, we find that the initial neutron star spin can strongly affect the already rich phenomenology in the postmerger gravitational wave signatures that arise from the oscillation modes of the hypermassive neutron star. In several of our simulations, the resulting hypermassive neutron star develops the one-arm (m =1 ) spiral instability, the most pronounced cases being those with small but non-negligible neutron star spins. For long-lived hypermassive neutron stars, the presence of this instability leads to improved prospects for detecting these events through gravitational waves, and thus may give information about the neutron star equation of state.

  19. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  20. Intense Pulsed Neutron Emission from a Compact Pyroelectric Driven Accelerator

    SciTech Connect

    Tang, V; Meyer, G; Falabella, S; Guethlein, G; Sampayan, S; Kerr, P; Rusnak, B; Morse, J

    2008-10-08

    Intense pulsed D-D neutron emission with rates >10{sup 10} n/s during the pulse, pulse widths of {approx}100's ns, and neutron yields >10 k per pulse are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal which provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compare well with theory. Results show neutron output per pulse that scales with voltage as V{approx}1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof-of-principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work, and notably increase the potential applications of pyroelectric based neutron generators.

  1. A neutron dynamic therapy with a boron tracedrug UTX-51 using a compact neutron generator.

    PubMed

    Hori, Hitoshi; Tada, Ryu; Uto, Yoshihiro; Nakata, Eiji; Morii, Takashi; Masuda, Kai

    2014-08-01

    We are developing a neutron dynamic therapy (NDT) with boron tracedrugs for a new mechanical-clearance treatment of pathotoxic misfolded, aggregated, and self-propagating prion-associated disease proteins. We present a compact neutron generator-based NDT using a boron tracedrug UTX-51. Our NDT is based on the weak thermal neutron-bombarded destructive action of UTX-51 on bovine serum albumin (BSA) using the neutron beams produced from a compact inertial electrostatic confinement fusion (IECF) neutron generator. BSA as an NDT molecular target was subjected to thermal neutron irradiation for eight hours using a compact neutron generator. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern showed no protein band when 2 nmoles of BSA were irradiated with more than 100 nmoles of UTX-51, while BSA was not affected when irradiated without UTX-51. For the first time, we have succeeded in the molecular destruction of a prion-disease model protein, BSA, by NDT with a boron tracedrug, UTX-51, using a compact neutron generator. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Why neutron stars have three hairs

    NASA Astrophysics Data System (ADS)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  3. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolás

    2015-10-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). These approximations allow us to analytically derive approximately universal relations that allow us to determine all of the multipole moments of a (perturbative) differentially rotating star in terms of only the first four moments. These new four-hair relations for differentially rotating neutron stars are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  4. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  5. Super-Eddington winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1990-01-01

    Results are presented from a study of winds driven by a super-Eddington rate of energy deposition near the surface of a neutron star, a condition which may develop following a collision between two neutron stars when more than 10 to the 53rd ergs is radiated during a few seconds. A fraction of that energy, perhaps as large as 10 to the 50th ergs, may be transformed into electron-positron pairs and drive a powerful wind. Using a model of the highly super-Eddington wind, the fraction of energy injected into a wind that emerges as gamma rays is estimated. It is shown that it is possible to reach gamma-ray temperatures with the optically thick winds, provided the energy injection rate is sufficiently high.

  6. Quasinormal modes of superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gualtieri, L.; Kantor, E. M.; Gusakov, M. E.; Chugunov, A. I.

    2014-07-01

    We study nonradial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasinormal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasinormal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.

  7. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  8. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  9. Light curves of rotating, oscillating neutron stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, T. E.

    1992-01-01

    A technique has been developed for computing the light curve produced by a rotating, oscillating neutron star that emits radiation from circular polar cap regions, as are thought to exist in pulsars, X-ray binaries, and perhaps X-ray bursters. Several examples of light curves produced by single, low-order (l = 1, 2) oscillation modes are given. A Gaussian beaming function is used to simulate typical radio pulsar beam widths in order to investigate a neutron star oscillation model for subpulse drift in pulsars. X-ray bursts and X-ray pulsars have also been simulated to assess the possibility of detecting such oscillations in these sources with XTE and AXAF.

  10. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  11. The Origin of Neutron Star Kicks

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2000-05-01

    Despite decades of theoretical investigations, our understanding of core-collapse supernovae remains significantly incomplete. Recent observations show that many supernovae are asymmetric and newly-formed neutron stars have large space velocities. I will discuss the physics of different mechanisms for generating asymmetric explosions and pulsar velocities, including hydrodynamically driven, neutrino and magnetically driven kicks. References: D. Lai and Y.-Z. Qian 1998, ApJ, 505, 844. P. Arras and D. Lai 1999, ApJ, 519, 745. P. Arras and D. Lai 1999, Phys. Rev. D60, 043001. D. Lai 1999, "Physics of Neutron Star Kicks", in press (astro-ph/9912522). D. Lai and P. Goldreich 2000, ApJ, in press (astro-ph/9906400). D. Lai 2000, ApJ, in press (astro-ph/0004066). This research is supported by NASA Grants NAG 5-8484 and NAG 5-8356, and by a research fellowship from the Alfred P. Sloan foundation.

  12. AFTERGLOW OF A BINARY NEUTRON STAR MERGER

    SciTech Connect

    Shibata, Masaru; Suwa, Yudai; Kiuchi, Kenta; Ioka, Kunihito

    2011-06-20

    The merger of two neutron stars often results in a rapidly and differentially rotating hypermassive neutron star (HMNS). We show by numerical-relativity simulation that the magnetic-field profile around such HMNS is dynamically varied during its subsequent evolution, and as a result, electromagnetic radiation with a large luminosity {approx}0.1B {sup 2} R {sup 3}{Omega} is emitted with baryons (B, R, and {Omega} are poloidal magnetic-field strength at stellar surface, stellar radius, and angular velocity of an HMNS). The predicted luminosity of electromagnetic radiation, which is primarily emitted along the magnetic-dipole direction, is {approx}10{sup 47}(B/10{sup 13} G){sup 2}(R/10 km){sup 3}({Omega}/10{sup 4} rad s{sup -1}) erg s{sup -1}, which is comparable to the luminosity of quasars.

  13. Unifying neutron stars getting to GUNS

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Popov, S. B.; Turolla, R.

    2014-03-01

    The variety of the observational appearance of young isolated neutron stars must find an explanation in the framework of some unifying approach. Nowadays it is believed that such scenario must include magnetic field decay, the possibility of magnetic field emergence on a time scale of ≲ 104-105 yr, significant contribution of non-dipolar fields, and appropriate initial parameter distributions. We present our results on the initial spin period distribution, and suggest that inconsistencies between distributions derived by different methods for samples with different average ages can uncover field decay or/and emerging field. We describe a new method to probe the magnetic field decay in normal pulsars. The method is a modified pulsar current approach, where we study pulsar flow along the line of increasing characteristic age for constant field. Our calculations, performed with this method, can be fitted with an exponential decay for ages in the range of 8× 104-3.5 × 105 yr with a time scale of ˜ 5 × 105 yr. We discuss several issues related to the unifying scenario. At first, we note that the dichotomy, among local thermally emitting neutron stars, between normal pulsars and the Magnificent Seven remains unexplained. Then we discuss the role of high-mass X-ray binaries in the unification of neutron star evolution. We note, that such systems allow to check evolutionary effects on a time scale longer than what can be probed with normal pulsars alone. We conclude with a brief discussion of the importance of discovering old neutron stars accreting from the interstellar medium.

  14. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1989-01-01

    The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.

  15. Searching for gravitational waves from neutron stars

    NASA Astrophysics Data System (ADS)

    Idrisy, Ashikuzzaman

    In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to

  16. Compact thermal neutron sensors for moderator-based neutron spectrometers.

    PubMed

    Pola, A; Bortot, D; Introini, M V; Bedogni, R; Gentile, A; Esposito, A; Gómez-Ros, J M; Passoth, E; Prokofiev, A

    2014-10-01

    In the framework of the NESCOFI@BTF project of the Italian Institute of Nuclear Physics, different types of active thermal neutron sensors were studied by coupling semiconductor devices with a suitable radiator. The objective was to develop a detector of small dimensions with a proper sensitivity to use at different positions in a novel moderating assembly for neutron spectrometry. This work discusses the experimental activity carried out in the framework of the ERINDA program (PAC 3/9 2012) to characterise the performance of a thermal neutron pulse detector based on (6)Li. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Neutron star inner crust: Nuclear physics input

    SciTech Connect

    Steiner, Andrew W.

    2008-03-15

    A fully self-consistent model of the neutron star inner crust based upon models of the nucleonic equation of state at zero temperature is constructed. The results nearly match those of previous calculations of the inner crust given the same input equation of state. The extent to which the uncertainties in the symmetry energy, the compressibility, and the equation of state of low-density neutron matter affect the composition of the crust are examined. The composition and pressure of the crust is sensitive to the description of low-density neutron matter and the nuclear symmetry energy, and the latter dependence is nonmonotonic, giving larger nuclei for moderate symmetry energies and smaller nuclei for more extreme symmetry energies. Future nuclear experiments may help constrain the crust and future astrophysical observations may constrain the nuclear physics input.

  18. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  19. Dissipation in relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gusakov, M. E.; Kantor, E. M.; Chugunov, A. I.; Gualtieri, L.

    2013-01-01

    We analyse damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in Gusakov & Kantor. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f modes, (ii) for radial and p modes such an approximation is poor and (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighbouring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.

  20. Magnetically driven crustquakes in neutron stars

    NASA Astrophysics Data System (ADS)

    Lander, S. K.; Andersson, N.; Antonopoulou, D.; Watts, A. L.

    2015-05-01

    Crustquake events may be connected with both rapid spin-up `glitches' within the regular slowdown of neutron stars, and high-energy magnetar flares. We argue that magnetic-field decay builds up stresses in a neutron star's crust, as the elastic shear force resists the Lorentz force's desire to rearrange the global magnetic-field equilibrium. We derive a criterion for crust-breaking induced by a changing magnetic-field configuration, and use this to investigate strain patterns in a neutron star's crust for a variety of different magnetic-field models. Universally, we find that the crust is most liable to break if the magnetic field has a strong toroidal component, in which case the epicentre of the crustquake is around the equator. We calculate the energy released in a crustquake as a function of the fracture depth, finding that it is independent of field strength. Crust-breaking is, however, associated with a characteristic local field strength of 2.4 × 1014 G for a breaking strain of 0.001, or 2.4 × 1015 G at a breaking strain of 0.1. We find that even the most luminous magnetar giant flare could have been powered by crustal energy release alone.

  1. Quasi-static winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, Paul C.; Melia, Fulvio

    1987-01-01

    A series of numerical models is constructed for radiatively driven, quasi-static winds from the surfaces of hot neutron stars. A mathematical technique is devised that in many cases facilitates the integration of the fluid equations in the vicinity of the sonic point, and an improved treatment of radiative transfer is developed that is appropriate to the exotic physical conditions encountered in the models. Boundary conditions which are more realistic than previous ones are used in these models. In agreement with earlier studies, it is found that radiatively driven winds are likely to be directly relevant to the existence of precursors in fast X-ray transients and to apparent radius variations during the course of some type I bursts, and that the presence of such a wind should prevent the bolometric luminosity of a neutron star from exceeding the Eddington limit by more than a small fractional amount. Formulas describing the wind models are presented which are usable as boundary conditions for calculations of the evolution of the deeper, hydrostatic layers of a neutron-star envelope.

  2. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    Many of NICER’s 56 X-ray “concentrators” seen from within the instrument optical bench. Light reflected from the gold surfaces of the 24 concentric foils in each concentrator is focused onto detectors slightly more than 1 meter (3.5 feet) away. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    NICER’s X-ray concentrator optics are inspected under a black light for dust and foreign object debris that could impair functionality once in space. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    NICER Optics Lead Takashi Okajima makes a fine adjustment to the orientation of one X-ray “concentrator” optic. The 56 optics must point in the same direction in order for NICER to achieve its science goals. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    NICER engineer Steven Kenyon prepares seven of the 56 X-ray concentrators for installation in the NICER instrument. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Quasi-static winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, Paul C.; Melia, Fulvio

    1987-01-01

    A series of numerical models is constructed for radiatively driven, quasi-static winds from the surfaces of hot neutron stars. A mathematical technique is devised that in many cases facilitates the integration of the fluid equations in the vicinity of the sonic point, and an improved treatment of radiative transfer is developed that is appropriate to the exotic physical conditions encountered in the models. Boundary conditions which are more realistic than previous ones are used in these models. In agreement with earlier studies, it is found that radiatively driven winds are likely to be directly relevant to the existence of precursors in fast X-ray transients and to apparent radius variations during the course of some type I bursts, and that the presence of such a wind should prevent the bolometric luminosity of a neutron star from exceeding the Eddington limit by more than a small fractional amount. Formulas describing the wind models are presented which are usable as boundary conditions for calculations of the evolution of the deeper, hydrostatic layers of a neutron-star envelope.

  7. Tidal deformations of compact stars with crystalline quark matter

    NASA Astrophysics Data System (ADS)

    Lau, S. Y.; Leung, P. T.; Lin, L.-M.

    2017-05-01

    We study the tidal deformability of bare quark stars and hybrid compact stars composed of a quark-matter core in general relativity, assuming that the deconfined quark matter exists in a crystalline color superconducting phase. We find that taking the elastic property of crystalline quark matter into account in the calculation of the tidal deformability can break the universal I-Love relation discovered for fluid compact stars, which connects the moment of inertia and tidal deformability. Our result suggests that measurements of the moment of inertia and tidal deformability can in principle be used to test the existence of solid quark stars, despite our ignorance of the high-density equation of state. Assuming that the moment of inertia can be measured to 10% level, one can then distinguish a 1.4 (1 ) M⊙ solid quark star described by our quark-matter equation of state model with a gap parameter Δ =25 MeV from a fluid compact star if the tidal deformability can be measured to about 10% (45%) level. On the other hand, we find that the nuclear matter fluid envelope of a hybrid star can screen out the effect of the solid core significantly so that the resulting I-Love relation for hybrid stars still agrees with the universal relation for fluid stars to about 1% level.

  8. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  9. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  10. Tidal Love numbers of neutron and self-bound quark stars

    SciTech Connect

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-07-15

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  11. NuSTAR results on Ultra-Luminous X-ray sources: black holes or neutron stars?

    NASA Astrophysics Data System (ADS)

    Fuerst, Felix

    2015-04-01

    Ultraluminous X-ray sources (ULXs) are extremely bright, off-nuclear point sources in nearby galaxies. The only process known to power them is a very high accretion rate onto a compact object. If the compact object is similar to those observed in our own galaxy, i.e., a standard stellar remnant, the accretion rate has to exceed the Eddington rate by a factor of 10-100 in a so-called super-Eddington accretion regime. If on the other hand the compact were more massive, ULXs would be the only known evidence for intermediate mass black holes with masses of 100's or 1000's solar masses. Broadband spectral studies of a sample of ULXs, making full use of the hard X-ray sensitivity of the Nuclear Spectroscopic Telescope Array (NuSTAR), are suggestive of super-Eddington accretion. A definitive answer has, however, not yet been reached owing to continued difficulty constraining ULX masses. I will report on recent, multi-epoch NuSTAR observations, which allow us to examine the evolution of these enigmatic sources and their accretion process by studying their time variability and hard X-ray spectrum above 10keV. In a surprising discovery we have recently shown that the ULX M82 X-2 harbors a neutron star, the first evidence for a neutron star in a ULX. I will discuss possible modes of super-Eddington accretion on neutron stars and compare M82 X-2 to known accreting neutron stars in our galaxy. On behalf of the NuSTAR ULX science team led by Fiona Harrison.

  12. Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts.

    PubMed

    Pappas, George; Apostolatos, Theocharis A

    2014-03-28

    Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

  13. From neutron stars to quark stars in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  14. The masses and spins of neutron stars and stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Miller, Jon M.

    2015-01-01

    Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. As we discuss, major inroads have been made in black hole spin estimates via analysis of iron lines and continuum emission, with reasonable agreement when both types of estimate are possible for individual objects, and future X-ray polarization measurements may provide additional independent information. We conclude by exploring the exciting prospects for mass and spin measurements from future gravitational wave detections, which are expected to revolutionize our understanding of strong gravity and compact objects.

  15. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  16. A compact neutron scatter camera for field deployment

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  17. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  18. A compact neutron scatter camera for field deployment

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  19. A compact neutron scatter camera for field deployment

    NASA Astrophysics Data System (ADS)

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-01

    We describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  20. Relativistic modeling of compact stars for anisotropic matter distribution

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.

    2017-05-01

    In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function e^{λ} and radial pressure (pr). Next we have discussed the physical properties of the model in details by taking the radial pressure pr equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are 2.29M_{⊙} and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21.

  1. Measuring neutron star tidal deformability with Advanced LIGO: A Bayesian analysis of neutron star-black hole binary observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.

    2017-02-01

    The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results

  2. Many faces of young neutron stars

    NASA Astrophysics Data System (ADS)

    Vasisht, Gautam

    The hardware aspect of this thesis consists in the design, fabrication and assembly of twin analog Flexible Filter Banks at Caltech. These are user-friendly, workhorse, radio-pulsar search and timing instruments. Novel features include the flexibility in configuring channel center-frequencies and widths, the rapid sampling down to 25 μs and a total instrument bandwidth ranging from a narrow 0.2 MHz to a mammoth 100 MHz. Frequency synthesis is used to downconvert, detect and sample the telescope receiver bandpass as 32 separate time-series in each polarization. The collected data are later subjected to standard pulsar search and timing algorithms in software.The vital scientific issue addressed here is the nature of young neutron stars. In the standard picture, young neutron stars are rapidly spinning radio-luminous pulsars, which may also display pulsed emission at high X-ray and γ-ray energies. However there is no evidence that all neutron stars are born according to this standard picture. We present radio or X-ray investigations of steady nebular emission produced by three clearly non-standard and ill-understood objects. In all likelihood, these are young neutron stars, a notion upheld by their association with young Galactic supernova remnants.Based on its display of high energy transients, the soft γ-ray repeater SGR 1806-20 is posited to be a seismically active "magnetar", i.e., a neutron star with a super-strong magnetic field (10[superscript 15] G) nearly three orders of magnitude greater than pulsar dipolar fields. Our VLA observations of fleeting small-scale structure around SGR 1806-20 provide intriguing, although preliminary, support for the magnetar model. In time, similar observations could unravel the riddle of soft γ-ray repeaters and possibly establish the reality of magnetars.X-ray observations of the remnant of the historical supernova of 386 A.D., SNR G 11.2-0.3 are presented. The nature of an embedded underlumnious plerion discovered in

  3. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  4. Beam extraction and delivery at compact neutron sources

    NASA Astrophysics Data System (ADS)

    Mezei, F.

    2016-11-01

    The beam performance of a source of radiation is primarily characterized by its brightness, which remains constant in a conservative force field along the propagation of the beam. The neutron flux at an area with direct view to a homogenous radiation emitting moderator surface will just depend on the solid angle of beam divergence as determined by the moderator size. Recently it was found that by reducing the size of neutron moderators their brightness can be enhanced by a factor in the range of up to 3-6. In direct view of such moderators from sizable distances often required in neutron scattering applications the beam divergence will become reduced. Supermirror based neutron optical guide systems allow us to deliver neutron beam divergences independently of distance from the source. Due to the low radiation fields at compact sources such systems can be placed close to the neutron emitting moderators, a specific advantage and a new design feature. Focusing type neutron guides with phase space acceptance properly matched to the phase space to be delivered over distance can provide for beam delivery with small losses of brightness within a convenient and flexible range of beam parameters.

  5. Hans A. Bethe Prize: Neutron Stars and Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2015-04-01

    Core-collapse supernovae lead to the formation of neutron stars, and both are sensitive to the dense matter equation of state. Hans Bethe first recognized that the matter in the collapsing core of a massive star has a relatively low entropy which prevents nuclear dissociation until nuclei merge near the nuclear saturation density. This recognition means that collapse continues until the core exceeds the saturation density. This prediction forms the foundation for modern simulations of supernovae. These supernovae sample matter up to about twice nuclear saturation density, but neutron stars are sensitive to the equation of state both near the saturation density and at several times higher densities. Two important recent developments are the discovery of two-solar mass neutron stars and refined experimental determinations of the behavior of the symmetry energy of nuclear matter near the saturation density. Combined with the assumption of causality, they imply that the radii of observed neutron stars are largely independent of their mass, and that this radius is in the range of 11 to 13 km. These theoretical results are not only consistent with expectations from theoretical studies of pure neutron matter, but also accumulated observations of both bursting and cooling neutron stars. In the near future, new pulsar timing data, which could lead to larger measured masses as well as measurements of moments of inertia, X-ray observations, such as from NICER, of bursting and other sources, and gravitational wave observations of neutron stars in merging compact binaries, will provide important new constraints on neutron stars and the dense matter equation of state. DOE DE-FG02-87ER-40317.

  6. Nonequilibrium Dynamics and the Evolution of Superfluid Neutron Stars

    NASA Astrophysics Data System (ADS)

    Sauls, Jame

    2016-07-01

    The interior crust and the liquid core of neutron stars are predicted to be a mixture of neutron and proton superfluids and a liquid of relativistic electrons and muons. Quantized vortices in the neutron superfluid and quantized flux lines in the proton superconductor are topological defects of these hadronic condensates. I discuss the roles of nucleation, interaction and evolution of topological defects under non-equilibrium conditions in the context of our current understanding and models of the rotational dynamics of pulsars, as well as thermal and magnetic field evolution of neutron stars. I include some speculative ideas on possibile turbulent vortex states in neutron star interiors.

  7. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  8. Gamma-ray bursts from extinct neutron stars

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1990-01-01

    The paper concentrates on disks around old extinct pulsars, that can produce gamma-ray bursts owing to viscous evolution of the disk bringing it into the near vicinity of the neutron star, with runaway ionization of the disk and simultaneous precipitation of this plasma onto the neutron star. An old extinct pulsar is modeled as a magnetized neutron star circled by a ring of cold dense matter with an orbital period approximately equal to the rotational period of the neutron star. The numerical estimates produced are found to be consistent with the observed properties of gamma-ray bursters.

  9. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  10. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2016-12-01

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  11. System Construction of the Stilbene Compact Neutron Scatter Camera

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.; Throckmorton, Daniel J.; Helm, Jonathan Ivers

    2016-10-01

    This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).

  12. Neutron star models in frames of f (R) gravity

    SciTech Connect

    Astashenok, Artyom V.

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  13. Probing Neutron Star Evolution with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph A. M. J.

    1996-02-01

    The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars

  14. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  15. I-Love-Q relations: from compact stars to black holes

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-05-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a

  16. Statistical theory of thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.

    2015-02-01

    Thermal evolution of neutron stars is known to depend on the properties of superdense matter in neutron star cores. We suggest a statistical analysis of isolated cooling middle-aged neutron stars and old transiently accreting quasi-stationary neutron stars warmed up by deep crustal heating in low-mass X-ray binaries. The method is based on simulations of the evolution of stars of different masses and on averaging the results over respective mass distributions. This gives theoretical distributions of isolated neutron stars in the surface temperature-age plane and of accreting stars in the photon thermal luminosity-mean mass accretion rate plane to be compared with observations. This approach permits to explore not only superdense matter but also the mass distributions of isolated and accreting neutron stars. We show that the observations of these stars can be reasonably well explained by assuming the presence of the powerful direct Urca process of neutrino emission in the inner cores of massive stars, introducing a slight broadening of the direct Urca threshold (for instance, by proton superfluidity), and by tuning mass distributions of isolated and accreted neutron stars.

  17. Fast and thermal neutron radiographies based on a compact neutron generator

    NASA Astrophysics Data System (ADS)

    Fantidis, Jacob G.; Dimitrios, Bandekas V.; Constantinos, Potolias; Nick, Vordos

    2012-09-01

    Fast neutrons that are produced via compact neutron generators have been used for thermal and fast neutron radiographies. In order to investigate objects with different sizes and produce radiographs of variable qualities, the proposed facility has been considered with a wide range of values for the parameters characterizing the thermal and fast neutron radiographies. The proposed system is designed according to article 4 of the Restriction of Hazardous Substances Directive 2002/95/EC, hence, excluded the use of cadmium and lead, and has been simulated using the MCNP4B code. The Monte Carlo calculations were carried out using three different neutron sources: deuterium-deuterium, deuterium-tritium, and tritium-tritium neutron generators.

  18. Dynamics of dissipative multifluid neutron star cores

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Andersson, N.; Comer, G. L.

    2012-09-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled “fluids.” The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Λ and Σ- hyperons are present and (ii) a core of deconfined quarks in the color-flavor-locked phase in which a population of neutral K0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multifluid systems.

  19. Neutron star radii, universal relations, and the role of prior distributions

    DOE PAGES

    Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.

    2016-02-02

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less

  20. Neutron star radii, universal relations, and the role of prior distributions

    SciTech Connect

    Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.

    2016-02-02

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.

  1. Neutron Stars: Laboratories for Fundamental Physics Under Extreme Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Debades

    2017-09-01

    We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory experiments. It is observed that equations of state involving strangeness degrees of freedom such as hyperons and Bose-Einstein condensates are compatible with 2{M}_{solar} neutron stars. The role of hyperons is explored on the evolution and stability of the protoneutron star in the context of SN1987A. Moment of inertia, mass and radius which are direct probes of neutron star interior are computed and their observational consequences are discussed. We continue our study on the dense matter under strong magnetic fields and its application to magnetoelastic oscillations of neutron stars.

  2. Anisotropic compact star with Tolman IV gravitational potential

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Singh, Ksh. Newton; Manna, Tuhina

    2016-09-01

    In the current paper we have investigated a well-behaved new model of anisotropic compact star in (3+1)-dimensional spacetime. The exterior spacetime is described by the Schwarzschild vacuum solution. The model is obtained in the background of Tolman IV g_{rr} metric potential. Our model is free from central singularities and satisfies all energy conditions. The solution is compatible with observed masses and radii of a few compact stars like Her X-1, PSR J0737-3039A, PSR B1913+16, RX J1856.5-3754, Cyg X-2 and PSR J1903+0327.

  3. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    NICER Optics Lead Takashi Okajima installs one of NICER’s 56 X-ray “concentrators,” each consisting of 24 concentric foils. To minimize the effects of Earth’s gravity on their alignment, the concentrator assemblies were installed from the outside edges toward the center of the plate that houses them. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. The Design of a Compact Rfq Neutron Generator

    NASA Astrophysics Data System (ADS)

    Hamm, R. W.; Becker, R.

    2014-02-01

    The output and target lifetime of a conventional electrostatic neutron generator are limited by the voltage stand-off capability and the acceleration of molecular species from the ion source. As an alternative, we suggest that the deuterium beam achievable from a compact high intensity ECR source can be injected directly into a compact RFQ to produce a more efficient compact neutron production system. Only the d+ ions are accelerated by the RFQ, which can also produce much higher output energies than electrostatic systems, resulting in a higher neutron output with a longer target lifetime. The direct injection of the beam makes the system more compact than the multielement, electrostatic systems typically used for extraction of the beam and subsequent transport and matching into the RFQ. We have designed and optimized a combined extraction/matching system for a compact high current deuterium ECR ion source injected into a high frequency RFQ structure, allowing a beam of about 12 mA of d+ ions to be injected at a modest ion source voltage of 25 kV. The end wall of the RFQ resonator serves as the ground electrode for the ion source, resembling DPI (direct plasma injection). For this design, we used the features of the code IGUN to take into account the electrostatic field between the ion source and the RFQ end wall, the stray magnetic field of the ECR source, the defocusing space charge of the low energy deuteron beam, and the rf focusing in the fringe field between the RFQ vanes and the RFQ flange.

  5. Phase transition and properties of a compact star

    SciTech Connect

    Sharma, B. K.; Panda, P. K.; Patra, S. K.

    2007-03-15

    We investigate the phase transition to a deconfined phase and the consequences in the formation of neutron stars. We use the recently proposed effective-field-theory-motivated relativistic mean-field theory for the hadrons and the MIT bag model and color-flavor locked (CFL) phase for the quark matter to get the appropriate equation of state. The properties of the stars are then calculated. The differences between unpaired and CFL quark matter are discussed.

  6. Sound Velocity Bound and Neutron Stars

    SciTech Connect

    Bedaque, Paulo; Steiner, Andrew W.

    2015-01-21

    A conjecture that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. Moreover, the bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. Here, we point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  7. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  8. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  9. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  10. Sound Velocity Bound and Neutron Stars

    DOE PAGES

    Bedaque, Paulo; Steiner, Andrew W.

    2015-01-21

    A conjecture that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. Moreover, the bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. Here, we point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  11. Nonthermal accretion disk models around neutron stars

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Liang, Edison P.

    1994-01-01

    We consider the structure and emission spectra of nonthermal accretion disks around both strongly and weakly magnetized neutron stars. Such disks may be dissipating their gravitational binding energy and transferring their angular momentum via semicontinuous magnetic reconnections. We consider specifically the structure of the disk-stellar magnetospheric boundary where magnetic pressure balances the disk pressure. We consider energy dissipation via reconnection of the stellar field and small-scale disk turbulent fields of opposite polarity. Constraints on the disk emission spectrum are discussed.

  12. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  13. Sound velocity bound and neutron stars.

    PubMed

    Bedaque, Paulo; Steiner, Andrew W

    2015-01-23

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt[3]. Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  14. Magneto-thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Pons, J. A.; Miralles, J. A.; Geppert, U.

    2009-03-01

    Context: The presence of magnetic fields in the crust of neutron stars (NSs) causes a non-spherically symmetric temperature distribution. The strong temperature dependence of the magnetic diffusivity and thermal conductivity, together with the heat generated by magnetic dissipation, couple the magnetic and thermal evolution of NSs, which can no longer be formulated as separated one-dimensional problems. Aims: We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking realistic microphysical inputs into account, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. Methods: We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite-differences scheme in the radial direction), coupled to the thermal diffusion equation. To improve the boundary conditions, we also revisit the envelope stationary solutions updating the well known T_b-T_s-relations to include the effect of 2D heat transfer calculations and new microphysical inputs. Results: We present the first longterm 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first 10^5-106 years of an NS's life. As a consequence, all neutron stars born with fields over a critical value (>5 × 1013 G) reach similar field strengths (≈2-3 × 1013 G) at late times. Irrespective of the initial magnetic field strength, the temperature becomes so low after 106 years that the magnetic diffusion timescale becomes longer than the typical ages of radiopulsars, thus apparently resulting in no

  15. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  16. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  17. Theory of Radiation Transfer in Neutron Star Atmospheres

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav

    2006-01-01

    The possibility for direct investigation of thermal emission from isolated neutron stars opened about a quarter of century ago with the launch of the first X-ray observatories Einstein and EXOSAT stimulated developing models of the neutron star surface radiation which began at the end of 80's. Confronting observational data with theoretical models of thermal emission allows one to infer the surface temperatures, magnetic fields, chemical composition, and neutron star masses and radii. This information, supplemented with the model equations of state and neutron star cooling models, provides an opportunity to understand the fundamental properties of the superdense matter in the stars' interiors. Almost all available models are based on the assumption that thermal radiation emitted by a neutron star is formed in the superficial star's layers--atmosphere. The neutron star atmospheres are very different from those of usual stars due to the immense gravity and huge magnetic fields. In this presentation we review the current status of the neutron star atmosphere modeling, present most important results, discuss problems and possible future developments.

  18. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  19. Colored condensates deep inside neutron stars

    NASA Astrophysics Data System (ADS)

    Blaschke, David

    2014-09-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  20. TeV mu neutrinos from young neutron stars.

    PubMed

    Link, Bennett; Burgio, Fiorella

    2005-05-13

    Neutron stars are efficient accelerators for bringing charges up to relativistic energies. We show that if positive ions are accelerated to approximately 1 PeV near the surface of a young neutron star (t(age) less than or nearly 10(5) yr), protons interacting with the star's radiation field produce beamed mu neutrinos with energies of approximately 50 TeV that could produce the brightest neutrino sources at these energies yet proposed. These neutrinos would be coincident with the radio beam, so that, if the star is detected as a radio pulsar, the neutrino beam will sweep the Earth; the star would be a "neutrino pulsar." Looking for nu(mu) emission from young neutron stars will provide a valuable probe of the energetics of the neutron star magnetosphere.

  1. Impact of phase transition from neutrons to hyperons in neutron star properties

    NASA Astrophysics Data System (ADS)

    Alrizal, Sulaksono, A.

    2017-07-01

    We revisit the impact of phase transition from neutrons to hyperons in the properties of neutron star using BSP parameter set of relativistic mean field (RMF) model. Similar to the work reported in Reference [1], the significance of the phase transition is observed from the impact gσ∗Λ/gσN variation on the corresponding neutron stars equation of state and mass versus radius relation. The impact of anisotropic pressure on equation of state and mass versus radius relation of neutron stars is also investigated. It is found that equation of state of neutron stars is very sensitive to gσ∗Λ/gσN coupling constant variation. However, different to the result of Reference [1], we do not obtain hyperon stars with very small radii R˜ 8 km. We do not also find significant effect of anisotropic pressure to change the behavior of neutron star properties due to phase transition.

  2. Binary neutron star mergers: a review of Einstein's richest laboratory.

    PubMed

    Baiotti, Luca; Rezzolla, Luciano

    2017-09-01

    In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  3. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  4. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  5. GAS ACCRETION BY STAR CLUSTERS AND THE FORMATION OF ULTRALUMINOUS X-RAY SOURCES FROM CUSPS OF COMPACT REMNANTS

    SciTech Connect

    Naiman, J. P.; Ramirez-Ruiz, Enrico; Lin, Douglas N. C.

    2009-11-10

    Here, we show that the overabundance of ultraluminous, compact X-ray sources associated with moderately young clusters in interacting galaxies such as the Antennae and the Cartwheel can be given an alternative explanation that does not involve the presence of intermediate mass black holes (IMBHs). We argue that gas density within these systems is enhanced by the collective potential of the cluster prior to being accreted onto the individual cluster members and, as a result, the aggregate X-ray luminosity arising from the neutron star cluster members can exceed > 10{sup 39} erg s{sup -1}. Various observational tests to distinguish between IMBHs and accreting neutron star cusps are discussed.

  6. Does mass accretion lead to field decay in neutron stars?

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.

    1989-01-01

    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  7. Neutron star Interior Composition ExploreR (NICER), Takashi Okaj

    NASA Image and Video Library

    2015-07-09

    Neutron star Interior Composition ExploreR (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational and nuclear-physics environments embodied by neutron stars. NICER achieves these goals by deploying an X-ray timing and spectroscopy instrument as an attached payload aboard the International Space Station (ISS). Takashi Okajima installs optics.

  8. Neutron Star Structure in the Presence of Scalar Fields

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2004-01-01

    Motivated by the possible presence of scalar fields on astrophysical scales, suggested by the apparent acceleration of the universe implied by the supernovae surveys, we present models of neutron star structure including the contribution of a (massless) scalar field to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein -- scalar field -- hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter--scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field affects both the maximum neutron star mass and Its radius, the latter increasing with the value of the above coupling constant. We also compute particle and photon geodesics in the geometry of these neutron stars as well as to the geometry of black holes with different values of the scalar field. Our results may be testable with timing observations of accreting neutron stars.

  9. Microscopic vortex velocity and implications for neutron star dynamics

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, Mehmet Ali

    2016-07-01

    Rotational dynamics of a neutron star is governed by the distribution and motion of vortex lines within the neutron superfluid. Interaction of the vortex lines with the ambient matter plays an important role in the glitches, thermal evolution and magnetic field evolution of pulsars. Thus, correctly treating the vortex motion both in the inner crust and in the outer core of neutron stars is a key ingredient in modeling a great variety of observational phenomena of pulsars. In this work we outline the first principles to calculate the microscopic vortex velocity in the inner crust as well as in the outer core. Then we discuss some implications for neutron star's dynamics.

  10. A compact stilbene crystal neutron spectrometer for EAST D-D plasma neutron diagnostics

    SciTech Connect

    Zhang Xing; Yuan Xi; Xie Xufei; Chen Zhongjing; Peng Xingyu; Chen Jinxiang; Zhang Guohui; Li Xiangqing; Fan Tieshuan; Zhong Guoqiang; Hu Liqun; Wan Baonian

    2013-03-15

    A new compact stilbene crystal neutron spectrometer has been investigated and applied in the neutron emission spectroscopy on the EAST tokamak. A new components analysis method is presented to study the anisotropic light output in the stilbene crystal detector. A Geant4 code was developed to simulate the neutron responses in the spectrometer. Based on both the optimal light output function and the fitted pulse height resolution function, a reliable neutron response matrix was obtained by Geant4 simulations and validated by 2.5 MeV and 14 MeV neutron measurements at a 4.5 MV Van de Graaff accelerator. The spectrometer was used to diagnose the ion temperature in plasma discharges with lower hybrid wave injection and ion cyclotron resonance heating on the EAST tokamak.

  11. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  12. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    A photo taken during the NICER range-of-motion test at NASA’s Goddard Space Flight Center shows the photographer’s reflection in the mirror-like radiator surface of the detector plate. Teflon-coated silver tape is used to keep NICER’s detectors cool. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. How loud are neutron star mergers?

    NASA Astrophysics Data System (ADS)

    Bernuzzi, Sebastiano; Radice, David; Ott, Christian D.; Roberts, Luke F.; Mösta, Philipp; Galeazzi, Filippo

    2016-07-01

    We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ˜10 ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8-2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ2T. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲0.7 - 0.8 . This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

  14. Gravitomagnetic effect in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Chakraborty, Chandrachur; Bandyopadhyay, Debades

    2017-01-01

    Rotating bodies in General Relativity produce frame dragging, also known as the gravitomagnetic effect in analogy with classical electromagnetism. In this work, we study the effect of magnetic field on the gravitomagnetic effect in neutron stars with poloidal geometry, which is produced as a result of its rotation. We show that the magnetic field has a non-negligible impact on frame dragging. The maximum effect of the magnetic field appears along the polar direction, where the frame-dragging frequency decreases with increase in magnetic field, and along the equatorial direction, where its magnitude increases. For intermediate angles, the effect of the magnetic field decreases, and goes through a minimum for a particular angular value at which magnetic field has no effect on gravitomagnetism. Beyond that particular angle gravitomagnetic effect increases with increasing magnetic field. We try to identify this `null region' for the case of magnetized neutron stars, both inside and outside, as a function of the magnetic field, and suggest a thought experiment to find the null region of a particular pulsar using the frame dragging effect.

  15. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-27

    NICER engineer Steven Kenyon installs an X-ray detector onto the payload’s detector plate. The detectors are protected by red caps during installation because they are very sensitive to dust and other foreign object debris. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-27

    A NICER team member measures the focused optical power of each X-ray concentrator in a clean tent at NASA’s Goddard Space Flight Center. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-09-28

    The NICER payload, blanketed and waiting for launch in the Space Station Processing Facility at NASA’s Kennedy Space Center in Cape Canaveral, Florida. The instrument is in its stowed configuration for launch. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Transient radio bursts from rotating neutron stars.

    PubMed

    McLaughlin, M A; Lyne, A G; Lorimer, D R; Kramer, M; Faulkner, A J; Manchester, R N; Cordes, J M; Camilo, F; Possenti, A; Stairs, I H; Hobbs, G; D'Amico, N; Burgay, M; O'Brien, J T

    2006-02-16

    The radio sky is relatively unexplored for transient signals, although the potential of radio-transient searches is high. This was demonstrated recently by the discovery of a previously unknown type of source, varying on timescales of minutes to hours. Here we report a search for radio sources that vary on much shorter timescales. We found eleven objects characterized by single, dispersed bursts having durations between 2 and 30 ms. The average time intervals between bursts range from 4 min to 3 h with radio emission typically detectable for <1 s per day. From an analysis of the burst arrival times, we have identified periodicities in the range 0.4-7 s for ten of the eleven sources, suggesting origins in rotating neutron stars. Despite the small number of sources detected at present, their ephemeral nature implies a total Galactic population significantly exceeding that of the regularly pulsing radio pulsars. Five of the ten sources have periods >4 s, and the rate of change of the pulse period has been measured for three of them; for one source, we have inferred a high magnetic field strength of 5 x 10(13) G. This suggests that the new population is related to other classes of isolated neutron stars observed at X-ray and gamma-ray wavelengths.

  19. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  20. NARROW ATOMIC FEATURES FROM RAPIDLY SPINNING NEUTRON STARS

    SciTech Connect

    Bauboeck, Michi; Psaltis, Dimitrios; Oezel, Feryal E-mail: dpsaltis@email.arizona.edu

    2013-04-01

    Neutron stars spinning at moderate rates ({approx}300-600 Hz) become oblate in shape and acquire a nonzero quadrupole moment. In this paper, we calculate the profiles of atomic features from such neutron stars using a ray-tracing algorithm in the Hartle-Thorne approximation. We show that line profiles acquire cores that are much narrower than the widths expected from pure Doppler effects for a large range of observer inclinations. As a result, the effects of both the oblateness and the quadrupole moments of neutron stars need to be taken into account when aiming to measure neutron-star radii from rotationally broadened lines. Moreover, the presence of these narrow cores substantially increases the likelihood of detecting atomic lines from rapidly spinning neutron stars.

  1. Gluon Vortices and Induced Magnetic Field in Compact Stars

    SciTech Connect

    Ferrer, Efrain J.

    2007-10-26

    The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.

  2. On the electrostatic structure of neutron stars

    SciTech Connect

    Rueda, Jorge A.; Ruffini, Remo; Xue, S.-S.

    2010-03-24

    We consider neutron stars composed by, (1) a core of degenerate neutrons, protons, and electrons above nuclear density; (2) an inner crust of nuclei in a gas of neutrons and electrons; and (3) an outer crust of nuclei in a gas of electrons. We use for the strong interaction model for the baryonic matter in the core an equation of state based on the phenomenological Weizsacker mass formula, and to determine the properties of the inner and the outer crust below nuclear saturation density we adopt the well-known equation of state of Baym-Bethe-Pethick. The integration of the Einstein--Maxwell equations is carried out under the constraints of beta-equilibrium and global charge neutrality. We obtain baryon densities that sharply go to zero at nuclear density and electron densities matching smoothly the electron component of the crust. We show that a family of equilibrium configurations exists fulfilling overall neutrality and characterized by a non-trivial electrodynamical structure at the interface between the core and the crust. We find that the electric field is overcritical and that the thickness of the transition surface-shell separating core and crust is of the order of the electron Compton wavelength.

  3. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  4. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  5. Compact stars with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Ngubelanga, Sifiso A.; Maharaj, Sunil D.; Ray, Subharthi

    2015-05-01

    We provide new exact solutions to the Einstein-Maxwell system of equations for matter configurations with anisotropy and charge. The spacetime is static and spherically symmetric. A quadratic equation of state is utilised for the matter distribution. By specifying a particular form for one of the gravitational potentials and the electric field intensity we obtain new exact solutions in isotropic coordinates. In our general class of models, an earlier model with a linear equation of state is regained. For particular choices of parameters we regain the masses of the stars PSR J1614-2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and SAX J1808.4-3658. A comprehensive physical analysis for the star PSR J1903+0327 reveals that our model is reasonable.

  6. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  7. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using NuSTAR

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, W. W.

    2013-12-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z NS >= 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z NS >= 0.22 and R NS <= 12.6 km (assuming M NS = 1.4 M ⊙ and a = 0, where a = cJ/GM 2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  8. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  9. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.

  10. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.

  11. Neutron star mass limit at 2M⊙ supports the existence of a CEP

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, D.; Benic, S.; Blaschke, D.; Han, Sophia; Typel, S.

    2016-08-01

    We point out that the very existence of a "horizontal branch" in the mass-radius characteristics for neutron stars indicates a strong first-order phase transition and thus supports the existence of a critical endpoint (CEP) of first-order phase transitions in the QCD phase diagram. This branch would sample a sequence of hybrid stars with quark matter core, leading to the endpoint of stable compact star configurations with the highest possible baryon densities. Since we know of the existence of compact stars with 2 M_{⊙}, this hypothetical branch has to lie in the vicinity of this mass value, if it exists. We report here a correlation between the maximal radius of the horizontal branch and the pressure at the onset of hadron-to-quark matter phase transition, which is likely to be a universal quantity of utmost relevance to the upcoming experiments with heavy-ion collisions at NICA and FAIR.

  12. Uncovering the Properties of Young Neutron Stars and their Surrounding Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slane, Patrick O.

    2004-01-01

    This five-year grant involves the study of young neutron stars, particularly those in supernova remnants.In the fourth year of this program, the following studies have been undertaken in support of this effort: 1.CTA 1: Following up on our ROSAT and ASCA studies of this SNR, we obtained observations with the XMM-Newton observatory to investigate the central compact source and surrounding nebula. 2. 3C 58: Based upon our earlier Chandra observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. 3. G347.3 - - 0.5: Our Chandra observations of portions of this SNR were aimed at studying the nonthermal X-ray emission from the remnant shell. 4. Chandra Survey for Compact Objects in Supernova Remnants: We have formed a collaboration to carry out an extensive search for young neutron stars in nearby supernova remnants. Using X-ray observations from an approved Chandra Large Project, as well as from additional approved XMM observations, we are investigating a volume-limited sample of SNRs for which there is currently no evidence of associated neutron stars.

  13. Exploring tidal effects of coalescing binary neutron stars in numerical relativity. II. Long-term simulations

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru

    2015-03-01

    We perform new long-term (15-16 orbits) simulations of coalescing binary neutron stars in numerical relativity using an updated Einstein equation solver, employing low-eccentricity initial data, and modeling the neutron stars by a piecewise polytropic equation of state. A convergence study shows that our new results converge more rapidly than the third order, and using the determined convergence order, we construct an extrapolated waveform for which the estimated total phase error should be less than one radian. We then compare the extrapolated waveforms with those calculated by the latest effective-one-body (EOB) formalism in which the so-called tidal deformability, higher post-Newtonian corrections, and gravitational self-force effects are taken into account. We show that for a binary of compact neutron stars with their radius 11.1 km, the waveform by the EOB formalism agrees quite well with the numerical waveform so that the total phase error is smaller than one radian for the total phase of ˜200 radian up to the merger. By contrast, for a binary of less compact neutron stars with their radius 13.6 km, the EOB and numerical waveforms disagree with each other in the last few wave cycles, resulting in the total phase error of approximately three radian.

  14. Neutron spatial flux profile measurement in compact subcritical system using miniature neutron detectors

    NASA Astrophysics Data System (ADS)

    Shukla, Mayank; Desai, Shraddha S.; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Bajpai, Shefali; Patel, Tarun; Sinha, Amar

    2015-02-01

    A zero power multiplying assembly in subcritical regime serves as a benchmark for validating subcritical reactor physics. The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplying medium requires a well-defined neutron flux to carry out the experiments. For this it is necessary to know the neutron flux profile inside a subcritical system. A compact subcritical assembly BRAHMMA has been developed in India. The experimental channels in this assembly are typically less than 8 mm diameter. This requires use of miniature detectors that can be mounted in these experimental channels. In this article we present the thermal neutron flux profile measurement in a compact subcritical system using indigenously developed miniature gas filled neutron detectors. These detectors were specially designed and fabricated considering the restrictive dimensional requirements of the subcritical core. Detectors of non-standard size with various sensitivities, from 0.4 to 0.001 cps/nv were used for neutron flux of interest ranging from 103 to 107 n-cm-2 s-1. A comparison of measured neutron flux using these detectors and simulated Monte Carlo calculations are also presented in this article.

  15. Star Formation and Environment in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.

    H &alpha luminosities are presented in order to study the Star Formation Rates (SFRs) of a sample of galaxies in compact groups from Hickson's (1982) catalogue. Although the comparison of the SFRs of the disk galaxies in our sample with those of a sample of field galaxies yielded no difference between the average SFRs for disk galaxies in compact groups and in the field, environmental effects seem to influence the H &alpha luminosities of late and early-type galaxies in compact groups. No relationship was found between the total normalized H &alpha luminosities of the groups and some dynamical parameters, indicating that the dynamical state of the group does not influence the SFR of the group. The lack of dominant interaction induced starbursts in our sample is compatible with a scenario for compact groups of galaxies in which the dark matter of the group is arranged in a common halo, thereby preventing a fast collapse of the galaxies.

  16. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  17. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  18. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  19. Anisotropic compact stars in Karmarkar spacetime

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Govender, M.

    2017-01-01

    We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10 and XTE J1739-285.

  20. Effects of quark matter and color superconductivity in compact stars

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Grigorian, H.; Aguilera, D. N.; Yasui, S.; Toki, H.

    2003-04-01

    The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form factors of the interaction on the phase diagram of quark matter under the condition of β- equilibrium and charge neutrality. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of ΔMc2 ~ 1053 erg. We study the consequences of antineutrino trapping in hot quark matter for quark star configurations with possible diquark condensation and discuss the claim that this energy could serve as an engine for explosive phenomena. A ``phase diagram'' for rotating compact stars (angular velocity-baryon mass plane) is suggested as a heuristic tool for obtaining constraints on the equation of state of QCD at high densities. It has a critical line dividing hadronic from quark core stars which is correlated with a local maximum of the moment of inertia and can thus be subject to experimental verification by observation of the rotational behavior of accreting compact stars.

  1. Compact stars in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Rahaman, Farook; Guha, B. K.; Ray, Saibal

    2016-12-01

    In the present paper we generate a set of solutions describing the interior of a compact star under f(R,T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R,T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p=ω ρ with 0<ω <1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as—energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory.

  2. Slowly rotating neutron and strange stars in R{sup 2} gravity

    SciTech Connect

    Staykov, Kalin V.; Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kostas.kokkotas@uni-tuebingen.de

    2014-10-01

    In the present paper we investigate self-consistently slowly rotating neutron and strange stars in R-squared gravity with Lagrangian f(R) = R + aR{sup 2}, where a is a parameter. For this purpose we first derive the equations describing the structure of the slowly rotating compact stars in f(R)-gravity and then simultaneously solve numerically the exterior and the interior problem. The structure of the slowly rotating neutron stars is studied for two different hadronic equations of state and a strange matter equation of state. The moment of inertia and its dependence on the stellar mass and the R-squared gravity parameter a is also examined in details. The numerical results show that the neutron star moment of inertia can be up to 30% larger compared to the corresponding general relativistic models. This is much higher than the change in the maximum mass induced by R-squared gravity and is beyond the EOS uncertainty. In this way the future observations of the moment of inertia of compact stars could allow us to distinguish between general relativity and f(R) gravity, and more generally to test the strong field regime of gravity.

  3. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    NASA Astrophysics Data System (ADS)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  4. A compact neutron generator using a field ionization source.

    PubMed

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  5. A compact neutron generator using a field ionization source

    SciTech Connect

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-15

    We study field ionization as a means to create ions for compact and rugged neutron source. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 106 tips/cm2 and measure their performance characteristics using electron field emission. Lastly, the critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  6. Superfluid heat conduction and the cooling of magnetized neutron stars.

    PubMed

    Aguilera, Deborah N; Cirigliano, Vincenzo; Pons, José A; Reddy, Sanjay; Sharma, Rishi

    2009-03-06

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B> approximately 10(13) G. At a density of rho approximately 10(12)-10(14) g/cm3, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature approximately 10(8) K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

  7. Superfluid Heat Conduction and the Cooling of Magnetized Neutron Stars

    SciTech Connect

    Aguilera, Deborah N.; Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Pons, Jose A.

    2009-03-06

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superfluid neutron matter, called superfluid phonons, can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to the magnetic field when the magnetic field B > or approx. 10{sup 13} G. At a density of {rho}{approx_equal}10{sup 12}-10{sup 14} g/cm{sup 3}, the conductivity due to superfluid phonons is significantly larger than that due to lattice phonons and is comparable to electron conductivity when the temperature {approx_equal}10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction could show observationally discernible differences.

  8. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  9. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  10. RELATIONS BETWEEN NEUTRON-STAR PARAMETERS IN THE HARTLE-THORNE APPROXIMATION

    SciTech Connect

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal; Berti, Emanuele E-mail: dpsaltis@email.arizona.edu E-mail: berti@phy.olemiss.edu

    2013-11-01

    Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expressions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum, and the quadrupole moment of the spacetime. We also obtain empirical relations between the compactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the results of numerical calculations to within a few percent and help reduce the number of parameters necessary to model the observational appearance of moderately spinning neutron stars. This is sufficient for comparing theoretical spectroscopic and timing models to observations that aim to measure the masses and radii of neutron stars and to determine the equation of state prevailing in their interiors.

  11. Lev Landau and the concept of neutron stars

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitrii G.; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-03-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores.

  12. General relativistic viscous hydrodynamics of differentially rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro

    2017-04-01

    Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.

  13. NEUTRON STAR STRUCTURE IN THE PRESENCE OF SCALAR FIELDS

    SciTech Connect

    Crawford, James P.; Kazanas, Demosthenes

    2009-08-20

    Motivated by the possible presence of scalar fields on cosmological scales, suggested by the recent measurement of the deceleration parameter by supernovae surveys, we present models of neutron star structure under the assumption that a scalar field makes a significant contribution to the stress energy momentum tensor, in addition to that made by the normal matter. To that end we solve the coupled Einstein-scalar field-hydrostatic balance equations to compute the effect of the presence of the scalar field on the neutron star structure. We find that the presence of the scalar field does change the structure of the neutron star, especially in cases of strong coupling between the scalar field and the matter density. We present the neutron star radius as a function of the matter-scalar field coupling constant for different values of the neutron star central density. The presence of the scalar field does affect both the maximum neutron star mass and its radius, the latter increasing with the value of the above coupling constant. Our results can provide limits to the scalar field-matter coupling through spectro-temporal observations of accreting or isolated neutron stars.

  14. Optimization of Moderator Size of Thermal and Epithermal Neutron Source Based on a Compact Accelerator for Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Hasemi, Hiroyuki; Kamiyama, Takashi; Sato, Hirotaka; Kino, Koichi; Kiyanagi, Yoshiaki; Nakajima, Ken

    A compact accelerator-driven neutron source has some advantages over a large accelerator facility in terms of accessibility and usability. Recently, the project to develop a non-destructive testing system for nuclear fuels by neutron imaging using a compact accelerator-driven neutron source has launched in Japan. In this project, the traditional neutron radiography and temperature imaging by neutron resonance absorption spectroscopy (N-RAS) have been studied. From the viewpoint of L/D, a high-brightness moderator is desirable for the neutron imaging. In this study, we investigated the dependence of moderator size on the source brightness and the pulse characteristics of the neutron by simulation calculations to design the moderator for imaging using thermal and epithermal neutrons. As a result, the optimal size of the moderator for the neutron imaging was 6∼7 cm in the energy region from 5 meV to 100 eV.

  15. Equilibrium spin pulsars unite neutron star populations

    NASA Astrophysics Data System (ADS)

    Ho, Wynn; Klus, Helen; Coe, Malcolm; Andersson, Nils

    2015-08-01

    We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.

  16. Hall Effect in Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, K. N.; Cumming, A.

    2014-08-01

    The crust of Neutron Stars can be approximated by a highly conducting solid crystal lattice. The evolution of the magnetic field in the crust is mediated through Hall effect, namely the electric current is carried by the free electrons of the lattice and the magnetic field lines are advected by the electron fluid. Here, we present the results of a time-dependent evolution code which shows the effect Hall drift has in the large-scale evolution of the magnetic field. In particular we link analytical predictions with simulation results. We find that there are two basic evolutionary paths, depending on the initial conditions compared to Hall equilibrium. We also show the effect axial symmetry combined with density gradient have on suppressing turbulent cascade.

  17. Neutron Star Discovered Where a Black Hole Was Expected

    NASA Astrophysics Data System (ADS)

    2005-11-01

    A very massive star collapsed to form a neutron star and not a black hole as expected, according to new results from NASA's Chandra X-ray Observatory. This discovery shows that nature has a harder time making black holes than previously thought. Scientists found this neutron star -- a dense whirling ball of neutrons about 12 miles in diameter -- in an extremely young star cluster. Astronomers were able to use well-determined properties of other stars in the cluster to deduce that the progenitor of this neutron star was at least 40 times the mass of the Sun. ESO Optical Image of Westerlund 1 ESO Optical Image of Westerlund 1 "Our discovery shows that some of the most massive stars do not collapse to form black holes as predicted, but instead form neutron stars," said Michael Muno, a UCLA postdoctoral Hubble Fellow and lead author of a paper to be published in The Astrophysical Journal Letters. When very massive stars make neutron stars and not black holes, they will have a greater influence on the composition of future generations of stars. When the star collapses to form the neutron star, more than 95% of its mass, much of which is metal-rich material from its core, is returned to the space around it. "This means that enormous amounts of heavy elements are put back into circulation and can form other stars and planets," said J. Simon Clark of the Open University in the United Kingdom. Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Animation: Dissolve from Optical to X-ray Image of Westerlund 1 Astronomers do not completely understand how massive a star must be to form a black hole rather than a neutron star. The most reliable method for estimating the mass of the progenitor star is to show that the neutron star or black hole is a member of a cluster of stars, all of which are close to the same age. Because more massive stars evolve faster than less massive ones, the mass of a star can be estimated from if its evolutionary stage is known. Neutron

  18. Breaking strain of neutron star crust and gravitational waves.

    PubMed

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  19. Model Atmospheres for X-Ray Bursting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  20. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    SciTech Connect

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  1. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  2. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  3. Transient phenomena from accreting magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Klochkov, Dmitry

    In this contribution, I will review the recent progress in the research of accreting magnetized neutron stars (observed as X-ray pulsars) based on the study of their variability on different time scales. Specifically, I will focus on the properties of the X-ray emitting region. In recent years, the high-quality observational data accumulated with the new generation of X-ray observatories have triggered a renewed interest in these systems. The new studies are primarily focused on the detailed structure of the two physical regions of the objects: (i) the emitting area above the polar caps of the neutron star and (ii) the magnetospheric boundary, where the infalling matter couples to the accretoŕs magnetic field. The modulation of the matter supply from the binary companion as well as the instabilities in the accretion flow lead to the transient character of the majority of X-ray pulsars. The observations show that the "persistent" pulsars also exhibit numerous types of variabilities over a broad range of time scales (off-states, pulse-to-pulse variability, switches of spectral states, alternation of the pulsar's spin-up/spin-down episodes etc.). Of particular importance are the observed variations of the cyclotron absorption features (cyclotron lines), whose centroid energies are directly proportional to the magnetic field strength at the site of the line formation. The detailed studies of these variabilities have lead to the development of new theoretical models describing the physics in the emitting region and at the magnetospheric boundary. It has been proposed that the configuration and geometry of the two areas may change abruptly when the mass accretion rate reaches certain critical values. Such changes cause transitions between different accretion modes. A particular mode is expected to be characterized by certain variability patterns and can thus be inferred from the observations. I will describe these recent observations and the models which are aimed at

  4. Neutrino flavor evolution in neutron star mergers

    NASA Astrophysics Data System (ADS)

    Tian, James Y.; Patwardhan, Amol V.; Fuller, George M.

    2017-08-01

    We examine the flavor evolution of neutrinos emitted from the disklike remnant (hereafter called "neutrino disk") of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra and, for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino-dominated case, we found that the matter-neutrino resonance effect dominates, consistent with previous results, whereas in the neutrino-dominated case, a bipolar spectral swap develops. The neutrino-dominated conditions required for this latter result have been realized, e.g., in a BNS merger simulation that employs the "DD2" equation of state for neutron star matter [Phys. Rev. D 93, 044019 (2016), 10.1103/PhysRevD.93.044019]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of r -process nucleosynthesis in the material ejected outside the plane of the neutrino disk.

  5. Measuring the neutron star equation of state with gravitational wave observations

    SciTech Connect

    Read, Jocelyn S.; Markakis, Charalampos; Creighton, Jolien D. E.; Friedman, John L.; Shibata, Masaru; Uryu, Koji

    2009-06-15

    We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron-star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron-star compactness (the ratio of the mass of the neutron-star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point-particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of {delta}R{approx}1 km at 100 Mpc.

  6. Neutron star structure with chiral interactions

    NASA Astrophysics Data System (ADS)

    Logoteta, Domenico; Bombaci, Ignazio

    2017-06-01

    We use two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit ∆ isobar contributions to calculate the energy per particle of symmetric nuclear matter and pure neutron matter employing the microscopic Brueckner-Hartree-Fock approach. In particular, we present nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with ∆ isobar intermediate states (N3LO∆) recently developed by Piarulli et al. [1]. We compute the β-equilibrium equation of state and determine the neutron star mass-radius and mass-central density sequences. We find that the adopted interactions are able to provide satisfactory properties of nuclear matter at saturation density as well as to fulfill the limit of two-solar mass for the maximum mass configuration as required by recent observations.

  7. Radioactively powered emission from black hole-neutron star mergers

    SciTech Connect

    Tanaka, Masaomi; Wanajo, Shinya; Hotokezaka, Kenta; Kyutoku, Koutarou; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2014-01-01

    Detection of the electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH)-neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, the observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the progenitors of GW sources and the nature of compact binary coalescences.

  8. Radioactively Powered Emission from Black Hole-Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Hotokezaka, Kenta; Kyutoku, Koutarou; Wanajo, Shinya; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2014-01-01

    Detection of the electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH)-neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, the observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the progenitors of GW sources and the nature of compact binary coalescences.

  9. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  10. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  11. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  12. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  13. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  14. Resonant Shattering of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Tsang, David; Read, Jocelyn; Piro, Anthony; Hinderer, Tanja

    2014-08-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy secondsbefore the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. I will also discuss shattering flares as electromagnetic counterparts to gravitational wave bursts during parabolic and elliptic encounters in dense star clusters.

  15. Surface composition of magnetic neutron stars.

    NASA Technical Reports Server (NTRS)

    Rosen, L. C.; Cameron, A. G. W.

    1972-01-01

    The relative abundances of seven constituent nuclei, He4, C12, O16, Ne20, Mg24, Si28, and Fe56, are calculated as a function of time for neutron star atmospheres within which exist magnetic fields of the order of 10 to the 13th G. The opacity, equation of state of the electrons, and cooling rate of the magnetic star are discussed, and it is shown to be a reasonable approximation to assume an atmosphere to be isothermal. The effects of particle diffusion are included in the nuclear reaction network. Computations are performed both for a constant mass atmosphere and for an atmosphere in which mass is being ejected. It is found that the final abundances are model-independent, as long as the initial model contains predominantly He4. The relative abundances are compared to the cosmic ray spectrum. For both the constant-mass and mass-loss atmospheres, nucleosynthesis proceeds virtually completely to Fe56. However the outermost layers of the envelope, in which no mass is being ejected, are composed almost entirely of He4 with trace amounts of Fe56. After the loss of about 10 to the 21st g, only Fe56 is ejected from atmospheres expelling mass.

  16. A Second Neutron Star in M4?

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a ~20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  17. Spin paramagnetic deformation of a neutron star

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  18. Structure of compact stars in R-squared Palatini gravity

    NASA Astrophysics Data System (ADS)

    Teppa Pannia, Florencia A.; García, Federico; Perez Bergliaffa, Santiago E.; Orellana, Mariana; Romero, Gustavo E.

    2017-02-01

    We analyse configurations of neutron stars in the so-called R-squared gravity in the Palatini formalism. Using a realistic equation of state we show that the mass-radius configurations are lighter than their counterparts in General Relativity. We also obtain the internal profiles, which run in strong correlation with the derivatives of the equation of state, leading to regions where the mass parameter decreases with the radial coordinate in a counter-intuitive way. In order to analyse such correlation, we introduce a parametrisation of the equation of state given by multiple polytropes, which allows us to explicitly control its derivatives. We show that, even in a limiting case where hard phase transitions in matter are allowed, the internal profile of the mass parameter still presents strange features and the calculated mass-radius configurations also yield neutron stars lighter than those obtained in General Relativity.

  19. High-Precision Studies of Compact Variable Stars

    NASA Astrophysics Data System (ADS)

    Bloemen, Steven

    2014-10-01

    This book, which is a reworked and updated version of Steven Bloemen's original PhD thesis, reports on several high-precision studies of compact variable stars. Its strength lies in the large variety of observational, theoretical and instrumentation techniques that are presented and used and paves the way towards new and detailed asteroseismic applications of single and binary subdwarf stars. Close binary stars are studied using high cadence spectroscopic datasets collected with state of the art electron multiplying CCDs and analysed using Doppler tomography visualization techniques. The work touches upon instrumentation, presenting the calibration of a new fast, multi-colour camera installed at the Mercator Telescope on La Palma. The thesis also includes theoretical work on the computation of the temperature range in which stellar oscillations can be driven in subdwarf B-stars. Finally, the highlight of the thesis is the measurement of velocities of stars using only photometric data from NASA's Kepler satellite. Doppler beaming causes stars to appear slightly brighter when they move towards us in their orbits, and this subtle effect can be seen in Kepler's brightness measurements. The thesis presents the first validation of such velocity measurements using independent spectroscopic measurements. Since the detection and validation of this Doppler beaming effect, it has been used in tens of studies to detect and characterize binary star systems, which are key calibrators in stellar astronomy.

  20. Formation of Double Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Tauris, T. M.; Kramer, M.; Freire, P. C. C.; Wex, N.; Janka, H.-T.; Langer, N.; Podsiadlowski, Ph.; Bozzo, E.; Chaty, S.; Kruckow, M. U.; van den Heuvel, E. P. J.; Antoniadis, J.; Breton, R. P.; Champion, D. J.

    2017-09-01

    Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most ∼ 0.02 {M}ȯ . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst.