Science.gov

Sample records for compact neutron star

  1. The Fate of the Compact Remnant in Neutron Star Mergers

    DOE PAGES

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less

  2. The Fate of the Compact Remnant in Neutron Star Mergers

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-06

    Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  3. THE FATE OF THE COMPACT REMNANT IN NEUTRON STAR MERGERS

    SciTech Connect

    Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; Rosswog, Stephan; Shen, Gang; Steiner, Andrew W.

    2015-10-10

    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  4. Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-06-01

    In one of its most bizarre images yet, NASA's Chandra X-ray Observatory shows the details of a compact nebula that resembles a gigantic cosmic crossbow. The nebula, located in the Vela supernova remnant, is created as a rapidly rotating neutron star, or pulsar, spins out rings and jets of high-energy particles while shooting through space. "What is fascinating is that the jets from the pulsar are directed exactly along the direction of the pulsar's motion," said Dr. George Pavlov of Penn State University, University Park today at the 196th national meeting of the American Astronomical Society in Rochester, New York. "The southern jet looks like a rocket exhaust!" The X-ray jet can be traced all the way in to the neutron star, and an inner ring is seen for the first time. This ring is thought to represent a shock wave due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce jets of particles that blast away at near the speed of light. Pavlov explained that shortly after the star exploded, jets with unequal thrust along the poles of the neutron star could have accelerated it like a rocket. The neutron star is enveloped in a cloud of high-energy particles emitting X rays as they spiral around magnetic field lines. This cloud, or nebula, is embedded in a much larger cloud produced by the supernova and has a swept-back, cometary shape because of its motion through the larger cloud. The dramatic bow-like structure at the leading edge of the nebula is perpendicular to the jets and has the appearance of a cosmic crossbow with the jets as the arrows. This bow and the smaller one inside it, are thought to be the near edges of tilted rings of X-ray emission from high-energy particles produced by the central neutron star. The neutron star-ring-jet system, which resulted from an explosion in the constellation Vela ten thousand or more years ago, is similar to the remarkable structure observed by Chandra in the Crab Nebula

  5. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  6. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  7. Introduction to neutron stars

    SciTech Connect

    Lattimer, James M.

    2015-02-24

    Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.

  8. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  9. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  10. Accuracy in measuring the neutron star mass in gravitational wave parameter estimates for nonspinning compact binaries

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-09-01

    In gravitational wave (GW) data analysis, the parameter estimate is performed to find the physical parameters of GW sources. The result of the parameter estimate is given by a posterior probability density function, and the measurement errors can be computed by using the Fisher matrix method. Using this method, we investigate the accuracy in estimates of neutron star (NS) masses ( M NS) for GWs emitted from merging compact binaries. As GW sources, we consider nonspinning binaries in which the primary component is assumed to be a NS and the companion is assumed to be a NS or a stellar-mass black hole (BH). Adopting GW signals with a signal-to-noise ratio of 10 for Advanced LIGO (Laser Interferometer Gravitational wave Observatory) sensitivity, we calculate measurement errors (σ) of M NS. We find that the errors strongly depend on the mass ratio of the companion mass ( M com) to the NS mass ( M NS). For NS-NS binaries, the fractional errors (σ/ M NS) are larger than 10% only in the symmetric mass region. For BH-NS binaries, the fractional errors tend to decrease with increasing mass ratio ( M com/ M NS), and the measurement accuracies are better than those for NS-NS binaries. In this case, the errors are always smaller than ~ 3%.

  11. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  12. Binary neutron stars with generic spin, eccentricity, mass ratio, and compactness: Quasi-equilibrium sequences and first evolutions

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Moldenhauer, Niclas; Johnson-McDaniel, Nathan K.; Bernuzzi, Sebastiano; Markakis, Charalampos M.; Brügmann, Bernd; Tichy, Wolfgang

    2015-12-01

    Information about the last stages of a binary neutron star inspiral and the final merger can be extracted from quasiequilibrium configurations and dynamical evolutions. In this article, we construct quasiequilibrium configurations for different spins, eccentricities, mass ratios, compactnesses, and equations of state. For this purpose we employ the sgrid code, which allows us to construct such data in previously inaccessible regions of the parameter space. In particular, we consider spinning neutron stars in isolation and in binary systems; we incorporate new methods to produce highly eccentric and eccentricity-reduced data; we present the possibility of computing data for significantly unequal-mass binaries with mass ratios q ≃2 ; and we create equal-mass binaries with individual compactness up to C ≃0.23 . As a proof of principle, we explore the dynamical evolution of three new configurations. First, we simulate a q =2.06 mass ratio which is the highest mass ratio for a binary neutron star evolved in numerical relativity to date. We find that mass transfer from the companion star sets in a few revolutions before merger and a rest mass of ˜10-2M⊙ is transferred between the two stars. This amount of mass accretion corresponds to ˜1051 ergs of accretion energy. This configuration also ejects a large amount of material during merger (˜7.6 ×1 0-2M⊙), imparting a substantial kick to the remnant neutron star. Second, we simulate the first merger of a precessing binary neutron star. We present the dominant modes of the gravitational waves for the precessing simulation, where a clear imprint of the precession is visible in the (2,1) mode. Finally, we quantify the effect of an eccentricity-reduction procedure on the gravitational waveform. The procedure improves the waveform quality and should be employed in future precision studies. However, one also needs to reduce other errors in the waveforms, notably truncation errors, in order for the improvement due to

  13. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  14. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses

  15. Theoretical Study of Compact Objects: Pulsars, Thermally Emitting Neutron Stars and Magnetars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    This proposal focuses on understanding the various observational manifestations of magnetized neutron stars (NSs), including pulsars, radio-quiet thermally emitting NSs and magnetars. This is motivated by the recent and ongoing observational progress in the study of isolated NSs, made possible by space telescopes such as Chandra and XMM-Newton, and the prospect of near-future observations by NASA's Gravity and Extreme Magnetism SMEX (GEMS) mission (to be launched in 2014). Recent observations have raised a number of puzzles/questions that beg for theoretical understanding and modeling. The proposed research projects are grouped into two parts: (1) Theoretical modeling of surface (or near surface) X-ray emission from magnetized NSs, including the study of the physics of electron/ion cyclotron lines, radiative transfer during magnetar bursts, dense plasma refractive effect, partially ionized atmospheres, and calculations of X-ray polarization signatures of isolated and accreting magnetic NSs, in anticipation of their detections by GEMS. (2) Theoretical study and observational constraint on the internal structure and evolution of magnetic fields in young neutron stars in supernova remnants. The proposed research will improve our understanding of different populations of NSs and their underlying physical processes (including the extreme physics of strong-field quantum electrodynamics) and enhance the scientific return from the current and future NASA astrophysics missions. It is relevant to NASA's objective, ``Discover the origin, structure, evolution, and destiny of the universe''.

  16. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  17. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  18. Grand unification of neutron stars.

    PubMed

    Kaspi, Victoria M

    2010-04-20

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical "grand unification" of this wealth of observational phenomena, and comment on possibilities for Chandra's next decade in this field.

  19. Grand unification of neutron stars

    PubMed Central

    Kaspi, Victoria M.

    2010-01-01

    The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205

  20. Dibaryons in neutron stars

    NASA Technical Reports Server (NTRS)

    Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.

    1991-01-01

    The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.

  1. Massive Compact Stars as Quark Stars

    NASA Astrophysics Data System (ADS)

    Rodrigues, Hilário; Barbosa Duarte, Sérgio; de Oliveira, José Carlos T.

    2011-03-01

    High-mass compact stars have been reported recently in the literature, providing strong constraints on the properties of the ultra dense matter beyond the saturation nuclear density. In view of these results, the calculations of quark star or hybrid star equilibrium structure must be compatible with the provided observational data. But since the equations of state used in describing quark matter are in general too soft in comparison with the equation of states used to describe the hadronic or nuclear matter, the calculated quark star models presented in the literature are in general not suitable to explain the stability of highly-compact massive objects. In this work, we present the calculations of a spherically symmetric quark star structure by using an equation of state that takes into account the superconducting color-flavor locked phase of the strange quark matter. In addition, some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by means of a phenomenological description of the deconfined quark phase, the density-dependent quark mass model. The quark matter behavior introduced by this model stiffens the corresponding equation of state. We thus investigate the influence of this model on the mass-radius diagram of quark stars. We obtain massive quark stars due to the stiffness of the equation of state, when a reasonable parameterization of the color superconducting gap is used. Models of quark stars enveloped by a nucleonic crust composed of a nuclear lattice embedded in an electron gas, with nuclei close to neutron drip line, are also discussed.

  2. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Technical Reports Server (NTRS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; Krivonos, Roman A.; Rahoui, Farid; Stern, Daniel; Tomsick, John A.; Zhang, Shuo; Zhang, William W.

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT approximately 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kTe approximately 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 MHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a Kaline from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N(sub H) approximately 1.6 x 10(exp 23) cm(exp -2)).

  3. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  4. Neutron Star Compared to Manhattan

    NASA Video Gallery

    A pulsar is a neutron star, the crushed core of a star that has exploded. Neutron stars crush half a million times more mass than Earth into a sphere no larger than Manhattan, as animated in this s...

  5. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  6. Matter accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1981-01-01

    Some of the fundamental neutron star parameters, such as the mass and the magnetic field strength, were experimentally determined in accreting neutron star systems. Some of the relevant data and the models used to derive useful information from them, are reviewed concentrating mainly on X-ray pulsars. The latest advances in our understanding of the radiation mechanisms and the transfer in the strongly magnetized polar cap regions are discussed.

  7. New compact neutron polarizer

    NASA Astrophysics Data System (ADS)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  8. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  9. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  10. Jets from Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially

  11. The neutron star zoo

    NASA Astrophysics Data System (ADS)

    Harding, Alice K.

    2013-12-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  12. Sleuthing the Isolated Compact Stars

    NASA Astrophysics Data System (ADS)

    Drake, J. J.

    2004-08-01

    In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.

  13. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  14. Neutron matter, symmetry energy and neutron stars

    NASA Astrophysics Data System (ADS)

    Gandolfi, S.; Steiner, A. W.

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron- rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  15. Neutron matter, symmetry energy and neutron stars

    SciTech Connect

    Stefano, Gandolfi; Steiner, Andrew W

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  16. Hyperons and neutron stars

    SciTech Connect

    Vidaña, Isaac

    2015-02-24

    In this lecture I will briefly review some of the effects of hyperons on the properties of neutron and proto-neutron stars. In particular, I will revise the problem of the strong softening of the EoS, and the consequent reduction of the maximum mass, induced by the presence of hyperons, a puzzle which has become more intringuing and difficult to solve due the recent measurements of the unusually high masses of the millisecond pulsars PSR J1903+0327 (1.667±0.021M{sub ⊙}), PSR J1614–2230 (1.97±0.04M{sub ⊙}), and PSR J0348+0432 (2.01±0.04M{sub ⊙}). Finally, I will also examine the role of hyperons on the cooling properties of newly born neutron stars and on the so-called r-mode instability.

  17. Do triaxial supramassive compact stars exist?

    NASA Astrophysics Data System (ADS)

    Uryū, Kōji; Tsokaros, Antonios; Baiotti, Luca; Galeazzi, Filippo; Sugiyama, Noriyuki; Taniguchi, Keisuke; Yoshida, Shin'ichirou

    2016-11-01

    We study quasiequilibrium solutions of triaxially deformed rotating compact stars—a generalization of Jacobi ellipsoids under relativistic gravity and compressible equations of state (EOSs). For relatively stiff (piecewise) polytropic EOSs, we find supramassive triaxial solutions whose masses exceed the maximum mass of the spherical solution, but are always lower than those of axisymmetric equilibriums. The difference in the maximum masses of triaxial and axisymmetric solutions depends sensitively on the EOSs. If the difference turns out to be only about 10%, it will be strong evidence that the EOS of high density matter becomes substantially softer in the core of neutron stars. This finding opens a novel way to probe phase transitions of high density nuclear matter using detections of gravitational waves from new born neutron stars or magnetars under fallback accretion.

  18. TOPICAL REVIEW: Coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Rasio, Frederic A.; Shapiro, Stuart L.

    1999-06-01

    Coalescing compact binaries with neutron star or black hole components provide the most promising sources of gravitational radiation for detection by the LIGO/VIRGO/GEO/TAMA laser interferometers now under construction. This fact has motivated several different theoretical studies of the inspiral and hydrodynamic merging of compact binaries. Analytic analyses of the inspiral waveforms have been performed in the post-Newtonian approximation. Analytic and numerical treatments of the coalescence waveforms from binary neutron stars have been performed using Newtonian hydrodynamics and the quadrupole radiation approximation. Numerical simulations of coalescing black hole and neutron star binaries are also underway in full general relativity. Recent results from each of these approaches will be described and their virtues and limitations summarized.

  19. Numerical study of the properties of compact stars

    NASA Astrophysics Data System (ADS)

    Negreiros, Rodrigo Picanco

    2009-10-01

    Compact stars are formed in catastrophic astrophysical events such as supernova explosions and binary stellar collisions. These objects permanently harbor compressed ultra-dense nuclear matter in their interiors. This key feature, together with the ongoing progress in observational astrophysics, make compact stars superb astrophysical laboratories for a wide range of intriguing physicals studies. Several such studies are performed in this thesis. The first activity concerns the widely unknown nuclear equation of state and the core composition of compact stars. Particular attention is paid to the possible presence of hyperons in the cores of neutron stars as well as to stars made of unconfined up, down and strange quarks (strange quark stars). The effects of ultra-strong electric fields on the surfaces of the latter is explored. The second activity aims at investigating the structure and stability of rapidly rotating compact stars. Special attention is paid to the maximal stable rotational frequencies of rotating compact stars. The third activity focuses on the thermal evolution of compact stars, driven by neutrino emission from their cores and by photon emission from the surfaces. It is show that the thermal behavior depends very strongly on the stellar core composition. Moreover, it is found that the thermal evolution of neutron stars is significantly different to that of strange quark stars. The studies performed in this thesis are key for our understanding of the thermal evolution of isolated rotating neutron stars, anomalous X-ray pulsars and soft gamma repeaters, and provide most valuable information about the phase diagram of isospin-asymmetric ultra-dense nuclear matter which can not be probed in high-energy collision experiments.

  20. Relativistic Processes and the Internal Structure of Neutron Stars

    SciTech Connect

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-10-14

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  1. On magnetized neutron stars

    SciTech Connect

    Lopes, Luiz; Menezes, Debora E-mail: debora.p.m@ufsc.br

    2015-08-01

    In this work we review the formalism normally used in the literature about the effects of density-dependent magnetic fields on the properties of neutron and quark stars, expose some ambiguities that arise and propose a way to solve the related problem. Our approach explores more deeply the concept of pressure, yielding the so called chaotic magnetic field formalism for the stress tensor. We also use a different way of introducing a variable magnetic field, which depends on the energy density rather than on the baryonic density, which allows us to build a parameter free model.

  2. The neutron star in HESS J1731-347: Central compact objects as laboratories to study the equation of state of superdense matter

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.

    2015-01-01

    Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is

  3. Modeling the X-rays from the central compact object PSR J1852+0040 in Kesteven 79: Evidence for a strongly magnetized neutron star

    SciTech Connect

    Bogdanov, Slavko

    2014-08-01

    I present modeling of the X-ray pulsations from the central compact object (CCO) PSR J1852+0040 in the Galactic supernova remnant Kesteven 79. In the context of thermal surface radiation from a rotating neutron star (NS), a conventional polar cap model can reproduce the broad, large-amplitude X-ray pulse only with a 'pencil plus fan' beam emission pattern, which is characteristic of ≳ 10{sup 12} G NS atmospheres, much greater than the ∼10{sup 10} G external dipole field inferred from the pulsar spin-down rate. This discrepancy can be explained by an axially displaced dipole. For other beaming patterns, it is necessary to invoke high-aspect-ratio emitting regions that are greatly longitudinally elongated, possibly due to an extremely offset dipole. For all assumed emission models, the existence of strong internal magnetic fields (≳ 10{sup 14} G) that preferentially channel internal heat to only a portion of the exterior is required to account for the implied high-temperature contrast across the stellar surface. This lends further observational evidence in support of the 'hidden' strong magnetic field scenario, in which CCOs possess submerged magnetic fields that are substantially stronger than the external dipole field, presumably due to burial by fallback of supernova ejecta. I also conduct phase-resolved X-ray spectroscopy and find no evidence for prominent spin-phase-dependent absorption features that could be produced by cyclotron absorption/scattering.

  4. Axion cooling of neutron stars

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    Cooling simulations of neutron stars and their comparison with the data from thermally emitting x-ray sources put constraints on the properties of axions, and by extension, of any light pseudoscalar dark matter particles, whose existence has been postulated to solve the strong-C P problem of QCD. We incorporate the axion emission by pair-breaking and formation processes by S - and P -wave nucleonic condensates in a benchmark code for cooling simulations, as well as provide fit formulas for the rates of these processes. Axion cooling of neutron stars has been simulated for 24 models covering the mass range 1 to 1.8 solar masses, featuring nonaccreted iron and accreted light-element envelopes, and a range of nucleon-axion couplings. The models are based on an equation state predicting conservative physics of superdense nuclear matter that does not allow for the onset of fast cooling processes induced by phase transitions to non-nucleonic forms of matter or high proton concentration. The cooling tracks in the temperature vs age plane were confronted with the (time-averaged) measured surface temperature of the central compact object in the Cas A supernova remnant as well as surface temperatures of three nearby middle-aged thermally emitting pulsars. We find that the axion coupling is limited to fa/107 GeV ≥(5 - 10 ) , which translates into an upper bound on axion mass ma≤(0.06 - 0.12 ) eV for Peccei-Quinn charges of the neutron |Cn|˜0.04 and proton |Cp|˜0.4 characteristic for hadronic models of axions.

  5. General Relativistic Non-radial Oscillations of Compact Stars

    NASA Astrophysics Data System (ADS)

    Hall, Zack, II; Jaikumar, Prashanth

    2017-01-01

    Currently, we lack a means of identifying the type of matter at the core of compact stars, but in the future, we may be able to use gravitational wave signals produced by fluid oscillations inside compact stars to discover new phases of dense matter. To this end, we study the fluid perturbations inside compact stars such as Neutron Stars and Strange Quark Stars, focusing on modes that couple to gravitational waves. Using a modern equation of state for quark matter that incorporates interactions at moderately high densities, we implement an efficient computational scheme to solve the oscillation equations in the framework of General Relativity, and determine the complex eigenfrequencies that describe the oscillation and damping of the non-radial fluid modes. We discuss the significance of our results for future detection of these modes through gravitational waves. This work is supported in part by the CSULB Graduate Research Fellowship and by the National Science Foundation NSF PHY-1608959.

  6. Carbon Atmosphere Discovered On Neutron Star

    NASA Astrophysics Data System (ADS)

    2009-11-01

    Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model

  7. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  8. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  9. Free fall onto magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Salpeter, E. E.

    Some compact X-ray sources show evidence of cyclotron line radiation from excited electron Landau orbits, powered by hydrogen and helium falling onto a neutron star atmosphere along the magnetic field. The slowing of the incident matter is discussed, including the spread in energy loss due to Coulomb scattering and direct nuclear reactions for disintegrating the α particles. The α disintegrations, followed by neutron capture, lead to nuclear γ rays; the γ-ray intensity is (indirectly) coupled to the Coulomb energy loss and the cyclotron line emission.

  10. Chandra Captures Neutron Star Action

    NASA Video Gallery

    This movie from NASA's Chandra X-ray Observatory shows a fast moving jet of particles produced by a rapidly rotating neutron star, and may provide new insight into the nature of some of the densest...

  11. Neutron stars : Seen my way

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang

    2001-09-01

    An unconventional survey is presented of the observable properties of neutron stars and of all astrophysical phenomena possibly related to them, such as their pulsing, clock irregularities, bursting, flickering, and occasional super-Eddington brightness, the generation of cosmic rays, of gamma-ray bursts, of jets, and of synchrotron nebulae, their birth, and their occasional transient appearance as 'supersoft' X-ray sources. The msec pulsars are argued to be born fast, the black-hole candidates to be neutron stars inside of massive disks, and the gamma-ray bursts to be sparks from dense 'blades' accreting spasmodically onto the surfaces of (generally old) neutron stars within " 0.3 Kpc from the Sun. Supernovae - the likely birth events of neutron stars - are thick-walled explosions, not to be described by Sedov-Taylor waves, which illuminate their gaseous environs via collisions of their 'splinters'.

  12. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not

  13. Neutron star news and puzzles

    NASA Astrophysics Data System (ADS)

    Prakash, Madappa

    2014-08-01

    Gerry Brown has had the most influence on my career in Physics, and my life after graduate studies. This article gives a brief account of some of the many ways in which Gerry shaped my research. Focus is placed on the significant strides on neutron star research made by the group at Stony Brook, which Gerry built from scratch. Selected puzzles about neutron stars that remain to be solved are noted.

  14. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  15. Neutron Star - Magnetosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ponce, Marcelo; Anderson, Matthew; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2012-03-01

    In this work we report results of the interaction of a neutron star magnetosphere in both collapsing and moving scenarios interacting with an ambient magnetic field. In recent works [1,2], it has been shown the important role and realism associated with studies of electromagnetic environments in some particular regimes, such as: ideal-MHD, force-free, and electro-vacuum. Motivated by this and their astrophysical implications for BBH and hybrid BH-NS mergers [3,4], we study the following cases: collapse of a magnetized NS, head-on collision of a BH-NS, and orbiting merger of a BH-NS. Based in the results from our simulations, we draw some relevant conclusions to the production of jets as described within the force-free formalism. [4pt] [1] C.Palenzuela, L.Lehner and S.Liebling, Science 329, 927 (2010).[0pt] [2] C.Palenzuela, T.Garrett, et al., Phys.Rev.D 82, 044045 (2010).[0pt] [3] L.Lehner, C.Palenzuela, et al., 2011.[0pt] [4] S.Liebling, L.Lehner, et al., Phys.Rev.D 81, 124023 (2010).

  16. Rotating compact star with superconducting quark matter

    SciTech Connect

    Panda, P.K.; Nataraj, H.S.

    2006-02-15

    A compact star with a superconducting quark core, a hadron crust, and a mixed phase between the two is considered. The quark-meson coupling model for hadron matter and the color-flavor-locked quark model for quark matter is used to construct the equation of state for the compact star. The effect of pairing of quarks in the color-flavor-locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.

  17. The nuclear physics of neutron stars

    NASA Astrophysics Data System (ADS)

    Piekarewicz, J.

    2014-05-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  18. Simulations of binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta

    2017-01-01

    The merger of a binary composed of a neutron star and/or a black hole is one of the most promising sources of gravitational waves. If we detected gravitational waves from them, it could tell us a validity of the general relativity in a strong gravitational field and the equation of state of neutron star matter. Furthermore, if gravitational waves from a compact binary merger and a short-hard gamma-ray burst are observed simultaneously, a long-standing puzzle on the central engine of short gamma-ray bursts could be resolved. In addition, compact binary mergers are a theoretical candidate of the rapid process nucleosynthesis site. Motivated by these facts, it is mandatory to build a physically reliable model of compact binary mergers and numerical relativity is a unique approach for this purpose. We are tackling this problem from several directions; the magneto-hydrodynamics, the neutrino radiation transfer, and a comprehensive study with simplified models. I will talk a current status of Kyoto Numerical Relativity group and future prospect on the compact binary mergers.

  19. Possible radii of compact stars: A relativistic approach

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Molla, Sajahan

    2016-11-01

    The inner structure of compact stars is checked from theoretical as well as observational points of view. In this paper, we determine the possible radii of six compact stars: two binary millisecond pulsars, namely PSR J1614-2230 and PSR J1903+327, studied by [P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and W. T. Hessels, Nature 467, 1081 (2010)] and four X-ray binaries, namely Cen X-3, SMC X-1, Vela X-1 and Her X-1 studied by [M. L. Rawls et al., Astrophys. J. 730, 25 (2011)]. Interestingly, we see that density of the star does not vanishes at the boundary though it is maximum at the center which implies that these compact stars may be treated as strange stars rather than neutron stars. We propose a stiff equation of state (EoS) relating to pressure with matter density. We also obtain compactness (u) and surface redshift (Zs) for the above-mentioned stars and compare it with the recent observational data.

  20. Old and new neutron stars

    SciTech Connect

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10/sup 38/s/sup -1/ of 10/sup 12/ eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10/sup 8/ old dead pulsars in the Galaxy are the most probable source for the isotropically distributed ..gamma..-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables.

  1. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  2. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  3. Neutron stars are gold mines

    NASA Astrophysics Data System (ADS)

    Lattimer, James M.

    Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than A = 60 in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.

  4. Measurement of neutron diffraction with compact neutron source RANS

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Takamura, M.; Taketani, A.; Sunaga, H.; Otake, Y.; Suzuki, H.; Kumagai, M.; Oba, Y.; Hama, T.

    2016-11-01

    Diffraction is used as a measurement technique for crystal structure. X-rays or electron beam with wavelength that is close to the lattice constant of the crystal is often used for the measurement. They have sensitivity in surface (0.01mm) of heavy metals due to the mean free path for heavy ions. Neutron diffraction has the probe of the internal structure of the heavy metals because it has a longer mean free path than that of the X-rays or the electrons. However, the neutron diffraction measurement is not widely used because large facilities are required in the many neutron sources. RANS (Riken Accelerator-driven Compact Neutron Source) is developed as a neutron source which is usable easily in laboratories and factories. In RANS, fast neutrons are generated by 7MeV protons colliding on a Be target. Some fast neutrons are moderated with polyethylene to thermal neutrons. The thermal neutrons of 10meV which have wavelength of 10nm can be used for the diffraction measurement. In this study, the texture evolution in steels was measured with RANS and the validity of the compact neutron source was proved. The texture of IF steel sheets with the thickness of 1.0mm was measured with 10minutes run. The resolution is 2% and is enough to analyze a evolution in texture due to compression/tensile deformation or a volume fraction of two phases in the steel sample. These results have proven the possibility to use compact neutron source for the analysis of mesoscopic structure of metallic materials.

  5. Compact neutron generator developement and applications

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Gicquel, Frederic; Hahto, Sami; Lou, Tak-Pui

    2004-01-18

    The Plasma and Ion Source Technology Group at the Lawrence Berkeley National Laboratory has been engaging in the development of high yield compact neutron generators for the last ten years. Because neutrons in these generators are formed by using either D-D, T-T or D-T fusion reaction, one can produce either mono-energetic (2.4 MeV or 14 MeV) or white neutrons. All the neutron generators being developed by our group utilize 13.5 MHz RF induction discharge to produce a pure deuterium or a mixture of deuterium-tritium plasma. As a result, ion beams with high current density and almost pure atomic ions can be extracted from the plasma source. The ion beams are accelerated to {approx}100 keV and neutrons are produced when the beams impinge on a titanium target. Neutron generators with different configurations and sizes have been designed and tested at LBNL. Their applications include neutron activation analysis, oil-well logging, boron neutron capture therapy, brachytherapy, cargo and luggage screening. A novel small point neutron source has recently been developed for radiography application. The source size can be 2 mm or less, making it possible to examine objects with sharper images. The performance of these neutron generators will be described in this paper.

  6. Compact star matter: EoS with new scaling law

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Lee, Hyun Kyu; Lee, Jaehyun

    In this paper, we present a simple discussion on the properties of compact stars using an EoS obtained in effective field theory anchored on scale and hidden-local symmetric Lagrangian endowed with topology change and a unequivocal prediction on the deformation of the compact star, that could be measured in gravitational waves. The objective is not to offer a superior or improved EoS for compact stars but to confront with a forthcoming astrophysical observable, the given model formulated in what is considered to be consistent with the premise of quantum chromodynamics (QCD). The model so obtained is found to satisfactorily describe the observation of a two-solar mass neutron star [P. B. Demorest et al., Nature 467 (2010) 1081, J. Antoniadis et al., Science 340 (2013) 1233232] with a minimum number of parameters. Specifically, the observable we are considering in this paper is the tidal deformability parameter λ (equivalently the Love number k2), which affects gravitational wave forms at the late period of inspiral stage. The forthcoming aLIGO and aVirgo observations of gravitational waves from binary neutron star system will provide a valuable guidance for arriving at a better understanding of highly compressed baryonic matter.

  7. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  8. Neutron Star Structure From Observations

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2006-10-01

    Neutron stars are laboratories for dense matter physics. Observations of neutron stars, in the form of radio pulsars, X-ray binaries, X-ray bursters, and thermally-emitting isolated stars, are rapidly accumulating. Especially interesting are the radio pulsars PSR J0751+1807, Terzan 5 I and Terzan 5 J (with suprisingly large measured masses of 2.1±0.2, 1.69±0.1 and 1.85±0.05 solar masses, respectively), the pulsar PSR J1748-2446ad with the most rapid spin rate of 716 Hz, and the radio pulsar binary PSR J0737-3039 for which a moment of inertia of one of the neutron stars might be measured within a few years. Extremely massive neutron stars are important because they set limits to the maximum mass and upper limits to the maximum density found in cold, static, objects, and might limit the appearance of exotic matter such as hyperons, Bose condensates or deconfined quarks in a star's interior. The spin rate sets an upper limit to the radius of a star of a given mass, and the moment of inertia, being roughly proportional to M R^2, is a sensitive measure of neutron star radius. While the maximum mass speaks to the relative stiffness of the high-density equation of state at several times nuclear matter density, the radius is a measure of the relative stiffness of the low-density equation of state in the vicinity of the nuclear saturation density. For the nearly pure neutron matter found in neutron stars, it is a direct measure of the density dependence of the nuclear symmetry energy. Other promising observational constraints might be obtained from neutron star seismology (which limits the relative crustal thickness) and Eddington limited fluxes observed from bursting sources, and from thermal emissions from cooling neutron stars. The latter have the potential of constraining R∞=R/√1-2GM/Rc^2 if the source's distance can be accurately assessed. The distances of two nearby isolated sources, RX J1856-3754 and Geminga, have been determined by parallax. However, there

  9. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  10. Theory of cooling neutron stars versus observations

    SciTech Connect

    Yakovlev, D. G.; Gnedin, O. Y.; Kaminker, A. D.; Potekhin, A. Y.

    2008-02-27

    We review current state of neutron star cooling theory and discuss the prospects to constrain the equation of state, neutrino emission and superfluid properties of neutron star cores by comparing the cooling theory with observations of thermal radiation from isolated neutron stars.

  11. Neutrino Processes in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2010-10-01

    The aim of these lectures is to introduce basic processes responsible for cooling of neutron stars and to show how to calculate the neutrino production rate in dense strongly interacting nuclear medium. The formalism is presented that treats on equal footing one-nucleon and multiple-nucleon processes and reactions with virtual bosonic modes and condensates. We demonstrate that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings the so-called “standard” and “non-standard” cooling scenarios are replaced by one general “nuclear medium cooling scenario” which relates slow and rapid neutron star coolings to the star masses (interior densities). The lectures are split in four parts. Part I: After short introduction to the neutron star cooling problem we show how to calculate neutrino reaction rates of the most efficient one-nucleon and two-nucleon processes. No medium effects are taken into account in this instance. The effects of a possible nucleon pairing are discussed. We demonstrate that the data on neutron star cooling cannot be described without inclusion of medium effects. It motivates an assumption that masses of the neutron stars are different and that neutrino reaction rates should be strongly density dependent. Part II: We introduce the Green’s function diagram technique for systems in and out of equilibrium and the optical theorem formalism. The latter allows to perform calculations of production rates with full Green’s functions including all off-mass-shell effects. We demonstrate how this formalism works within the quasiparticle approximation. Part III: The basic concepts of the nuclear Fermi liquid approach are introduced. We show how strong interaction effects can be

  12. Quasiequilibrium models for triaxially deformed rotating compact stars

    SciTech Connect

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-12-15

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  13. Numerical relativity simulations of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Thierfelder, Marcus; Bernuzzi, Sebastiano; Brügmann, Bernd

    2011-08-01

    We present a new numerical relativity code designed for simulations of compact binaries involving matter. The code is an upgrade of the BAM code to include general relativistic hydrodynamics and implements state-of-the-art high-resolution-shock-capturing schemes on a hierarchy of mesh refined Cartesian grids with moving boxes. We test and validate the code in a series of standard experiments involving single neutron star spacetimes. We present test evolutions of quasiequilibrium equal-mass irrotational binary neutron star configurations in quasicircular orbits which describe the late inspiral to merger phases. Neutron star matter is modeled as a zero-temperature fluid; thermal effects can be included by means of a simple ideal gas prescription. We analyze the impact that the use of different values of damping parameter in the Gamma-driver shift condition has on the dynamics of the system. The use of different reconstruction schemes and their impact in the post-merger dynamics is investigated. We compute and characterize the gravitational radiation emitted by the system. Self-convergence of the waves is tested, and we consistently estimate error bars on the numerically generated waveforms in the inspiral phase.

  14. Measuring the basic parameters of neutron stars using model atmospheres

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Poutanen, J.; Klochkov, D.; Werner, K.

    2016-02-01

    Model spectra of neutron star atmospheres are nowadays widely used to fit the observed thermal X-ray spectra of neutron stars. This fitting is the key element in the method of the neutron star radius determination. Here, we present the basic assumptions used for the neutron star atmosphere modeling as well as the main qualitative features of the stellar atmospheres leading to the deviations of the emergent model spectrum from blackbody. We describe the properties of two of our model atmosphere grids: i) pure carbon atmospheres for relatively cool neutron stars (1-4MK) and ii) hot atmospheres with Compton scattering taken into account. The results obtained by applying these grids to model the X-ray spectra of the central compact object in supernova remnant HESS 1731-347, and two X-ray bursting neutron stars in low-mass X-ray binaries, 4U 1724-307 and 4U 1608-52, are presented. Possible systematic uncertainties associated with the obtained neutron star radii are discussed.

  15. NSCool: Neutron star cooling code

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  16. Mass radius relation of compact stars in the braneworld

    SciTech Connect

    Castro, Luis B.; Menezes, Débora P.; Alloy, Marcelo D. E-mail: alloy@uffs.edu.br

    2014-08-01

    The braneworld scenario, based on the fact that the four dimension space-time is a hyper-surface of a five dimensional manifold, was shown to deal in a satisfactory way with the hierarchy problem. In this work we study macroscopic stellar properties of compact stars from the braneworld point of view. Using neutron star equations of state, we test the possibility of extra dimensions by solving the brane Tolman-Oppenheimer-Volkoff equations obtained for three kinds of possible compact objects: hadronic, hybrid and quark stars. By comparing the macroscopic solutions with observational constraints, we establish a brane tension lower limit and the value for which the Tolman-Oppenheimer-Volkoff equations in the braneworld converge to the usual Tolman-Oppenheimer-Volkoff equations.

  17. Initial data for black hole-neutron star binaries, with rotating stars

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2016-11-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.

  18. Hadronic matter and rapidly rotating compact stars

    SciTech Connect

    Weber, F.; Kettner, C.; Glendenning, N.K.

    1994-03-01

    In part one of this paper the authors review the present status of neutron star matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon populations, pion condensation, possible transition of baryon matter to quark matter). Part two deals with the theoretical determination of the minimum possible rotational periods of neutron stars, performed in the framework of general relativity, whose knowledge serves to distinguish between pulsars that can be understood as rotating neutron stars and those that cannot. Likely candidates for the latter are hypothetical strange stars. Their properties are discussed in the third part of this contribution.

  19. Accreting neutron stars by QFT

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    the negative charge from ionosphere electrons again rotate, thereby come into being the solar basal magnetic field. The solar surface plasma with additional electrons get the dynamic balance between the upwards force of stable positive charge distribution in the solar upside gas and the downwards force of the vacuum net nuν _{0} flux pressure (solar gravity). When the Jupiter enter into the connecting line of the Sun and the center of the Galaxy, the pressure (solar gravity) observed from earth will weaken because of the Jupiter stop (shield) the net nuν _{0} flux which shoot to Sun from the center of Galaxy. The dynamic balance of forces on the solar surface plasma at once is broken and the plasma will upwards eject as the solar wind with redundant negative charge. At the same time, the solar surface remain a cavity as a sunspot whorl with the positive electric potential relative to around plasma. The whorl is caused by the reaction of plasma eject front and upwards with the different velocity at different latitude of solar rotation, it leads to the cavity around in the downwards and backwards helix movement. The solar rotation more slow, when the cavity is filled by around plasma in the reverse turn direction and return to carry-over negative charge, the Jupiter at front had been produced a new cavity carry-over positive charge, so we had observe the sunspot pair with different whorl directions and different magnetic polarity. Jupiter possess half mass of all planets in solar system, its action to stop net nuν _{0} flux is primary, so that Jupiter’s period of 11.8 sidereal years accord basically with the period of sunspot eruptions. In my paper ‘Nonlinear superposition of strong gravitational field of compact stars’(E15-0039-08), according to QFT it is deduced that: let q is a positive shielding coefficient, 1- q show the gravity weaken degree, the earth (104 km) as a obstructing layer q = 4.6*10 (-10) . A spherical shell of neutron star as obstructing

  20. Novel neutron focusing mirrors for compact neutron sources

    NASA Astrophysics Data System (ADS)

    Khaykovich, B.; Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Liu, D.; Robertson, L.; Crow, L.; Ramsey, B. D.; Moncton, D. E.

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular collection. Using nesting, the relatively short optics can be made comparable to focusing guides in flux collection capabilities. We discuss how such optics can be used as polychromatic lenses to improve the performance of small-angle-scattering, imaging, and other instruments at compact neutron sources.

  1. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  2. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  3. The compact neutron spectrometer at ASDEX Upgrade

    SciTech Connect

    Giacomelli, L.; Zimbal, A.; Tittelmeier, K.; Schuhmacher, H.; Tardini, G.; Neu, R.; Collaboration: ASDEX Upgrade Team

    2011-12-15

    The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and {gamma} radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10{sup 6} s{sup -1}. The DPSD system can operate in acquisition and processing mode. With the latter n-{gamma} discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-{gamma} discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 x10{sup 5} s{sup -1} (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 x 10{sup -10} events per AUG neutron.

  4. Birth accelerations of neutron stars

    NASA Astrophysics Data System (ADS)

    Heras, Ricardo

    2013-03-01

    We suggest that neutron stars experienced at birth three related physical changes, which may originate in magneto-rotational instabilities: (i) an increase in period from the initial value P 0 to the current value Ps , implying a change of rotational energy Δ E rot; (ii) an exponential decay of its magnetic field from the initial value B 0 to the current surface value Bs , implying a change of radiative energy Δ E rad; and (iii) an increase of space velocity from the initial value v 0 to the current value v, implying a change of kinetic energy Δ E kin. These changes are assumed to be connected by Δ E rad + Δ E kin = Δ E rot. This means that the radiation loss and increase of kinetic energy are both at the expense of a rotational energy loss. It is shown that this energy conversion occurs during times of order of 10-4 s if the neutron stars are born with magnetic fields in the range of 1015-1016 G and initial periods in range 1-20 ms. It is shown that the birth accelerations of neutron stars are of the order of 108g.

  5. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  6. Gravitational waves from neutron star binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan

    With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of 2M⊙ neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.

  7. Supernovae, compact stars and nuclear physics

    SciTech Connect

    Glendenning, N.K.

    1989-08-25

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs.

  8. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  9. Relativistic model of neutron stars in X-ray binary

    NASA Astrophysics Data System (ADS)

    Kalam, Mehedi; Hossein, Sk Monowar; Islam, Rabiul; Molla, Sajahan

    2017-02-01

    In this paper, we study the inner structure of some neutron stars from theoretical as well as observational points of view. We calculate the probable radii, compactness (u) and surface redshift (Zs) of five neutron stars (X-ray binaries) namely 4U 1538-52, LMC X-4, 4U 1820-30, 4U 1608-52, EXO 1745-248. Here, we propose a stiff equation of state (EoS) of matter distribution which relates pressure with matter density. Finally, we check the stability of such kind of theoretical structure.

  10. Superfluidity in the Core of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Page, Dany

    2013-04-01

    The year (1958) after the publication of the BCS theory, Bohr, Mottelson & Pines showed that nuclei should also contain superfluid neutrons and superconducting protons. In 1959, A. Migdal proposed that neutron superfluidity should also occur in the interior of neutron stars. Pairing in nuclei forms Cooper pairs with zero spin, but the relevant component of the nuclear interaction becomes repulsive at densities larger than the nuclear matter density. It has been proposed that neutron-neutron interaction in the spin-triplet state, and L=1 orbital angular momentum, that is known to be attractive from laboratory experiments, may result in a new form of neutron superfluidity in the neutron star interior. I will review our present understanding of the structure of neutron stars and describe how superfluidity strongly affects their thermal evolution. I will show how a ``Minimal Model'' that excludes the presence of ``exotic'' matter (Bose condensates, quarks, etc.) is compatible with most observations of the surface temperatures of young isolated neutron stars in the case this neutron superfluid exists. Compared to the case of isotropic spin-zero Cooper pairs, the formation of anisotropic spin-one Cooper pairs results in a strong neutrino emission that leads to an enhanced cooling of neutron stars after the onset of the pairing phase transition and allows the Minimal Cooling scenario to be compatible with most observations. In the case the pairing critical temperature Tc is less than about 6 x10^8 K, the resulting rapid cooling of the neutron star may be observable. It was recently reported that 10 years of Chandra observations of the 333 year young neutron star in the Cassiopeia A supernova remnant revealed that its temperature has dropped by about 5%. This result indicates that neutrons in this star are presently becoming superfluid and, if confirmed, provides us with the first direct observational evidence for neutron superfluidity at supra-nuclear densities.

  11. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  12. Cooling compact stars and phase transitions in dense QCD

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen

    2016-03-01

    We report new simulations of cooling of compact stars containing quark cores and updated fits to the Cas A fast cooling data. Our model is built on the assumption that the transient behaviour of the star in Cas A is due to a phase transition within the dense QCD matter in the core of the star. Specifically, the fast cooling is attributed to an enhancement in the neutrino emission triggered by a transition from a fully gapped, two-flavor, red-green color-superconducting quark condensate to a superconducting crystalline or an alternative gapless, color-superconducting phase. The blue-colored condensate is modeled as a Bardeen-Cooper-Schrieffer (BCS)-type color superconductor with spin-one pairing order parameter. We study the sensitivity of the fits to the phase transition temperature, the pairing gap of blue quarks and the timescale characterizing the phase transition (the latter modelled in terms of a width parameter). Relative variations in these parameter around their best-fit values larger than 10-3 spoil the fit to the data. We confirm the previous finding that the cooling curves show significant variations as a function of compact star mass, which allows one to account for dispersion in the data on the surface temperatures of thermally emitting neutron stars.

  13. Mapping the QCD Phase Transition with Accreting Compact Stars

    SciTech Connect

    Blaschke, D.; Poghosyan, G.; Grigorian, H.

    2008-10-29

    We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.

  14. Gravitomagnetic tidal currents in rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Poisson, Eric; Douçot, Jean

    2017-02-01

    It was recently revealed that a rotating compact body responds dynamically when it is subjected to a gravitomagnetic tidal field, even when this field is idealized as time independent. The dynamical response is characterized by time-changing internal currents, and it was suspected to originate from zero-frequency g -modes and r -modes driven by the tidal forces. In this paper, we provide additional insights into the phenomenon by examining the tidal response of a rotating body within the framework of post-Newtonian gravity. This approach allows us to develop an intuitive picture for the phenomenon, which relies on the close analogy between post-Newtonian gravity and Maxwell's theory of electromagnetism. In this picture, the coupling between the gravitomagnetic tidal field and the body's rotational velocity is naturally expected to produce an unbalanced Lorentz-like force within the body, and it is this force that is responsible for the tidal currents. The simplicity of the fluid equations in the post-Newtonian setting allows us to provide a complete description of the zero-frequency modes and demonstrate their precise role in the establishment of the tidal currents. We estimate the amplitude of these currents, and find that for neutron-star binaries of relevance to LIGO, the scale of the velocity perturbation is measured in kilometers per second when the rotation period is comparable to 100 milliseconds. This estimate indicates that the tidal currents may have a significant impact on the physics of neutron stars near merger.

  15. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  16. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1996-01-01

    This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.

  17. Planetary Systems Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander

    1997-01-01

    This project was initiated in 1993, about one year after the announcement of two planets around PSR B1257+12. Its goal was to investigate planetary systems around neutron stars using high precision timing of radio pulsars as a tool. A microsecond precision of the pulse timing analysis, which is equivalent to a millimeter-per-second radial velocity resolution, makes it possible to detect asteroid-mass bodies in orbit around pulsars and to study the dynamics of pulsar planetary systems. The project originally consisted of two longterm efforts: (i) routine observations and timing analysis of the millisecond pulsar PSR B1257+12 which was found to be orbited by at least two earth-mass bodies (Wolszczan and Frail, Nature, 355, 145) and (ii) a sensitive all-sky search for millisecond pulsars to detect further examples of neutron stars with planetary systems. In the third year of the project, it was expanded to include long-term timing observations of slow pulsars in search for planetary systems around these younger neutron stars. The instrumentation used to conduct these investigations included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM-1), the 100-m Effelsberg telescope with the local pulse timing hardware, and the 32-m paraboloid of the Torun Centre for Astronomy in Torun, Poland (TCFA) with the PSPM-2, the second pulsar machine built at Penn State. The PI's collaborators included pulsar groups led by D. Backer (Berkeley), R. Foster (NRL), S. Kulkarni (Caltech), J. Taylor (Princeton) and R. Wielebinski (Bonn). One postdoc (Stuart Anderson), one graduate student (Brian Cadwell) and several undergraduates have been engaged in various aspects of research related to this project.

  18. Predicting neutron star properties based on chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Laduke, Alison; Sammarruca, Francesca

    2016-09-01

    The energy per nucleon as a function of density, known as the nuclear equation of state, is the crucial input in the structure equations of neutron stars and thus establishes the connection between nuclear physics and compact astrophysical objects. More precisely, the pressure which supports the star against gravitational collapse is mostly determined by the nature of the equation of state of highly neutron-rich matter. In this contribution, we will report on our work in progress to calculate neutron star masses and radii. The equation of state is obtained microscopically from Brueckner-Hartree-Fock calculations based on state-of-the-art nuclear forces which have been developed within the framework of chiral effective field theory. The latter has become popular in recent years as a fundamental and systematic approach firmly connected to low-energy quantum chromodynamics. Supported by the Hill Undergraduate Fellowship and the U.S. Department of Energy.

  19. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Muranushi, Takayuki; Sekiguchi, Yu-ichiro; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Massive (hypermassive and supramassive) neutron stars are likely to be often formed after the merger of binary neutron stars. We explore the evolution process of the remnant massive neutron stars and gravitational waves emitted by them, based on numerical-relativity simulations for binary neutron star mergers employing a variety of equations of state and choosing a plausible range of the neutron star mass of binaries. We show that the lifetime of remnant hypermassive neutron stars depends strongly on the total binary mass and also on the equations of state. Gravitational waves emitted by the remnant massive neutron stars universally have a quasiperiodic nature of an approximately constant frequency although the frequency varies with time. We also show that the frequency and time-variation feature of gravitational waves depend strongly on the equations of state. We derive a fitting formula for the quasiperiodic gravitational waveforms, which may be used for the data analysis of a gravitational-wave signal.

  20. Close binary neutron star systems

    NASA Astrophysics Data System (ADS)

    Marronetti, Pedro

    1999-12-01

    We present a method to calculate solutions to the initial value problem in (3 + 1) general relativity corresponding to binary neutron-star systems (BNS) in irrotational quasi-equilibrium orbits. The initial value equations are solved using a conformally flat spatial metric tensor. The stellar fluid dynamics corresponds to that of systems with zero vorticity in the inertial reference frame. Irrotational systems like the ones analyzed in the present work are likely to resemble the final stages of the evolution of neutron-star binaries, thus providing insights on the inspiral process. The fluid velocity is derived from the gradient of a scalar potential. A numerical program was developed to solve the elliptic equations for the metric fields and the fluid velocity potential. We discuss the different numerical techniques employed to achieve high resolution across the stellar volume, as well as the methods used to find solutions to the Poisson-like equations with their corresponding boundary conditions. We present sequences of quasi-stable circular orbits which conserve baryonic mass. These sequences mimic the time evolution of the inspiral and are obtained without solving the complex evolution equations. They also provide sets of initial value data for future time evolution codes, which should be valid very close to the final merger. We evaluate the emission of gravitational radiation during the evolution through multipole expansions methods.

  1. Neutrinos from Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Torres, Diego F.; McCauley, Thomas P.; Romero, Gustavo E.; Aharonian, Felix A.

    2003-05-01

    The magnetospheres of accreting neutron stars develop electrostatic gaps with huge potential drops. Protons and ions, accelerated in these gaps along the dipolar magnetic field lines to energies greater than 100 TeV, can impact onto the surrounding accretion disk. A proton-induced cascade develops, and charged pion decays produce ν emission. With extensive disk shower simulations using DPMJET and GEANT4, we have calculated the resulting ν spectrum. We show that the spectrum produced out of the proton beam is a power law. We use this result to propose accretion-powered X-ray binaries (with highly magnetized neutron stars) as a new population of pointlike ν sources for kilometer-scale detectors such as ICECUBE. As a particular example, we discuss the case of A0535+26. We show that ICECUBE should find A0535+26 to be a periodic ν source, one for which the formation and loss of its accretion disk can be fully detected. Finally, we comment briefly on the possibility that smaller telescopes such as AMANDA could also detect A0535+26 by folding observations with the orbital period.

  2. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  3. Neutron star matter in an effective model

    SciTech Connect

    Jha, T. K.; Raina, P. K.; Panda, P. K.; Patra, S. K.

    2006-11-15

    We study an equation of state (EOS) for dense matter in the core of a compact star with hyperons and calculate the star's structure in an effective model using a mean-field approach. With varying incompressibility and effective nucleon mass, we analyze the resulting EOS with hyperons in {beta} equilibrium and their underlying effect on the gross properties of the compact star sequences. The results obtained in our analysis are compared with predictions of other theoretical models and observations. The maximum mass of a compact star lies in the range 1.21-1.96M{sub {center_dot}} for the different EOS obtained in the model.

  4. Parameters of rotating neutron stars with and without hyperons

    NASA Astrophysics Data System (ADS)

    Bejger, M.

    2013-04-01

    Context. The discovery of a 2 M⊙ neutron star provided a robust constraint for the theory of exotic dense matter, bringing into question the existence of strange baryons in the interiors of neutron stars. Although many theories fail to reproduce this observational result, several equations of state containing hyperons are consistent with it. Aims: We study global properties of stars using equations of state containing hyperons, and compare them to those without hyperons to find similarities, differences, and limits that can be compared with the astrophysical observations. Methods: Rotating, axisymmetric, and stationary stellar configurations in general relativity are obtained, and their global parameters are studied. Results: Approximate formulæ describing the behavior of the maximum and minimum stellar mass, compactness, surface redshifts, and moments of inertia as functions of spin frequency are provided. We also study the thin disk accretion and compare the spin-up evolution of stars with different moments of inertia.

  5. A propelling neutron star in the enigmatic Be-star γ Cassiopeia

    NASA Astrophysics Data System (ADS)

    Postnov, K.; Oskinova, L.; Torrejón, J. M.

    2017-02-01

    γ Cassiopeia (γ Cas), is known to be a binary system consisting of a Be-type star and a low-mass (M ˜ 1 M⊙) companion of unknown nature orbiting in the Be-disc plane. Here, we apply the quasi-spherical accretion theory on to a compact magnetized star and show that if the low-mass companion of γ Cas is a fast spinning neutron star, the key observational signatures of γ Cas are remarkably well reproduced. Direct accretion on to this fast rotating neutron star is impeded by the propeller mechanism. In this case, around the neutron star magnetosphere a hot shell is formed which emits thermal X-rays in qualitative and quantitative agreement with observed properties of the X-ray emission from γ Cas. We suggest that γ Cas and its analogues constitute a new subclass of Be-type X-ray binaries hosting rapidly rotating neutron stars formed in supernova explosions with small kicks. The subsequent evolutionary stage of γ Cas and its analogues should be the X Per-type binaries comprising low-luminosity slowly rotating X-ray pulsars. The model explains the enigmatic X-ray emission from γ Cas, and also establishes evolutionary connections between various types of rotating magnetized neutron stars in Be-binaries.

  6. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Psaltis, Dimitrios; Arzoumanian, Zaven; Morsink, Sharon; Bauböck, Michi

    2016-11-01

    The Neutron-star Interior Composition Explorer is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better than 10% uncertainty for most of the parameter space. These constraints improve further when more realistic assumptions are made about the neutron star emission and spin, and when additional information about the source itself, such as its mass or distance, are incorporated.

  7. Design of optics for compact star sensors

    NASA Astrophysics Data System (ADS)

    Xu, Minyi; Shi, Rongbao; Shen, Weimin

    2016-10-01

    In order to adapt to small size and low cost space platform such as mini-satellites, this paper studies the design of optics for compact star sensor. At first, the relationship between limiting magnitude and optical system specifications which includes field of view and entrance pupil diameter is analyzed, based on its Pyramid identification algorithm and signal-to-noise ratio requirement. The specifications corresponding to different limiting magnitude can be obtained after the detector is selected, and both of the complexity of optical lens and the size of baffle can be estimated. Then the range of the limiting magnitude can be determined for the miniaturization of the optical system. Taking STAR1000 CMOS detector as an example, the compact design of the optical system can be realized when the limiting magnitude is in the interval of 4.9Mv 5.5Mv. At last, the lens and baffle of a CMOS compact star sensor is optimally designed, of which length and weight is respectively 124 millimeters and 300 grams.

  8. Quark Deconfinement in Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Mellinger, Richard; Weber, Fridolin; Spinella, William; Contrera, Gustavo; Orsaria, Milva

    2017-01-01

    In this paper, we use a three flavor non-local Nambu--Jona-Lasinio (NJL) model, an~improved effective model of Quantum Chromodynamics (QCD) at low energies, to investigate the existence of deconfined quarks in the cores of neutron stars. Particular emphasis is put on the possible existence of quark matter in the cores of rotating neutron stars (pulsars). In contrast to non-rotating neutron stars, whose particle compositions do not change with time (are frozen in), the type and structure of the matter in the cores of rotating neutron stars depends on the spin frequencies of these stars, which opens up a possible new window on the nature of matter deep in the cores of neutron stars. Our study shows that, depending on mass and rotational frequency, up to around 8% of the mass of a massive neutron star may be in the mixed quark-hadron phase, if the phase transition is treated as a Gibbs transition. We also find that the gravitational mass at which quark deconfinement occurs in rotating neutron stars varies quadratically with spin frequency, which can be fitted by a simple formula.

  9. r-Process nucleosynthesis in neutron star merger disk outflows

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Fernandez, Rodrigo; Roberts, Luke; Foucart, Francois; Kasen, Dan; Metzger, Brian

    2017-01-01

    Neutron star mergers are the most promising site of heavy element synthesis via the rapid neutron-capture process (r-process). Just before the neutron stars merge, they tidally disrupt each other, which unbinds extremely neutron-rich material where nucleosynthesis can easily reach the third r-process peak. After the merger, an accretion disk forms around the central compact object, which is either a black hole or a hypermassive neutron star (HMNS). Neutrino emissions from the disk (and HMNS if there is one) and angular momentum transport processes within the disk drive a neutron-rich outflow off the disk's surface where r-process nucleosynthesis can take place. In this work we investigate r-process nucleosynthesis in the disk outflow and we pay special attention to how the nucleosynthesis depends on the lifetime of the HMNS. Increasing the lifetime of the HMNS not only results in a significantly larger ejecta mass, but also makes the ejecta less neutron-rich thus preventing the r-process from reaching the third peak.

  10. Equation-of-state-independent relations in neutron stars

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Cardoso, Vitor; Ferrari, Valeria; Gualtieri, Leonardo; Pani, Paolo

    2013-07-01

    Neutron stars are extremely relativistic objects which abound in our universe and yet are poorly understood, due to the high uncertainty on how matter behaves in the extreme conditions which prevail in the stellar core. It has recently been pointed out that the moment of inertia I, the Love number λ, and the spin-induced quadrupole moment Q of an isolated neutron star, are related through functions which are practically independent of the equation of state. These surprising universal I-λ-Q relations pave the way for a better understanding of neutron stars, most notably via gravitational-wave emission. Gravitational-wave observations will probe highly dynamical binaries and it is important to understand whether the universality of the I-λ-Q relations survives strong-field and finite-size effects. We apply a post-Newtonian-affine approach to model tidal deformations in compact binaries and show that the I-λ relation depends on the inspiral frequency, but is insensitive to the equation of state. We provide a fit for the universal relation, which is valid up to a gravitational wave frequency of ˜900Hz and accurate to within a few percent. Our results strengthen the universality of I-λ-Q relations, and are relevant for gravitational-wave observations with advanced ground-based interferometers. We also discuss the possibility of using the Love-compactness relation to measure the neutron-star radius with an uncertainty ≲10% from gravitational-wave observations.

  11. Cooling of Compact Stars with Color Superconducting Quark Matter

    NASA Astrophysics Data System (ADS)

    Noda, T.; Yasutake, N.; Hashimoto, M.; Maruyama, T.; Tatsumi, T.; Fujimoto, M. Y.

    2015-11-01

    We show a scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A).The Cas A observation shows that the central source is a compact star with a high effective temperature, and it is consistent with the cooling without exotic phases. The Cas A observation also gives the mass range of M ≥ 1.5 M_⊙.It may conflict with the current cooling scenarios of compact stars that heavy stars show rapid cooling. We include the effect of the color superconducting (CSC) quark matter phase on the thermal evolution of compact stars.We assume the gap energy of CSC quark phase is large (Δ ≳ 10 MeV),and we simulate the cooling of compact stars. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency.

  12. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  13. Validating Neutron Star Radius Measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Deepto

    2010-09-01

    Spectral analysis of transient neutron star X-ray emission during bursts and quiescence were both used to estimate the NS radii for different sources. The validities of these methods need to be verified by performing them on the same source respectively. Transient type-I (thermonuclear) X-ray bursters are excellent candidates for testing the consistency between these methods, since they were detected in both bursts and quiescence. Out of 3 candidates: Cen X-4, Aql X-1 and 4U 1608-52, 4U 1608-52 turns out to be the best one due to the lack of archival RXTE burst data for Cen X-4 and the previous reported significant luminosity and temperature variability for Aql X-1 in quiescence. Therefore, we propose a 25 ks Chandra/ACIS-S observation of 4U 1608-52.

  14. The breaking strain of neutron star crust

    SciTech Connect

    Kadau, Kai; Horowitz, C J

    2009-01-01

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Due to the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gTavitational wave radiation could limit the spin periods of some stars and might be detectable in large scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in Magnetar Giant and Micro Flares.

  15. DISCOVERY OF A NEUTRON STAR OSCILLATION MODE DURING A SUPERBURST

    SciTech Connect

    Strohmayer, Tod; Mahmoodifar, Simin

    2014-10-01

    Neutron stars are among the most compact objects in the universe and provide a unique laboratory for the study of cold ultra-dense matter. While asteroseismology can provide a powerful probe of the interiors of stars, for example, helioseismology has provided unprecedented insights about the interior of the Sun, comparable capabilities for neutron star seismology have not yet been achieved. Here, we report the discovery of a coherent X-ray modulation from the neutron star 4U 1636–536 during the 2001 February 22 thermonuclear superburst seen with NASA's Rossi X-Ray Timing Explorer (RXTE) that is very likely produced by a global oscillation mode. The observed frequency is 835.6440 ± 0.0002 Hz (1.43546 times the stellar spin frequency of 582.14323 Hz) and the modulation is well described by a sinusoid (A + Bsin (φ – φ{sub 0})) with a fractional half-amplitude of B/A = 0.19 ± 0.04% (4-15 keV). The observed frequency is consistent with the expected inertial frame frequency of a rotationally modified surface g-mode, an interfacial mode in the ocean-crust interface, or perhaps an r-mode. Observing an inertial frame frequency—as opposed to a co-rotating frame frequency—appears consistent with the superburst's thermal emission arising from the entire surface of the neutron star, and the mode may become visible by perturbing the local surface temperature. We briefly discuss the implications of the mode detection for the neutron star's projected velocity and mass. Our results provide further strong evidence that global oscillation modes can produce observable modulations in the X-ray flux from neutron stars.

  16. Uncovering the Properties of Young Neutron Stars and Their Surroundings

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Slane, Patrick

    2005-01-01

    The subject grant provides funding through the NASA LTSA program. This five-year grant involves the study of young neutron stars, particularly those in supernova remnants. In the fifth year of this program, the following studies have been undertaken in support of this effort and are discussed in this report. 1) 3C 58; 2) Chandra Survey for Compact Objects in Supernova Remnants; 3) G327.1-1.1; 4) Infrared Emission from Pulsar Wind Nebulae; and Cas A.

  17. SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS

    SciTech Connect

    Tsang, David

    2013-11-10

    We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

  18. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  19. Cyclotron Lines in Accreting Neutron Star Spectra

    NASA Astrophysics Data System (ADS)

    Wilms, Jörn; Schönherr, Gabriele; Schmid, Julia; Dauser, Thomas; Kreykenbohm, Ingo

    2009-05-01

    Cyclotron lines are formed through transitions of electrons between discrete Landau levels in the accretion columns of accreting neutron stars with strong (1012 G) magnetic fields. We summarize recent results on the formation of the spectral continuum of such systems, describe recent advances in the modeling of the lines based on a modification of the commonly used Monte Carlo approach, and discuss new results on the dependence of the measured cyclotron line energy from the luminosity of transient neutron star systems. Finally, we show that Simbol-X will be ideally suited to build and improve the observational database of accreting and strongly magnetized neutron stars.

  20. Observations of Neutron Stars with NICER

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko

    2016-07-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity that will be deployed as an attached payload on the International Space Station in August of 2016. By virtue of its unprecedented combination of throughput and fast timing capabilities, NICER will enable an empirical determination of the neutron star equation of state via realistic modeling of the pulsed X-ray radiation from millisecond pulsars. In this talk, I will describe the NICER instrument and measurement techniques it will employ, as well as the expected constraints on neutron star structure, and by extension the behavior of matter at supra-nuclear densities.

  1. The mass-radius relationship of massive compact stars

    SciTech Connect

    Chowdhury, Partha Roy

    2015-02-24

    The properties of pure hadronic and hybrid compact stars are reviewed using nuclear equation of state (EoS) for β-equilibrated neutron star (NS) matter obtained using a density-dependent M3Y (DDM3Y) effective nucleon-nucleon interaction. Depending on the model, the energy density of quark matter can be lower than that of this nuclear EoS at higher densities, implying the possibility of transition to quark matter inside the core and the transition density depends on the particular quark matter model used. The recent observations of the binary millisecond pulsar J1614–2230 by P.B. Demorest et al. [1] and PSR J0348+0432 by J. Antoniadis et al. [2] suggest that the masses lie within 1.97 ± 0.04 M{sub ⊙} and 2.01 ± 0.04 M{sub ⊙}, respectively, where M{sub ⊙} is the solar mass. In conformity with recent observations, a pure nucleonic EoS determines that the maximum mass of NS rotating with frequency ν∼ 667 Hz below r-mode instability is ∼ 1.95 M{sub ⊙} with radius ∼ 10 km. Compact stars with quark cores rotating with same frequency have the maximum mass of ∼ 1.72 M{sub ⊙} turns out to be lower than the observed masses.

  2. Numerical Relativity Simulations of Black Holes Binaries, Neutron Star Binaries, and Neutron Star Oscillations

    NASA Astrophysics Data System (ADS)

    Rosofsky, Shawn; Gold, Roman; Chirenti, Cecilia; Miller, Cole

    2017-01-01

    We present the results of numerical relativity simulations, using the Einstein Toolkit, of black hole binaries, neutron star binaries, and neutron star oscillations. The black hole binary simulations represent the source of LIGO's first gravitational wave detection, GW150914. We compare the gravitational wave output of this simulation with the LIGO data LIGO on GW150914. The neutron star binaries we simulated have different mass ratios and equations of state. These simulations were compared with each other to illustrate the effect of different mass ratios and equations of state on binary evolution and gravitational wave emission. To perform the neutron star oscillation simulations, we applied pressure and density perturbations to the star using specific eigenmodes. These evolutions of the stars were then compared to the expected oscillation frequencies of those excited eigemodes and contrasted with simulations of unperturbed neutron stars.

  3. Plasma physics of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  4. Neutron Star Science with the NuSTAR

    SciTech Connect

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  5. Prompt merger collapse and the maximum mass of neutron stars.

    PubMed

    Bauswein, A; Baumgarte, T W; Janka, H-T

    2013-09-27

    We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.

  6. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-chen; Kong, Xiao-jun; Wei, Cheng-wen; Ge, Yun-zhao

    1988-03-01

    There may exist quark matter inside early hot neutron stars. Using the general method of Baym and Chin, we evaluated the pressure and density at neutron matter — quark matter phase transition for different temperatures and compared the values for stable hot neutron stars. We found (1) that whenever the neutron star temperature exceeds (+10)K, there will be a core of quark matter; (2) that the bag constant B is the most important determining factor of the quark core size. For a given temperature, the core is the larger, the smaller B is; (3) that by the conservation of baryon number, the total energy released by a star during its cooling is about (+53) ergs.

  7. The Neutron Star Interior Composition Explorer

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.

    2008-01-01

    The Neutron star Interior Composition Explorer (NICE) will be a Mission of Opportunity dedicated to the study of neutron stars, the only places in the universe where all four fundamental forces of nature are simultaneously in play. NICE will explore the exotic states of matter within neutron stars, revealing their interior and surface compositions through rotation resolved X-ray spectroscopy. Absolute time-referenced data will allow NICE to probe the extreme physical environments associated with neutron stars, leveraging observations across the electromagnetic spectrum to answer decades-old questions about one of the most powerful cosmic accelerators known. Finally, NICE will definitively measure stabilities of pulsars as clocks, with implications for navigation, a pulsar-based timescale, and gravitational-wave detection. NICE will fly on the International Space Station, while GLAST is on orbit and post-RXTE, and will allow for the discovery of new high-energy pulsars and provide continuity in X-ray timing astrophysics.

  8. Transport coefficients in superfluid neutron stars

    SciTech Connect

    Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  9. Compact stars in Eddington inspired gravity.

    PubMed

    Pani, Paolo; Cardoso, Vitor; Delsate, Térence

    2011-07-15

    A new, Eddington inspired theory of gravity was recently proposed by Bañados and Ferreira. It is equivalent to general relativity in vacuum, but differs from it inside matter. This viable, one-parameter theory was shown to avoid cosmological singularities and turns out to lead to many other exciting new features that we report here. First, for a positive coupling parameter, the field equations have a dramatic impact on the collapse of dust, and do not lead to singularities. We further find that the theory supports stable, compact pressureless stars made of perfect fluid, which provide interesting models of self-gravitating dark matter. Finally, we show that the mere existence of relativistic stars imposes a strong, near optimal constraint on the coupling parameter, which can even be improved by observations of the moment of inertia of the double pulsar.

  10. Extreme neutron stars from Extended Theories of Gravity

    SciTech Connect

    Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it

    2015-01-01

    We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.

  11. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  12. Magnetic field decay in isolated neutron stars

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Reisenegger, Andreas

    1992-01-01

    Three mechanisms that promote the loss of magnetic flux from an isolated neutron star - Ohmic decay, ambipolar diffusion, and Hall drift - are investigated. Equations of motions are solved for charged particles in the presence of a magnetic field and a fixed background of neutrons, while allowing for the creation and destruction of particles by weak interactions. Although these equations apply to normal neutrons and protons, the present interpretations of their solutions are extended to cover cases of neutron superfluidity and proton superconductivity. The equations are manipulated to prove that, in the presence of a magnetic force, the charged particles cannot be simultaneously in magnetostatic equilibrium and chemical equilibrium with the neutrons. The application of the results to real neutron stars is discussed.

  13. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  14. Theoretical Studies of Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    2003-01-01

    Among the newly discovered classes of X-ray sources which have attracted wide attention are close binary systems in which mass is transferred via Roche lobe overflow from a low mass donor star to its neutron star companion. Many of these sources exhibit intense bursts of X-ray radiation as well as periodic and quasi-periodic phenomena. Intensive analysis of these sources as a class has provided insight into the accretion process in binary star systems and into the magnetic field, rotational, and nuclear evolution of the underlying neutron star. In this proposal we have focused on theoretical studies of the hydrodynamical and nuclear processes that take place on the surface of accreting neutron stars in these systems. The investigation of these processes is critical for providing an understanding of a number of outstanding problems related to their transient behavior and evolution.

  15. ULXs: Neutron stars versus black holes

    NASA Astrophysics Data System (ADS)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  16. Neutron stars as laboratories for gravity physics

    SciTech Connect

    Deliduman, Cemsinan

    2014-01-01

    We study the structure of neutron stars in R+αR² gravity model with perturbative method. We obtain mass-radius relations for four representative equations of state (EoS). We find that, for |α|~10⁹ cm², the results differ substantially from the results of general relativity. The effects of modified gravity are seen as mimicking a stiff or soft EoS for neutron stars depending upon whether α is negative or positive, respectively. Some of the soft EoS that are excluded within the framework of general relativity can be reconciled for certain values of α of this order with the 2 solar mass neutron star recently observed. Indeed, if the EoS is ever established to be soft, modified gravity of the sort studied here may be required to explain neutron star masses as large as 2 M{sub ⊙}. The associated length scale √(α)~10⁵ cm is of the order of the the typical radius of neutron stars implying that this is the smallest value we could find by using neutron stars as a probe. We thus conclude that the true value of α is most likely much smaller than 10⁹ cm².

  17. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  18. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  19. Local distribution of old neutron stars

    NASA Technical Reports Server (NTRS)

    Frei, Szolt; Huang, Xiaolan; Paczynski, Bohdan

    1992-01-01

    The local distribution of old disk neutron stars is approximated with a 1D model, in which the steady state distribution in the direction perpendicular to the Galactic plane is calculated, assuming a variety of the initial radio pulsar positions and velocities, and various Galactic potentials. It is found that the local distribution of old neutron stars is dominated by those that were born with very low velocities. The high-velocity neutron stars spend most of their lifetime far in the Galactic halo and do not contribute much to the local density. Therefore, the rms velocity at birth is not a good indicator of the scale height of the old population. The most likely half-density scale height for the old disk neutron stars is approximately 350 pc, the same as for the old disk G, K, and M stars. If gamma-ray bursts originate on old disk neutron stars, then 350 pc should also be the scale height for the bursters.

  20. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  1. Prediction of Black Hole and Neutron Star Mesolensing Events

    NASA Astrophysics Data System (ADS)

    Harding, Alex; Di Stefano, Rosanne; Urama, Johnson; Pham, Dang

    2016-01-01

    Black holes and neutron stars are ideal gravitational lenses because they have large masses and dim optical magnitudes. Lensing induced by nearby stellar objects, typically within a few kpc, is known as mesolensing. We report on our study of the spatial paths of more than 200 compact objects with measured proper motions. We predict their close approaches on the sky to background stars whose positions and magnitudes have been drawn from the Hubble Source Catalog, and from the 2MASS and USNO-A catalogs. By plotting the paths of the stellar remnants many years into the future we make predictions on when detectable events will occur. The observations provide a way of measuring the masses of the neutron star/black hole lenses. We also investigate possible future lensing events that would be caused if the compact object is orbited by dark companions, including exoplanets. Mesolensing events may be caused by exoplanets even if the compact object is unlikely to produce its own event. Constraints can be derived for planet masses and orbits both in cases with event detections and in cases in which no detection is achieved.

  2. Limiting rotational period of neutron stars

    NASA Astrophysics Data System (ADS)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  3. Limiting rotational period of neutron stars

    SciTech Connect

    Glendenning, N.K. )

    1992-11-15

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a {ital M}=1.442{ital M}{sub {circle dot}} neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  4. Pair fireball precursors of neutron star mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Zivancev, Charles

    2016-10-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the NSs. If a modest fraction η of the extracted electromagnetic power extracted accelerates relativistic particles, the resulting gamma-ray emission a compact volume will result in the formation of an electron-positron pair fireball. Applying a steady-state pair wind model, we quantify the detectability of the precursor fireball with gamma-ray satellites. For η ˜ 1 the gamma-ray detection horizon of Dmax ≈ 10(Bd/1014 G)3/4 Mpc is much closer than the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo horizon of 200 Mpc, unless the NS surface magnetic field strength is very large, B_d ≲ 10^{15} G. Given the quasi-isotropic nature of the emission, mergers with weaker NS fields could contribute a nearby population of short gamma-ray bursts. Power not dissipated close to the binary is carried to infinity along the open field lines by a large-scale Poynting flux. Reconnection within this outflow, well outside of the pair photosphere, provides a potential site for non-thermal emission, such as a coherent millisecond radio burst.

  5. Young Neutron Stars in Extragalactic Supernovae

    NASA Astrophysics Data System (ADS)

    Tehrani, Nathan; Lorimer, D. R.

    2012-01-01

    Pulsars are compact remnants of stellar cores left behind by supernova explosions. They spin rapidly and emit electromagnetic radiation from their magnetic poles, and gradually lose rotational energy. This project tests and expands upon a previous prediction by Perna et al. for the initial spin rates of neutron stars by attempting to model the x-ray emission from extragalactic supernovae. A computer simulation generated a set of pulsars of known initial rotational periods, magnetic field strengths, and ages, and will calculate the expected x-ray luminosities from the known relationship between magnetic field strengths, slow-down rates, and radio luminosities. This experiment expanded upon the original research by incorporating variability in the angle between the magnetic and rotational axes of each pulsar as well as the braking index value, which in the original publication were kept constant. This examines the effect of the angle on pulsars’ x-ray luminosities. The simulated x-ray luminosities were compared to the known x-ray luminosities of known supernova explosions, which served as an upper limit to determine the highest possible initial rotation speeds. Funding was provided through the WVU Summer Undergraduate Research Program.

  6. Physics of systems containing neutron stars

    NASA Astrophysics Data System (ADS)

    Shaham, Jacob

    1995-01-01

    This grant deals with several topics related to the dynamics of systems containing a compact object. Most of our research in 1994 dealt with systems containing Neutron Stars (NS's), but we also addressed systems containing a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's) Low Mass X-Ray Binaries (LMX's) and Cataclysmic Variables (CV's). We also dealt with one aspect of NS structure, namely NS superfluidity. A large fraction of our research dealt with irradiation-driven winds from companions. These winds turned out to be of some importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's.

  7. Compact stars and accretion disks: Workshop summary

    NASA Astrophysics Data System (ADS)

    Li, J.

    1998-07-01

    A workshop on `Compact Stars and Accretion Disks' was held on 11-12 August 1997 at the Australian National University. The workshop was opened by Professor Jeremy Mould, the Director of Mount Stromlo Observatory. The workshop was organised to coincide with visits to the ANU Astrophysical Theory Centre by Professor Ron Webbink from the University of Illinois, Professor Rainer Wehrse from the University of Heidelberg and Dr Chris Tout from the University of Cambridge. The workshop attracted over 25 participants nationwide. Participants included members of the Special Research Centre for Theoretical Astrophysics, University of Sydney, led by Professor Don Melrose, Professor Dick Manchester from the ATNF, Professor Ravi Sood from ADFA, Dr John Greenhill from the University of Tasmania and Dr Rosemary Mardling from Monash University. Dr Helen Johnston from AAO and Dr Kurt Liffman from AFDL also attended the workshop. The abstracts of twelve of the workshop papers are presented in this summary.

  8. Self-bound interacting QCD matter in compact stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Fogaça, D. A.; Navarra, F. S.; Horvath, J. E.

    2012-09-01

    The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches higher values of the pressure at comparable baryon densities. This feature is due to perturbative corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars, discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound (strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around 10-11 km.

  9. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  10. Nested Focusing Optics for Compact Neutron Sources

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  11. Tidal deformability of neutron and hyperon stars within relativistic mean field equations of state

    NASA Astrophysics Data System (ADS)

    Kumar, Bharat; Biswal, S. K.; Patra, S. K.

    2017-01-01

    We systematically study the tidal deformability for neutron and hyperon stars using relativistic mean field equations of state (EOSs). The tidal effect plays an important role during the early part of the evolution of compact binaries. Although, the deformability associated with the EOSs has a small correction, it gives a clean gravitational wave signature in binary inspiral. These are characterized by various Love numbers kl(l =2 ,3 ,4 ), that depend on the EOS of a star for a given mass and radius. The tidal effect of star could be efficiently measured through an advanced LIGO detector from the final stages of an inspiraling binary neutron star merger.

  12. Hybrid stars that masquerade as neutron stars

    SciTech Connect

    Mark Paris; Mark Alford; Matt Braby; Sanjay Reddy

    2004-11-01

    We show that a hybrid (nuclear + quark matter) star can have a mass-radius relationship very similar to that predicted for a star made of purely nucleonic matter. We show this for a generic parameterization of the quark matter equation of state, and also for an MIT bag model, each including a phenomenological correction based on gluonic corrections to the equation of state. We obtain hybrid stars as heavy as 2 M{sub solar} for reasonable values of the bag model parameters. For nuclear matter, we use the equation of state calculated by Akmal, Pandharipande, and Ravenhall using many-body techniques. Both mixed and homogeneous phases of nuclear and quark matter are considered.

  13. The Neutron Star Interior Composition Explorer (NICER)

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  14. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  15. Neutron star kicks and their relationship to supernovae ejecta mass

    NASA Astrophysics Data System (ADS)

    Bray, J. C.; Eldridge, J. J.

    2016-10-01

    We propose a simple model to explain the velocity of young neutron stars. We attempt to confirm a relationship between the amount of mass ejected in the formation of the neutron star and the `kick' velocity imparted to the compact remnant resulting from the process. We assume that the velocity is given by vkick = α (Mejecta/Mremnant) + β . To test this simple relationship, we use the BPASS (Binary Population and Spectral Synthesis) code to create stellar population models from both single and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply different α and β values, and three different `kick' orientations then record the resulting velocity probability distributions. We find that while a single star population provides a poor fit to the observational data, the binary population provides an excellent fit. Values of α = 70 km s-1 and β = 110 km s-1 reproduce the Hobbs et al. observed two-dimensional velocities, and α = 70 km s-1 and β = 120 km s-1 reproduce their inferred three-dimensional velocity distribution for nearby single neutron stars with ages less than 3 Myr. After testing isotropic, spin-axis aligned and orthogonal to spin-axis `kick' orientations, we find no statistical preference for a `kick' orientation. While ejecta mass cannot be the only factor that determines the velocity of supernova compact remnants, we suggest that it is a significant contributor and that the ejecta-based `kick' should replace the Maxwell-Boltzmann velocity distribution currently used in many population synthesis codes.

  16. Photon and neutrino redshift in the field of braneworld compact stars

    SciTech Connect

    Hladík, Jan; Stuchlík, Zdeněk E-mail: zdenek.stuchlik@fpf.slu.cz

    2011-07-01

    We study gravitational redshift of photons and neutrinos radiated by the braneworld neutron or quark stars that are considered in the framework of the simple model of the internal spacetime with uniform distribution of energy density, and the external spacetime described by the Reissner-Nordström geometry characterized by the braneworld ''tidal'' charge b. For negative tidal charges, the external spacetime is of the black-hole type, while for positive tidal charges, the external spacetime can be of both black-hole and naked-singularity type. We consider also extremely compact stars allowing existence of trapped null geodesics in their interior. We assume radiation of photons from the surface at radius R, neutrinos from the whole compact star interior, and their motion along radial null geodesics of the spacetime. In dependency on the compact stars parameters b and R, the photon surface redshift is related to the range of the neutrino internal redshift and the signatures of the tidal charge and possible existence of extremely compact stars are discussed. When both surface (photon) and internal (neutrino) redshift are given by observations, both compact star parameters R and b can be determined in the framework of our simple model.

  17. Neutron stars as type-I superconductors.

    PubMed

    Buckley, Kirk B W; Metlitski, Max A; Zhitnitsky, Ariel R

    2004-04-16

    In a recent paper by Link, it was pointed out that the standard picture of the neutron star core composed of a mixture of a neutron superfluid and a proton type-II superconductor is inconsistent with observations of a long period precession in isolated pulsars. In the following we will show that an appropriate treatment of the interacting two-component superfluid (made of neutron and proton Cooper pairs), when the structure of proton vortices is strongly modified, may dramatically change the standard picture, resulting in a type-I superconductor. In this case the magnetic field is expelled from the superconducting regions of the neutron star, leading to the formation of the intermediate state when alternating domains of superconducting matter and normal matter coexist.

  18. Towards a metallurgy of neutron star crusts.

    PubMed

    Kobyakov, D; Pethick, C J

    2014-03-21

    In the standard picture of the crust of a neutron star, matter there is simple: a body-centered-cubic lattice of nuclei immersed in an essentially uniform electron gas. We show that, at densities above that for neutron drip (∼ 4 × 1 0(11)  g cm(-3) or roughly one-thousandth of nuclear matter density), the interstitial neutrons give rise to an attractive interaction between nuclei that renders the lattice unstable. We argue that the likely equilibrium structure is similar to that in displacive ferroelectric materials such as BaTiO3. As a consequence, the properties of matter in the inner crust are expected to be much richer than previously appreciated, and we mention possible consequences for observable neutron star properties.

  19. Symmetry energy: nuclear masses and neutron stars

    NASA Astrophysics Data System (ADS)

    Pearson, J. M.; Chamel, N.; Fantina, A. F.; Goriely, S.

    2014-02-01

    We describe the main features of our most recent Hartree-Fock-Bogoliubov nuclear mass models, based on 16-parameter generalized Skyrme forces. They have been fitted to the data of the 2012 Atomic Mass Evaluation, and favour a value of 30MeV for the symmetry coefficient J , the corresponding root-mean square deviation being 0.549MeV. We find that this conclusion is compatible with measurements of neutron-skin thickness. By constraining the underlying interactions to fit various equations of state of neutron matter calculated ab initio our models are well adapted to a realistic and unified treatment of all regions of neutron stars. We use our models to calculate the composition, the equation of state, the mass-radius relation and the maximum mass. Comparison with observations of neutron stars again favours a value of J = 30 MeV.

  20. Neutron Star Seismology with Accreting Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod

    Neutron stars provide natural laboratories for the study of a number of important topics in fundamental physics, including the composition and equation of state (EOS) of cold matter at the highest densities achievable in nature. The physical conditions in their deep interiors cannot be replicated in terrestrial laboratories, and the nature of matter under such extreme conditions remains one of the major unsolved problems in physics. Direct measurement of the mass - radius relationship for neutron stars is very important for constraining the EOS of dense matter, however, since different phases of dense matter can have similar equations of state, mass and radius measurements alone are not very efficient in determining their interior composition. Additional, complementary observables are needed to more definitively probe the composition of neutron star cores. Asteroseismology, the measurement of the characteristic frequencies of the normal modes of oscillation of stars, can provide a powerful probe of their interiors. For example, helioseismology has provided unprecedented insights about the deep interior of the Sun. Comparable capabilities for neutron star seismology have not yet been achieved, but our recent work indicates that sensitive searches for the signatures of neutron star oscillations can be carried out using the high time resolution, pulse timing data obtained by the Rossi X-ray Timing Explorer (RXTE)-and in the case of a single source the XMM-Newton pn camera-from the population of accreting millisecond X-ray pulsars (AMXPs, Strohmayer & Mahmoodifar 2014a), and in some thermonuclear burst sources (Strohmayer & Mahmoodifar 2014b). It is the primary aim of this proposal to carry out the first such comprehensive search for global oscillation modes across this entire source class of neutron stars using approximately 6 M-sec of RXTE and 100 k-sec of XMMNewton archival data, and thereby significantly advance the nascent field of neutron star seismology. We will

  1. SPIN-PRECESSION: BREAKING THE BLACK HOLE-NEUTRON STAR DEGENERACY

    SciTech Connect

    Chatziioannou, Katerina; Cornish, Neil; Klein, Antoine; Yunes, Nicolás

    2015-01-01

    Mergers of compact stellar remnants are prime targets for the LIGO/Virgo gravitational wave detectors. The gravitational wave signals from these merger events can be used to study the mass and spin distribution of stellar remnants, and provide information about black hole horizons and the material properties of neutron stars. However, it has been suggested that degeneracies in the way that the star's mass and spin are imprinted in the waveforms may make it impossible to distinguish between black holes and neutron stars. Here we show that the precession of the orbital plane due to spin-orbit coupling breaks the mass-spin degeneracy, and allows us to distinguish between standard neutron stars and alternative possibilities, such as black holes or exotic neutron stars with large masses and spins.

  2. Radial modes of slowly rotating compact stars in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Mohanta, K. K.; Sahu, P. K.

    2016-09-01

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field.

  3. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  4. Physics in Strong Magnetic Fields Near Neutron Stars.

    ERIC Educational Resources Information Center

    Harding, Alice K.

    1991-01-01

    Discussed are the behaviors of particles and energies in the magnetic fields of neutron stars. Different types of possible research using neutron stars as a laboratory for the study of strong magnetic fields are proposed. (CW)

  5. Neutron stars. [quantum mechanical processes associated with magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  6. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  7. Early neutron stars and quark matter

    NASA Astrophysics Data System (ADS)

    Li, You-Chen; Kong, Xiao-Jun; Wei, Cheng-Wen; Ge, Yun-Zhao

    1988-03-01

    The existence of quark matter (QM) in hot early neutron stars is considered theoretically, using the method of Baym and Chin (1976) to calculate the pressure and density at the phase transition between neutron and quark matter for various temperatures. The results are presented in tables and graphs and discussed in detail. It is found that QM cores can exist whenever the temperature exceeds 10 to the 10th K, and that their radii increase with decreasing QM bag constant. The total energy emitted by a star during cooling is estimated as 10 to the 53rd erg, assuming conservation of baryon number.

  8. An instability in neutron stars at birth.

    PubMed

    Burrows, A; Fryxell, B A

    1992-10-16

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supemova explosion may be inadequate. Whether this "convective" instability is pivotal to the supemova mechanism, pulsar magnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  9. An instability in neutron stars at birth

    NASA Technical Reports Server (NTRS)

    Burrows, Adam; Fryxell, Bruce A.

    1992-01-01

    Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supernova explosion may be inadequate. Whether this 'convective' instability is pivotal to the supernova mechanism, pulsar nagnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.

  10. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  11. Gravitational wave background from rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.

    2012-11-01

    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars, and gravitars) is investigated. A formula for Ω(f) (a function that is commonly used to quantify the background, and is directly related to its energy density) is derived, without making the usual assumption that each radiating system evolves on a short time scale compared to the Hubble time; the time evolution of the systems since their formation until the present day is properly taken into account. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background or confusion noise, since the waveforms composing it cannot be either individually observed or subtracted out of the data of a detector) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background by present or planned detectors can be rejected. However, other models do predict the detection of the background, that would be unresolvable, by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint to be detected. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which

  12. A new compact neutron/gamma ray scintillation detector

    NASA Astrophysics Data System (ADS)

    Buffler, A.; Comrie, A. C.; Smit, F. D.; Wörtche, H. J.

    2016-09-01

    Progress towards the realization of a new compact neutron spectrometer is described. The detector is based on EJ299-33 plastic scintillator coupled to silicon photomultipliers, and a digital implementation of pulse shape discrimination is used to separate events associated with neutrons from those associated with gamma rays. The spectrometer will be suitable over the neutron energy range 1-100 MeV, illustrated in this work with measurements made using an AmBe radioisotopic source and quasi-monoenergetic neutron beams produced using a cyclotron.

  13. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  14. Neutron stars: A cosmic hadron physics laboratory

    NASA Technical Reports Server (NTRS)

    Pines, David

    1989-01-01

    A progress report is given on neutron stars as a cosmic hadron physics laboratory. Particular attention is paid to the crustal neutron superfluid, and to the information concerning its properties which may be deduced from observations of pulsar glitches and postglitch behavior. Current observational evidence concerning the softness or stiffness of the high density neutron matter equation of state is reviewed briefly, and the (revolutionary) implications of a confirmation of the existence of a 0.5 ms pulsar at the core of (Supernova) SN1987A are discussed.

  15. Constraining Neutron Star Matter with Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Kurkela, Aleksi; Fraga, Eduardo S.; Schaffner-Bielich, Jürgen; Vuorinen, Aleksi

    2014-07-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount—or even presence—of quark matter inside the stars.

  16. PULSE PROFILES FROM THERMALLY EMITTING NEUTRON STARS

    SciTech Connect

    Turolla, R.; Nobili, L.

    2013-05-10

    The problem of computing the pulse profiles from thermally emitting spots on the surface of a neutron star in general relativity is reconsidered. We show that it is possible to extend Beloborodov's approach to include (multiple) spots of finite size in different positions on the star surface. The results for the pulse profiles are expressed by comparatively simple analytical formulae which involve only elementary functions.

  17. Compact neutron imaging system using axisymmetric mirrors

    SciTech Connect

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  18. Few-Body Effects in Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Takibayev, N.

    2017-03-01

    Neutron resonances in systems of few nuclei, electron capture reactions with formation of excited nuclei, and density oscillation in the neutron star envelopes are investigated. These results allow to propose the special experiments to verify the neutron resonances in the few-body systems and understand the origin of some processes that are going in the neutron star crusts.

  19. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolas

    2016-03-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations, the three-hair relations, were found to hold in neutron stars that rotate rigidly, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). The resulting relations include the fourth moment, hence deemed the four-hair relations for differentially rotating neutron stars, and are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  20. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  1. Modern compact star observations and the quark matter equation of state

    NASA Astrophysics Data System (ADS)

    Klähn, T.; Blaschke, D.; Sandin, F.; Fuchs, Ch.; Faessler, A.; Grigorian, H.; Röpke, G.; Trümper, J.

    2007-10-01

    We present a hybrid equation of state (EoS) for dense matter that satisfies phenomenological constraints from modern compact star (CS) observations which indicate high maximum masses (M ∼ 2M⊙) and large radii (R > 12 km). The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy-ion collisions and a deconfinement transition at ∼ 0.55 fm-3. The quark matter phase is described by a 3-flavor Nambu-Jona-Lasinio model that accounts for scalar diquark condensation and vector meson interactions while the nuclear matter phase is obtained within the Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-A potential. We demonstrate that both pure neutron stars and neutron stars with quark matter cores are consistent with modern CS observations. Hybrid star configurations with a CFL quark core are unstable within the present model.

  2. A relativistic two-fluid model of compact stars

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Rahaman, Farook; Mallick, Arkopriya

    2017-03-01

    We propose a relativistic model of compact star admitting conformal symmetry. Quark matter and baryonic matter which are considered as two different fluids, constitute the star. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. The measured value of the Bag constant is used to explore the spacetime geometry inside the star. From the observed values of the masses of some compact objects, we have obtained theoretical values of the radii. Theoretical values of the radii match well with the previous predictions for such compact objects.

  3. The Mystery of the Lonely Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-09-01

    The VLT Reveals Bowshock Nebula around RX J1856.5-3754 Deep inside the Milky Way, an old and lonely neutron star plows its way through interstellar space. Known as RX J1856.5-3754 , it measures only ~ 20 km across. Although it is unusually hot for its age, about 700,000 °C, earlier observations did not reveal any activity at all, contrary to all other neutron stars known so far. In order to better understand this extreme type of object, a detailed study of RX J1856.5-3754 was undertaken by Marten van Kerkwijk (Institute of Astronomy of the University of Utrecht, The Netherlands) and Shri Kulkarni (California Institute of Technology, Pasadena, California, USA). To the astronomers' delight and surprise, images and spectra obtained with the ESO Very Large Telescope (VLT) now show a small nearby cone-shaped ("bowshock") nebula. It shines in the light from hydrogen atoms and is obviously a product of some kind of interaction with this strange star. Neutron stars - remnants of supernova explosions Neutron stars are among the most extreme objects in the Universe. They are formed when a massive star dies in a "supernova explosion" . During this dramatic event, the core of the star suddenly collapses under its own weight and the outer parts are violently ejected into surrounding space. One of the best known examples is the Crab Nebula in the constellation Taurus (The Bull). It is the gaseous remnant of a star that exploded in the year 1054 and also left behind a pulsar , i.e., a rotating neutron star [1]. A supernova explosion is a very complex event that is still not well understood. Nor is the structure of a neutron star known in any detail. It depends on the extreme properties of matter that has been compressed to incredibly high densities, far beyond the reach of physics experiments on Earth [2]. The ultimate fate of a neutron star is also unclear. From the observed rates of supernova explosions in other galaxies, it appears that several hundred million neutron stars

  4. Nuclear physics problems for accreting neutron stars

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.

    1983-01-01

    The importance of p(e/sup -/nu)n and of (p,..gamma..) reactions on /sup 56/Ni during a thermonuclear runaway on a neutron star surface is pointed out. A fast 16-isotope approximate nuclear reaction network is developed that is suitable for use in hydrodynamic calculations of such events.

  5. Constraining asymmetric dark matter through observations of compact stars

    SciTech Connect

    Kouvaris, Chris; Tinyakov, Peter

    2011-04-15

    We put constraints on asymmetric dark matter candidates with spin-dependent interactions based on the simple existence of white dwarfs and neutron stars in globular clusters. For a wide range of the parameters (WIMP mass and WIMP-nucleon cross section), weakly interacting massive particles (WIMPs) can be trapped in progenitors in large numbers and once the original star collapses to a white dwarf or a neutron star, these WIMPs might self-gravitate and eventually collapse forming a mini-black hole that eventually destroys the star. We impose constraints competitive to direct dark matter search experiments, for WIMPs with masses down to the TeV scale.

  6. Tidal Love Numbers of Neutron Stars

    SciTech Connect

    Hinderer, Tanja

    2008-04-20

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  7. Fallback Disks, Magnetars and Other Neutron Stars

    NASA Astrophysics Data System (ADS)

    Alpar, M. Ali; Çalışkan, Ş.; Ertan, Ü.

    2013-02-01

    The presence of matter with angular momentum, in the form of a fallback disk around a young isolated neutron star will determine its evolution. This leads to an understanding of many properties of different classes of young neutron stars, in particular a natural explanation for the period clustering of AXPs, SGRs and XDINs. The spindown or spinup properties of a neutron star are determined by the dipole component of the magnetic field. The natural possibility that magnetars and other neutron stars may have different strengths of the dipole and higher multipole components of the magnetic field is now actually required by observations on the spindown rates of some magnetars. This talk gives a broad overview and some applications of the fallback disk model to particular neutron stars. Salient points are: (i) A fallback disk has already been observed around the AXP 4U 0142+61 some years ago. (ii) The low observed spindown rate of the SGR 0418+5729 provides direct evidence that the dipole component of the field is in the 1012 G range. All properties of the SGR 0418+5729 at its present age can be explained by spindown under torques from a fallback disk. (iii) The anomalous braking index of PSR J1734-3333 can also be explained by the fallback disk model which gives the luminosity, period, period derivative and the period second derivative at the present age. (iv) These and all applications to a variety of other sources employ the same disk physics and evolution, differing only in the initial conditions of the disk.

  8. A Compact Neutron Source for Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Golubev, S. V.; Izotov, I. V.; Razin, S. V.; Sidorov, A. V.; Skalyga, V. A.

    2017-01-01

    We propose a neutron generator scheme based on a high-current ion source with electron cyclotron resonance plasma heating by high-power millimeter-wave gyrotron radiation. The most promising application of this neutron generator is a medical one, namely, boron neutron capture therapy of oncological diseases. A possibility for using a multi-aperture extraction system for high-current ion beam generation to increase the total current is studied. It is shown that the parameters of the plasma flow leaving a magnetic trap permit the effective use of multi-aperture systems without a significant loss in the ion beam current density. Thus, the use of multi-aperture systems in the ion source of a neutron generator can significantly increase the total neutron yield.

  9. Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2011-09-01

    We study the merger of black hole-neutron star binaries with a variety of black hole spins aligned or antialigned with the orbital angular momentum, and with the mass ratio in the range MBH/MNS=2-5, where MBH and MNS are the mass of the black hole and neutron star, respectively. We model neutron-star matter by systematically parametrized piecewise polytropic equations of state. The initial condition is computed in the puncture framework adopting an isolated horizon framework to estimate the black hole spin and assuming an irrotational velocity field for the fluid inside the neutron star. Dynamical simulations are performed in full general relativity by an adaptive-mesh refinement code, SACRA. The treatment of hydrodynamic equations and estimation of the disk mass are improved. We find that the neutron star is tidally disrupted irrespective of the mass ratio when the black hole has a moderately large prograde spin, whereas only binaries with low mass ratios, MBH/MNS≲3, or small compactnesses of the neutron stars bring the tidal disruption when the black hole spin is zero or retrograde. The mass of the remnant disk is accordingly large as ≳0.1M⊙, which is required by central engines of short gamma-ray bursts, if the black hole spin is prograde. Information of the tidal disruption is reflected in a clear relation between the compactness of the neutron star and an appropriately defined “cutoff frequency” in the gravitational-wave spectrum, above which the spectrum damps exponentially. We find that the tidal disruption of the neutron star and excitation of the quasinormal mode of the remnant black hole occur in a compatible manner in high mass-ratio binaries with the prograde black hole spin. The correlation between the compactness and the cutoff frequency still holds for such cases. It is also suggested by extrapolation that the merger of an extremely spinning black hole and an irrotational neutron star binary does not lead to the formation of an overspinning

  10. Surface emission from neutron stars and implications for the physics of their interiors.

    PubMed

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  11. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  12. Tidal Love numbers of a slowly spinning neutron star

    NASA Astrophysics Data System (ADS)

    Pani, Paolo; Gualtieri, Leonardo; Ferrari, Valeria

    2015-12-01

    By extending our recent framework to describe the tidal deformations of a spinning compact object, we compute for the first time the tidal Love numbers of a spinning neutron star to linear order in the angular momentum. The spin of the object introduces couplings between electric and magnetic distortions, and new classes of spin-induced ("rotational") tidal Love numbers emerge. We focus on stationary tidal fields, which induce axisymmetric perturbations. We present the perturbation equations for both electric-led and magnetic-led rotational Love numbers for generic multipoles and explicitly solve them for various tabulated equations of state and for a tidal field with an electric (even parity) and magnetic (odd parity) component with ℓ=2 , 3, 4. For a binary system close to the merger, various components of the tidal field become relevant. In this case we find that an octupolar magnetic tidal field can significantly modify the mass quadrupole moment of a neutron star. Preliminary estimates, assuming a spin parameter χ ≈0.05 , show modifications ≳10 % relative to the static case, at an orbital distance of five stellar radii. Furthermore, the rotational Love numbers as functions of the moment of inertia are much more sensitive to the equation of state than in the static case, where approximate universal relations at the percent level exist. For a neutron-star binary approaching the merger, we estimate that the approximate universality of the induced mass quadrupole moment deteriorates from 1% in the static case to roughly 6% when χ ≈0.05 . Our results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron-star binaries approaching the merger.

  13. Confirming a substellar companion candidate around a neutron star

    NASA Astrophysics Data System (ADS)

    Posselt, Bettina; Luhman, Kevin

    2014-08-01

    In a search for substellar companions around young neutron stars, we found an indication for a very faint near-infrared source at the position of the isolated neutron star RXJ0806.4-4123. The suspected near-IR source cannot be the neutron star itself because the latter is much too faint to be detected. Recent Herschel 160 microm observations of the field point to an additional dusty belt around the neutron star. The outer location of the dusty belt could be explained by the presence of a substellar companion around the neutron star. We propose deeper near-infrared observations with FLAMINGOS-2 to confirm that the near-infrared source is real. The observation could provide the first direct detection of a substellar companion around a neutron star. However, even a non-detection would be interesting to constrain evolution models of the dusty belt around the neutron star.

  14. Antikaon condensation and deconfinement phase transition in neutron stars

    SciTech Connect

    Gu Jianfa; Guo Hua; Xu Furong; Li Xiguo; Liu Yuxin

    2006-05-15

    Antikaon condensation and deconfinement phase transition in neutron stars are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase and in the MIT bag model for the deconfined quark matter phase. It is shown that the existence of quark matter phase makes antikaon condensation impossible in neutron stars. The properties of neutron stars are sensitive to the bag constant. For the small values of the bag constant, the pure quark matter core appears and hyperons are strongly suppressed in neutron stars, whereas for the large bag constant, the hadron-quark mixed phase exists in the center of neutron stars. The maximum masses of neutron stars with the quark matter phase are lower than those without the quark matter phase; meanwhile, the maximum masses of neutron stars with the quark matter phase increase with the bag constant.

  15. Perturbative Analysis of Universality and Individuality in Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tsui, L. K.; Leung, P. T.

    2005-09-01

    The universality observed in gravitational wave spectra of nonrotating neutron stars is analyzed here. We show that the universality in the axial oscillation mode can be reproduced with a simple stellar model, namely, the centrifugal barrier approximation (CBA), which captures the essence of the Tolman VII model of compact stars. Through the establishment of the scaled coordinate logarithmic perturbation theory (SCLPT), we are able to explain and quantitatively predict such universal behavior. In addition, quasi-normal modes of individual neutron stars characterized by different equations of state can be obtained from those of the CBA with the SCLPT.

  16. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    SciTech Connect

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-21

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  17. Ferromagnetism in neutron matter and its implication for the neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Diener, J. P. W.; Scholtz, F. G.

    2011-09-01

    We investigate the possible contribution of the ferromagnetic phase of neutron matter in the neutron star interior to the star's magnetic field. We introduce a relativistic, self-consistent calculation of the ferromagnetic phase in neutron matter within the context of the relativistic mean-field approximation. The presence of the ferromagnetic phase stiffens the star's equation of state which implies a larger neutron star radius compared to the non-ferromagnetic case.

  18. Relativistic structure, stability, and gravitational collapse of charged neutron stars

    SciTech Connect

    Ghezzi, Cristian R.

    2005-11-15

    Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture.

  19. Workshop on Physics of Accretion Disks Around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Liang, E (Editor); Stepinski, T. F. (Editor)

    1995-01-01

    The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.

  20. Non-identical neutron star twins

    SciTech Connect

    Glendenning, Norman K.; Kettner, Christiane

    1998-07-01

    The work of J. A. Wheeler in the mid 1960's showed that forsmooth equations of state no stable stellar configurations with centraldensities above that corresponding to the limiting mass of 'neutronstars' (in the generic sense) were stable against acoustical vibrationalmodes. A perturbation would cause any such star to collapse to a blackhole or explode. Accordingly, there has been no reason to expect that astable degenerate family of stars with higher density than the knownwhite dwarfs and neutron stars might exist. We have found a class ofexceptions corresponding to certain equations of state that describe afirst order phase transition. We discuss how such a higher density familyof stars could be formed in nature, and how the promising new explorationof oscillations in the X-ray brightness of accreting neutron stars mightprovide a means of identifying them. Our proof of the possible existenceof a third family of degenerate stars is one of principle and rests ongeneral principles like causality, microstability of matter and GeneralRelativity.

  1. Strange Stars, Neutron Stars and Pulsar Emission

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Horvath, J. E.

    1990-11-01

    RESUMEN. Se ha conjeturado que una partlecula de dieciocho quarks, sin Carga, sin espi'n y sin colar (quark-alfa) podri'a ser estable a ba5as tern peraturas y presiones aiTh COfl respecto a materia extrafla. Presentamos en este trabajo la estmctura de estrellas extraflas incluyendo los efectos y apariencia de parti'culas uark-alfa en las capas exteriores. La estruc tura interna ya no es hoinogenea del centro a la superficie, sino que muestra un centro de materia extrafla, capas s6lidas y una costra delgada de materia normal en la superficie. La superficie de materia nonnal permite la fornaci6n de una magnetosfera, la que se piensa sea el sitlo en donde ocurre la emisi6n del pulsar. La superficie de superflui'do ayuda a explicar el fen6rneno de `glitch', el cual ba sido observado en muchos pulsares. Se discute la ecuaci6n de estado para rnateria quark-alfa relevante en este regimen. ABSTIZACT:It has been conjectured that an quark, uncharged, spinless and colorless particle Cquark-alpha) could be stable at low pressures and temperatures even with respect to strange matter. We present in work tlie structure of stars including the effects of the appearance of quark-alpi' particles ii their outer layers. The internal structure is no longer from tlie center to the surface, but show a strange matter core, a solid and superfluid layers and a thin crust of normal matter at the surface. The normal matter surface allows tlie fon tion of a magnetosphere, whicl is to be tl place where pulsar emission occurs. A superfluid layer helps to explain tlie glitch , wlflch has been observed in . equation of state for quark-alpha matter relevant in regime is also discussed. Keq LA)OtL : ARY S - OF STATF - ?.ACT

  2. Intense Pulsed Neutron Emission from a Compact Pyroelectric Driven Accelerator

    SciTech Connect

    Tang, V; Meyer, G; Falabella, S; Guethlein, G; Sampayan, S; Kerr, P; Rusnak, B; Morse, J

    2008-10-08

    Intense pulsed D-D neutron emission with rates >10{sup 10} n/s during the pulse, pulse widths of {approx}100's ns, and neutron yields >10 k per pulse are demonstrated in a compact pyroelectric accelerator. The accelerator consists of a small pyroelectric LiTaO{sub 3} crystal which provides the accelerating voltage and an independent compact spark plasma ion source. The crystal voltage versus temperature is characterized and compare well with theory. Results show neutron output per pulse that scales with voltage as V{approx}1.7. These neutron yields match a simple model of the system at low voltages but are lower than predicted at higher voltages due to charge losses not accounted for in the model. Interpretation of the data against modeling provides understanding of the accelerator and in general pyroelectric LiTaO{sub 3} crystals operated as charge limited negative high voltage targets. The findings overall serve as the proof-of-principle and basis for pyroelectric neutron generators that can be pulsed, giving peak neutron rates orders of magnitude greater than previous work, and notably increase the potential applications of pyroelectric based neutron generators.

  3. Neutron Stars in Binaries and in Isolation

    NASA Astrophysics Data System (ADS)

    Yancopoulos, Sophia

    1996-01-01

    This thesis is a study of neutron stars in three distinct classes. After a brief overview of neutron stars in Chapter 1, the three systems are discussed in order of decreasing luminosity. In Chapter 2, we present a new model for the normal branch of a class of low mass X-ray binaries which show quasiperiodic oscillations: a quasi -periodic modulation in the intensity of their X-ray signal. Chapter 3 discusses a particular radio pulsar which we observed in X-rays with the ROSAT PSPC. Chapter 4 rounds out the thesis with a discussion of a class of neutron stars which have not, to date, been definitively shown to exist. We describe a search for these isolated old neutron stars in the Einstein database, and present the results of our finds. As part of a search for thermal surface radiation from nearby neutron stars, we have carried out a 45,000 s observation of the nearby radio pulsar PSR 1929+10 with the ROSAT PSPC. After background subtraction, a net of 420+/-25 photons in the 0.1-2.0 keV band were detected at the position of the pulsar, corresponding to a luminosity of position of the pulsar, corresponding to a luminosity of 1.2 times 1030 erg/s for a source distance of 250 pc, or {~}3 times 10^{-4} of the pulsar's spin-down luminosity. We find coherent pulsations from PSR 1929+10 at the radio period of 0.2265 s. The folded light curve is well fit by a sinusoidal oscillation with a pulsed fraction of about 30%. The total spectrum is fit by a blackbody with a temperature T_ infty~3.2times10^6 K; the implied emitting area has a radius of less than 50 meters. The maximum of the X-ray light curve coincides with the radio pulse, suggesting we are detecting the hot magnetic polar cap of the star. We discuss the implications of our results for the temperature distribution over the surface of the star, and use this detection to constrain various heating mechanisms for rotation-powered neutron stars. We also use a simple model of general relativistic light bending near the

  4. Cooling of neutron stars with diffusive envelopes

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Fortin, M.; Haensel, P.; Yakovlev, D. G.; Zdunik, J. L.

    2016-12-01

    We study the effects of heat blanketing envelopes of neutron stars on their cooling. To this aim, we perform cooling simulations using newly constructed models of the envelopes composed of binary ion mixtures (H-He, He-C, C-Fe) varying the mass of lighter ions (H, He or C) in the envelope. The results are compared with those calculated using the standard models of the envelopes which contain the layers of lighter (accreted) elements (H, He and C) on top of the Fe layer, varying the mass of accreted elements. The main effect is that the chemical composition of the envelopes influences their thermal conductivity and, hence, thermal insulation of the star. For illustration, we apply these results to estimate the internal temperature of the Vela pulsar and to study the cooling of neutron stars of ages of 105-106 yr at the photon cooling stage. The uncertainties of the cooling models associated with our poor knowledge of chemical composition of the heat insulating envelopes strongly complicate theoretical reconstruction of the internal structure of cooling neutron stars from observations of their thermal surface emission.

  5. Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars

    NASA Astrophysics Data System (ADS)

    Agathos, M.; Meidam, J.; Del Pozzo, W.; Li, T. G. F.; Tompitak, M.; Veitch, J.; Vitale, S.; Van Den Broeck, C.

    2015-07-01

    Recently exploratory studies were performed on the possibility of constraining the neutron star equation of state (EOS) using signals from coalescing binary neutron stars, or neutron star-black hole systems, as they will be seen in upcoming advanced gravitational wave detectors such as Advanced LIGO and Advanced Virgo. In particular, it was estimated to what extent the combined information from multiple detections would enable one to distinguish between different equations of state through hypothesis ranking or parameter estimation. Under the assumption of zero neutron star spins both in signals and in template waveforms and considering tidal effects to 1 post-Newtonian (1PN) order, it was found that O (20 ) sources would suffice to distinguish between a stiff, moderate, and soft equation of state. Here we revisit these results, this time including neutron star tidal effects to the highest order currently known, termination of gravitational waveforms at the contact frequency, neutron star spins, and the resulting quadrupole-monopole interaction. We also take the masses of neutron stars in simulated sources to be distributed according to a relatively strongly peaked Gaussian, as hinted at by observations, but without assuming that the data analyst will necessarily have accurate knowledge of this distribution for use as a mass prior. We find that especially the effect of the latter is dramatic, necessitating many more detections to distinguish between different EOSs and causing systematic biases in parameter estimation, on top of biases due to imperfect understanding of the signal model pointed out in earlier work. This would get mitigated if reliable prior information about the mass distribution could be folded into the analyses.

  6. Why neutron stars have three hairs

    NASA Astrophysics Data System (ADS)

    Stein, Leo; Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis

    2015-04-01

    Neutron stars have recently been found to enjoy a certain `baldness' in their multipolar structure which is independent of the equation of state (EoS) of dense nuclear matter. This is reminiscent of the black hole no-hair relations, and in stark contrast to regular stars. Why is this? Is it because realistic EoSs are sufficiently similar, or because GR effects are especially important, or because the nuclear matter is `cold'? We explore the physics behind these and more hypotheses, and give a convincing explanation for the true origin of the three-hair relations.

  7. Four-hair relations for differentially rotating neutron stars in the weak-field limit

    NASA Astrophysics Data System (ADS)

    Bretz, Joseph; Yagi, Kent; Yunes, Nicolás

    2015-10-01

    The opportunity to study physics at supra-nuclear densities through x-ray observations of neutron stars has led to in-depth investigations of certain approximately universal relations that can remove degeneracies in pulse profile models. One such set of relations determines all of the multipole moments of a neutron star just from the first three (the mass monopole, the current dipole and the mass quadrupole moment) approximately independently of the equation of state. These three-hair relations were found to hold in neutron stars that rotate rigidly, as is the case in old pulsars, but neutron stars can also rotate differentially, as is the case for proto-neutron stars and hypermassive transient remnants of binary mergers. We here extend the three-hair relations to differentially rotating stars for the first time with a generic rotation law using two approximations: a weak-field scheme (an expansion in powers of the neutron star compactness) and a perturbative differential rotation scheme (an expansion about rigid rotation). These approximations allow us to analytically derive approximately universal relations that allow us to determine all of the multipole moments of a (perturbative) differentially rotating star in terms of only the first four moments. These new four-hair relations for differentially rotating neutron stars are found to be approximately independent of the equation of state to a higher degree than the three-hair relations for uniformly rotating stars. Our results can be instrumental in the development of four-hair relations for rapidly differentially rotating stars in full general relativity using numerical simulations.

  8. 'Tertiary' nuclear burning - Neutron star deflagration?

    NASA Technical Reports Server (NTRS)

    Michel, F. Curtis

    1988-01-01

    A motivation is presented for the idea that dense nuclear matter can burn to a new class of stable particles. One of several possibilities is an 'octet' particle which is the 16 baryon extension of alpha particle, but now composed of a pair of each of the two nucleons, (3Sigma, Delta, and 2Xi). Such 'tertiary' nuclear burning (here 'primary' is H-He and 'secondary' is He-Fe) may lead to neutron star explosions rather than collapse to a black hole, analogous to some Type I supernovae models wherein accreting white dwarfs are pushed over the Chandrasekhar mass limit but explode rather than collapse to form neutron stars. Such explosions could possibly give gamma-ray bursts and power quasars, with efficient particle acceleration in the resultant relativistic shocks. The new stable particles themselves could possibly be the sought-after weakly interacting, massive particles (WIMPs) or 'dark' matter.

  9. The Origin of Neutron Star Kicks

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2000-05-01

    Despite decades of theoretical investigations, our understanding of core-collapse supernovae remains significantly incomplete. Recent observations show that many supernovae are asymmetric and newly-formed neutron stars have large space velocities. I will discuss the physics of different mechanisms for generating asymmetric explosions and pulsar velocities, including hydrodynamically driven, neutrino and magnetically driven kicks. References: D. Lai and Y.-Z. Qian 1998, ApJ, 505, 844. P. Arras and D. Lai 1999, ApJ, 519, 745. P. Arras and D. Lai 1999, Phys. Rev. D60, 043001. D. Lai 1999, "Physics of Neutron Star Kicks", in press (astro-ph/9912522). D. Lai and P. Goldreich 2000, ApJ, in press (astro-ph/9906400). D. Lai 2000, ApJ, in press (astro-ph/0004066). This research is supported by NASA Grants NAG 5-8484 and NAG 5-8356, and by a research fellowship from the Alfred P. Sloan foundation.

  10. FAST FOSSIL ROTATION OF NEUTRON STAR CORES

    SciTech Connect

    Melatos, A.

    2012-12-10

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed {approx}10{sup 3} yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  11. Super-Eddington winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1990-01-01

    Results are presented from a study of winds driven by a super-Eddington rate of energy deposition near the surface of a neutron star, a condition which may develop following a collision between two neutron stars when more than 10 to the 53rd ergs is radiated during a few seconds. A fraction of that energy, perhaps as large as 10 to the 50th ergs, may be transformed into electron-positron pairs and drive a powerful wind. Using a model of the highly super-Eddington wind, the fraction of energy injected into a wind that emerges as gamma rays is estimated. It is shown that it is possible to reach gamma-ray temperatures with the optically thick winds, provided the energy injection rate is sufficiently high.

  12. Fast Fossil Rotation of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Melatos, A.

    2012-12-01

    It is argued that the superfluid core of a neutron star super-rotates relative to the crust, because stratification prevents the core from responding to the electromagnetic braking torque, until the relevant dissipative (viscous or Eddington-Sweet) timescale, which can exceed ~103 yr and is much longer than the Ekman timescale, has elapsed. Hence, in some young pulsars, the rotation of the core today is a fossil record of its rotation at birth, provided that magnetic crust-core coupling is inhibited, e.g., by buoyancy, field-line topology, or the presence of uncondensed neutral components in the superfluid. Persistent core super-rotation alters our picture of neutron stars in several ways, allowing for magnetic field generation by ongoing dynamo action and enhanced gravitational wave emission from hydrodynamic instabilities.

  13. Quasinormal modes of superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gualtieri, L.; Kantor, E. M.; Gusakov, M. E.; Chugunov, A. I.

    2014-07-01

    We study nonradial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasinormal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasinormal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.

  14. Searching for gravitational waves from neutron stars

    NASA Astrophysics Data System (ADS)

    Idrisy, Ashikuzzaman

    In this dissertation we discuss gravitational waves (GWs) and their neutron star (NS) sources. We begin with a general discussion of the motivation for searching for GWs and the indirect experimental evidence of their existence. Then we discuss the various mechanisms through which NS can emit GWs, paying special attention the r-mode oscillations. Finally we end with discussion of GW detection. In Chapter 2 we describe research into the frequencies of r-mode oscillations. Knowing these frequencies can be useful for guiding and interpreting gravitational wave and electromagnetic observations. The frequencies of slowly rotating, barotropic, and non-magnetic Newtonian stars are well known, but subject to various corrections. After making simple estimates of the relative strengths of these corrections we conclude that relativistic corrections are the most important. For this reason we extend the formalism of K. H. Lockitch, J. L. Friedman, and N. Andersson [Phys. Rev. D 68, 124010 (2003)], who consider relativistic polytropes, to the case of realistic equations of state. This formulation results in perturbation equations which are solved using a spectral method. We find that for realistic equations of state the r-mode frequency ranges from 1.39--1.57 times the spin frequency of the star when the relativistic compactness parameter (M/R) is varied over the astrophysically motivated interval 0.110--0.310. Following a successful r-mode detection our results can help constrain the high density equation of state. In Chapter 3 we present a technical introduction to the data analysis tools used in GW searches. Starting from the plane-wave solutions derived in Chapter 1 we develop the F-statistic used in the matched filtering technique. This technique relies on coherently integrating the GW detector's data stream with a theoretically modeled wave signal. The statistic is used to test the null hypothesis that the data contains no signal. In this chapter we also discuss how to

  15. Physics of systems containing neutron stars

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1989-01-01

    The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.

  16. Quasi-static winds from neutron stars

    NASA Technical Reports Server (NTRS)

    Joss, Paul C.; Melia, Fulvio

    1987-01-01

    A series of numerical models is constructed for radiatively driven, quasi-static winds from the surfaces of hot neutron stars. A mathematical technique is devised that in many cases facilitates the integration of the fluid equations in the vicinity of the sonic point, and an improved treatment of radiative transfer is developed that is appropriate to the exotic physical conditions encountered in the models. Boundary conditions which are more realistic than previous ones are used in these models. In agreement with earlier studies, it is found that radiatively driven winds are likely to be directly relevant to the existence of precursors in fast X-ray transients and to apparent radius variations during the course of some type I bursts, and that the presence of such a wind should prevent the bolometric luminosity of a neutron star from exceeding the Eddington limit by more than a small fractional amount. Formulas describing the wind models are presented which are usable as boundary conditions for calculations of the evolution of the deeper, hydrostatic layers of a neutron-star envelope.

  17. Dissipation in relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Gusakov, M. E.; Kantor, E. M.; Chugunov, A. I.; Gualtieri, L.

    2013-01-01

    We analyse damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in Gusakov & Kantor. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f modes, (ii) for radial and p modes such an approximation is poor and (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighbouring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.

  18. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  19. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  20. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  1. A compact neutron scatter camera for field deployment

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metal from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.

  2. Research opportunities with compact accelerator-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  3. Tidal Love numbers of neutron and self-bound quark stars

    SciTech Connect

    Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.

    2010-07-15

    Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shift due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.

  4. NuSTAR results on Ultra-Luminous X-ray sources: black holes or neutron stars?

    NASA Astrophysics Data System (ADS)

    Fuerst, Felix

    2015-04-01

    Ultraluminous X-ray sources (ULXs) are extremely bright, off-nuclear point sources in nearby galaxies. The only process known to power them is a very high accretion rate onto a compact object. If the compact object is similar to those observed in our own galaxy, i.e., a standard stellar remnant, the accretion rate has to exceed the Eddington rate by a factor of 10-100 in a so-called super-Eddington accretion regime. If on the other hand the compact were more massive, ULXs would be the only known evidence for intermediate mass black holes with masses of 100's or 1000's solar masses. Broadband spectral studies of a sample of ULXs, making full use of the hard X-ray sensitivity of the Nuclear Spectroscopic Telescope Array (NuSTAR), are suggestive of super-Eddington accretion. A definitive answer has, however, not yet been reached owing to continued difficulty constraining ULX masses. I will report on recent, multi-epoch NuSTAR observations, which allow us to examine the evolution of these enigmatic sources and their accretion process by studying their time variability and hard X-ray spectrum above 10keV. In a surprising discovery we have recently shown that the ULX M82 X-2 harbors a neutron star, the first evidence for a neutron star in a ULX. I will discuss possible modes of super-Eddington accretion on neutron stars and compare M82 X-2 to known accreting neutron stars in our galaxy. On behalf of the NuSTAR ULX science team led by Fiona Harrison.

  5. Effectively universal behavior of rotating neutron stars in general relativity makes them even simpler than their Newtonian counterparts.

    PubMed

    Pappas, George; Apostolatos, Theocharis A

    2014-03-28

    Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.

  6. From neutron stars to quark stars in mimetic gravity

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  7. Compact, energy EFFICIENT neutron source: enabling technology for various applications

    SciTech Connect

    Hershcovitch, A.; Roser, T.

    2009-12-01

    A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

  8. Beam extraction and delivery at compact neutron sources

    NASA Astrophysics Data System (ADS)

    Mezei, F.

    2016-11-01

    The beam performance of a source of radiation is primarily characterized by its brightness, which remains constant in a conservative force field along the propagation of the beam. The neutron flux at an area with direct view to a homogenous radiation emitting moderator surface will just depend on the solid angle of beam divergence as determined by the moderator size. Recently it was found that by reducing the size of neutron moderators their brightness can be enhanced by a factor in the range of up to 3-6. In direct view of such moderators from sizable distances often required in neutron scattering applications the beam divergence will become reduced. Supermirror based neutron optical guide systems allow us to deliver neutron beam divergences independently of distance from the source. Due to the low radiation fields at compact sources such systems can be placed close to the neutron emitting moderators, a specific advantage and a new design feature. Focusing type neutron guides with phase space acceptance properly matched to the phase space to be delivered over distance can provide for beam delivery with small losses of brightness within a convenient and flexible range of beam parameters.

  9. Measuring neutron star tidal deformability with Advanced LIGO: A Bayesian analysis of neutron star-black hole binary observations

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald P.

    2017-02-01

    The pioneering discovery of gravitational waves (GWs) by Advanced LIGO has ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observation, of which neutron star-black hole (NSBH) binaries form an important subset. GWs from NSBH sources carry signatures of (a) the tidal distortion of the neutron star by its companion black hole during inspiral, and (b) its potential tidal disruption near merger. In this paper, we present a Bayesian study of the measurability of neutron star tidal deformability ΛNS∝(R /M )NS5 using observation(s) of inspiral-merger GW signals from disruptive NSBH coalescences, taking into account the crucial effect of black hole spins. First, we find that if nontidal templates are used to estimate source parameters for an NSBH signal, the bias introduced in the estimation of nontidal physical parameters will only be significant for loud signals with signal-to-noise ratios greater than ≃30 . For similarly loud signals, we also find that we can begin to put interesting constraints on ΛNS (factor of 1-2) with individual observations. Next, we study how a population of realistic NSBH detections will improve our measurement of neutron star tidal deformability. For an astrophysically likely population of disruptive NSBH coalescences, we find that 20-35 events are sufficient to constrain ΛNS within ±25 %- 50 % , depending on the neutron star equation of state. For these calculations we assume that LIGO will detect black holes with masses within the astrophysical mass gap. In case the mass gap remains preserved in NSBHs detected by LIGO, we estimate that approximately 25% additional detections will furnish comparable ΛNS measurement accuracy. In both cases, we find that it is the loudest 5-10 events that provide most of the tidal information, and not the combination of tens of low-SNR events, thereby facilitating targeted numerical-GR follow-ups of NSBHs. We find these results

  10. System Construction of the Stilbene Compact Neutron Scatter Camera

    SciTech Connect

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.; Throckmorton, Daniel J.; Helm, Jonathan Ivers

    2016-10-01

    This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).

  11. Hans A. Bethe Prize: Neutron Stars and Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2015-04-01

    Core-collapse supernovae lead to the formation of neutron stars, and both are sensitive to the dense matter equation of state. Hans Bethe first recognized that the matter in the collapsing core of a massive star has a relatively low entropy which prevents nuclear dissociation until nuclei merge near the nuclear saturation density. This recognition means that collapse continues until the core exceeds the saturation density. This prediction forms the foundation for modern simulations of supernovae. These supernovae sample matter up to about twice nuclear saturation density, but neutron stars are sensitive to the equation of state both near the saturation density and at several times higher densities. Two important recent developments are the discovery of two-solar mass neutron stars and refined experimental determinations of the behavior of the symmetry energy of nuclear matter near the saturation density. Combined with the assumption of causality, they imply that the radii of observed neutron stars are largely independent of their mass, and that this radius is in the range of 11 to 13 km. These theoretical results are not only consistent with expectations from theoretical studies of pure neutron matter, but also accumulated observations of both bursting and cooling neutron stars. In the near future, new pulsar timing data, which could lead to larger measured masses as well as measurements of moments of inertia, X-ray observations, such as from NICER, of bursting and other sources, and gravitational wave observations of neutron stars in merging compact binaries, will provide important new constraints on neutron stars and the dense matter equation of state. DOE DE-FG02-87ER-40317.

  12. Nonequilibrium Dynamics and the Evolution of Superfluid Neutron Stars

    NASA Astrophysics Data System (ADS)

    Sauls, Jame

    2016-07-01

    The interior crust and the liquid core of neutron stars are predicted to be a mixture of neutron and proton superfluids and a liquid of relativistic electrons and muons. Quantized vortices in the neutron superfluid and quantized flux lines in the proton superconductor are topological defects of these hadronic condensates. I discuss the roles of nucleation, interaction and evolution of topological defects under non-equilibrium conditions in the context of our current understanding and models of the rotational dynamics of pulsars, as well as thermal and magnetic field evolution of neutron stars. I include some speculative ideas on possibile turbulent vortex states in neutron star interiors.

  13. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  14. Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2016-12-01

    Late inspiral and merger phases of binary neutron stars are the valuable new experimental fields for exploring nuclear physics because (i) gravitational waves from them will bring information for the neutron-star equation of state and (ii) the matter ejected after the onset of the merger could be the main site for the r-process nucleosynthesis. We will summarize these aspects of the binary neutron stars, describing the current understanding for the merger process of binary neutron stars that has been revealed by numerical-relativity simulations.

  15. Implications of Intense Magnetic Fields on Neutron-Star Physics

    NASA Astrophysics Data System (ADS)

    Heyl, Jeremy Samuel

    1998-08-01

    In this thesis, I will examine how intense magnetic fields influence physical processes in the vicinity of and inside neutron stars. An intense magnetic field can have dramatic effects on the propagation of electromagnetic radiation and the structure of a dipole field. We first derive a compact analytic form for the effective Lagrangian of quantum electrodynamics (QED) with an external field. An intense field modifies the propagators of the virtual electron-positron pairs formed as a photon travels. We first treat the effects of QED as an effective magnetic permeability and electric permittivity. We derive compact expressions for the index of refraction of a low-frequency photon traveling through an electric or magnetic field. We examine the one-loop corrections to a macroscopic magnetic dipole and find that the nonlinear paramagnetic properties of the vacuum result in dipole, hexapole, 2n-pole moments which are a function of distance from the dipole. The speed of light in a magnetized vacuum is a function of the strength of the fields. We propose an experiment using the existing LIGO testbed interferometer which can measure this effect with a signal-to-noise ratio of twenty. We expect an intense magnetic field to affect the propagation of an electromagnetic wave. We treat the electromagnetic field as a relativistic fluid and derive the equations for the characteristics. The characteristics of the wave begin to cross after a number of wavelengths. A shock forms. The energy of the wave dissipates into electron-positron pairs shortly thereafter. We next discuss how an intense magnetic field affects atomic structure. We find that the bound electron shields the nucleus quite effectively and that the cross section for nuclear fusion reactions is dramatically increased. We then develop both an analytic and a numerical technique to study the properties of simple atoms and molecules in an intense magnetic field. We increase the scale from atomic physics to solid

  16. 2nd Iberian Nuclear Astrophysics Meeting on Compact Stars

    NASA Astrophysics Data System (ADS)

    Perez-Garcia, M. Angeles; Pons, Jose; Albertus, C.

    2012-02-01

    ORGANIZING COMMITTEE Dr M Ángeles Pérez-García (Área Física Teórica-Universidad de Salamanca & IUFFYM) Dr J A Miralles (Universidad de Alicante) Dr J Pons (Universidad de Alicante) Dr C Albertus (Área Física Nuclear-Universidad de Salamanca & IUFFYM) Dr F Atrio (Área Física Teórica-Universidad de Salamanca & IUFFYM) PREFACE The second Iberian Nuclear Astrophysics meeting was held at the University of Salamanca, Spain on 22-23 September 2011. This volume contains most of the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Ibérico de Compstar, held at the University of Coimbra, Portugal in 2010. The main purpose of this meeting was to strengthen the scientific collaboration between the participants of the Iberian and the rest of the southern European branches of the European Nuclear Astrophysics network, formerly, COMPSTAR. This ESF (European Science Foundation) supported network has been crucial in helping to make a broader audience for the the most interesting and relevant research lines being developed currently in Nuclear Astrophysics, especially related to the physics of neutron stars. It is indeed important to emphasize the need for a collaborative approach to the rest of the scientific communities so that we can reach possible new members in this interdisciplinary area and as outreach for the general public. The program of the meeting was tailored to theoretical descriptions of the physics of neutron stars although some input from experimental observers and other condensed matter and optics areas of interest was also included. The main scientific topics included: Magnetic fields in compact stars Nuclear structure and in-medium effects in nuclear interaction Equation of state: from nuclear matter to quarks Importance of crust in the evolution of neutron stars Computational simulations of collapsing dense objects Observational phenomenology In particular, leading

  17. Neutron star models in frames of f (R) gravity

    SciTech Connect

    Astashenok, Artyom V.

    2009-01-01

    Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.

  18. Probing Neutron Star Evolution with Gamma Rays

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph A. M. J.

    1996-02-01

    The research sponsored by this grant was conducted in two fields of high-energy astrophysics: gamma-ray bursts and evolution of neutron stars. It is unknown at this time whether they are related. The work performed in each area is discussed followed by a full list of publications supported by the grant. My research (with E. Fenimore, L. Lubin, B. Paczyiiski, and A. Ulmer) has focussed on devising tests that could distinguish between BATSE and galactic-halo distance scales using the available data. In the first instance, the issue was whether the early BATSE peak flux distribution could be used to extract more than just a slope of the log N(greater than P) distribution, and whether it joined smoothly to the steeper peak flux distribution of bright bursts. To this end, we analysed the peak flux distribution for the presence of a change in slope. This was done both by fitting models with a core radius to see whether a significant value for it could be found, and by developing a completely model-independent test to search for slope changes in arbitrary distributions that are nearly power laws. A slope change was marginally detected in the first-year BATSE data. Good progress has been made in understanding the evolution of neutron stars and their magnetic fields. Having shown in earlier work that magnetic fields in some neutron stars, particularly Her X-1, do not decay spontaneously on million-year time scales, we set out to check whether such spontaneous decay was needed in isolated radio pulsars, as claimed by many. We found that it is not; rather long decay times or no decay are preferred. Since there are neutron stars with low magnetic fields, one must conclude that there is something in their past that distinguishes them from most pulsars. These so-called recycled pulsars are in binaries much more often than normal pulsars. My research concentrates on the class of scenarios in which the recycled pulsars are initially the same as ordinary high-field radio pulsars

  19. Statistical theory of thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.

    2015-02-01

    Thermal evolution of neutron stars is known to depend on the properties of superdense matter in neutron star cores. We suggest a statistical analysis of isolated cooling middle-aged neutron stars and old transiently accreting quasi-stationary neutron stars warmed up by deep crustal heating in low-mass X-ray binaries. The method is based on simulations of the evolution of stars of different masses and on averaging the results over respective mass distributions. This gives theoretical distributions of isolated neutron stars in the surface temperature-age plane and of accreting stars in the photon thermal luminosity-mean mass accretion rate plane to be compared with observations. This approach permits to explore not only superdense matter but also the mass distributions of isolated and accreting neutron stars. We show that the observations of these stars can be reasonably well explained by assuming the presence of the powerful direct Urca process of neutrino emission in the inner cores of massive stars, introducing a slight broadening of the direct Urca threshold (for instance, by proton superfluidity), and by tuning mass distributions of isolated and accreted neutron stars.

  20. The Design of a Compact Rfq Neutron Generator

    NASA Astrophysics Data System (ADS)

    Hamm, R. W.; Becker, R.

    2014-02-01

    The output and target lifetime of a conventional electrostatic neutron generator are limited by the voltage stand-off capability and the acceleration of molecular species from the ion source. As an alternative, we suggest that the deuterium beam achievable from a compact high intensity ECR source can be injected directly into a compact RFQ to produce a more efficient compact neutron production system. Only the d+ ions are accelerated by the RFQ, which can also produce much higher output energies than electrostatic systems, resulting in a higher neutron output with a longer target lifetime. The direct injection of the beam makes the system more compact than the multielement, electrostatic systems typically used for extraction of the beam and subsequent transport and matching into the RFQ. We have designed and optimized a combined extraction/matching system for a compact high current deuterium ECR ion source injected into a high frequency RFQ structure, allowing a beam of about 12 mA of d+ ions to be injected at a modest ion source voltage of 25 kV. The end wall of the RFQ resonator serves as the ground electrode for the ion source, resembling DPI (direct plasma injection). For this design, we used the features of the code IGUN to take into account the electrostatic field between the ion source and the RFQ end wall, the stray magnetic field of the ECR source, the defocusing space charge of the low energy deuteron beam, and the rf focusing in the fringe field between the RFQ vanes and the RFQ flange.

  1. Neutron star radii, universal relations, and the role of prior distributions

    DOE PAGES

    Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.

    2016-02-02

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less

  2. Neutron star radii, universal relations, and the role of prior distributions

    SciTech Connect

    Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.

    2016-02-02

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.

  3. Phase transition and properties of a compact star

    SciTech Connect

    Sharma, B. K.; Panda, P. K.; Patra, S. K.

    2007-03-15

    We investigate the phase transition to a deconfined phase and the consequences in the formation of neutron stars. We use the recently proposed effective-field-theory-motivated relativistic mean-field theory for the hadrons and the MIT bag model and color-flavor locked (CFL) phase for the quark matter to get the appropriate equation of state. The properties of the stars are then calculated. The differences between unpaired and CFL quark matter are discussed.

  4. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  5. Nonthermal accretion disk models around neutron stars

    NASA Technical Reports Server (NTRS)

    Tavani, M.; Liang, Edison P.

    1994-01-01

    We consider the structure and emission spectra of nonthermal accretion disks around both strongly and weakly magnetized neutron stars. Such disks may be dissipating their gravitational binding energy and transferring their angular momentum via semicontinuous magnetic reconnections. We consider specifically the structure of the disk-stellar magnetospheric boundary where magnetic pressure balances the disk pressure. We consider energy dissipation via reconnection of the stellar field and small-scale disk turbulent fields of opposite polarity. Constraints on the disk emission spectrum are discussed.

  6. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  7. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  8. Sound Velocity Bound and Neutron Stars

    SciTech Connect

    Bedaque, Paulo; Steiner, Andrew W.

    2015-01-21

    A conjecture that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by sqrt(3). Simple arguments support this bound in nonrelativistic and/or weakly coupled theories. Moreover, the bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. Here, we point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at low densities is in strong tension with this bound.

  9. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  10. Magneto-thermal evolution of neutron stars

    NASA Astrophysics Data System (ADS)

    Pons, J. A.; Miralles, J. A.; Geppert, U.

    2009-03-01

    Context: The presence of magnetic fields in the crust of neutron stars (NSs) causes a non-spherically symmetric temperature distribution. The strong temperature dependence of the magnetic diffusivity and thermal conductivity, together with the heat generated by magnetic dissipation, couple the magnetic and thermal evolution of NSs, which can no longer be formulated as separated one-dimensional problems. Aims: We study the mutual influence of thermal and magnetic evolution in a neutron star's crust in axial symmetry. Taking realistic microphysical inputs into account, we find the heat released by Joule effect consistent with the circulation of currents in the crust, and we incorporate its effects in 2D cooling calculations. Methods: We solve the induction equation numerically using a hybrid method (spectral in angles, but a finite-differences scheme in the radial direction), coupled to the thermal diffusion equation. To improve the boundary conditions, we also revisit the envelope stationary solutions updating the well known T_b-T_s-relations to include the effect of 2D heat transfer calculations and new microphysical inputs. Results: We present the first longterm 2D simulations of the coupled magneto-thermal evolution of neutron stars. This substantially improves previous works in which a very crude approximation in at least one of the parts (thermal or magnetic diffusion) has been adopted. Our results show that the feedback between Joule heating and magnetic diffusion is strong, resulting in a faster dissipation of the stronger fields during the first 10^5-106 years of an NS's life. As a consequence, all neutron stars born with fields over a critical value (>5 × 1013 G) reach similar field strengths (≈2-3 × 1013 G) at late times. Irrespective of the initial magnetic field strength, the temperature becomes so low after 106 years that the magnetic diffusion timescale becomes longer than the typical ages of radiopulsars, thus apparently resulting in no

  11. Neutron star binaries, pulsars and burst sources

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.

    1981-01-01

    Unresolved issues involving neutron star binaries, pulsars, and burst sources are described. Attention is drawn to the types of observations most likely to resolve them. Many of these observations are likely to be carried out during the next decade by one or more missions that have been approved or proposed. Flux measurements with an imaging detector and broad-band spectroscopic studies in the energy range 30-150 keV are discussed. The need for soft X-ray and X-ray observations with an instrument which has arcminute angular resolution and an effective area substantially greater than of ROSAT or EXOSAT is also discussed.

  12. A SECOND NEUTRON STAR IN M4?

    SciTech Connect

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a {approx}20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar).

  13. Colored condensates deep inside neutron stars

    NASA Astrophysics Data System (ADS)

    Blaschke, David

    2014-09-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  14. Spectral Models of Neutron Star Magnetospheres

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1997-01-01

    We revisit the association of unidentified Galactic plane EGRET sources with tracers of recent massive star formation and death. Up-to-date catalogs of OB associations, SNR's, young pulsars, H2 regions and young open clusters were used in finding counterparts for a recent list of EGRET sources. It has been argued for some time that EGRET source positions are correlated with SNR's and OB associations as a class; we extend such analyses by finding additional counterparts and assessing the probability of individual source identifications. Among the several scenarios relating EGRET sources to massive stars, we focus on young neutron stars as the origin of the gamma-ray emission. The characteristics of the candidate identifications are compared to the known gamma-ray pulsar sample and to detailed Galactic population syntheses using our outer gap pulsar model of gamma-ray emission. Both the spatial distribution and luminosity function of the candidates are in good agreement with the model predictions; we infer that young pulsars can account for the bulk of the excess low latitude EGRET sources. We show that with this identification, the gamma-ray point sources provide an important new window into the history of recent massive star death in the solar neighborhood.

  15. The EOS of neutron matter, and the effect of Lambda hyperons to neutron star structure

    SciTech Connect

    Gandolfi, Stefano

    2015-01-13

    The following topics are addressed: the model and the method; equation of state of neutron matter, role of three-neutron force; symmetry energy; Λ-hypernuclei; Λ-neutron matter; and neutron star structure. In summary, quantum Monte Carlo methods are useful to study nuclear systems in a coherent framework; the three-neutron force is the bridge between Esym and neutron star structure; and neutron star observations are becoming competitive with experiments. Λ-nucleon data are very limited, but ΛNN is very important. The role of Λ in neutron stars is far from understood; more ΛN data are needed. The author's conclusion: We cannot conclude anything with present models.

  16. A compact stilbene crystal neutron spectrometer for EAST D-D plasma neutron diagnostics

    SciTech Connect

    Zhang Xing; Yuan Xi; Xie Xufei; Chen Zhongjing; Peng Xingyu; Chen Jinxiang; Zhang Guohui; Li Xiangqing; Fan Tieshuan; Zhong Guoqiang; Hu Liqun; Wan Baonian

    2013-03-15

    A new compact stilbene crystal neutron spectrometer has been investigated and applied in the neutron emission spectroscopy on the EAST tokamak. A new components analysis method is presented to study the anisotropic light output in the stilbene crystal detector. A Geant4 code was developed to simulate the neutron responses in the spectrometer. Based on both the optimal light output function and the fitted pulse height resolution function, a reliable neutron response matrix was obtained by Geant4 simulations and validated by 2.5 MeV and 14 MeV neutron measurements at a 4.5 MV Van de Graaff accelerator. The spectrometer was used to diagnose the ion temperature in plasma discharges with lower hybrid wave injection and ion cyclotron resonance heating on the EAST tokamak.

  17. Does mass accretion lead to field decay in neutron stars?

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.

    1989-01-01

    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  18. Gluon Vortices and Induced Magnetic Field in Compact Stars

    SciTech Connect

    Ferrer, Efrain J.

    2007-10-26

    The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.

  19. Compact stars with quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Ngubelanga, Sifiso A.; Maharaj, Sunil D.; Ray, Subharthi

    2015-05-01

    We provide new exact solutions to the Einstein-Maxwell system of equations for matter configurations with anisotropy and charge. The spacetime is static and spherically symmetric. A quadratic equation of state is utilised for the matter distribution. By specifying a particular form for one of the gravitational potentials and the electric field intensity we obtain new exact solutions in isotropic coordinates. In our general class of models, an earlier model with a linear equation of state is regained. For particular choices of parameters we regain the masses of the stars PSR J1614-2230, 4U 1608-52, PSR J1903+0327, EXO 1745-248 and SAX J1808.4-3658. A comprehensive physical analysis for the star PSR J1903+0327 reveals that our model is reasonable.

  20. Microscopic vortex velocity and implications for neutron star dynamics

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, Mehmet Ali

    2016-07-01

    Rotational dynamics of a neutron star is governed by the distribution and motion of vortex lines within the neutron superfluid. Interaction of the vortex lines with the ambient matter plays an important role in the glitches, thermal evolution and magnetic field evolution of pulsars. Thus, correctly treating the vortex motion both in the inner crust and in the outer core of neutron stars is a key ingredient in modeling a great variety of observational phenomena of pulsars. In this work we outline the first principles to calculate the microscopic vortex velocity in the inner crust as well as in the outer core. Then we discuss some implications for neutron star's dynamics.

  1. Neutron star accretion and the neutrino fireball

    SciTech Connect

    Colgate, S.A.; Herant, M.E.; Benz, W.

    1991-11-26

    The mixing necessary to explain the ``Fe`` line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino ``fireball,`` a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion.

  2. Gravitomagnetic effect in magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debarati; Chakraborty, Chandrachur; Bandyopadhyay, Debades

    2017-01-01

    Rotating bodies in General Relativity produce frame dragging, also known as the gravitomagnetic effect in analogy with classical electromagnetism. In this work, we study the effect of magnetic field on the gravitomagnetic effect in neutron stars with poloidal geometry, which is produced as a result of its rotation. We show that the magnetic field has a non-negligible impact on frame dragging. The maximum effect of the magnetic field appears along the polar direction, where the frame-dragging frequency decreases with increase in magnetic field, and along the equatorial direction, where its magnitude increases. For intermediate angles, the effect of the magnetic field decreases, and goes through a minimum for a particular angular value at which magnetic field has no effect on gravitomagnetism. Beyond that particular angle gravitomagnetic effect increases with increasing magnetic field. We try to identify this `null region' for the case of magnetized neutron stars, both inside and outside, as a function of the magnetic field, and suggest a thought experiment to find the null region of a particular pulsar using the frame dragging effect.

  3. How loud are neutron star mergers?

    NASA Astrophysics Data System (ADS)

    Bernuzzi, Sebastiano; Radice, David; Ott, Christian D.; Roberts, Luke F.; Mösta, Philipp; Galeazzi, Filippo

    2016-07-01

    We present results from the first large parameter study of neutron star mergers using fully general relativistic simulations with finite-temperature microphysical equations of state and neutrino cooling. We consider equal and unequal-mass binaries drawn from the galactic population and simulate each binary with three different equations of state. Our focus is on the emission of energy and angular momentum in gravitational waves in the postmerger phase. We find that the emitted gravitational-wave energy in the first ˜10 ms of the life of the resulting hypermassive neutron star (HMNS) is about twice the energy emitted over the entire inspiral history of the binary. The total radiated energy per binary mass is comparable to or larger than that of nonspinning black hole inspiral-mergers. About 0.8-2.5% of the binary mass-energy is emitted at kHz frequencies in the early HMNS evolution. We find a clear dependence of the postmerger gravitational wave emission on binary configuration and equation of state and show that it can be encoded as a broad function of the binary tidal coupling constant κ2T. Our results also demonstrate that the dimensionless spin of black holes resulting from subsequent HMNS collapse are limited to ≲0.7 - 0.8 . This may significantly impact the neutrino pair annihilation mechanism for powering short gamma-ray bursts (sGRB).

  4. Matter effects on binary neutron star waveforms

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn S.; Baiotti, Luca; Creighton, Jolien D. E.; Friedman, John L.; Giacomazzo, Bruno; Kyutoku, Koutarou; Markakis, Charalampos; Rezzolla, Luciano; Shibata, Masaru; Taniguchi, Keisuke

    2013-08-01

    Using an extended set of equations of state and a multiple-group multiple-code collaborative effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the measurability of matter effects in neutron-star binaries. We vary two parameters of a parametrized piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find that, to within the accuracy of the simulations, the departure of the waveform from point-particle (or spinless double black-hole binary) inspiral increases monotonically with Λ and changes in the EOS that did not change Λ are not measurable. We estimate with two methods the minimal and expected measurability of Λ in second- and third-generation gravitational-wave detectors. The first estimate using numerical waveforms alone shows that two EOSs which vary in radius by 1.3 km are distinguishable in mergers at 100 Mpc. The second estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral and estimates that the same EOSs are distinguishable in mergers at 300 Mpc. We calculate systematic errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency at which such effects would interfere with template-based searches.

  5. Geminga: A cooling superfluid neutron star

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1994-01-01

    We compare the recent temperature estimate for Geminga with neutron star cooling models. Because of its age (approximately 3.4 x 10(exp 5) yr), Geminga is in the photon cooling era. We show that its surface temperature (approximately 5.2 x 10(exp 5) K) can be understood by both types of neutrino cooling scenarios, i.e., slow neutrino cooling by the modified Urca process or fast neutrino cooling by the direct Urca process or by some exotic matter, and thus does not allow us to discriminate between these two competing schemes. However, for both types of scenarios, agreement with the observed temperature can only be obtained if baryon pairing is present in most, if not all, of the core of the star. Within the slow neutrino cooling scenario, early neutrino cooling is not sufficient to explain the observed low temperature, and extensive pairing in the core is necessary to reduce the specific heat and increase the cooling rate in the present photon cooling era. Within all the fast neutrino cooling scenarios, pairing is necessary throughout the whole core to control the enormous early neutrino emission which, without pairing suppression, would result in a surface temperature at the present time much lower than observed. We also comment on the recent temperature estimates for PSR 0656+14 and PSR 1055-52, which pertain to the same photon cooling era. If one assumes that all neutron stars undergo fast neutrino cooling, then these two objects also provide evidence for extensive baryon pairing in their core; but observational uncertainties also permit a more conservative interpretation, with slow neutrino emission and no pairing at all. We argue though that observational evidence for the slow neutrino cooling model (the 'standard' model) is in fact very dim and that the interpretation of the surface temperature of all neutron stars could be done with a reasonable theoretical a priori within the fast neutrino cooling scenarios only. In this case, Geminga, PSR 0656+14, and PSR

  6. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  7. Hard X-ray spectra of neutron stars and black hole candidates

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.

    1997-01-01

    The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.

  8. Evidence for a Broad Relativistic Iron Line from the Neutron Star LMXB Ser X-1

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2007-01-01

    We report on an analysis of XMM-Newton data from the neutron star low mass X-ray binary (LMXB) Serpens X-1 (Ser X-1). Spectral analysis of EPIC PN data indicates that the previously known broad iron Ka emission line in this source has a significantly skewed structure with a moderately extended red wing. The asymmetric shape of the line is well described with the laor and diskline models in XSPEC, which strongly supports an inner accretion disk origin of the line. To our knowledge this is the first strong evidence for a relativistic line in a neutron star LMXB. This finding suggests that the broad lines seen in other neutron star LMXBs likely originate from the inner disk as well. Detailed study of such lines opens up a new way to probe neutron star parameters and their strong gravitational fields. The laor model describes the line from Ser X-1 somewhat better than diskline, and suggests that the inner accretion disk radius is less than 6GM/c(exp 2). This is consistent with the weak magnetic fields of LMXBs, and may point towards a high compactness and rapid spin of the neutron star. Finally, the inferred source inclination angle in the approximate range 50-60 deg is consistent with the lack of dipping from Ser X-1.

  9. Neutron star mass limit at 2M⊙ supports the existence of a CEP

    NASA Astrophysics Data System (ADS)

    Alvarez-Castillo, D.; Benic, S.; Blaschke, D.; Han, Sophia; Typel, S.

    2016-08-01

    We point out that the very existence of a "horizontal branch" in the mass-radius characteristics for neutron stars indicates a strong first-order phase transition and thus supports the existence of a critical endpoint (CEP) of first-order phase transitions in the QCD phase diagram. This branch would sample a sequence of hybrid stars with quark matter core, leading to the endpoint of stable compact star configurations with the highest possible baryon densities. Since we know of the existence of compact stars with 2 M_{⊙}, this hypothetical branch has to lie in the vicinity of this mass value, if it exists. We report here a correlation between the maximal radius of the horizontal branch and the pressure at the onset of hadron-to-quark matter phase transition, which is likely to be a universal quantity of utmost relevance to the upcoming experiments with heavy-ion collisions at NICA and FAIR.

  10. Star Formation and Environment in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Iglesias-Páramo, J.; Vílchez, J. M.

    H &alpha luminosities are presented in order to study the Star Formation Rates (SFRs) of a sample of galaxies in compact groups from Hickson's (1982) catalogue. Although the comparison of the SFRs of the disk galaxies in our sample with those of a sample of field galaxies yielded no difference between the average SFRs for disk galaxies in compact groups and in the field, environmental effects seem to influence the H &alpha luminosities of late and early-type galaxies in compact groups. No relationship was found between the total normalized H &alpha luminosities of the groups and some dynamical parameters, indicating that the dynamical state of the group does not influence the SFR of the group. The lack of dominant interaction induced starbursts in our sample is compatible with a scenario for compact groups of galaxies in which the dark matter of the group is arranged in a common halo, thereby preventing a fast collapse of the galaxies.

  11. Anisotropic compact stars in Karmarkar spacetime

    NASA Astrophysics Data System (ADS)

    Newton Singh, Ksh.; Pant, Neeraj; Govender, M.

    2017-01-01

    We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of Class One reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the grr metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We use this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSR B0943+10 and XTE J1739-285.

  12. Uncovering the Properties of Young Neutron Stars and their Surrounding Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Slane, Patrick O.

    2004-01-01

    This five-year grant involves the study of young neutron stars, particularly those in supernova remnants.In the fourth year of this program, the following studies have been undertaken in support of this effort: 1.CTA 1: Following up on our ROSAT and ASCA studies of this SNR, we obtained observations with the XMM-Newton observatory to investigate the central compact source and surrounding nebula. 2. 3C 58: Based upon our earlier Chandra observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. 3. G347.3 - - 0.5: Our Chandra observations of portions of this SNR were aimed at studying the nonthermal X-ray emission from the remnant shell. 4. Chandra Survey for Compact Objects in Supernova Remnants: We have formed a collaboration to carry out an extensive search for young neutron stars in nearby supernova remnants. Using X-ray observations from an approved Chandra Large Project, as well as from additional approved XMM observations, we are investigating a volume-limited sample of SNRs for which there is currently no evidence of associated neutron stars.

  13. Exploring tidal effects of coalescing binary neutron stars in numerical relativity. II. Long-term simulations

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Okawa, Hirotada; Shibata, Masaru

    2015-03-01

    We perform new long-term (15-16 orbits) simulations of coalescing binary neutron stars in numerical relativity using an updated Einstein equation solver, employing low-eccentricity initial data, and modeling the neutron stars by a piecewise polytropic equation of state. A convergence study shows that our new results converge more rapidly than the third order, and using the determined convergence order, we construct an extrapolated waveform for which the estimated total phase error should be less than one radian. We then compare the extrapolated waveforms with those calculated by the latest effective-one-body (EOB) formalism in which the so-called tidal deformability, higher post-Newtonian corrections, and gravitational self-force effects are taken into account. We show that for a binary of compact neutron stars with their radius 11.1 km, the waveform by the EOB formalism agrees quite well with the numerical waveform so that the total phase error is smaller than one radian for the total phase of ˜200 radian up to the merger. By contrast, for a binary of less compact neutron stars with their radius 13.6 km, the EOB and numerical waveforms disagree with each other in the last few wave cycles, resulting in the total phase error of approximately three radian.

  14. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  15. Compact stars in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Rahaman, Farook; Guha, B. K.; Ray, Saibal

    2016-12-01

    In the present paper we generate a set of solutions describing the interior of a compact star under f(R,T) theory of gravity which admits conformal motion. An extension of general relativity, the f(R,T) gravity is associated to Ricci scalar R and the trace of the energy-momentum tensor T. To handle the Einstein field equations in the form of differential equations of second order, first of all we adopt the Lie algebra with conformal Killing vectors (CKV) which enable one to get a solvable form of such equations and second we consider the equation of state (EOS) p=ω ρ with 0<ω <1 for the fluid distribution consisting of normal matter, ω being the EOS parameter. We therefore analytically explore several physical aspects of the model to represent behavior of the compact stars such as—energy conditions, TOV equation, stability of the system, Buchdahl condition, compactness and redshift. It is checked that the physical validity and the acceptability of the present model within the specified observational constraint in connection to a dozen of the compact star candidates are quite satisfactory.

  16. Cryocup - Compact spherical neutron polarimetry device for small angle measurement

    NASA Astrophysics Data System (ADS)

    Wang, Tianhao

    In my thesis I describe my research work of developing a compact device for Spherical Neutron Polarimetry (SNP) measurements at small neutron scattering angles. The thesis first introduced the purpose of this research project, which is developing an easy to use and maintain version of an advanced neutron experiment technique (SNP). After the introduction, the design principle and construction detail of the prototype device is demonstrated. The design principle is based on our finite element simulation of the device's magnetic field profile, and is later verified by the performance test experiment. The prototype device is tested at the SESAME neutron beamline at Indiana University and the HB-2D beamline at Oak Ridge National laboratory. The performance test data are analyzed and proof that the design is successful and the prototype is capable of perform accurate SNP measurement. Based on the test result, the prototype device is utilized to perform SNP measurement on two types of magnetic film sample: Permalloy and Metglas. Combined with other characterization method such as SQUID and MFM, I study the magnetization of these two samples both at zero magnetic field environment and in external field. The SNP data provided by the prototype device is discussed in the thesis and provide detailed information about the magnetization, which is also not accessible through other method. In the end, the possible improvement and the future application of the device is discussed.

  17. A compact neutron generator using a field ionization source.

    PubMed

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  18. Slowly rotating neutron and strange stars in R{sup 2} gravity

    SciTech Connect

    Staykov, Kalin V.; Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kostas.kokkotas@uni-tuebingen.de

    2014-10-01

    In the present paper we investigate self-consistently slowly rotating neutron and strange stars in R-squared gravity with Lagrangian f(R) = R + aR{sup 2}, where a is a parameter. For this purpose we first derive the equations describing the structure of the slowly rotating compact stars in f(R)-gravity and then simultaneously solve numerically the exterior and the interior problem. The structure of the slowly rotating neutron stars is studied for two different hadronic equations of state and a strange matter equation of state. The moment of inertia and its dependence on the stellar mass and the R-squared gravity parameter a is also examined in details. The numerical results show that the neutron star moment of inertia can be up to 30% larger compared to the corresponding general relativistic models. This is much higher than the change in the maximum mass induced by R-squared gravity and is beyond the EOS uncertainty. In this way the future observations of the moment of inertia of compact stars could allow us to distinguish between general relativity and f(R) gravity, and more generally to test the strong field regime of gravity.

  19. Superfluid heat conduction and the cooling of magnetized neutron stars

    SciTech Connect

    Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi; Aguilera, Deborah N

    2008-01-01

    We report on a new mechanism for heat conduction in the neutron star crust. We find that collective modes of superftuid neutron matter, called superfiuid phonons (sPhs), can influence heat conduction in magnetized neutron stars. They can dominate the heat conduction transverse to magnetic field when the magnetic field B {approx}> 10{sup 13} C. At density p {approx_equal} 10{sup 12}--10{sup 14} g/cm{sup 3} the conductivity due to sPhs is significantly larger than that due to lattice phonons and is comparable to electron conductivity at when temperature {approx_equal} 10{sup 8} K. This new mode of heat conduction can limit the surface anisotropy in highly magnetized neutron stars. Cooling curves of magnetized neutron stars with and without superfluid heat conduction show observationally discernible differences.

  20. Rotational and magnetic field instabilities in neutron stars

    SciTech Connect

    Kokkotas, Kostas D.

    2014-01-14

    In this short review we present recent results on the dynamics of neutron stars and their magnetic fields. We discuss the progress that has been made, during the last 5 years, in understanding the rotational instabilities with emphasis to the one due to the f-mode, the possibility of using gravitational wave detection in constraining the parameters of neutron stars and revealing the equation of state as well as the detectability of gravitational waves produced during the unstable phase of a neutron star’s life. In addition we discuss the dynamics of extremely strong magnetic fields observed in a class of neutron stars (magnetars). Magnetic fields of that strength are responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars. Furthermore, we present our results from the study of such violent phenomena in association with the emission of gravitational radiation.

  1. RELATIONS BETWEEN NEUTRON-STAR PARAMETERS IN THE HARTLE-THORNE APPROXIMATION

    SciTech Connect

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal; Berti, Emanuele E-mail: dpsaltis@email.arizona.edu E-mail: berti@phy.olemiss.edu

    2013-11-01

    Using stellar structure calculations in the Hartle-Thorne approximation, we derive analytic expressions connecting the ellipticity of the stellar surface to the compactness, the spin angular momentum, and the quadrupole moment of the spacetime. We also obtain empirical relations between the compactness, the spin angular momentum, and the spacetime quadrupole. Our formulae reproduce the results of numerical calculations to within a few percent and help reduce the number of parameters necessary to model the observational appearance of moderately spinning neutron stars. This is sufficient for comparing theoretical spectroscopic and timing models to observations that aim to measure the masses and radii of neutron stars and to determine the equation of state prevailing in their interiors.

  2. Hall Effect in Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, K. N.; Cumming, A.

    2014-08-01

    The crust of Neutron Stars can be approximated by a highly conducting solid crystal lattice. The evolution of the magnetic field in the crust is mediated through Hall effect, namely the electric current is carried by the free electrons of the lattice and the magnetic field lines are advected by the electron fluid. Here, we present the results of a time-dependent evolution code which shows the effect Hall drift has in the large-scale evolution of the magnetic field. In particular we link analytical predictions with simulation results. We find that there are two basic evolutionary paths, depending on the initial conditions compared to Hall equilibrium. We also show the effect axial symmetry combined with density gradient have on suppressing turbulent cascade.

  3. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    SciTech Connect

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  4. Model Atmospheres for X-Ray Bursting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  5. Neutron star dynamos and the origins of pulsar magnetism

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Duncan, Robert C.

    1993-01-01

    Neutron star convection is a transient phenomenon and has an extremely high magnetic Reynolds number. In this sense, a neutron star dynamo is the quintessential fast dynamo. The convective motions are only mildly turbulent on scales larger than the approximately 100 cm neutrino mean free path, but the turbulence is well developed on smaller scales. Several fundamental issues in the theory of fast dynamos are raised in the study of a neutron star dynamo, in particular the possibility of dynamo action in mirror-symmetric turbulence. It is argued that in any high magnetic Reynolds number dynamo, most of the magnetic energy becomes concentrated in thin flux ropes when the field pressure exceeds the turbulent pressure at the smallest scale of turbulence. In addition, the possibilities for dynamo action during the various (pre-collapse) stages of convective motion that occur in the evolution of a massive star are examined, and the properties of white dwarf and neutron star progenitors are contrasted.

  6. Measuring the neutron star equation of state with gravitational wave observations

    SciTech Connect

    Read, Jocelyn S.; Markakis, Charalampos; Creighton, Jolien D. E.; Friedman, John L.; Shibata, Masaru; Uryu, Koji

    2009-06-15

    We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron-star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron-star compactness (the ratio of the mass of the neutron-star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point-particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of {delta}R{approx}1 km at 100 Mpc.

  7. Magnetic fields of spherical compact stars in a braneworld

    SciTech Connect

    Ahmedov, B. J.; Fattoyev, F. J.

    2008-08-15

    We study the stellar magnetic field configuration in dependence on brane tension and present solutions of Maxwell equations in the external background space-time of a magnetized spherical star in a Randall-Sundrum II type braneworld. The star is modeled as a sphere consisting of perfect highly magnetized fluid with infinite conductivity and a frozen-in magnetic field. With respect to solutions for magnetic fields found in the Schwarzschild space-time, brane tension introduces enhancing corrections to the exterior magnetic field which could be relevant for the magnetic fields of magnetized compact objects as pulsars and magnetars and may provide observational evidence for the brane tension.

  8. Radioactively Powered Emission from Black Hole-Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Hotokezaka, Kenta; Kyutoku, Koutarou; Wanajo, Shinya; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2014-01-01

    Detection of the electromagnetic counterparts of gravitational wave (GW) sources is important to unveil the nature of compact binary coalescences. We perform three-dimensional, time-dependent, multi-frequency radiative transfer simulations for radioactively powered emission from the ejecta of black hole (BH)-neutron star (NS) mergers. Depending on the BH to NS mass ratio, spin of the BH, and equations of state of dense matter, BH-NS mergers can eject more material than NS-NS mergers. In such cases, radioactively powered emission from the BH-NS merger ejecta can be more luminous than that from NS-NS mergers. We show that, in spite of the expected larger distances to BH-NS merger events, the observed brightness of BH-NS mergers can be comparable to or even higher than that of NS-NS mergers. We find that, when the tidally disrupted BH-NS merger ejecta are confined to a small solid angle, the emission from BH-NS merger ejecta tends to be bluer than that from NS-NS merger ejecta for a given total luminosity. Thanks to this property, we might be able to distinguish BH-NS merger events from NS-NS merger events by multi-band observations of the radioactively powered emission. In addition to the GW observations, such electromagnetic observations can potentially provide independent information on the progenitors of GW sources and the nature of compact binary coalescences.

  9. Structure of compact stars in R-squared Palatini gravity

    NASA Astrophysics Data System (ADS)

    Teppa Pannia, Florencia A.; García, Federico; Perez Bergliaffa, Santiago E.; Orellana, Mariana; Romero, Gustavo E.

    2017-02-01

    We analyse configurations of neutron stars in the so-called R-squared gravity in the Palatini formalism. Using a realistic equation of state we show that the mass-radius configurations are lighter than their counterparts in General Relativity. We also obtain the internal profiles, which run in strong correlation with the derivatives of the equation of state, leading to regions where the mass parameter decreases with the radial coordinate in a counter-intuitive way. In order to analyse such correlation, we introduce a parametrisation of the equation of state given by multiple polytropes, which allows us to explicitly control its derivatives. We show that, even in a limiting case where hard phase transitions in matter are allowed, the internal profile of the mass parameter still presents strange features and the calculated mass-radius configurations also yield neutron stars lighter than those obtained in General Relativity.

  10. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  11. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  12. Does mass accretion lead to field decay in neutron stars

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  13. I-Love-Q: unexpected universal relations for neutron stars and quark stars.

    PubMed

    Yagi, Kent; Yunes, Nicolás

    2013-07-26

    Neutron stars and quark stars are not only characterized by their mass and radius but also by how fast they spin, through their moment of inertia, and how much they can be deformed, through their Love number and quadrupole moment. These depend sensitively on the star's internal structure and thus on unknown nuclear physics. We find universal relations between the moment of inertia, the Love number, and the quadrupole moment that are independent of the neutron and quark star's internal structure. These can be used to learn about neutron star deformability through observations of the moment of inertia, break degeneracies in gravitational wave detection to measure spin in binary inspirals, distinguish neutron stars from quark stars, and test general relativity in a nuclear structure-independent fashion.

  14. A Second Neutron Star in M4?

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozanska, A.; Rozyczka, M.; Krzeminski, W.; Thompson, Ian B.

    2012-05-01

    We show that the optical counterpart of the X-ray source CX 1 in M4 is a ~20th magnitude star, located in the color-magnitude diagram on (or very close to) the main sequence of the cluster, and exhibiting sinusoidal variations of the flux. We find the X-ray flux to be also periodically variable, with X-ray and optical minima coinciding. Stability of the optical light curve, lack of UV-excess, and unrealistic mean density resulting from period-density relation for semidetached systems speak against the original identification of CX 1 as a cataclysmic variable. We argue that the X-ray active component of this system is a neutron star (probably a millisecond pulsar). Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  15. Spin paramagnetic deformation of a neutron star

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Melatos, A.

    2016-02-01

    Quantum mechanical corrections to the hydromagnetic force balance equation, derived from the microscopic Schrödinger-Pauli theory of quantum plasmas, modify the equilibrium structure and hence the mass quadrupole moment of a neutron star. It is shown here that the dominant effect - spin paramagnetism - is most significant in a magnetar, where one typically has μ _B|B|≳ k_B T_e, where μB is the Bohr magneton, B is the magnetic field, and Te is the electron temperature. The spin paramagnetic deformation of a non-barotropic magnetar with a linked poloidal-toroidal magnetic field is calculated to be up to ˜10 times greater than the deformation caused solely by the Lorentz force. It depends on the degree of Pauli blocking by conduction electrons and the propensity to form magnetic domains, processes which are incompletely modelled at magnetar field strengths. The star becomes more oblate, as the toroidal field component strengthens. The result implies that existing classical predictions underestimate the maximum strength of the gravitational wave signal from rapidly spinning magnetars at birth. Turning the argument around, future gravitational-wave upper limits of increasing sensitivity will place ever-stricter constraints on the physics of Pauli blocking and magnetic domain formation under magnetar conditions.

  16. Resonant Shattering of Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Tsang, David; Read, Jocelyn; Piro, Anthony; Hinderer, Tanja

    2014-08-01

    The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (sGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10^46-10^47 erg of energy secondsbefore the merger of a NS-NS or NS-black hole binary. Such properties are consistent with Swift/BAT detections of sGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state. I will also discuss shattering flares as electromagnetic counterparts to gravitational wave bursts during parabolic and elliptic encounters in dense star clusters.

  17. Compact stars in vector-tensor-Horndeski theory of gravity

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Faizal, Mir; Myrzakulov, Kairat; Myrzakulov, Ratbay

    2017-01-01

    In this paper, we will analyze a theory of modified gravity, in which the field content of general relativity will be increased to include a vector field. We will use the Horndeski formalism to non-minimally couple this vector field to the metric. As we will be using the Horndeski formalism, this theory will not contain Ostrogradsky ghost degree of freedom. We will analyze compact stars using this vector-tensor-Horndeski theory.

  18. Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf

    NASA Technical Reports Server (NTRS)

    Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.

    1997-01-01

    The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.

  19. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-01-17

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security.

  20. Gamow's calculation of the neutron star's critical mass revised

    NASA Astrophysics Data System (ADS)

    Ludwig, Hendrik; Ruffini, Remo

    2014-09-01

    It has at times been indicated that Landau introduced neutron stars in his classic paper of 1932. This is clearly impossible because the discovery of the neutron by Chadwick was submitted more than one month after Landau's work. Therefore, and according to his calculations, what Landau really did was to study white dwarfs, and the critical mass he obtained clearly matched the value derived by Stoner and later by Chandrasekhar. The birth of the concept of a neutron star is still today unclear. Clearly, in 1934, the work of Baade and Zwicky pointed to neutron stars as originating from supernovae. Oppenheimer in 1939 is also well known to have introduced general relativity (GR) in the study of neutron stars. The aim of this note is to point out that the crucial idea for treating the neutron star has been advanced in Newtonian theory by Gamow. However, this pioneering work was plagued by mistakes. The critical mass he should have obtained was 6.9 M ⊙, not the one he declared, namely, 1.5 M ⊙. Probably, he was taken to this result by the work of Landau on white dwarfs. We revise Gamow's calculation of the critical mass regarding calculational and conceptual aspects and discuss whether it is justified to consider it the first neutron-star critical mass. We compare Gamow's approach to other early and modern approaches to the problem.

  1. Is there a compact companion orbiting the late O-type binary star HD 164816?

    NASA Astrophysics Data System (ADS)

    Trepl, L.; Hambaryan, V. V.; Pribulla, T.; Tetzlaff, N.; Chini, R.; Neuhäuser, R.; Popov, S. B.; Stahl, O.; Walter, F. M.; Hohle, M. M.

    2012-12-01

    We present a multi-wavelength (X-ray, γ-ray, optical and radio) study of HD 164816, a late O-type X-ray detected spectroscopic binary. X-ray spectra are analysed and the X-ray photon arrival times are checked for pulsation. In addition, newly obtained optical spectroscopic monitoring data on HD 164816 are presented. They are complemented by available radio data from several large-scale surveys as well as the Fermi γ-ray data from its Large Area Telescope. We report the detection of a low energy excess in the X-ray spectrum that can be described by a simple absorbed blackbody model with a temperature of ˜50 eV as well as a 9.78 s pulsation of the X-ray source. The soft X-ray excess, the X-ray pulsation and the kinematical age would all be consistent with a compact object like a neutron star as companion to HD 164816. The size of the soft X-ray excess emitting area is consistent with a circular region with a radius of about 7 km, typical for neutron stars, while the emission measure (EM) of the remaining harder emission is typical for late O-type single or binary stars. If HD 164816 includes a neutron star born in a supernova, this supernova should have been very recent and should have given the system a kick, which is consistent with the observation that the star HD 164816 has a significantly different radial velocity than the cluster mean. In addition we confirm the binarity of HD 164816 itself by obtaining an orbital period of 3.82 d, projected masses m1sin3i = 2.355(69) M⊙, m2sin3i = 2.103(62) M⊙ apparently seen at low inclination angle, determined from high-resolution optical spectra.

  2. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  3. Flavor Symmetry and Topology Change in Nuclear Symmetry Energy for Compact Stars

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Kyu; Rho, Mannque

    2013-03-01

    The nuclear symmetry energy figures crucially in the structure of asymmetric nuclei and, more importantly, in the equation of state (EoS) of compact stars. At present it is almost totally unknown, both experimentally and theoretically, in the density regime appropriate for the interior of neutron stars. Basing on a strong-coupled structure of dense baryonic matter encoded in the skyrmion crystal approach with a topology change and resorting to the notion of generalized hidden local symmetry in hadronic interactions, we address a variety of hitherto unexplored issues of nuclear interactions associated with the symmetry energy, i.e., kaon condensation and hyperons, possible topology change in dense matter, nuclear tensor forces, conformal symmetry, chiral symmetry, etc., in the EoS of dense compact-star matter. One of the surprising results coming from HLS structure that is distinct from what is given by standard phenomenological approaches is that at high density, baryonic matter is driven by renormalization group flow to the "dilaton-limit fixed point" constrained by "mended symmetries". We further propose how to formulate kaon condensation and hyperons in compact-star matter in a framework anchored on a single effective Lagrangian by treating hyperons as the Callan-Klebanov kaon-skyrmion bound states simulated on crystal lattice. This formulation suggests that hyperons can figure in the stellar matter — if at all — when or after kaons condense, in contrast to the standard phenomenological approaches where the hyperons appear as the first strangeness degree of freedom in matter, thereby suppressing or delaying kaon condensation. In our simplified description of the stellar structure in terms of symmetry energies, which is compatible with that of the 1.97 solar mass star, kaon condensation plays a role of "doorway state" to strange quark matter.

  4. GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Grandclément, P.; Casse, F.; Vincent, F. H.; Straub, O.; Dauvergne, F.

    2016-08-01

    In the close vicinity of a compact object strong gravity imprints its signature onto matter. Systems that contain at least one compact object are observed to exhibit extreme physical properties and typically emit highly energetic radiation. The nature of the compact objects that produce the strongest gravitational fields is to date not settled. General relativistic numerical simulations of fluid dynamics around black holes, neutron stars, and other compact objects such as boson stars (BSs) may give invaluable insights into this fundamental question. In order to study the behavior of fluid in the strong gravity regime of an arbitrary compact object we develop a new general relativistic hydrodynamics code. To this end we extend the existing versatile adaptive mesh refinement code MPI-AMRVAC into a general relativistic hydrodynamics framework and adapt it for the use of numerically given spacetime metrics. In the present article we study accretion flows in the vicinity of various types of BSs whose numerical metrics are calculated by the KADATH spectral solver library. We design specific tests to check the reliability of any code intending to study BSs and compare the solutions with those obtained in the context of Schwarzschild black holes. We perform the first ever general relativistic hydrodynamical simulations of gas accretion by a BS. The behavior of matter at small distances from the center of a BS differs notably from the black hole case. In particular we demonstrate that in the context of Bondi spherical accretion the mass accretion rate onto non-rotating BSs remains constant whereas it increases for Schwarzschild black holes. We also address the scenario of non-spherical accretion onto BSs and show that this may trigger mass ejection from the interior of the BS. This striking feature opens the door to forthcoming investigations regarding accretion-ejection flows around such types of compact objects.

  5. Neutron-capture nucleosynthesis in the first stars

    SciTech Connect

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Sneden, Christopher

    2014-04-01

    Recent studies suggest that metal-poor stars enhanced in carbon but containing low levels of neutron-capture elements may have been among the first to incorporate the nucleosynthesis products of the first generation of stars. We have observed 16 stars with enhanced carbon or nitrogen using the MIKE Spectrograph on the Magellan Telescopes at Las Campanas Observatory and the Tull Spectrograph on the Smith Telescope at McDonald Observatory. We present radial velocities, stellar parameters, and detailed abundance patterns for these stars. Strontium, yttrium, zirconium, barium, europium, ytterbium, and other heavy elements are detected. In four stars, these heavy elements appear to have originated in some form of r-process nucleosynthesis. In one star, a partial s-process origin is possible. The origin of the heavy elements in the rest of the sample cannot be determined unambiguously. The presence of elements heavier than the iron group offers further evidence that zero-metallicity rapidly rotating massive stars and pair instability supernovae did not contribute substantial amounts of neutron-capture elements to the regions where the stars in our sample formed. If the carbon- or nitrogen-enhanced metal-poor stars with low levels of neutron-capture elements were enriched by products of zero-metallicity supernovae only, then the presence of these heavy elements indicates that at least one form of neutron-capture reaction operated in some of the first stars.

  6. Hyperons in neutron stars within an Eddington-inspired Born-Infeld theory of gravity

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Iqbal, M.; Sulaksono, A.; Ramadhan, H. S.

    2016-05-01

    We investigate the mass-radius relation of the neutron star (NS) with hyperons inside its core by using the Eddington-inspired Born-Infeld (EiBI) theory of gravity. The equation of state of the star is calculated by using the relativistic mean field model under which the standard SU(6) prescription and hyperon potential depths are used to determine the hyperon coupling constants. We found that, for 4 ×106 m2≲κ ≲6 ×106 m2 , the corresponding NS mass and radius predicted by the EiBI theory of gravity is compatible with observational constraints of maximum NS mass and radius. The corresponding κ value is also compatible with the κ range predicted by the astrophysical-cosmological constraints. We also found that the parameter κ could control the size and the compactness of a neutron star.

  7. Models of quark-hadron matter and compact stars

    SciTech Connect

    Schramm, S.; Steinheimer, J.; Dexheimer, V.; Negreiros, R.

    2016-01-22

    Phenomenological approaches to Quantum Chromodynamics covering the whole region of low and high temperatures and/or densities must address the problem that the effective degrees of freedom change from hadrons to quarks and gluons. We approach this task with a unified description of hadronic and quark matter allowing for cross-over as well as first or second-order phase transitions. As a further benefit of such an approach, a quantitatively satisfactory description of nuclear ground state matter as well as nuclear and hypernuclear properties can be achieved. We apply this model to neutron stars and consider potential constraints on star properties arising from lattice gauge results in relation with the observation of 2 solar mass stars.

  8. Using a Neutron Star as a Stellar Wind Probe

    NASA Astrophysics Data System (ADS)

    Gregory, P. C.; Neish, C.

    2002-12-01

    LS I+61o303 is a remarkable X-ray and γ -ray emitting Be + neutron star binary, with periodic (26.5 day) radio outbursts. A recent Bayesian analysis demonstrates that the orbital phase and peak flux density of the radio outbursts exhibit a 4.6 year periodic modulation. We present a model that accounts for the radio properties of LS I+61o303 in terms of variable accretion by the neutron star in an eccentric orbit embedded within the dense equatorial wind from the rapidly rotating Be star. The neutron star thus acts as a probe of the wind speed and density. The analysis indicates that the 4.6 year modulation in radio properties results from an outward moving density enhancement or shell in the Be star equatorial disk. We propose that each new shell ejection may be triggered by the interaction of a short lived relativistic wind (ejector phase) from the neutron star, with the rapidly rotating Be star. Our best estimates of the mass accretion rate of the neutron star are in the range ~ 0.001 to ~ 0.01 of the Eddington accretion limit. This translates to an expected luminosity range of ~ 1035 to ~ 1036 ergs s-1 which is comparable to estimates of the total X-ray and γ -ray luminosity for LS I +61o 303. This research was supported in part by a grant from the Canadian Natural Sciences and Engineering Research Council at the University of British Columbia.

  9. Supermagnetic Neutron Star Surprises Scientists, Forces Revision of Theories

    NASA Astrophysics Data System (ADS)

    2006-08-01

    Astronomers using radio telescopes from around the world have discovered a spinning neutron star with a superpowerful magnetic field -- called a magnetar -- doing things no magnetar has been seen to do before. The strange behavior has forced them to scrap previous theories about radio pulsars and promises to give new insights on the physics behind these extreme objects. Magnetar Artist's Conception of Magnetar With Radio Beams ALL IMAGES AND ANIMATIONS CREDIT: Bill Saxton, NRAO/AUI/NSF Image and Animation Files Magnetar Graphic (above image, JPEG, 32K) Animation With Sound From GBT Detection of XTE J1810-197 (8.6M) Animation With Sound From GBT Detection of XTE J1810-197 (Full Size, 29M) The magnetar, approximately 10,000 light-years from Earth in the direction of the constellation Sagittarius, is emitting powerful, regularly-timed pulses of radio waves just like radio pulsars, which are neutron stars with far less intense magnetic fields. Usually, magnetars are visible only in X-rays and sometimes very weakly in optical and infrared light. "No one has ever found radio pulses coming from a magnetar before. We thought that magnetars didn't do this," said Fernando Camilo of Columbia University. "This object is going to teach us new things about magnetar physics that we would never have learned otherwise," Camilo added. Neutron stars are the remnants of massive stars that have exploded as supernovae. Containing more mass than the Sun, they are compressed to a diameter of only about 15 miles, making them as dense as atomic nuclei. Ordinary pulsars are neutron stars that emit "lighthouse beams" of radio waves along the poles of their magnetic fields. As the star spins, the beam of radio waves is flung around, and when it passes the direction of Earth, astronomers can detect it with radio telescopes. Scientists have found about 1700 pulsars since their first discovery in 1967. While pulsars have strong magnetic fields, about a dozen neutron stars have been dubbed

  10. Neutron and antineutron production in accretion onto compact objects

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Ramaty, Reuven

    1986-01-01

    Nuclear reactions in the hot accretion plasma surrounding a collapsed star are a source of neutrons, primarily through spallation and pion-producing reactions, and antineutrons, principally through the reaction p+p yields p+p+n+anti-n. We calculate spectra of neutrons and antineutrons produced by a variety of nonthermal energetic particle distributions in which the target particles are either at rest or in motion. If only neutral particles are free to escape the interaction site, a component of the proton and antiproton fluxes in the cosmic radiation results from the neutrons and antineutrons which leave the accretion plasma and subsequently decay in the interstellar medium. This additional antiproton component could account for the enhanced flux of antiprotons in the cosmic radiation, compared to values expected from the standard leaky-box model of cosmic-ray propagation and confinement. Moreover, the low-energy antiproton flux measured by Buffington et al. (1981) could result from target-particle motion in the accretion plasma. This model for the origin of antiprotons predicts a narrow 2.223 MeV line which could be observable.

  11. Exploring properties of high-density matter through remnants of neutron-star mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas

    2016-03-01

    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational

  12. ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS

    SciTech Connect

    Oezel, Feryal; Psaltis, Dimitrios; Santos Villarreal, Antonio; Narayan, Ramesh

    2012-09-20

    We investigate the distribution of neutron star masses in different populations of binaries, employing Bayesian statistical techniques. In particular, we explore the differences in neutron star masses between sources that have experienced distinct evolutionary paths and accretion episodes. We find that the distribution of neutron star masses in non-recycled eclipsing high-mass binaries as well as of slow pulsars, which are all believed to be near their birth masses, has a mean of 1.28 M{sub Sun} and a dispersion of 0.24 M{sub Sun }. These values are consistent with expectations for neutron star formation in core-collapse supernovae. On the other hand, double neutron stars, which are also believed to be near their birth masses, have a much narrower mass distribution, peaking at 1.33 M{sub Sun }, but with a dispersion of only 0.05 M{sub Sun }. Such a small dispersion cannot easily be understood and perhaps points to a particular and rare formation channel. The mass distribution of neutron stars that have been recycled has a mean of 1.48 M{sub Sun} and a dispersion of 0.2 M{sub Sun }, consistent with the expectation that they have experienced extended mass accretion episodes. The fact that only a very small fraction of recycled neutron stars in the inferred distribution have masses that exceed {approx}2 M{sub Sun} suggests that only a few of these neutron stars cross the mass threshold to form low-mass black holes.

  13. The dynamics and outcomes of rapid infall onto neutron stars

    SciTech Connect

    Fryer, C.L.; Benz, W.; Herant, M.

    1996-04-01

    We present an extensive study of accretion onto neutron stars in which the velocity of the neutron star and structure of the surrounding medium is such that the Bondi-Hoyle accretion exceeds 10{sup 4} {ital M}{sub {circle_dot}} yr{sup 1}. Two types of initial conditions are considered for a range of entropies and chemical compositions: an atmosphere in pressure equilibrium above the neutron star, and a freely falling inflow of matter from infinity (also parameterized by the infall rate). We then evolve the system with one- and two-dimensional hydrodynamic codes to determine the outcome. For most cases, hypercritical (also termed ``super Eddington``) accretion caused by rapid neutrino cooling allows the neutron star to accrete above the Bondi-Hoyle rate as previously pointed out by Chevalier. However, for a subset of simulations which corresponds to evolutionarily common events, convection driven by neutrino heating can lead to explosions by a mechanism similar to that found in core-collapse supernovae. Armed with the results from our calculations, we are in a position to predict the fate of a range of rapid-infall neutron star accretors present in certain low-mass X-ray binaries, common envelope systems, supernova fallbacks, and Thorne-Zytkow objects (TZOs). A majority of the common envelope systems that we considered led to explosions expelling the envelope, halting the neutron star{close_quote}s inward spiral, and allowing the formation of close binary systems. As a result, the smothered neutron stars produced in the collisions studied by Davies & Benz may also explode, probably preventing them from forming millisecond pulsars. For the most massive supernovae, in which the fallback of material toward the neutron star after a successful explosion is large, we find that a black hole is formed in a few seconds. Finally, we argue that the current set of TZO formation scenarios is inadequate and leads instead to hypercritical accretion and black hole formation.

  14. Searching for substellar companions of young isolated neutron stars

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Neuhäuser, R.; Haberl, F.

    2009-03-01

    Context: Only two planetary systems orbiting old ms-pulsars have been discovered. Young radio pulsars and radio-quiet neutron stars cannot be analysed by the usually-applied radio-pulse-timing technique. However, finding substellar companions orbiting these neutron stars would be of significant importance: the companion may have had an exotic formation, its observation may also enable us to study neutron-star physics. Aims: We investigate the closest young neutron stars to Earth to search for orbiting substellar companions. Methods: Young, thus warm substellar companions are visible in the Near infrared, in which the neutron star itself is much fainter. Four young neutron stars are at sufficient speed to enable a common proper-motion search for substellar companions within few years. Results: For Geminga, RX J0720.4-3125, RX J1856.6-3754, and PSR J1932+1059 we found no comoving companion of masses as low as 12, 15, 11, and 42 Jupiter masses, respectively, for assumed ages of 1, 1, 1, and 3.1 Myr, and distances of 250, 361, 167, and 361 pc, respectively. Near infrared limits are presented for these four and five additional neutron stars for which we have observations for only one epoch. Conclusions: We conclude that young, isolated neutron stars rarely have brown-dwarf companions. Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programme IDs: 66.D-0135, 71.C-0189, 72.C-0051, 74.C-0596, 077.C-0162, 78.C-0686, 79.C-0570.

  15. R-mode constraints from neutron star equation of state

    NASA Astrophysics Data System (ADS)

    Papazoglou, M. C.; Moustakidis, C. C.

    2016-03-01

    The gravitational radiation has been proposed a long time before, as an explanation for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars. Firstly, we employed a set of analytical solution of the Tolman-Oppenheimer-Volkoff equations with special emphasis on the Tolman VII solution. In particular, we tried to clarify the effects of the bulk neutron star properties (mass, radius, density distribution, crust size and elasticity) on the r-mode instability window. We found that the critical angular velocity \\varOmegac depends mainly on the neutron star radius. The effects of the gravitational mass and the mass distribution are almost negligible. Secondly, we studied the effect of the elasticity of the crust, via to the slippage factor S and also the effect of the nuclear equation of state, via the slope parameter L, on the instability window. We found that the crust effects are more pronounced, compared to those originated from the equation of state. Moreover, we proposed simple analytical expressions which relate the macroscopic quantity \\varOmegac to the radius, the parameter L and the factor {S}. We also investigated the possibility to measure the radius of a neutron star and the factor {S} with the help of accurate measures of \\varOmegac and the neutron star temperature. Finally, we studied the effects of the mutual friction on the instability window and discussed the results in comparison with previous similar studies.

  16. Gravitational waves from surface inhomogeneities of neutron stars

    NASA Astrophysics Data System (ADS)

    Konar, Sushan; Mukherjee, Dipanjan; Bhattacharya, Dipankar; Sarkar, Prakash

    2016-11-01

    Surface asymmetries of accreting neutron stars are investigated for their mass quadrupole moment content. Though the amplitude of the gravitational waves from such asymmetries seems to be beyond the limit of detectability of the present generation of detectors, it appears that rapidly rotating neutron stars with strong magnetic fields residing in high-mass x-ray binaries would be worth considering for a targeted search for continuous gravitational waves with the next generation of instruments.

  17. SHORT GAMMA-RAY BURSTS AND DARK MATTER SEEDING IN NEUTRON STARS

    SciTech Connect

    Perez-Garcia, M. Angeles

    2013-05-10

    We present a mechanism based on internal self-annihilation of dark matter accreted from the galactic halo in the inner regions of neutron stars that may trigger full or partial conversion into a quark star. We explain how this effect may induce a gamma-ray burst (GRB) that could be classified as short, according to the usual definition based on time duration of the prompt gamma-ray emission. This mechanism differs in many aspects from the most discussed scenario associating short GRBs with compact object binary mergers. We list possible observational signatures that should help distinguish between these two possible classes of progenitors.

  18. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  19. Instability windows and evolution of rapidly rotating neutron stars.

    PubMed

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M

    2014-04-18

    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures.

  20. Mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-03-01

    Black hole-neutron star binaries are ones of the most promising sources of gravitational waves for upcoming second-generation detectors. To confirm gravitational-wave detection and obtain as much information as possible, it is desirable to observe electromagnetic counterparts simultaneously. It has been pointed out by many authors that various electromagnetic signals are reasonably expected if substantial material is ejected during the binary merger. One plausible mechanism of mass ejection from black hole-neutron star binaries is tidal disruption of neutron stars by the tidal force exerted by black holes. A quantitative study of this dynamical mass ejection requires numerical-relativity simulations. We perform simulations of black hole-neutron star binaries focusing on the dynamical mass ejection for a range of binary parameters including equations of state of neutron star matter. We present important results such as masses and velocities of ejecta obtained by our simulations, and also discuss possible characteristics of electromagnetic counterparts to black hole-neutron star binaries. In particular, we focus on anisotropy and bulk velocity (i.e., the velocity component other than the expansion velocity) of the ejecta, and electromagnetic features resulting from them.

  1. Strangeness in nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Lonardoni, Diego

    2017-01-01

    The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear

  2. Einstein@Home Finds a Double Neutron Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Have you been contributing your computer idle time to the Einstein@Home project? If so, youre partly responsible for the programs recent discovery of a new double-neutron-star system that will be key to learning about general relativity and stellar evolution.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The Hunt for PulsarsObserving binary systems containing two neutron stars and in particular, measuring the timing of the pulses when one or both companions is a pulsar can provide highly useful tests of general relativity and binary stellar evolution. Unfortunately, these systems are quite rare: of 2500 known radio pulsars, only 14 of them are in double-neutron-starbinaries.To find more systems like these, we perform large-scale, untargeted radio-pulsar surveys like the ongoing Pulsar-ALFA survey conducted with the enormous 305-m radio telescope at Arecibo Observatory in Puerto Rico. But combing through these data for the signature of a highly accelerated pulsar (the acceleration is a clue that its in a compact binary) is very computationally expensive.PSR J1913+1102s L-band pulse profile, created by phase-aligning and summing all observations. [Adapted from Lazarus et al. 2016]To combat this problem, the Einstein@Home project was developed. Einstein@Home allows anyone to volunteer their personal computers idle time to help run the analysis of survey data in the search for pulsars. In a recent publication led by Patrick Lazarus (Max Planck Institute for Radio Astronomy), the Einstein@Home team announced the discovery of the pulsar PSR J1913+1102 a member of what seems to be a brand new double-neutron-starsystem.An Intriguing DiscoveryLazarus and collaborators followed up on the discovery to obtain timing measurements of the pulsar, which they found to have a spin period of 27.3 ms. They measured PSR J1913+1102 to be in a 4.95-hr, nearly circular (e 0.09) binary orbit with a massive companion

  3. Universality of the acceleration due to gravity on the surface of a rapidly rotating neutron star

    SciTech Connect

    AlGendy, Mohammad; Morsink, Sharon M.

    2014-08-20

    On the surface of a rapidly rotating neutron star, the effective centrifugal force decreases the effective acceleration due to gravity (as measured in the rotating frame) at the equator while increasing the acceleration at the poles due to the centrifugal flattening of the star into an oblate spheroid. We compute the effective gravitational acceleration for relativistic rapidly rotating neutron stars and show that for a star with mass M, equatorial radius R{sub e} , and angular velocity Ω, the deviations of the effective acceleration due to gravity from the nonrotating case take on a universal form that depends only on the compactness ratio M/R{sub e} , the dimensionless square of the angular velocity Ω{sup 2}R{sub e}{sup 3}/GM, and the latitude on the star's surface. This dependence is universal, in that it has very little dependence on the neutron star's equation of state. The effective gravity is expanded in the slow-rotation limit to show the dependence on the effective centrifugal force, oblate shape of the star, and the quadrupole moment of the gravitational field. In addition, an empirical fit and simple formula for the effective gravity is found. We find that the increase in the acceleration due to gravity at the poles is of the same order of magnitude as the decrease in the effective acceleration due to gravity at the equator for all realistic value of mass, radius, and spin. For neutron stars that spin with frequencies near 600 Hz, the difference between the effective gravity at the poles and the equator is about 20%.

  4. Extensive population synthesis of isolated neutron stars with field decay

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Boldin, P. A.; Miralles, J. A.; Pons, J. A.; Posselt, B.

    2011-09-01

    We perform population synthesis studies of different types of neutron stars (thermally emitting isolated neutron stars, normal radio pulsars, magnetars) taking into account the magnetic field decay and using results from the most recent advances in neutron star cooling theory. For the first time, we confront our results with observations using simultaneously the Log N--Log S distribution for nearby isolated neutron stars, the Log N--Log L distribution for magnetars, and the distribution of radio pulsars in the P--Ṗ diagram. For this purpose, we fix a baseline neutron star model (all microphysics input), and other relevant parameters to standard values (velocity distribution, mass spectrum, etc.), only allowing to vary the initial magnetic field strength. We find that our theoretical model is consistent with all sets of data if the initial magnetic field distribution function follows a log-normal law with < log(B0/[G])>~13.25 and σlog B0~0.6. The typical scenario includes about 10% of neutron stars born as magnetars, significant magnetic field decay during the first million years of a NS life (only about a factor of 2 for low field neutron stars but more than an order of magnitude for magnetars), and a mass distribution function dominated by low mass objects. This model explains satisfactorily all known populations. Evolutionary links between different subclasses may exist, although robust conclusions are not yet possible. We apply the obtained field distribution and the model of decay to study long-term evolution of neuton stars till the stage of accretion from the interstellar medium. It is shown that though the subsonic propeller stage can be relatively long, initially highly magnetized neutron stars (B0>~1013 G) reach the accretion regime within the Galactic lifetime if their kick velocities are not too large. The fact that in previous studies made >10 years ago, such objects were not considered results in a slight increase of the Accretor fraction in

  5. Measuring neutron-star properties via gravitational waves from neutron-star mergers.

    PubMed

    Bauswein, A; Janka, H-T

    2012-01-06

    We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.

  6. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    SciTech Connect

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined.

  7. A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars

    NASA Astrophysics Data System (ADS)

    Singh, Ksh. Newton; Murad, Mohammad Hassan; Pant, Neeraj

    2017-02-01

    The present paper provides a new model of compact stars satisfying the Karmarkar condition. The model is obtained by assuming a new type of metric potential for g_{rr} from the condition of embedding class I. The model parameters are obtained accordingly by employing the metric potentials to Einstein's field equations. Our model is free from geometric singularity and satisfies all the physical conditions. The obtained mass and radius of the compact stars Cen X-3, EXO 1785-248 and SAX 1808.4-3658 obtained from the model are consistent with the observational data of T. Gangopadhyay et al.. Detailed analyses of these neutron stars (Cen X-3, EXO 1785-248 and SAX 1808.4-3658) are also given with the help of graphical representations.

  8. The Nuclear Symmetry Energy and the Mass-Radius Relation of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lattimer, James

    2017-01-01

    The assumptions that i) neutron stars have hadronic crusts, ii) the equation of state is causal, iii) GR is the correct theory of gravity, and iv) their largest observed mass is 2 solar masses, when coupled with recent results from nuclear experiment and theoretical studies of neutron matter, generate powerful constraints on their structure. These include restriction of the radii of typical neutron stars to the range 11-13 km, as well as significant correlations among their masses, compactnesses, moments of inertia, binding energies, and tidal deformabilities. In addition, properties of quark matter, including the location and magnitude of the quark-hadron phase transition, can also be limited. The implications of recent and forthcoming experiments, such as those pertaining to the neutron skin thickness and astrophysical measurements of various structural properties is discussed. For the latter, emphasis is placed on pulsar timing, X-ray observations, supernova neutrino detections, and gravitational waves from mergers involving neutron stars. Supported in part by the US DOE grant DE-AC02-87ER40317.

  9. Detectable radio flares following gravitational waves from mergers of binary neutron stars.

    PubMed

    Nakar, Ehud; Piran, Tsvi

    2011-09-28

    Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.

  10. Equation of State for Nucleonic and Hyperonic Neutron Stars with Mass and Radius Constraints

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Centelles, Mario; Ramos, Angels

    2017-01-01

    We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M⊙ observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened around saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M⊙ limit. By a slight modification of the parameterization, we also find that the constraints of 2 M⊙ neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼1015 G and with values of ∼1018 G in the interior can reach maximum masses of 2 M⊙ with radii in the 12–13 km range.

  11. On the mass distribution of neutron stars

    NASA Astrophysics Data System (ADS)

    Valentim, R.; Rangel, E.; Horvath, J. E.

    2011-06-01

    The distribution of masses for neutron stars is analysed using the Bayesian statistical inference, evaluating the likelihood of the proposed Gaussian peaks by using 54 measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37 M⊙ and a much wider second peak at 1.73 M⊙. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to 'label' the systems has been made here). They also accommodate the recent findings of ˜M⊙ masses quite naturally. Finally, we explore the existence of a subgroup around 1.25 M⊙, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to the O-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.

  12. NASA'S Chandra Finds Superfluid in Neutron Star's Core

    NASA Astrophysics Data System (ADS)

    2011-02-01

    NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and

  13. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  14. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  15. Energy density functional for nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Erler, J.; Horowitz, C. J.; Nazarewicz, W.; Rafalski, M.; Reinhard, P.-G.

    2013-04-01

    Background: Recent observational data on neutron star masses and radii provide stringent constraints on the equation of state of neutron rich matter [Annu. Rev. Nucl. Part. Sci.ARPSDF0163-899810.1146/annurev-nucl-102711-095018 62, 485 (2012)].Purpose: We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars.Methods: We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals—a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties—are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one.Results: The new functional TOV-min yields results for nuclear bulk properties (energy, rms radius, diffraction radius, and surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of 208Pb and the neutron star radius.Conclusions: We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but

  16. Neutron stars within a relativistic central variational method

    NASA Astrophysics Data System (ADS)

    Hu, Jinniu; Shen, Hong; Toki, Hiroshi

    2017-02-01

    The properties of neutron stars are investigated within the relativistic central variational method by using a realistic nucleon-nucleon (N N ) interaction. The strong repulsion of realistic N N interactions at short distances is treated by a Jastrow central correlation function, whose form is completely determined through minimization of the total energy of the nuclear many-body system. The relativistic Hartree-Fock wave functions are chosen as the trial wave function. In this framework, the equation of state of the neutron star matter in β equilibrium is obtained self-consistently. We further determine the properties of neutron stars via the Tolman-Oppenheimer-Volkoff equation using Bonn A, B, and C potentials. The maximum masses of neutron stars with these realistic potentials are around 2.18 M⊙ and their corresponding radii are around 11 km. These results are in accordance with the calculations of the relativistic Brueckner-Hartree-Fock theory with the same potentials. Furthermore, we also find that the splitting of proton-neutron effective masses will be reversed at high density in the neutron star matter, which are caused by the contribution of short-range correlation on kinetic energy.

  17. Deconfinement of neutron star matter within the Nambu-Jona-Lasinio model

    SciTech Connect

    Lugones, G.; Grunfeld, A. G.; Scoccola, N. N.; Villavicencio, C.

    2009-08-15

    We study the deconfinement transition of hadronic matter into quark matter under neutron star conditions assuming color and flavor conservation during the transition. We use a two-phase description. For the hadronic phase we use different parametrizations of a nonlinear Walecka model which includes the whole baryon octet. For the quark-matter phase we use an SU(3){sub f} Nambu-Jona-Lasinio effective model including color superconductivity. Deconfinement is considered to be a first order phase transition that conserves color and flavor. It gives a short-lived transitory colorless-quark phase that is not in {beta} equilibrium, and decays to a stable configuration in {tau}{approx}{tau}{sub weak}{approx}10{sup -8} s. However, in spite of being very short lived, the transition to this intermediate phase determines the onset of the transition inside neutron stars. We find the transition free-energy density for temperatures typical of neutron star interiors. We also find the critical mass above which compact stars should contain a quark core and below which they are safe with respect to a sudden transition to quark matter. Rather independently on the stiffness of the hadronic equation of state (EOS) we find that the critical mass of hadronic stars (without trapped neutrinos) is in the range of {approx}1.5-1.8 solar masses. This is in coincidence with previous results obtained within the MIT bag model.

  18. Quark-hadron composition of rotating neutron stars

    NASA Astrophysics Data System (ADS)

    Mellinger, Richard D., Jr.

    It is well known that isolated neutron stars spin down over time through magnetic braking. To maintain hydrostatic equilibrium as they do so, the density profile of the star changes. At densities as high as those expected to exist in the interiors of neutron stars, this can lead to changes in the state of matter found there. Given several models for the nuclear equations of state, we use numerical techniques to determine, for each, the quark-hadron composition for varying frequencies and the results are presented in both tabular and graphical forms. The CD-ROM, an appendix to this thesis, is available for viewing at the Media Center of the Library.

  19. Evolution of the innermost stable orbits around accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Kluzniak, W.; Wagoner, R. V.

    1985-01-01

    The surface of most neutron stars with 'soft' equations of state lies within the innermost stable circular orbit predicted by general relativity. In disk accretion onto a weakly magnetized neutron star, the disk will reach the stellar surface for 'stiff' equations of state, but for soft equations of state the matter will hit the surface in free fall at an angle of about 0.001 to 0.1 radians. All calculations are carried out through first order in the angular momentum of the star.

  20. QCD constraints on the equation of state for compact stars

    SciTech Connect

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-22

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  1. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  2. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-12-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  3. Fast radio bursts: the last sign of supramassive neutron stars

    NASA Astrophysics Data System (ADS)

    Falcke, Heino; Rezzolla, Luciano

    2014-02-01

    Context. Several fast radio bursts have been discovered recently, showing a bright, highly dispersed millisecond radio pulse. The pulses do not repeat and are not associated with a known pulsar or gamma-ray burst. The high dispersion suggests sources at cosmological distances, hence implying an extremely high radio luminosity, far larger than the power of single pulses from a pulsar. Aims: We suggest that a fast radio burst represents the final signal of a supramassive rotating neutron star that collapses to a black hole due to magnetic braking. The neutron star is initially above the critical mass for non-rotating models and is supported by rapid rotation. As magnetic braking constantly reduces the spin, the neutron star will suddenly collapse to a black hole several thousand to million years after its birth. Methods: We discuss several formation scenarios for supramassive neutron stars and estimate the possible observational signatures making use of the results of recent numerical general-relativistic calculations. Results: While the collapse will hide the stellar surface behind an event horizon, the magnetic-field lines will snap violently. This can turn an almost ordinary pulsar into a bright radio "blitzar": accelerated electrons from the travelling magnetic shock dissipate a significant fraction of the magnetosphere and produce a massive radio burst that is observable out to z > 0.7. Only a few per cent of the neutron stars need to be supramassive in order to explain the observed rate. Conclusions: We suggest the intriguing possibility that fast radio bursts might trace the solitary and almost silent formation of stellar mass black holes at high redshifts. These bursts could be an electromagnetic complement to gravitational-wave emission and reveal a new formation and evolutionary channel for black holes and neutron stars that are not seen as gamma-ray bursts. If supramassive neutron stars are formed at birth and not by accretion, radio observations of these

  4. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    , the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.

  5. CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR

    SciTech Connect

    Miller, J. M.; Parker, M. L.; Fabian, A. C.; Fuerst, F.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Rana, V.; Bachetti, M.; Barret, D.; Boggs, S. E.; Craig, W. W.; Tomsick, J. A.; Chakrabarty, D.; Christensen, F. E.; Hailey, C. J.; Paerels, F.; Natalucci, L.; Stern, D. K.; Zhang, W. W.

    2013-12-10

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  6. Supergiant pulses from extragalactic neutron stars

    NASA Astrophysics Data System (ADS)

    Cordes, J. M.; Wasserman, Ira

    2016-03-01

    We consider radio bursts that originate from extragalactic neutron stars (NSs) by addressing three questions about source distances. What are the physical limitations on coherent radiation at GHz frequencies? Do they permit detection at cosmological distances? How many bursts per NS are needed to produce the inferred burst rate ˜103-104sky-1 d-1? The burst rate is comparable to the NS formation rate in a Hubble volume, requiring only one per NS if they are bright enough. Radiation physics suggests a closer population, requiring more bursts per NS and increasing the chances for repeats. Bursts comprise sub-ns, coherent shot pulses superposed incoherently to produce ms-duration ˜1 Jy amplitudes; each shot pulse can be much weaker than 1 Jy, placing less restrictive requirements on the emission process. None the less, single shot pulses are similar to the extreme, unresolved (<0.4 ns) MJy shot pulse seen from the Crab pulsar, consistent with coherent curvature radiation emitted near the light cylinder by an almost neutral clump with net charge ˜± 1021e and total energy ≳ 1023 erg. Bursts from Gpc distances require incoherent superposition of {˜ } 10^{12}d_Gpc^2 shot pulses or a total energy ≳ 10^{35} d_Gpc^2 erg. The energy reservoir near the light cylinder limits the detection distance to ≲ few × 100 Mpc for a fluence ˜1 Jy ms unless conditions are more extreme than for the Crab pulsar, such as in magnetars. We discuss contributions to dispersion measures from galaxy clusters and we propose tests for the overall picture presented.

  7. Viscous damping of r-mode oscillations in compact stars with quark matter.

    SciTech Connect

    Jaikumar, P.; Rupak, G.; Steiner, A. W.; Physics; Inst. of Mathematical Sciences; North Carolina State Univ.; Michigan State Univ.

    2008-12-01

    We determine characteristic time scales for the viscous damping of r-mode oscillations in rapidly rotating compact stars that contain quark matter. We present results for the color-flavor-locked (CFL) phase of dense quark matter, in which the up, down, and strange quarks are gapped, as well as the normal (ungapped) quark phase. While the ungapped quark phase supports a temperature window 10{sup 8} K < = T < = 5 x 10{sup 9} K where the r mode is damped even for rapid rotation, the r mode in a rapidly rotating pure CFL star is not damped in the temperature range 10{sup 10} K < = T < = 10{sup 11} K. Rotating hybrid stars with quark matter cores display an instability window whose width is determined by the amount of quark matter present, and they can have large spin frequencies outside this window. Except at high temperatures T > = 10{sup 10} K, the presence of a quark phase allows for larger critical frequencies and smaller spin periods compared to rotating neutron stars. If low-mass x-ray binaries contain a large amount of ungapped or CFL quark matter, then our estimates of the r-mode instability suggest that there should be a population of rapidly rotating binaries at nu > {approx} 1000 Hz which have not yet been observed.

  8. Viscous damping of r-mode oscillations in compact stars with quark matter

    SciTech Connect

    Jaikumar, Prashanth; Rupak, Gautam; Steiner, Andrew W.

    2008-12-15

    We determine characteristic time scales for the viscous damping of r-mode oscillations in rapidly rotating compact stars that contain quark matter. We present results for the color-flavor-locked (CFL) phase of dense quark matter, in which the up, down, and strange quarks are gapped, as well as the normal (ungapped) quark phase. While the ungapped quark phase supports a temperature window 10{sup 8} K{<=}T{<=}5x10{sup 9} K where the r mode is damped even for rapid rotation, the r mode in a rapidly rotating pure CFL star is not damped in the temperature range 10{sup 10} K{<=}T{<=}10{sup 11} K. Rotating hybrid stars with quark matter cores display an instability window whose width is determined by the amount of quark matter present, and they can have large spin frequencies outside this window. Except at high temperatures T{>=}10{sup 10} K, the presence of a quark phase allows for larger critical frequencies and smaller spin periods compared to rotating neutron stars. If low-mass x-ray binaries contain a large amount of ungapped or CFL quark matter, then our estimates of the r-mode instability suggest that there should be a population of rapidly rotating binaries at {nu} > or approx. 1000 Hz which have not yet been observed.

  9. The Case of the Neutron Star With a Wayward Wake

    NASA Astrophysics Data System (ADS)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron

  10. Electrical conductivity of a warm neutron star crust in magnetic fields

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Arus; Sedrakian, Armen

    2016-08-01

    We study the electrical conductivity of finite-temperature crust of a warm compact star which may be formed in the aftermath of a supernova explosion or a binary neutron star merger as well as when a cold neutron star is heated by accretion of material from a companion. We focus on the temperature-density regime where plasma is in the liquid state and, therefore, the conductivity is dominated by the electron scattering off correlated nuclei. The dynamical screening of this interaction is implemented in terms of the polarization tensor computed in the hard-thermal-loop effective field theory of QED plasma. The correlations of the background ionic component are accounted for via a structure factor derived from Monte Carlo simulations of one-component plasma. With this input we solve the Boltzmann kinetic equation in relaxation time approximation taking into account the anisotropy of transport due to the magnetic field. The electrical conductivity tensor is studied numerically as a function of temperature and density for carbon and iron nuclei as well as density-dependent composition of zero-temperature dense matter in weak equilibrium with electrons. We also provide accurate fit formulas to our numerical results as well as supplemental tables which can be used in dissipative magneto-hydrodynamics simulations of warm compact stars.

  11. Microscopic calculations of nuclear and neutron matter, symmetry energy and neutron stars

    DOE PAGES

    Gandolfi, S.

    2015-02-01

    We present Quantum Monte Carlo calculations of the equation of state of neutron matter. The equation of state is directly related to the symmetry energy and determines the mass and radius of neutron stars, providing then a connection between terrestrial experiments and astronomical observations. As a result, we also show preliminary results of the equation of state of nuclear matter.

  12. Development of compact size penning ion source for compact neutron generator.

    PubMed

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-01

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  13. Development of compact size penning ion source for compact neutron generator

    SciTech Connect

    Das, Basanta Kumar; Shyam, Anurag

    2008-12-15

    For long-life operation, easy to mount and compact in size penning type ion sources are widely used in different fields of research such as neutron generators, material research, and surface etching. One penning type ion source has been developed in our laboratory. Applying high voltage of 2 kV between two oppositely biased electrodes and using permanent magnet of 500 gauss magnetic field along the axis, we had produced the glow discharge in the plasma region. The performance of this source was investigated using nitrogen gas. Deuterium ions were produced and extracted on the basis of chosen electrodes and the angle of extraction. Using a single aperture plasma electrode, the beam was extracted along the axial direction. The geometry of plasma electrode is an important factor for the efficient extraction of the ions from the plasma ion source. The extracted ion current depends upon the shape of the plasma meniscus. A concave shaped plasma meniscus produces converged ion beam. The convergence of extracted ions is related to the extraction electrode angle. The greater the angle, the more the beam converges. We had studied experimentally this effect with a compact size penning ion source. The detailed comparison among the different extraction geometry and different electrode angle are discussed in this paper.

  14. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  15. Optically thick envelopes around ULXs powered by accreating neutron stars

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Suleimanov, Valery F.; Tsygankov, Sergey S.; Ingram, Adam

    2017-01-01

    Magnetized neutron stars power at least some ultra-luminous X-ray sources. The accretion flow in these cases is interrupted at the magnetospheric radius and then reaches the surface of a neutron star following magnetic field lines. Accreting matter moving along magnetic field lines forms the accretion envelope around the central object. We show that, in case of high mass accretion rates ≳ 1019 g s-1 the envelope becomes closed and optically thick, which influences the dynamics of the accretion flow and the observational manifestation of the neutron star hidden behind the envelope. Particularly, the optically thick accretion envelope results in a multi-color black-body spectrum originating from the magnetospheric surface. The spectrum and photon energy flux vary with the viewing angle, which gives rise to pulsations characterized by high pulsed fraction and typically smooth pulse profiles. The reprocessing of radiation due to interaction with the envelope leads to the disappearance of cyclotron scattering features from the spectrum. We speculate that the super-orbital variability of ultra-luminous X-ray sources powered by accreting neutron stars can be attributed to precession of the neutron star due to interaction of magnetic dipole with the accretion disc.

  16. SPINDOWN OF ISOLATED NEUTRON STARS: GRAVITATIONAL WAVES OR MAGNETIC BRAKING?

    SciTech Connect

    Staff, Jan E.; Jaikumar, Prashanth; Chan, Vincent; Ouyed, Rachid

    2012-05-20

    We study the spindown of isolated neutron stars from initially rapid rotation rates, driven by two factors: (1) gravitational wave emission due to r-modes and (2) magnetic braking. In the context of isolated neutron stars, we present the first study including self-consistently the magnetic damping of r-modes in the spin evolution. We track the spin evolution employing the RNS code, which accounts for the rotating structure of neutron stars for various equations of state. We find that, despite the strong damping due to the magnetic field, r-modes alter the braking rate from pure magnetic braking for B {<=} 10{sup 13} G. For realistic values of the saturation amplitude {alpha}{sub sat}, the r-mode can also decrease the time to reach the threshold central density for quark deconfinement. Within a phenomenological model, we assess the gravitational waveform that would result from r-mode-driven spindown of a magnetized neutron star. To contrast with the persistent signal during the spindown phase, we also present a preliminary estimate of the transient gravitational wave signal from an explosive quark-hadron phase transition, which can be a signal for the deconfinement of quarks inside neutron stars.

  17. Quark deconfinement in neutron stars and astrophysical implications

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico

    We investigate the quark deconfinement phase transition in cold (T = 0) and hot β-stable hadronic matter. Assuming a first-order phase transition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter (QM)) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates a huge amount of energy, of the order of 1053 erg, which produces a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the universe two coexisting families of compact stars: HSs and QSs. We introduce the concept of critical mass Mcr for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < Mcr could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of PHSs.

  18. Superfluid hydrodynamics in the inner crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Martin, Noël; Urban, Michael

    2016-12-01

    The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a body-centered cubic (BCC) crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.

  19. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  20. A new type of compact stellar population: “dark star clusters”

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran; Kroupa, Pavel

    2015-08-01

    The possibility of the presence of large populations of stellar mass black holes (BHs) in star clusters has currently come into focus as an increasing number of BHs are being detected in globular clusters from X-ray and radio observations. By virtue of their ~10 times higher mass than the average stellar mass, these BHs strongly segregate towards the center of their parent star cluster. In that way they become dynamically highly active and potentially invoke a wide variety of physical phenomena; the most important ones being emission of gravitational waves (GWs), formation of X-ray binaries, and expansion of the cluster. However, closer to the Galactic center, a different manifestation of the BH population within a star cluster can take place. We propose, for the first time, that rapid removal of stars from the outer parts of a cluster by the strong tidal field in the inner region of our Galaxy can unveil its BH sub-cluster. The remaining system would apparently be a super-virial star cluster that is gravitationally held compact by an invisible mass. We study the formation and properties of such systems through direct N-body computations and estimate that they can be present in significant numbers (~100) in the inner region of the Milky Way. We call such objects “dark star clusters” (DSCs) as they appear dimmer than normal star clusters of similar total mass and they comprise a predicted, new class of entities. Dark Star Clusters are a natural outcome of star clusters’ evolution in a strong tidal field provided a substantial number of BHs (and neutron stars) are formed with low natal kicks and are retained in them. Hence, the discovery of DSCs will not only constrain the uncertain natal kicks of BHs, thereby scenarios of BH formation, but will also reassure star clusters as potential sites for GW emission for forthcoming ground-based detectors such as the Advanced LIGO. Finally, we discuss whether the Galactic-central IRS 13E can possibly be a DSC.

  1. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  2. Observable pulsed fractions of thermal emission from neutron stars with toroidal magnetic fields.

    NASA Astrophysics Data System (ADS)

    Henderson, Jillian Anne

    The observed spectra of many thermally emitting neutron stars ("The Magnificent Seven", High-Field Pulsars, etc.) suggest that the surface temperature distribution can be described by hot polar regions surrounded by a cooler equatorial belt. The hotter polar "caps" produce pulsed fractions (P F ) in the x-ray emission that, in some cases, can be quite high (e.g. PSR J1119-6127 with P F = 74 ± 14%, Gonzalez et al. 2007). In neutron stars, such a temperature distribution can be explained by the presence of a strong toroidal field in the crust (Perez-Azorin et al. 2006; Geppert et al. 2006). An elegant description of the relationship between pulsed fraction and rg /R for compact stars with hot spots was first given by Beloborodov 2002. In this study, the relationship between pulsed fraction and stellar radius (P F vs. R) for various configurations of hot spot position, beaming factor and observer angle for a 1.4 solar mass neutron star is explored. The pertinence of spot temperature and size is also examined.

  3. COMPACT STAR CLUSTERS IN THE M31 DISK

    SciTech Connect

    Vansevicius, V.; Narbutis, D.; Stonkute, R.; Bridzius, A.; Semionov, D.; Kodaira, K.; Deveikis, V.

    2009-10-01

    We have carried out a survey of compact star clusters (apparent size approx<3'') in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.'5 x 28.'5), covering approx15% of the deprojected galaxy disk area. The UBVRI photometry of 285 cluster candidates (V approx< 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r{sub h} approx 1.5 pc), was selected by specifying a lower limit of r{sub h} approx> 0.''15 (approx>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from approx5 Myr (young objects associated with 24 {mu}m and/or Halpha emission) to approx10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 approx< log(m/m {sub sun}) approx< 4.3 peaking at m approx 4000 m {sub sun}. Typical age of these intermediate-mass clusters is in the range of 30 Myr approx< t approx< 3 Gyr, with a prominent peak at approx70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.

  4. Neutrino flavor evolution in binary neutron star merger remnants

    NASA Astrophysics Data System (ADS)

    Frensel, Maik; Wu, Meng-Ru; Volpe, Cristina; Perego, Albino

    2017-01-01

    We study the neutrino flavor evolution in the neutrino-driven wind from a binary neutron star merger remnant consisting of a massive neutron star surrounded by an accretion disk. With the neutrino emission characteristics and the hydrodynamical profile of the remnant consistently extracted from a three-dimensional simulation, we compute the flavor evolution by taking into account neutrino coherent forward scattering off ordinary matter and neutrinos themselves. We employ a "single-trajectory" approach to investigate the dependence of the flavor evolution on the neutrino emission location and angle. We also show that the flavor conversion in the merger remnant can affect the (anti)neutrino absorption rates on free nucleons and may thus impact the r -process nucleosynthesis in the wind. We discuss the sensitivity of such results on the change of neutrino emission characteristics, also from different neutron star merger simulations.

  5. Thermonuclear Burning as a Probe of Neutron Star

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2008-01-01

    Thermonuclear fusion is a fundamental process taking place in the matter transferred onto neutron stars in accreting binary systems. The heat deposited by nuclear reactions becomes readily visible in the X-ray band when the burning is either unstable or marginally stable, and results in the rich phenomenology of X-ray bursts, superbursts, and mHz quasiperiodic oscillations. Fast X-ray timing observations with NASA's Rossi X-ray Timing Explorer (RXTE) over the past decade have revealed a wealth of new phenomena associated with thermonuclear burning on neutron stars, including the discovery of nuclear powered pulsations during X-ray bursts and superbursts. I will briefly review our current observational and theoretical understanding of these new phenomena, with an emphasis on recent findings, and discuss what they are telling us about the structure of neutron stars.

  6. Persistent crust-core spin lag in neutron stars

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2015-06-01

    It is commonly believed that the magnetic field threading a neutron star provides the ultimate mechanism (on top of fluid viscosity) for enforcing long-term corotation between the slowly spun-down solid crust and the liquid core. We show that this argument fails for axisymmetric magnetic fields with closed field lines in the core, the commonly used `twisted torus' field being the most prominent example. The failure of such magnetic fields to enforce global crust-core corotation leads to the development of a persistent spin lag between the core region occupied by the closed field lines and the rest of the crust and core. We discuss the repercussions of this spin lag for the evolution of the magnetic field, suggesting that, in order for a neutron star to settle to a stable state of crust-core corotation, the bulk of the toroidal field component should be deposited into the crust soon after the neutron star's birth.

  7. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  8. Gamma-ray bursts and neutron star field decay

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter; Blumenthal, George; Chuang, Kuan-Wen; Hurley, Kevin; Kargatis, Vincent; Liang, Edison; Linder, Eric

    1992-01-01

    Assuming a Galactic origin of gamma-ray bursts, we use pulsar data to calculate the spatial distribution of neutron stars and determine the sampling depths of current detectors. Based on these distance limits, we calculate the corresponding age distribution of Galactic neutron stars and apply an exponential field decay model to test whether the observed high incidence rate of cyclotron lines is consistent with suggested field decay time scales of order 10 exp 7 years. We find that the properties of the observed population of gamma-ray bursts are inconsistent with the idea that bursts originate at arbitrary times on neutron stars whose fields decay on time scales shorter than about 10 exp 9 years. Possible interpretations of this inconsistency are discussed.

  9. Merger of binary neutron stars in numerical relativity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru

    2014-09-01

    The merger of binary neutron stars is one of most promising sources of gravitational waves. It is also a promising candidate for the central engine of short-hard gamma-ray bursts and a source of the strong transient electromagnetic signal that could be the counterpart of gravitational-wave signals. Numerical relativity is probably the unique tool for theoretically exploring the merger process, and now, it is powerful enough to provide us a wide variety of aspects of the binary-neutron-star merger. In this talk, I will summarize our current understanding of the entire merger event that is obtained by a large-scale numerical-relativity simulations. In particular, I focus on the relation between the neutron-star equation of state and gravitational waves emitted during the late inspiral and merger phase, and observable electromagnetic signal that is likely to be emitted by the dynamical ejecta through r-process nucleosynthesis.

  10. Ultrarelativistic electromagnetic counterpart to binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Shibata, Masaru

    2014-01-01

    We propose a possibility of ultrarelativistic electromagnetic counterparts to gravitational waves from binary neutron star mergers at nearly all the viewing angles. Our proposed mechanism relies on the merger-shock propagation accelerating a smaller mass in the outer parts of the neutron star crust to a larger Lorentz factor Γ with smaller energy ˜1047Γ-1 erg. This mechanism is difficult to resolve by current 3D numerical simulations. The outflows emit synchrotron flares for seconds to days by shocking the ambient medium. Ultrarelativistic flares shine at an early time and in high-energy bands, potentially detectable by current X-ray to radio instruments, such as Swift XRT and Pan-STARRS, and even in low ambient density ˜10-2 cm-3 by EVLA. The flares probe the merger position and time, and the merger types as black hole-neutron star outflows would be non-/mildly relativistic.

  11. r-MODE Runaway and Rapidly Rotating Neutron Stars

    NASA Astrophysics Data System (ADS)

    Stergioulas, Nikolaos; Kokkotas, Kostas D.; Andersson, Nils; Jones, David Ian

    2002-12-01

    We present a simple spin evolution model that predicts that rapidly rotating accreting neutron stars will mainly be confined to a narrow range of spin-frequencies; P = 1.5 - 5 ms. This is in agreement with current observations of both neutron stars in the Low-Mass X-ray Binaries and millisecond radio pulsars. The main ingredients in the model are: i) the instability of r-modes above a critical spin rate, ii) thermal runaway due to heat released as viscous damping mechanisms counteract the r-mode growth, and iii) a revised estimate of the strength of dissipation due to the presence of a viscous boundary layer at the base of the crust in an old and relatively cold neutron star...

  12. A compact neutron detector for a geology application

    SciTech Connect

    Biddle, R.S.; Collinsworth, P.R.

    1991-12-31

    The authors recently designed and built a compact neutron detector for a geology experiment. The detector had to fit inside a 1.5-in.-diam borehole in a large block of concrete. They attached a gas-filled, 1-in.-diam {sup 3}He tube to a 1-in.-diam electronics preamplifier package of their design. The electronics package consists of a cylindrically shaped, high-voltage section and a single-channel analyzer with a buffered output. The low-voltage components are mounted on a printed-circuit board. The circuit board and the high-voltage section are attached to a semicylindrical base. The outputs consist of a light-emitting diode for visual observations and a fixed-width, TTL-compatible pulse for a counter. This internal assembly is equipped with coaxial connectors and slips into a thin-walled tube that serves as the preamplifier housing. Power for a detector is supplied by an external, high-voltage supply and a 5-Vdc supply.

  13. Magnetized neutron stars with superconducting cores: effect of entrainment

    NASA Astrophysics Data System (ADS)

    Palapanidis, K.; Stergioulas, N.; Lander, S. K.

    2015-09-01

    We construct equilibrium configurations of magnetized, two-fluid neutron stars using an iterative numerical method. Working in Newtonian framework we assume that the neutron star has two regions: the core, which is modelled as a two-component fluid consisting of type-II superconducting protons and superfluid neutrons, and the crust, a region composed of normal matter. Taking a new step towards more complete equilibrium models, we include the effect of entrainment, which implies that a magnetic force acts on neutrons, too. We consider purely poloidal field cases and present improvements to an earlier numerical scheme for solving equilibrium equations, by introducing new convergence criteria. We find that entrainment results in qualitative differences in the structure of field lines along the magnetic axis.

  14. Pairing gap in the inner crust of neutron stars

    SciTech Connect

    Esbensen, H.; Broglia, R.A.; Vigezzi, E.; Barranco, F.

    1995-08-01

    The pairing gap in the inner crust of a neutron star can be strongly affected by the presence of heavy nuclei. The effect is commonly estimated in a semiclassical description, using the local density approximation. It was found that the nuclear specific heat can become comparable to the electronic specific heat at certain densities and temperatures. The quantitative result depends critically upon the magnitude of the pairing gap. We therefore decided to assess the validity of the semiclassical approach. This is done by solving the quantal BCS pairing gap equation for neutrons that are confined to the Wigner-Seitz cell that surrounds a heavy nucleus. We performed calculations that are based on the Gogny pairing force. They are feasible for realistic densities of neutrons and heavy nuclei that are expected to be found in the inner crust of neutron stars. The results will be compared to the semiclassical predictions. This work is in progress.

  15. An accurate metric for the spacetime around rotating neutron stars.

    NASA Astrophysics Data System (ADS)

    Pappas, George

    2017-01-01

    The problem of having an accurate description of the spacetime around rotating neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a rotating neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to infer the properties of the structure of a neutron star from astrophysical observations. In this work we present such an approximate stationary and axisymmetric metric for the exterior of rotating neutron stars, which is constructed using the Ernst formalism and is parameterised by the relativistic multipole moments of the central object. This metric is given in terms of an expansion on the Weyl-Papapetrou coordinates with the multipole moments as free parameters and is shown to be extremely accurate in capturing the physical properties of a neutron star spacetime as they are calculated numerically in general relativity. Because the metric is given in terms of an expansion, the expressions are much simpler and easier to implement, in contrast to previous approaches. For the parameterisation of the metric in general relativity, the recently discovered universal 3-hair relations are used to produce a 3-parameter metric. Finally, a straightforward extension of this metric is given for scalar-tensor theories with a massless scalar field, which also admit a formulation in terms of an Ernst potential.

  16. Compact star forming galaxies as the progenitors of compact quiescent galaxies: Clustering result

    NASA Astrophysics Data System (ADS)

    Lin, Xiaozhi; Fan, Lulu; Kong, Xu; Fang, Guanwen

    2017-02-01

    We present a measurement of the spatial clustering of massive compact galaxies at 1.2 ≤ z ≤ 3 in CANDELS/3D-HST fields. We obtain the correlation length for compact quiescent galaxies (cQGs) at z ∼ 1.6 of r0 = 7.1-2.6+2.3 h-1 Mpc and compact star forming galaxies (cSFGs) at z ∼ 2.5 of r0 = 7.7-2.9+2.7 h-1 Mpc assuming a power-law slope γ = 1.8 . The characteristic dark matter halo masses MH of cQGs at z ∼ 1.6 and cSFGs at z ∼ 2.5 are ∼ 7.1 ×1012h-1M⊙ and ∼ 4.4 ×1012h-1M⊙ , respectively. Our clustering result suggests that cQGs at z ∼ 1.6 are possibly the progenitors of local luminous ETGs and the descendants of cSFGs and SMGs at z > 2. Thus an evolutionary connection involving SMGs, cSFGs, QSOs, cQGs and local luminous ETGs has been indicated by our clustering result.

  17. Single-flavor CSL phase in compact stars

    SciTech Connect

    Blaschke, David; Sandin, Fredrik; Klaehn, Thomas; Berdermann, Jens

    2008-08-29

    We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by {beta}-equilibrium and charge neutrality. At about 3n{sub 0} u-quarks appear and a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M{sub {center_dot}}. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation due to d-quark drip at the crust-core boundary fulfills basic criteria for a deep crustal heating process which is required to explain superbusts as well as cooling of X-ray transients.

  18. The Many Faces - and Phases - of Neutron Stars

    SciTech Connect

    Piekarewicz, J.

    2007-10-26

    Understanding the equation of state (EOS) of nuclear matter is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the EOS of cold baryonic matter with special emphasis on its impact on the structure and dynamics of neutron stars. In particular, I will discuss the many fascinating phases that one encounters as one travels from the low-density crust to the high-density core.

  19. Hall-drift induced magnetic field instability in neutron stars.

    PubMed

    Rheinhardt, M; Geppert, U

    2002-03-11

    In the presence of a strong magnetic field and under conditions as realized in the crust and the superfluid core of neutron stars, the Hall drift dominates the field evolution. We show by a linear analysis that, for a sufficiently strong large-scale background field depending at least quadratically on position in a plane conducting slab, an instability occurs which rapidly generates small-scale fields. Their growth rates depend on the choice of the boundary conditions, increase with the background field strength, and may reach 10(3) times the Ohmic decay rate. The effect of that instability on the rotational and thermal evolution of neutron stars is discussed.

  20. Neutron stars and the distance to gamma-ray bursters

    NASA Technical Reports Server (NTRS)

    Dermer, Charles D.; Hurley, Kevin C.

    1991-01-01

    Assuming that gamma-ray bursts originate from galactic neutron stars, an analytic method for studying their statistical properties is outlined. If a significant fraction of all neutron stars are born with space velocities of less than approximately 100 km/s, as suggested by studies of pulsar statistics, then the sampling distance to gamma-ray burst sources should be less than about several hundred pc. These results have important implications on theories of radio-pulsar evolution and magnetic-field decay.

  1. Observing quantum vacuum lensing in a neutron star binary system.

    PubMed

    Dupays, Arnaud; Robilliard, Cécile; Rizzo, Carlo; Bignami, Giovanni F

    2005-04-29

    In this Letter we study the propagation of light in the neighborhood of magnetized neutron stars. Because of the optical properties of quantum vacuum in the presence of a magnetic field, the light emitted by background astronomical objects is deviated, giving rise to a phenomenon of the same kind as the gravitational one. We give a quantitative estimation of this effect, and we discuss the possibility of its observation. We show that this effect could be detected by monitoring the evolution of the recently discovered double neutron star system J0737-3039.

  2. The Merger Rate of Neutron Star Binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Bailes, M.

    The major uncertainties in the merger rates of neutron star binaries are discussed, as well as a method of placing an upper limit on the binary neutron star population using simple ratios. We find that the merger rate is most unlikely to be greater than 10-5 yr -1 in our Galaxy, but is almost certainly greater than 10-7 yr-1. The prospects for hardening the merger rate in the near future are relatively bleak, with recent deep surveys failing to discover any systems capable of merging within a Hubble time. Other possible mergers involving black holes are briefly discussed.

  3. X-ray spectra from convective photospheres of neutron stars

    SciTech Connect

    Zavlin, V.E.; Pavlov, G.G. |; Shibanov, Yu.A.; Rogers, F.J.; Iglesias, C.A.

    1996-01-17

    We present first results of modeling convective photospheres of neutron stars. We show that in photospheres composed of the light elements convection arises only at relatively low effective temperatures ({le}3 - 5 x 10{sup 4} K), whereas in the case of iron composition it arises at T{sub eff}{le} 3 x 10{sup 5}K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. Thus, it should be taken into account for the proper interpretation of EUV/soft-X-ray observations of the thermal radiation from neutron stars.

  4. Gravitational Waves and the Maximum Spin Frequency of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Patruno, Alessandro; Haskell, Brynmor; D'Angelo, Caroline

    2012-02-01

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity LX when considering an enlarged sample size of millisecond X-ray pulsars.

  5. GRAVITATIONAL WAVES AND THE MAXIMUM SPIN FREQUENCY OF NEUTRON STARS

    SciTech Connect

    Patruno, Alessandro; Haskell, Brynmor; D'Angelo, Caroline

    2012-02-10

    In this paper, we re-examine the idea that gravitational waves are required as a braking mechanism to explain the observed maximum spin frequency of neutron stars. We show that for millisecond X-ray pulsars, the existence of spin equilibrium as set by the disk/magnetosphere interaction is sufficient to explain the observations. We show as well that no clear correlation exists between the neutron star magnetic field B and the X-ray outburst luminosity L{sub X} when considering an enlarged sample size of millisecond X-ray pulsars.

  6. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  7. Uncovering The Properties of Young Neutron Stars and Their Surrounding Supernova A Remnants

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    In the third year of this program, the following studies have been undertaken in support of this effort: G292.0+1.8: In our previous work on this SNR, we discovered a young neutron star and its associated pulsar wind nebula. Radio observations by Camilo et al. (2002) have identified a young 136 ms pulsar in the direction of G292.0+1.8. We have used Chandra HRC observations of the central source to identify X-ray pulsations at the same period, thus establishing the neutron star as the radio pulsar counterpart. We have also set limits on the cooling of this young neutron star based on the unpulsed component of the X-ray emission. We find that the limit falls slightly below standard cooling models in which the modified Urca process is responsible for the bulk of the interior neutrino emission. A paper summarizing these results is currently being circulated amongst co-authors for review prior to publication. 3c 58: Our Chandra observations of this Crab-like SNR revealed the presence of a young, rapidly rotating pulsar as well as a central compact nebula which we interpret as a toroidal structure associated with the pulsar wind termination shock. Our modeling of this structure has allowed us to establish a temperature upper limit for the neutron star which falls well below predictions from standard cooling models, and implies the presence of exotic particles (such as pion condensates) or other processes that increase the neutrino production rate in the interior. A paper summarizing this work has been published in the Astrophysical Journal (Slane, Helfand, & Murray 2002, ApJ, 571, L45), and the results were the subject of a NASA Space Science Update (4/10/2002) which led to extensive media coverage. Based upon our initial observations, we submitted a successful Chandra Large Project proposal for a 350 ks observation of this young neutron star and its wind nebula. Kes 79: Our Chandra observations of this SNR reveal a compact central source which appears to be the neutron

  8. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    DOE PAGES

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; ...

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-raymore » telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.« less

  9. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars

  10. ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING

    SciTech Connect

    Dong, J. M.; Zuo, W.; Lombardo, U.; Zhang, H. F.

    2016-01-20

    The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.

  11. Compact Neutron Generators for Medical Home Land Security andPlanetary Exploration

    SciTech Connect

    Reijonen, J.

    2005-05-11

    The Plasma and Ion Source Technology Group at Lawrence Berkeley National Laboratory has developed various types of advanced D-D (neutron energy 2.5 MeV), D-T (14 MeV) and T-T (0-9 MeV) neutron generators for wide range of applications. These applications include medical (Boron Neutron Capture Therapy), homeland security (Prompt Gamma Activation Analysis, Fast Neutron Activation Analysis and Pulsed Fast Neutron Transmission Spectroscopy) and planetary exploration with a sub-surface material characterization on Mars. These neutron generators utilize RF induction discharge to ionize the deuterium/tritium gas. This discharge method provides high plasma density for high output current, high atomic species from molecular gases, long life operation and versatility for various discharge chamber geometries. Four main neutron generator developments are discussed here: high neutron output co-axial neutron generator for BNCT applications, point neutron generator for security applications, compact and sub-compact axial neutron generator for elemental analysis applications. Current status of the neutron generator development with experimental data will be presented.

  12. Strangeness in nuclei and neutron stars: A challenging puzzle

    DOE PAGES

    Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; ...

    2016-03-25

    The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. Here, we summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.

  13. Neutron star natal kicks and the long-term survival of star clusters

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  14. The neutron star and black hole initial mass function

    SciTech Connect

    Timmes, F.X. |

    1996-02-01

    Using recently calculated models for massive stellar evolution and supernovae coupled to a model for Galactic chemical evolution, neutron star and black hole birth functions (number of neutron stars and black holes as a function of their mass) are determined for the Milky Way galaxy. For these stars that explode as Type II supernovae, the models give birth functions that are bimodal with peaks at 1.27 and 1.76 {ital M}{sub {circle_dot}} and average masses within those peaks of 1.28 and 1.73 {ital M}{sub {circle_dot}}. For these stars that explode as Type Ib there is a narrower spread of remnant masses, the average being 1.32 {ital M}{sub {circle_dot}}, and less evidence for bimodality. These values will be increased, especially in the more massive Type II supernovae, if significant accretion continues during the initial launching of the shock, and the number of heavier neutron stars could be depleted by black hole formation. The principal reason for the dichotomy in remnant masses for Type II is the difference in the presupernova structure of stars above and below 19 {ital M}{sub {circle_dot}}, the mass separating stars that burn carbon convectively from those that produce less carbon and burn radiatively. The Type Ib{close_quote}s and the lower mass group of the Type II{close_quote}s compare favorably with measured neutron star masses, and in particular to the Thorsett {ital et} {ital al}. (1993) determination of the average neutron star mass in 17 systems; 1.35{plus_minus}0.27 {ital M}{sub {circle_dot}}. Variations in the exponent of a Salpeter initial mass function are shown not to affect the locations of the two peaks in the distribution function, but do affect their relative amplitudes. Sources of uncertainty, in particular placement of the mass cut and sensitivity to the explosion energy, are discussed, and estimates of the total number of neutron stars and black holes in the Galaxy are given. (Abstract Truncated)

  15. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  16. Formation of quark phases in compact stars and SN explosion

    SciTech Connect

    Drago, A.; Pagliara, G.; Pagliaroli, G.; Villante, F. L.; Vissani, F.

    2008-10-13

    We describe possible scenarios of quark deconfinement in compact stars and we analyze their astrophysical implications. The quark deconfinement process can proceed rapidly, as a strong deflagration, releasing a huge amount of energy in a short time and generating an extra neutrino burst. If energy is tranferred efficiently to the surface, like e.g. in the presence of convective instabilities, this burst could contribute to revitalize a partially failed SN explosion. We discuss how the neutrino observations from SN1987A would fit in this scenario. Finally, we focus on the fate of massive and rapidly rotating progenitors, discussing possible time separations between the moment of the core collapse and the moment of quark deconfinement. This mechanism can be at the basis of the interpretation of gamma ray bursts in which lines associated with heavy elements are present in the spectrum.

  17. Two-component Superfluid Hydrodynamics of Neutron Star Cores

    NASA Astrophysics Data System (ADS)

    Kobyakov, D. N.; Pethick, C. J.

    2017-02-01

    We consider the hydrodynamics of the outer core of a neutron star under conditions when both neutrons and protons are superfluid. Starting from the equation of motion for the phases of the wave functions of the condensates of neutron pairs and proton pairs, we derive the generalization of the Euler equation for a one-component fluid. These equations are supplemented by the conditions for conservation of neutron number and proton number. Of particular interest is the effect of entrainment, the fact that the current of one nucleon species depends on the momenta per nucleon of both condensates. We find that the nonlinear terms in the Euler-like equation contain contributions that have not always been taken into account in previous applications of superfluid hydrodynamics. We apply the formalism to determine the frequency of oscillations about a state with stationary condensates and states with a spatially uniform counterflow of neutrons and protons. The velocities of the coupled sound-like modes of neutrons and protons are calculated from properties of uniform neutron star matter evaluated on the basis of chiral effective field theory. We also derive the condition for the two-stream instability to occur.

  18. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    SciTech Connect

    Ramirez-Ruiz, Enrico; MacLeod, Morgan; Trenti, Michele; Roberts, Luke F.; Lee, William H.; Saladino-Rosas, Martha I.

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  19. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    PubMed

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5).

  20. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  1. Non-linear Oscillations of Compact Stars and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Passamonti, Andrea

    2006-07-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative order this configuration does not exhibit any gravitational radiation, we have found a new interesting gravitational signal at non-linear order, in which the radial normal modes are precisely mirrored. In addition, a resonance effect is present when the frequencies of the radial pulsations are close to the first axial w-mode. Finally, we have roughly estimated the damping times of the radial pulsations due to the non-linear gravitational emission. The coupling near the resonance results to be a very effective mechanism for extracting energy from the radial oscillations.

  2. Advanced LIGO Constraints on Neutron Star Mergers and r-process Sites

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.; Ritter, Christian; Paul, Adam; Wehmeyer, Benjamin; O’Shea, Brian W.

    2017-02-01

    The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 M {}ȯ , the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. These two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.

  3. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  4. Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar

    NASA Technical Reports Server (NTRS)

    Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.; Christensen, F. E.; Craig, W. W.; Fabian, A. C.; Hailey, C. J.; Natalucci, L.; Paerels, F.; Rana, V.; Stern, D. K.; Tomsick, J. A.; Zhang, Will

    2013-01-01

    We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.

  5. Constraints on Bygone Nucleosynthesis of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Meisel, Zach; Deibel, Alex

    2017-03-01

    Nuclear burning near the surface of an accreting neutron star produces ashes that, when compressed deeper by further accretion, alter the star’s thermal and compositional structure. Bygone nucleosynthesis can be constrained by the impact of compressed ashes on the thermal relaxation of quiescent neutron star transients. In particular, Urca cooling nuclei pairs in nuclear burning ashes that cool the neutron star crust via neutrino emission from {e}--capture/{β }--decay cycles and provide signatures of prior nuclear burning over the ∼century timescales it takes to accrete to the {e}--capture depth of the strongest cooling pairs. Using crust cooling models of the accreting neutron star transient MAXI J0556-332, we show that this source likely lacked Type I X-ray bursts and superbursts ≳120 years ago. Reduced nuclear physics uncertainties in rp-process reaction rates and {e}--capture weak transition strengths for low-lying transitions will improve nucleosynthesis constraints using this technique.

  6. Low energy excitations of the neutron star core

    NASA Astrophysics Data System (ADS)

    Reddy, Sanjay

    2017-01-01

    I will summarize recent work on low energy excitations in cold dense matter and its implications for thermal and transport properties, and seismology of neutron stars. I argue that a low energy Lagrangian with a handful of low energy constants (LECs) provides an adequate framework for calculations. The LECs can be related to the equation of state of dense matter at zero temperature.

  7. ECCENTRIC MERGERS OF BLACK HOLES WITH SPINNING NEUTRON STARS

    SciTech Connect

    East, William E.; Paschalidis, Vasileios; Pretorius, Frans

    2015-07-01

    We study dynamical capture binary black hole–neutron star (BH–NS) mergers focusing on the effects of the neutron star spin. These events may arise in dense stellar regions, such as globular clusters, where the majority of neutron stars are expected to be rapidly rotating. We initialize the BH–NS systems with positions and velocities corresponding to marginally unbound Newtonian orbits, and evolve them using general-relativistic hydrodynamical simulations. We find that even moderate spins can significantly increase the amount of mass in unbound material. In some of the more extreme cases, there can be up to a third of a solar mass in unbound matter. Similarly, large amounts of tidally stripped material can remain bound and eventually accrete onto the BH—as much as a tenth of a solar mass in some cases. These simulations demonstrate that it is important to treat neutron star spin in order to make reliable predictions of the gravitational wave and electromagnetic transient signals accompanying these sources.

  8. Mechanical Properties of Non-Accreting Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2013-01-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from Soft Gamma-ray Repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014g cm-3 for simulations with an initially perfect BCC lattice. With these crustal properties and the observed properties of PSR J2124-3358 the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone can not be ruled out for triggering the energy in SGR bursts.

  9. Mechanical properties of non-accreting neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2012-11-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from soft Gamma-ray repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014 g cm-3 for simulations with an initially perfect body-centred cubic (BCC) lattice. With these crustal properties and the observed properties of PSR J2124-3358, the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone cannot be ruled out for triggering the energy in SGR bursts.

  10. Probing the Internal Composition of Neutron Stars with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2016-03-01

    Gravitational waves from neutron star binaries carry information about the equation of state of supranuclear matter through a parameter called tidal deformability. This parameter measures the quadrupole deformation of a neutron star in the presence of an external field. Its measurability has been assessed in a number of studies, concluding it could provide important information about the equation of state of neutron star matter. In this talk, I will describe a complimentary approach to the problem of equation of state determination, one which focuses on how information from gravitational waves can be translated in ways that could be of direct benefit to nuclear physicists. Specifically, I will talk about what gravitational waves can tell us about the internal composition of neutron stars, information that is directly applicable to equation of state modeling. I will also briefly discuss the importance of spin-induced precession in the quality of information extracted. We acknowledge support from the Onassis Foundation, NSF CAREER Grant PHY-1250636, NSF Award PHY-1306702, and NSF CAREER Grant PHY-1055103.

  11. Very massive neutron stars in Ni's theory of gravity

    NASA Technical Reports Server (NTRS)

    Mikkelsen, D. R.

    1977-01-01

    It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.

  12. Spin-Down Mechanisms in Neutron Stars with ``Anomalous'' Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2015-08-01

    Energy losses from isolated neutron stars are attributed to a number of factors, the most common assumption being the emission of electromagnetic radiation from a rotating point-like magnetic dipole in vacuum. This energy loss mechanism predicts a braking index n = 3, which is not observed in highly magnetized neutron stars. Despite this fact, the assumptions of a dipole field and rapid early rotation are often assumed a priori. This typically causes a discrepancy in the characteristic age of these objects and the age of their associated Supernova Remnants (SNRs). In this work we consider neutron stars with ``anomalous'' magnetic fields - namely magnetars, high-B radio pulsars, and the Central Compact Objects (proposed to be `anti-magnetars’) that are securely associated with SNRs. Without making any assumptions about the initial spin periods of these objects and by constraining the SNR ages to match their associated pulsar ages, we compare the predictions of distinct energy loss mechanisms, such as field decay and the emission of relativistic winds using all observed data on the braking indices. This study has important implications on the proposed emission models for these exotic objects and helps in resolving the PSR-SNR age discrepancy.

  13. Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers

    NASA Astrophysics Data System (ADS)

    Pannarale, Francesco; Berti, Emanuele; Kyutoku, Koutarou; Lackey, Benjamin D.; Shibata, Masaru

    2015-10-01

    Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive, and disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disruptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio Q =MBH/MNS below which mergers are disruptive as a function of the stellar compactness C =MNS/RNS and the dimensionless black hole spin χ . We then employ a new gravitational waveform amplitude model, calibrated to 134 general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the disruptive regime as a function of C , Q , and χ . Our findings are important to build gravitational-wave template banks, to determine whether neutron star-black hole mergers can emit electromagnetic radiation (thus helping multimessenger searches), and to improve event rate calculations for these systems.

  14. Development of compact high efficiency microstructured semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    McGregor, D. S.; Bellinger, S. L.; Fronk, R. G.; Henson, L.; Huddleston, D.; Ochs, T.; Shultis, J. K.; Sobering, T. J.; Taylor, R. D.

    2015-11-01

    Semiconductor diode detectors coated with neutron reactive materials are generally fashioned as planar diodes coated with 10B, 6LiF, or Gd. Planar detectors coated with 10B or 6LiF are limited to less than 5% intrinsic thermal neutron detection efficiency. Detectors coated with Gd can achieve higher efficiencies, but the low-energy signatures are problematic in the presence of background radiations. Microstructured semiconductor neutron detectors (MSNDs) can now achieve a tenfold increase in neutron detection efficiency over the planar diode designs. These semiconductor neutron detectors are fashioned with a matrix of microstructured patterns etched deeply into the semiconductor substrate and, subsequently, backfilled with neutron reactive materials. Intrinsic thermal-neutron detection efficiencies exceeding 35% have been achieved with devices no thicker than 1 mm while operating on less than 5 V, now allowing for instrumentation to be realized with similar performance as 3He gas-filled detectors.

  15. Kaon condensation in the quark-meson coupling model and compact stars

    SciTech Connect

    Menezes, D.P.; Panda, P.K.; Providencia, C.

    2005-09-01

    The properties of neutron stars, consisting of a crust of hadrons and an internal part of hadrons and kaon condensate, are calculated within the quark-meson-coupling model. We considered stars with nucleons only in the hadron phase and also stars with hyperons as well. The results are compared with the ones obtained from the nonlinear Walecka model for the hadronic phase.

  16. Neutron Star Mass-Radius Constraints Using Evolutionary Optimization

    NASA Astrophysics Data System (ADS)

    Stevens, A. L.; Fiege, J. D.; Leahy, D. A.; Morsink, S. M.

    2016-12-01

    The equation of state of cold supra-nuclear-density matter, such as in neutron stars, is an open question in astrophysics. A promising method for constraining the neutron star equation of state is modeling pulse profiles of thermonuclear X-ray burst oscillations from hot spots on accreting neutron stars. The pulse profiles, constructed using spherical and oblate neutron star models, are comparable to what would be observed by a next-generation X-ray timing instrument like ASTROSAT, NICER, or a mission similar to LOFT. In this paper, we showcase the use of an evolutionary optimization algorithm to fit pulse profiles to determine the best-fit masses and radii. By fitting synthetic data, we assess how well the optimization algorithm can recover the input parameters. Multiple Poisson realizations of the synthetic pulse profiles, constructed with 1.6 million counts and no background, were fitted with the Ferret algorithm to analyze both statistical and degeneracy-related uncertainty and to explore how the goodness of fit depends on the input parameters. For the regions of parameter space sampled by our tests, the best-determined parameter is the projected velocity of the spot along the observer’s line of sight, with an accuracy of ≤3% compared to the true value and with ≤5% statistical uncertainty. The next best determined are the mass and radius; for a neutron star with a spin frequency of 600 Hz, the best-fit mass and radius are accurate to ≤5%, with respective uncertainties of ≤7% and ≤10%. The accuracy and precision depend on the observer inclination and spot colatitude, with values of ˜1% achievable in mass and radius if both the inclination and colatitude are ≳60°.

  17. Neutron star equation of state and QPO observations

    NASA Astrophysics Data System (ADS)

    Urbanec, Martin; Stuchlík, Zdeněk; Török, Gabriel; Bakala, Pavel; Čermák, Petr

    2007-12-01

    Assuming a resonant origin of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems, we apply a genetic algorithm method for selection of neutron star models. It was suggested that pairs of kilohertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density rho_{c}. These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR, rho_{c}, Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR, rho_{c}, Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR, rho_{c}, Ω, EOS) into the chromosome we use the Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  18. QPO observations related to neutron star equations of state

    NASA Astrophysics Data System (ADS)

    Stuchlik, Zdenek; Urbanec, Martin; Török, Gabriel; Bakala, Pavel; Cermak, Petr

    We apply a genetic algorithm method for selection of neutron star models relating them to the resonant models of the twin peak quasiperiodic oscillations observed in the X-ray neutron star binary systems. It was suggested that pairs of kilo-hertz peaks in the X-ray Fourier power density spectra of some neutron stars reflect a non-linear resonance between two modes of accretion disk oscillations. We investigate this concept for a specific neutron star source. Each neutron star model is characterized by the equation of state (EOS), rotation frequency Ω and central energy density ρc . These determine the spacetime structure governing geodesic motion and position dependent radial and vertical epicyclic oscillations related to the stable circular geodesics. Particular kinds of resonances (KR) between the oscillations with epicyclic frequencies, or the frequencies derived from them, can take place at special positions assigned ambiguously to the spacetime structure. The pairs of resonant eigenfrequencies relevant to those positions are therefore fully given by KR,ρc , Ω, EOS and can be compared to the observationally determined pairs of eigenfrequencies in order to eliminate the unsatisfactory sets (KR,ρc , Ω, EOS). For the elimination we use the advanced genetic algorithm. Genetic algorithm comes out from the method of natural selection when subjects with the best adaptation to assigned conditions have most chances to survive. The chosen genetic algorithm with sexual reproduction contains one chromosome with restricted lifetime, uniform crossing and genes of type 3/3/5. For encryption of physical description (KR,ρ, Ω, EOS) into chromosome we used Gray code. As a fitness function we use correspondence between the observed and calculated pairs of eigenfrequencies.

  19. Light dark matter scattering in outer neutron star crusts

    NASA Astrophysics Data System (ADS)

    Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph

    2016-09-01

    We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.

  20. A Theoretical Analysis of Thermal Radiation from Neutron Stars

    NASA Technical Reports Server (NTRS)

    Applegate, James H.

    1993-01-01

    As soon as it was realized that the direct URCA process is allowed by many modern nuclear equation of state, an analysis of its effect on the cooling of neutron stars was undertaken. A primary study showed that the occurrence of the direct URCA process makes the surface temperature of a neutron star suddenly drop by almost an order of magnitude when the cold wave from the core reaches the surface when the star is a few years old. The results of this study are published in Page and Applegate. As a work in progress, we are presently extending the above work. Improved expressions for the effect of nucleon pairing on the neutrino emissivity and specific heat are now available, and we have incorporated them in a recalculation of rate of the direct URCA process.

  1. Spin evolution of a proto-neutron star

    NASA Astrophysics Data System (ADS)

    Camelio, Giovanni; Gualtieri, Leonardo; Pons, José A.; Ferrari, Valeria

    2016-07-01

    We study the evolution of the rotation rate of a proto-neutron star, born in a core-collapse supernova, in the first seconds of its life. During this phase, the star evolution can be described as a sequence of stationary configurations, which we determine by solving the neutrino transport and the stellar structure equations in general relativity. We include in our model the angular momentum loss due to neutrino emission. We find that the requirement of a rotation rate not exceeding the mass-shedding limit at the beginning of the evolution implies a strict bound on the rotation rate at later times. Moreover, assuming that the proto-neutron star is born with a finite ellipticity, we determine the emitted gravitational wave signal and estimate its detectability by present and future ground-based interferometric detectors.

  2. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  3. CCO Pulsars as Anti-Magnetars: Evidence of Neutron Stars Weakly Magnetized at Birth

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.

    2008-02-01

    Our new study of the two central compact object pulsars, PSR J1210-5226 (P = 424 ms) and PSR J1852+0040 (P = 105 ms), leads us to conclude that a weak natal magnetic field shaped their unique observational properties. In the dipole spin-down formalism, the 2-sigma upper limits on their period derivatives, <2×10-16 for both pulsars, implies surface magnetic field strengths of Bs<3×1011 G and spin periods at birth equal to their present periods to three significant digits. Their X-ray luminosities exceed their respective spin-down luminosities, implying that their thermal spectra are derived from residual cooling and perhaps partly from accretion of supernova debris. For sufficiently weak magnetic fields an accretion disk can penetrate the light cylinder and interact with the magnetosphere while resulting torques on the neutron star remain within the observed limits. We propose the following as the origin of radio-quiet CCOs: the magnetic field, derived from a turbulent dynamo, is weaker if the NS is formed spinning slowly, which enables it to accrete SN debris. Accretion excludes neutron stars born with both Bs<1011 G and P>0.1 s from radio pulsar surveys, where such weak fields are not encountered except among very old (>40 Myr) or recycled pulsars. We predict that these birth properties are common, and may be attributes of the youngest detected neutron star, the CCO in Cassiopeia A, as well as an undetected infant neutron star in the SN 1987A remnant. In view of the far-infrared light echo discovered around Cas A and attributed to an SGR-like outburst, it is especially important to determine via timing whether Cas A hosts a magnetar or not. If not a magnetar, the Cas A NS may instead have undergone a one-time phase transition (corequake) that powered the light echo.

  4. Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter

    SciTech Connect

    Todd-Rutel, B.G.; Piekarewicz, J.

    2005-09-16

    An accurately calibrated relativistic parametrization is introduced to compute the ground state properties of finite nuclei, their linear response, and the structure of neutron stars. While similar in spirit to the successful NL3 parameter set, it produces an equation of state that is considerably softer--both for symmetric nuclear matter and for the symmetry energy. This softening appears to be required for an accurate description of several collective modes having different neutron-to-proton ratios. Among the predictions of this model are a symmetric nuclear-matter incompressibility of K=230 MeV and a neutron skin thickness in {sup 208}Pb of R{sub n}-R{sub p}=0.21 fm. The impact of such a softening on various neutron-star properties is also examined.

  5. Stochastic Background from Coalescences of Neutron Star-Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Regimbau, T.; de Freitas Pacheco, J. A.

    2006-05-01

    In this work, numerical simulations were used to investigate the gravitational stochastic background produced by coalescences of double neutron star systems occurring up to z~5. The cosmic coalescence rate was derived from Monte Carlo methods using the probability distributions for massive binaries to form and for a coalescence to occur in a given redshift. A truly continuous background is produced by events located only beyond the critical redshift z*=0.23. Events occurring in the redshift interval 0.027

  6. The shear modulus of the neutron star crust and nonradial oscillations of neutron stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Van Horn, H. M.; Ogata, S.; Iyetomi, H.; Ichimaru, S.

    1991-01-01

    Shear moduli are calculated for bcc crystalline and rapidly quenched Coulomb solids produced by the Monte Carlo simulation method. The shear moduli are calculated up to the transition temperature and include the effects of thermal fluctuations. An effective shear modulus appropriate to an approximate 'isotropic' body is introduced. It is found that the values of the 'average shear modulus' for the quenched solids remain about the same as those for the corresponding bcc crystals, although the individual shear moduli of the former, disordered solids deviate considerably from the cubic symmetry of the latter. These results are applied to analyses of neutron star oscillations. It is found that the periods of the two interfacial modes are increased by about 10 percent compared to previous results, and that s-mode periods are increased by about 30 percent. The periods of the f and p modes are hardly affected at all. The surface g-mode periods are not greatly affected, while the t-mode periods are increased by 20-25 percent.

  7. Non-destructive Texture Measurement of Steel Sheets with Compact Neutron Source “RANS”

    NASA Astrophysics Data System (ADS)

    Takamura, M.; Ikeda, Y.; Sunaga, H.; Taketani, A.; Otake, Y.; Suzuki, H.; Kumagai, M.; Hama, T.; Oba, Y.

    2016-08-01

    Neutron diffraction is well known to be a useful technique for measuring a bulk texture of metallic materials taking advantage of a large penetration depth of the neutron beam. However, this technique has not been widely utilized for the texture measurement because large facilities like a reactor or a large accelerator are required in general. In contrast, RANS (Riken Accelerator-driven Compact Neutron Source) has been developed as a neutron source which can be used easily in laboratories. In this study, texture evolution in steel sheets with plastic deformation was successfully measured using RANS. The results show the capability of the compact neutron source for the analysis of the crystal structure of metallic materials, which leads us to a better understanding of plastic deformation behavior.

  8. Neutrino cooling and spin-down of rapidly rotating compact stars

    SciTech Connect

    Jaikumar, Prashanth; Sandalski, Stou

    2010-11-15

    The gravitational-wave instability of r modes in rapidly rotating compact stars is believed to spin them down to angular frequencies {Omega}{approx}0.1{Omega}{sub Kepler} soon after their birth in a supernova. We point out that the r-mode perturbation also impacts the neutrino cooling and viscosity in hot compact stars via processes that restore weak equilibrium. We illustrate this fact with a simple model of spin-down due to gravitational-wave emission in compact stars composed entirely of three-flavor degenerate quark matter (a strange quark star). Nonequilibrium neutrino cooling of this oscillating fluid matter is quantified. Our results imply that a consistent treatment of the thermal and spin-frequency evolution of a young and hot compact star is a requisite in estimating the persistence of gravitational waves from such a source.

  9. Cooling of Compact Stars with Color Superconducting Phase in Quark-hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka; Fujimoto, Masayuki

    2013-03-01

    We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star that has high effective temperature, and it is consistent with the cooling without exotic phases. The observation also gives the mass range of M >= 1.5 M ⊙, which may conflict with the current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which can barely be explained by the minimal cooling scenario, which includes the neutrino emission by nucleon superfluidity (PBF). Therefore, we invoke the exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we present a new cooling scenario to explain the observation of Cas A by constructing models that include a quark color superconducting (CSC) phase with a large energy gap; this phase appears at ultrahigh density regions and reduces neutrino emissivity. In our model, a compact star has a CSC quark core with a low neutrino emissivity surrounded by high emissivity region made by normal quarks. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency without considering nucleon superfluidity. Furthermore, we show that our scenario is consistent with the recent observations of the effective temperature of Cas A during the last 10 years, including nucleon superfluidity.

  10. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  11. A NEW CODE FOR PROTO-NEUTRON STAR EVOLUTION

    SciTech Connect

    Roberts, L. F.

    2012-08-20

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution obtained using the new code are broadly consistent with previous results. Unlike other recent calculations, however, the new code predicts that the neutrino-driven wind will be characterized, at least for part of its existence, by a neutron excess. This change, potentially consequential for nucleosynthesis in the wind, is due to an improved treatment of the charged current interactions of electron-flavored neutrinos and anti-neutrinos with nucleons. A comparison is also made between the results obtained using either variable Eddington factors or simple equilibrium flux-limited diffusion. The latter approximation, which has been frequently used in previous studies of proto-neutron star cooling, accurately describes the total neutrino luminosities (to within 10%) for most of the evolution, until the proto-neutron star becomes optically thin.

  12. INVESTIGATING SUPERCONDUCTIVITY IN NEUTRON STAR INTERIORS WITH GLITCH MODELS

    SciTech Connect

    Haskell, B.; Pizzochero, P. M.; Seveso, S.

    2013-02-20

    The high-density interior of a neutron star is expected to contain superconducting protons and superfluid neutrons. Theoretical estimates suggest that the protons will form a type II superconductor in which the stellar magnetic field is carried by flux tubes. The strong interaction between the flux tubes and the neutron rotational vortices could lead to strong ''pinning'', i.e., vortex motion could be impeded. This has important implications especially for pulsar glitch models as it would lead to a large part of the vorticity of the star being decoupled from the ''normal'' component to which the electromagnetic emission is locked. In this Letter, we explore the consequences of strong pinning in the core on the ''snowplow'' model for pulsar glitches, making use of realistic equations of state and relativistic background models for the neutron star. We find that, in general, a large fraction of the pinned vorticity in the core is not compatible with observations of giant glitches in the Vela pulsar. Thus, the conclusion is that either most of the core is in a type I superconducting state or the interaction between vortices and flux tubes is weaker than previously assumed.

  13. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    PubMed

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  14. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star

    NASA Astrophysics Data System (ADS)

    Campana, S.; Lodato, G.; D'Avanzo, P.; Panagia, N.; Rossi, E. M.; Della Valle, M.; Tagliaferri, G.; Antonelli, L. A.; Covino, S.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Pian, E.; Salvaterra, R.; Cusumano, G.; D'Elia, V.; Fugazza, D.; Palazzi, E.; Sbarufatti, B.; Vergani, D. S.

    2011-12-01

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the `Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  15. Molecular Dynamics of Nuclear Pasta in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Briggs, Christian; da Silva Schneider, Andre

    2014-09-01

    During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces. Between the crust and core lies an interesting interface where matter is neither a single nucleus nor separate nuclei. It exists in a frustrated phase; competition between electromagnetic and strong nuclear forces causes exotic shapes to emerge, referred to as nuclear pasta. We use Molecular Dynamics (MD) to simulate nuclear pasta, with densities between nuclear saturation density and approximately one-tenth saturation density. Using MD particle trajectories, we compute the static structure factor S(q) and dynamical response function to describe both electron-pasta and neutrino-pasta scattering. We relate the structure and properties of nuclear pasta phases to features in S(q). Finally, one can integrate over S(q) to determine transport properties such as the electrical and thermal conductivity. This may help provide a better understanding of X-ray observations of neutron stars. During a core collapse supernova, a massive star undergoes rapid contraction followed by a massive explosion on the order of a hundred trillion trillion nuclear bombs in less than a second. While most matter is expelled at high speeds, what remains can form a neutron star. The bulk of a neutron star does not contain separate nuclei but is itself a single nucleus of radius ~10 km. In the crust of a neutron star, density is low enough that some matter exists as distinct nuclei arranged into crystalline lattice dominated by electromagnetic forces

  16. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    SciTech Connect

    Pachon, Leonardo A.; Rueda, Jorge A.; Valenzuela-Toledo, Cesar A. E-mail: jorge.rueda@icra.it

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  17. Supernova Explosions and the Birth of Neutron Stars

    SciTech Connect

    Janka, H.-Thomas; Marek, Andreas; Mueller, Bernhard; Scheck, Leonhard

    2008-02-27

    We report here on recent progress in understanding the birth conditions of neutron stars and the way how supernovae explode. More sophisticated numerical models have led to the discovery of new phenomena in the supernova core, for example a generic hydrodynamic instability of the stagnant supernova shock against low-mode nonradial deformation and the excitation of gravity-wave activity in the surface and core of the nascent neutron star. Both can have supportive or decisive influence on the inauguration of the explosion, the former by improving the conditions for energy deposition by neutrino heating in the postshock gas, the latter by supplying the developing blast with a flux of acoustic power that adds to the energy transfer by neutrinos. While recent two-dimensional models suggest that the neutrino-driven mechanism may be viable for stars from {approx}8M{sub {center_dot}} to at least 15M{sub {center_dot}}, acoustic energy input has been advocated as an alternative if neutrino heating fails. Magnetohydrodynamic effects constitute another way to trigger explosions in connection with the collapse of sufficiently rapidly rotating stellar cores, perhaps linked to the birth of magnetars. The global explosion asymmetries seen in the recent simulations offer an explanation of even the highest measured kick velocities of young neutron stars.

  18. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    SciTech Connect

    Cheng, Quan; Yu, Yun-Wei

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spin down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.

  19. Rapidly rotating superfluid neutron stars in Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Yoshida, Shijun; Eriguchi, Yoshiharu

    2004-01-01

    We develop a formulation for constructing and examining rapidly rotating Newtonian neutron star models that contain two superfluids, taking account of the effect of the rotation velocity difference between two superfluids. We assume neutron stars to be composed of the superfluid neutrons and a mixture of the superfluid protons and the normal fluid electrons. To describe Newtonian dynamics of the two superfluids, the Newtonian version of the so-called two-fluid formalism is employed. The effect of the rotation velocity difference on the structure of equilibrium state is treated as a small perturbation to rapidly rotating superfluid stars whose angular velocities of two superfluids are assumed to be exactly the same. We derive basic equations for the perturbed structures of rapidly rotating superfluid stars due to the rotation velocity difference between two superfluids. Assuming the superfluids to obey a simple analytical equation of state proposed by Prix, Comer and Andersson, we obtain numerical solutions for the perturbations and find that the density distributions of the superfluids are strongly dependent on the parameter σ, which appears in the analytical equation of state and characterizes the so-called symmetry energy. It is also found that if the analytical equation of state of Prix et al. is assumed, the perturbations can be represented in terms of the universal functions that are independent of the parameters of the equation of state.

  20. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  1. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  2. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  3. Magnetic fields in mixed neutron-star-plus-wormhole systems

    SciTech Connect

    Aringazin, Ascar; Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta E-mail: v.dzhunushaliev@gmail.com E-mail: b.kleihaus@uni-oldenburg.de

    2015-04-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable.

  4. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  5. The effects of superhigh magnetic fields on the equations of state of neutron stars

    NASA Astrophysics Data System (ADS)

    Gao, Z. F.; Wang, N.; Xu, Y.; Shan, H.; Li, X.-D.

    2015-11-01

    By introducing Dirac's δ-function in superhigh magnetic fields, we deduce a general formula for the pressure of degenerate and relativistic electrons, Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynamic(QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows: the stronger the magnetic field strength, the higher the electron pressure becomes; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EoS of the star. Since this is an original work in which some uncertainties could exist, modifications and improvements of our theory should be considered in our future studies.

  6. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric

  7. Diversity of neutron star properties at the fixed neutron-skin thickness of 208Pb

    NASA Astrophysics Data System (ADS)

    Alam, N.; Sulaksono, A.; Agrawal, B. K.

    2015-07-01

    We study the diversities in the properties of the neutron stars arising due to the different choices for the cross coupling between various mesons, which governs the density dependence of the nuclear symmetry energy in the extended relativistic mean-field (RMF) model. For this purpose, we obtain two different families of the extended RMF model corresponding to different nonlinear cross-coupling terms in the isovector part of the effective Lagrangian density. The lowest-order contributions for the δ mesons are also included. The different models within the same family yield wide variation in the value of neutron-skin thickness in the 208Pb nucleus. These models are employed to compute the neutron-star properties such as core-crust transition density, radius and red shift at canonical mass ( 1.4 M⊙) , tidal polarizability parameter, and threshold mass required for the enhanced cooling through the direct Urca process. Most of the neutron-star properties considered are significantly different(10-40%) for the different families of models at a smaller neutron-skin thickness (˜0.15 fm ) in the 208Pb nucleus.

  8. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  9. Compact Stars in Eddington-inspired Born-Infeld Gravity and General Relativity

    NASA Astrophysics Data System (ADS)

    Sham, Yu Hin

    In this thesis we apply the Eddington inspired Born-Infeld (EiBI) gravity to study the structure and the properties of compact stars. The hydrostatic equilibrium structure of compact stars characterized by different equations of state (EOSs) is considered and it is found that EiBI gravity can lead to different new features that are not found in standard general relativity (GR). A unified framework to study radial perturbations and the stability of compact stars in this theory is also developed. As in the GR case, the frequency- square of the fundamental oscillation mode vanishes for the maximum mass stellar configuration. Also, the oscillation modes depend on the parameter kappa introduced in EiBI gravity and the dependence is stronger for higher-order modes. We also discover that EiBI gravity imposes certain constraints on the EOSs that allow physical stable equilibrium states of compact stars to exist. However, such constraints are unphysical as the validity of an EOS should be independent of the theory of gravity, hinting that EiBI gravity needs to be modified. On the other hand, we demonstrate that two universal relations of compact stars, namely the I-Love-Q relation, which relates the moment of intertia, the tidal Love number and the quadrupole moment of compact stars, and the f-I relation, which links the f-mode oscillation frequency and the moment of inertia of compact stars together, still hold in EiBI gravity within the observational bounds of kappa. The origin of the two universal relations is then studied and it is found that a stiff EOS at the core of the compact star guarantees the universality. The two universal relations are further extended and universal relations relating the multipolar f-mode oscillation frequency and the corresponding multipolar tidal Love number, which can be derived analytically in the Newtonian limit for stars with sufficiently stiff EOSs, are found.

  10. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  11. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  12. Radio luminosity upper limits of the transient neutron star low-mass X-ray binary GRO J1744-28

    NASA Astrophysics Data System (ADS)

    Russell, Thomas; Degenaar, Nathalie; Miller-Jones, James; Tudor, Vlad

    2017-02-01

    Following the new outburst of the Galactic neutron star low-mass X-ray binary and 2.1 Hz X-ray pulsar GRO J1744-28 (ATels #10073, #10079), we performed target of opportunity observations of this source with the Australia Telescope Compact Array (ATCA).

  13. Neutron-star formation in the carbon-detonation supernova.

    NASA Technical Reports Server (NTRS)

    Wheeler, J. C.; Buchler, J.-R.; Barkat, Z. K.

    1973-01-01

    Neutrino losses, such as those driven by the convective Urca process, may affect the evolution of stars in the mass range from 4 to 8 solar masses so as to lead to collapse of their degenerate carbon/oxygen cores. A corresponding hydrodynamic model is computed which leads to the formation of a 1.3 to 1.4 solar mass neutron star with the expulsion of a small fraction of the mass, about 0.l solar mass at about 20,000 km/sec into the overlying hydrogen envelope. This sets the stage for the Ostriker-Gunn mechanism in which Type II supernovae and pulsars are formed.

  14. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high

  15. On radial oscillations in viscous accretion discs surrounding neutron stars

    NASA Technical Reports Server (NTRS)

    Chen, Xingming; Taam, Ronald E.

    1992-01-01

    Radial oscillations resulting from axisymmetric perturbations in viscous accretion disks surrounding neutron stars in X-ray binary systems have been investigated. Within the framework of the alpha-viscosity model a series of hydrodynamic calculations demonstrates that the oscillations are global for alpha of about 1. On the other hand, for alpha of 0.4 or less, the oscillations are local and confined to the disk boundaries. If viscous stresses acting in the radial direction are included, however, it is found that the disk can be stabilized. The application of such instabilities in accretion disks, without reference to the boundary layer region between the neutron star (or magnetosphere) and the inner edge of the disk, to the phenomenology of quasi-periodic oscillations is brought into question.

  16. Shear viscosity due to phonons in superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Manuel, Cristina; Tolos, Laura

    2011-12-01

    We compute the contribution of phonons to the shear viscosity η in superfluid neutron stars, assuming neutron pairing in a S01 channel. We use a Boltzmann equation amended by a collision term that takes into account the binary collisions of phonons. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. Our formulation is rather general, and can be used to extract the shear viscosity due to binary collisions of phonons for other superfluids, such as the cold Fermi gas in the unitarity limit. We find that η∝1/T5, the proportionality factor depending on the equation of state of the system. Our results indicate that the phonon contribution to η cannot be ignored and might have relevant effects in the dynamics of the different oscillation modes of the star.

  17. X-ray spectra from convective photospheres of neutron stars

    NASA Technical Reports Server (NTRS)

    Zavlin, V. E.; Pavlov, G. G.; Shibanov, Yu. A.; Rogers, F. J.; Iglesias, C. A.

    1996-01-01

    The preliminary results from the simulation of convective photospheres of neutron stars are presented. It is shown that in photospheres composed of light elements, convection arises at relatively low effective temperatures of between 3 x 10(exp 4) and 5 x 10(exp 4) K, whereas, in the case of iron composition, it arises at temperatures of less than or equal to 3 x 10(exp 5) K. Convection changes the depth dependence of the photosphere temperature and the shapes of the emergent spectra. It is concluded that depth should be taken into account for the correct interpretation of extreme ultraviolet/soft X-ray observations of the thermal radiation from neutron stars.

  18. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  19. Vortex Pinning and Dynamics in the Neutron Star Crust.

    PubMed

    Wlazłowski, Gabriel; Sekizawa, Kazuyuki; Magierski, Piotr; Bulgac, Aurel; Forbes, Michael McNeil

    2016-12-02

    The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of "nuclei" (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force per unit length of the vortex line as a function of the vortex element to the nucleus separation.

  20. Vortex Pinning and Dynamics in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Wlazłowski, Gabriel; Sekizawa, Kazuyuki; Magierski, Piotr; Bulgac, Aurel; Forbes, Michael McNeil

    2016-12-01

    The nature of the interaction between superfluid vortices and the neutron star crust, conjectured by Anderson and Itoh in 1975 to be at the heart vortex creep and the cause of glitches, has been a long-standing question in astrophysics. Using a qualitatively new approach, we follow the dynamics as superfluid vortices move in response to the presence of "nuclei" (nuclear defects in the crust). The resulting motion is perpendicular to the force, similar to the motion of a spinning top when pushed. We show that nuclei repel vortices in the neutron star crust, and characterize the force per unit length of the vortex line as a function of the vortex element to the nucleus separation.

  1. Electromagnetic and gravitational outputs from binary-neutron-star coalescence.

    PubMed

    Palenzuela, Carlos; Lehner, Luis; Ponce, Marcelo; Liebling, Steven L; Anderson, Matthew; Neilsen, David; Motl, Patrick

    2013-08-09

    The late stage of an inspiraling neutron-star binary gives rise to strong gravitational wave emission due to its highly dynamic, strong gravity. Moreover, interactions between the stellar magnetospheres can produce considerable electromagnetic radiation. We study this scenario using fully general relativistic, resistive magnetohydrodynamic simulations. We show that these interactions extract kinetic energy from the system, dissipate heat, and power radiative Poynting flux, as well as develop current sheets. Our results indicate that this power can (i) outshine pulsars in binaries, (ii) display a distinctive angular- and time-dependent pattern, and (iii) radiate within large opening angles. These properties suggest that some binary neutron-star mergers are ideal candidates for multimessenger astronomy.

  2. Polarized X-rays from accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Accreting neutron stars span a wide range in X-ray luminosity and magnetic field strength. Accretion may be wind-fed or disk-fed, and the dominant X-ray flux may originate in the disk or a magnetically confined accretion column. In all such systems X-ray polarization may arise due to Compton or Magneto-Compton scattering, and on some occasions polarization of non-thermal emission from jet-like ejection may also be detectable. Spectral and temporal behaviour of the polarized X-rays would carry information regarding the radiation process, as well as of the matter dynamics - and can assist the detection of effects such as the Lense-Thirring precession. This talk will review our current knowledge of the expected X-ray polarization from accreting neutron stars and explore the prospects of detection with upcoming polarimetry missions.

  3. Reducing orbital eccentricity in initial data of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke

    2014-09-01

    We develop a method to compute low-eccentricity initial data of binary neutron stars required to perform realistic simulations in numerical relativity. The orbital eccentricity is controlled by adjusting the orbital angular velocity of a binary and incorporating an approaching relative velocity of the neutron stars. These modifications improve the solution primarily through the hydrostatic equilibrium equation for the binary initial data. The orbital angular velocity and approaching velocity of initial data are updated iteratively by performing time evolutions over ˜3 orbits. We find that the eccentricity can be reduced by an order of magnitude compared to standard quasicircular initial data, specifically from ˜0.01 to ≲0.001, by three successive iterations for equal-mass binaries leaving ˜10 orbits before the merger.

  4. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  5. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons.

    PubMed

    Zhang, Jianfu; Ouyang, Xiaoping; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Zhang, Xianpeng; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-01

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10(-7) at an energy resolution of 1.5% for measuring DT neutrons.

  6. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  7. Development of a compact magnetic proton recoil spectrometer for measurement of deuterium-tritium neutrons

    SciTech Connect

    Zhang, Jianfu Ouyang, Xiaoping; Zhang, Xianpeng; Qiu, Suizheng; Zhang, Guoguang; Ruan, Jinlu; Zhang, Xiaodong; Yang, Shaohua; Song, Jiwen; Liu, Linyue; Li, Hongyun

    2015-12-15

    A new compact magnetic proton recoil (MPR) neutron spectrometer has been designed for precise measurement of deuterium-tritium (DT) neutrons. This design is presented emphasizing the magnetic analyzing system, which is based on a compact quadrupole-dipole (QD) electromagnet. The focal plane detector (FPD) is also discussed with respect to application for the next step. The characteristics of the MPR spectrometer were calculated by using Monte Carlo simulation. A preliminary experiment was performed to test the magnetic analyzing system and the proton images of the FPD. Since the QD electromagnet design allows for a larger foil thickness and solid angle to be utilized, the MPR spectrometer defined in this paper can achieve neutron detection efficiency more than 5 × 10{sup −7} at an energy resolution of 1.5% for measuring DT neutrons.

  8. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B. Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  9. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  10. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGES

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  11. On the capture of dark matter by neutron stars

    SciTech Connect

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub χ} ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub χ} ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ{sub χn} ∼ 10{sup −52} cm{sup 2} to σ{sub χn} ∼ 10{sup −57} cm{sup 2}, the dark matter self-interaction cross section limit is σ{sub χχ} ∼< 10{sup −33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  12. On the capture of dark matter by neutron stars

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Emre Erkoca, Arif; Hall Reno, Mary; Sarcevic, Ina

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 103 GeV/cm3and dark matter mass mχ lesssim 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for mχ ~ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σχn ~ 10-52 cm2 to σχn ~ 10-57 cm2, the dark matter self-interaction cross section limit is σχχ lesssim 10-33 cm2, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  13. Electric and thermal conductivities of quenched neutron star crusts

    NASA Technical Reports Server (NTRS)

    Ogata, Shuji; Ichimaru, Setsuo

    1990-01-01

    The electric and thermal conductivities in the outer crustal matter of a neutron star quenched into a solid state by cooling are estimated using a Monte Carlo simulation of freezing transition for dense plasmas. The conductivities are calculated by the precise evaluation of the scattering integrals, using the procedure of Ichimaru et al. (1983) and Iyetomi and Ichimaru (1983). The results predict the conductivities lower, by a factor of about 3, than those with the single-phonon approximation.

  14. Neutron stars in Scalar-Tensor-Vector Gravity

    NASA Astrophysics Data System (ADS)

    Lopez Armengol, Federico G.; Romero, Gustavo E.

    2017-02-01

    Scalar-Tensor-Vector Gravity (STVG), also referred as Modified Gravity (MOG), is an alternative theory of the gravitational interaction. Its weak field approximation has been successfully used to describe Solar System observations, galaxy rotation curves, dynamics of clusters of galaxies, and cosmological data, without the imposition of dark components. The theory was formulated by John Moffat in 2006. In this work, we derive matter-sourced solutions of STVG and construct neutron star models. We aim at exploring STVG predictions about stellar structure in the strong gravity regime. Specifically, we represent spacetime with a static, spherically symmetric manifold, and model the stellar matter content with a perfect fluid energy-momentum tensor. We then derive the modified Tolman-Oppenheimer-Volkoff equation in STVG and integrate it for different equations of state. We find that STVG allows heavier neutron stars than General Relativity (GR). Maximum masses depend on a normalized parameter that quantifies the deviation from GR. The theory exhibits unusual predictions for extreme values of this parameter. We conclude that STVG admits suitable spherically symmetric solutions with matter sources, relevant for stellar structure. Since recent determinations of neutron stars masses violate some GR predictions, STVG appears as a viable candidate for a new gravity theory.

  15. The Neutron Star Interior Composition Explorer Mission of Opportunity

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith

    2014-08-01

    The Neutron Star Interior Composition ExploreR (NICER) is an X-ray astrophysics mission of opportunity (MoO) that will reveal the inner workings of neutron stars, cosmic lighthouses that embody unique gravitational, electromagnetic, and nuclear-physics environments. NICER achieves this objective by deploying a high-heritage instrument as an attached payload on a zenith-side ExPRESS Logistics Carrier (ELC) aboard the International Space Station (ISS). NICER offers order-of-magnitude improvements in time-coherent sensitivity and timing resolution beyond the capabilities of any X-ray observatory flown to date.Through a cost-sharing opportunity between the NASA Science Mission Directorate (SMD) and NASA Space Technology Mission Directorate (STMD) NICER will also demonstrate how neutron stars can serve as deep-space navigation beacons to guide humankind out of Earth orbit, to destinations throughout the Solar System and beyond.I will overview the NICER mission, discuss our experience working with the ISS, and describe the process of forging a partnership between SMD and STMD.

  16. The relevance of ambipolar diffusion for neutron star evolution

    NASA Astrophysics Data System (ADS)

    Passamonti, Andrea; Akgün, Taner; Pons, José A.; Miralles, Juan A.

    2017-03-01

    We study ambipolar diffusion in strongly magnetized neutron stars, with special focus on the effects of neutrino reaction rates and the impact of a superfluid/superconducting transition in the neutron star core. For axisymmetric magnetic field configurations, we determine the deviation from β-equilibrium induced by the magnetic force and calculate the velocity of the slow, quasi-stationary, ambipolar drift. We study the temperature dependence of the velocity pattern and clearly identify the transition to a predominantly solenoidal flow. For stars without superconducting/superfluid constituents and with a mixed poloidal-toroidal magnetic field of typical magnetar strength, we find that ambipolar diffusion proceeds fast enough to have a significant impact on the magnetic field evolution only at low core temperatures, T ≲ 1-2 × 108 K. The ambipolar diffusion time-scale becomes appreciably shorter when fast neutrino reactions are present, because the possibility to balance part of the magnetic force with pressure gradients is reduced. We also find short ambipolar diffusion time-scales in the case of superconducting cores for T ≲ 109 K, due to the reduced interaction between protons and neutrons. In the most favourable scenario, with fast neutrino reactions and superconducting cores, ambipolar diffusion results in advection velocities of several km kyr-1. This velocity can substantially reorganize magnetic fields in magnetar cores, in a way which can only be confirmed by dynamical simulations.

  17. Dragging of inertial frames inside the rotating neutron stars

    SciTech Connect

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades E-mail: kamakshya.modak@saha.ac.in

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  18. Phenomenological QCD equations of state for neutron stars

    NASA Astrophysics Data System (ADS)

    Kojo, Toru; Powell, Philip D.; Song, Yifan; Baym, Gordon

    2016-12-01

    We delineate the properties of QCD matter at baryon density nB = 1 - 10n0 (n0: nuclear saturation density), through the construction of neutron star equations of state that satisfy the neutron star mass-radius constraints as well as physical conditions on the speed of sound. The QCD matter is described in the 3-window modeling: at nB ≲ 2n0 purely nuclear matter; at nB ≳ 5n0 percolated quark matter; and at 2n0 ≲nB ≲ 5n0 matter intermediate between these two which are constructed by interpolation. Using a schematic quark model with effective interactions inspired from hadron and nuclear physics, we analyze the strength of interactions necessary to describe observed neutron star properties. Our finding is that the interactions should remain as strong as in the QCD vacuum, indicating that gluons at nB = 1 - 10n0 remain non-perturbative even after quark matter formation.

  19. Neutrino scattering rates in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Guo Hua; Liu Yuxin

    2007-03-15

    We take the {delta}-isobar degrees of freedom into account in neutron star matter and evaluate their contributions to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an effective hadronic model in the relativistic mean-field approximation. It is found that {delta} isobars may be present in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase with the increase of the density when neutrinos are trapped in the matter with {delta} isobars. The large vector coupling constant between the {delta}{sup -} and neutrino and the high spin of the {delta} influence significantly the neutrino scattering cross section and lead the contribution of the {delta}{sup -} to the dominance of the scattering rates. In neutrino-trapped case, the presence of {delta}s causes the neutrino mean free path to decrease drastically compared to that in the matter in which baryons are only nucleons.

  20. Masses, Radii, and the Equation of State of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Özel, Feryal; Freire, Paulo

    2016-09-01

    We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10-11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk properties of cold nuclear matter at densities higher than that of the atomic nucleus, a major unsolved problem in modern physics.

  1. Dynamical mass ejection from black hole-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Ioka, Kunihito; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2015-08-01

    We investigate properties of material ejected dynamically in the merger of black hole-neutron star binaries by numerical-relativity simulations. We systematically study the dependence of ejecta properties on the mass ratio of the binary, spin of the black hole, and equation of state of the neutron-star matter. Dynamical mass ejection is driven primarily by tidal torque, and the ejecta is much more anisotropic than that from binary neutron star mergers. In particular, the dynamical ejecta is concentrated around the orbital plane with a half opening angle of 10°-20° and often sweeps out only a half of the plane. The ejecta mass can be as large as ˜0.1 M⊙, and the velocity is subrelativistic with ˜0.2 - 0.3 c for typical cases. The ratio of the ejecta mass to the bound mass (disk and fallback components) is larger, and the ejecta velocity is larger, for larger values of the binary mass ratio, i.e., for larger values of the black-hole mass. The remnant black hole-disk system receives a kick velocity of O (100 ) km s-1 due to the ejecta linear momentum, and this easily dominates the kick velocity due to gravitational radiation. Structures of postmerger material, velocity distribution of the dynamical ejecta, fallback rates, and gravitational waves are also investigated. We also discuss the effect of ejecta anisotropy on electromagnetic counterparts, specifically a macronova/kilonova and synchrotron radio emission, developing analytic models.

  2. Compact Fiber Laser for 589nm Laser Guide Star Generation

    NASA Astrophysics Data System (ADS)

    Pennington, D.; Drobshoff, D.; Mitchell, S.; Brown, A.

    Laser guide stars are crucial to the broad use of astronomical adaptive optics, because they facilitate access to a large fraction of possible locations on the sky. Lasers tuned to the 589 nm atomic sodium resonance can create an artificial beacon at altitudes of 95-105 km, thus coming close to reproducing the light path of starlight. The deployment of multiconjugate adaptive optics on large aperture telescopes world-wide will require the use of three to nine sodium laser guide stars in order to achieve uniform correction over the aperture with a high Strehl value. Current estimates place the minimum required laser power at > 10 W per laser for a continuous wave source, though a pulsed format, nominally 6?s in length at ~ 16.7 kHz, is currently preferred as it would enable tracking the laser through the Na layer to mitigate spot elongation. The lasers also need to be compact, efficient, robust and turnkey. We are developing an all-fiber laser system for generating a 589 nm source for laser-guided adaptive optics. Fiber lasers are more compact and insensitive to alignment than their bulk laser counterparts, and the heat-dissipation characteristics of fibers, coupled with the high efficiencies demonstrated and excellent spatial mode characteristics, make them a preferred candidate for many high power applications. Our design is based on sum-frequency mixing an Er/Yb:doped fiber laser operating at 1583 nm with a 938 nm Nd:silica fiber laser in a periodically poled crystal to generate 589 nm. We have demonstrated 14 W at 1583 nm with an Er/Yb:doped fiber laser, based on a Koheras single frequency fiber oscillator amplified in an IPG Photonics fiber amplifier. The Nd:silica fiber laser is a somewhat more novel device, since the Nd3+ ions must operate on the resonance transition (i.e. 4F3/2-4I9/2), while suppressing ASE losses at the more conventional 1088 nm transition. Optimization of the ratio of the fiber core and cladding permits operation of the laser at room

  3. Effective no-hair relations for neutron stars and quark stars: Relativistic results

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Kyutoku, Koutarou; Pappas, George; Yunes, Nicolás; Apostolatos, Theocharis A.

    2014-06-01

    Astrophysical charge-free black holes are known to satisfy no-hair relations through which all multipole moments can be specified in terms of just their mass and spin angular momentum. We here investigate the possible existence of no-hair-like relations among multipole moments for neutron stars and quark stars that are independent of their equation of state. We calculate the multipole moments of these stars up to hexadecapole order by constructing uniformly rotating and unmagnetized stellar solutions to the Einstein equations. For slowly rotating stars, we construct stellar solutions to quartic order in spin in a slow-rotation expansion, while for rapidly rotating stars, we solve the Einstein equations numerically with the LORENE and RNS codes. We find that the multipole moments extracted from these numerical solutions are consistent with each other and agree with the quartic-order slow-rotation approximation for spin frequencies below roughly 500 Hz. We also confirm that the current dipole is related to the mass quadrupole in an approximately equation-of-state-independent fashion, which does not break for rapidly rotating neutron stars or quark stars. We further find that the current-octupole and the mass-hexadecapole moments are related to the mass quadrupole in an approximately equation-of-state-independent way to roughly O(10%), worsening in the hexadecapole case. All of our findings are in good agreement with previous work that considered stellar solutions to leading order in a weak-field, Newtonian expansion. In fact, the hexadecapole-quadrupole relation agrees with the Newtonian one quite well even in moderately relativistic regimes. The quartic in spin, slowly rotating solutions found here allows us to estimate the systematic errors in the measurement of the neutron star's mass and radius with future x-ray observations, such as Neutron star Interior Composition ExploreR (NICER) and Large Observatory for X-ray Timing (LOFT). We find that the effect of these

  4. Focused Study of Thermonuclear Bursts on Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chenevez, Jérôme

    2009-05-01

    X-ray bursters form a class of Low Mass X-Ray Binaries where accreted material from a donor star undergoes rapid thermonuclear burning in the surface layers of a neutron star. The flux released can temporarily exceed the Eddington limit and drive the photosphere to large radii. Such photospheric radius expansion bursts likely eject nuclear burning ashes into the interstellar medium, and may make possible the detection of photoionization edges. Indeed, theoretical models predict that absorption edges from 58Fe at 9.2 keV, 60Zn and 62Zn at 12.2 keV should be detectable by the future missions Simbol-X and NuSTAR. A positive detection would thus probe the nuclear burning as well as the gravitational redshift from the neutron star. Moreover, likely observations of atomic X-ray spectral components reflected from the inner accretion disk have been reported. The high spectral resolution capabilities of the focusing X-ray telescopes may therefore make possible to differentiate between the potential interpretations of the X-ray bursts spectral features.

  5. Improved Universal No-Hair Relations for Neutron Stars

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Yagi, Kent; Yunes, Nicolas

    2016-03-01

    The exterior gravitational field of an astrophysical body can be characterized by its multipole moments. No-hair theorems for black holes state that the exterior gravitational field can be completely described in terms of their mass and spin angular momentum. Similar no-hair like relations have been recently found for neutron stars which are approximately independent of the internal structure of the star. Missions like NICER and LOFT will observe the pulse profiles of millisecond pulsars and thermonuclear bursters. The equation-of-state (EoS) independent relations may break degeneracies among the relevant observables in the modeling of X-ray pulse and atomic line profiles. The amount of EoS independence of these approximately universal relations depends on how one adimensionalizes the multipole moments of the star with stellar mass, spin and radius. We show that for slowly-rotating neutron stars in both non-relativistic limit and full General Relativity, the optimal normalization of the multipole moments exist that minimizes the EoS dependence in the universal relations. The relations among the moment of inertia and higher order moments can be improved from the original ones approximately by a factor of two. Nicolas Yunes acknowledges support from NSF CAREER Award PHY-1250636. Barun Majumder is supported by the Fulbright-Nehru Postdoctoral Research Fellowship.

  6. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  7. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  8. Compact D-D/D-T neutron generators and their applications

    SciTech Connect

    Lou, Tak Pui

    2003-01-01

    Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.

  9. HERSCHEL AND SPITZER OBSERVATIONS OF SLOWLY ROTATING, NEARBY ISOLATED NEUTRON STARS

    SciTech Connect

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 mu m) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ∼10% to ∼20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  10. Herschel and Spitzer Observations of Slowly Rotating, Nearby Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Pavlov, G. G.; Popov, S.; Wachter, S.

    2014-11-01

    Supernova fallback disks around neutron stars have been suspected to influence the evolution of the diverse neutron star populations. Slowly rotating neutron stars are the most promising places to find such disks. Searching for the cold and warm debris of old fallback disks, we carried out Herschel PACS (70 μm, 160 μm) and Spitzer IRAC (3.6 μm, 4.5 μm) observations of eight slowly rotating (P ≈ 3-11 s) nearby (<1 kpc) isolated neutron stars. Herschel detected 160 μm emission (>5σ) at locations consistent with the positions of the neutron stars RX J0806.4-4123 and RX J2143.0+0654. No other significant infrared emission was detected from the eight neutron stars. We estimate probabilities of 63%, 33%, and 3% that, respectively, none, one, or both Herschel PACS 160 μm detections are unrelated excess sources due to background source confusion or an interstellar cirrus. If the 160 μm emission is indeed related to cold (10-22 K) dust around the neutron stars, this dust is absorbing and re-emitting ~10% to ~20% of the neutron stars' X-rays. Such high efficiencies would be at least three orders of magnitude larger than the efficiencies of debris disks around nondegenerate stars. While thin dusty disks around the neutron stars can be excluded as counterparts of the 160 μm emission, dusty asteroid belts constitute a viable option.

  11. Lense-Thirring precession around neutron stars with known spin

    NASA Astrophysics Data System (ADS)

    Van Doesburgh, Marieke; van der Klis, Michiel

    2016-07-01

    Quasi periodic oscillations (QPOs) between 300 and 1200 Hz in the X-ray emission from low mass X-ray binaries have been linked to Keplerian orbital motion at the inner edge of accretion disks. Lense-Thirring precession is precession of the line of nodes of inclined orbits with respect to the equatorial plane of a rotating object due to the general relativistic effect of frame dragging. The Lense-Thirring model of Stella and Vietri (1998) explains QPOs observed in neutron star low mass X-ray binaries at frequencies of a few tens of Hz by the nodal precession of the orbits at the inner disk edge at a precession frequency, ν_{LT} , identical to the Lense-Thirring precession of a test particle orbit. A quadratic relation between ν_{LT} and the Keplerian orbital frequency, and a linear dependence on spin frequency are predicted. In early work (van Straaten et al., 2003) this quadratic relation was confirmed to remarkable precision in three objects of uncertain spin. Since the initial work, many neutron star spin frequencies have been measured in X-ray sources that show QPOs at both low and high frequency. Using archival data from the Rossi X-ray Timing Explorer, we compare the Lense-Thirring prediction to the properties of quasi periodic oscillations measured in a sample of 14 low mass X-ray binaries of which the neutron star spin frequencies can be inferred from their bursting behaviour. We find that in the range predicted for the precession frequency, we can distinguish two different oscillations that often occur simultaneously. In previous works, these two oscillations have often been confused. For both frequencies, we find correlations with inferred Keplerian frequency characterized by power laws with indices that differ significantly from the prediction of 2.0 and therefore inconsistent with the Lense-Thirring model. Also, the specific moment of inertia of the neutron star required by the observed frequencies exceeds values predicted for realistic equations of

  12. Multimessenger Observations of Neutron Star Mergers: Probing the Physics of High-Density Matter

    NASA Astrophysics Data System (ADS)

    Radice, David

    2016-09-01

    Neutron star mergers are Nature's ultimate hadron colliders. They are extremely violent events resulting in gravitational-waves and electromagnetic emissions that could be detected at distances of several hundred mega-parsecs. Imprinted in these signals are important clues on the properties of high-density matter, waiting to be harnessed by us. In this talk, I will review our current knowledge of neutron star mergers from the theoretical side. I will discuss the prospects of measuring neutron star radii and masses using gravitational-wave observations of the late-inspiral of merging neutron stars. Then, I will show how multimessenger observations of the merger and post-merger evolution of merging neutron stars could be used to place further constrains on the nuclear equation of state at very high densities. Finally, I will discuss the possible role of neutron star mergers in the creation of the r-process nuclei in the Universe.

  13. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  14. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ∼0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ∼0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  15. Compact deuterium-tritium neutron generator using a novel field ionization source

    SciTech Connect

    Ellsworth, J. L. Falabella, S.; Sanchez, J.; Tang, V.; Wang, H.

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  16. Compact Permanent Magnet Microwave-Driven Neutron Generator

    SciTech Connect

    Ji Qing

    2011-06-01

    Permanent magnet microwave-driven neutron generators have been developed at Lawrence Berkeley National Laboratory. The 2.45 GHz microwave signal is directly coupled into the plasma chamber via a microwave window. Plasma is confined in an axial magnetic field produced by the permanent magnets surrounding the plasma chamber. The source chamber is made of aluminum with a diameter of 4 cm and length of 5 cm. A stack of five alumina discs, which are 3 cm in diameter and total length of 3 cm, works as microwave window. Three permanent ring magnets are used to generate the axial magnetic field required for the microwave ion source. Both hydrogen and deuterium plasma have been successfully ignited. With 330W of microwave power, source chamber pressure of 5 mTorr, and an extraction aperture of 2 mm in diameter, the deuterium ion beam measured on the target was approximately 2.5 mA. Over 90% of the ions are atomic. With the ion source at ground potential and titanium target at -40 kV, the analysis of the activated gold foil and calibrated neutron dose monitor both indicated that roughly 10{sup 7} n/s of D-D neutrons have been produced. The D-D neutron yield can be easily scaled up to 10{sup 8} n/s when the titanium target is biased at -100 kV.

  17. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  18. Determining the nuclear equation of state from neutron-star masses and radii

    NASA Technical Reports Server (NTRS)

    Lindblom, Lee

    1992-01-01

    A method is developed for determining the nuclear equation of state directly from a knowledge of the masses and radii of neutron stars. This analysis assumes only that equilibrium neutron-star matter has the stress-energy tensor of an isotropic fluid with a barotropic equation of state, and that general relativity describes a neutron star's internal gravitational field. We present numerical examples which illustrate how well this method will determine the equation of state when the appropriate observational data become available.

  19. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  20. Sealed operation of a rf driven ion source for a compact neutron generator to be used for associated particle imaging.

    PubMed

    Wu, Y; Hurley, J P; Ji, Q; Kwan, J W; Leung, K N

    2010-02-01

    We present the recent development of a prototype compact neutron generator to be used in conjunction with the method of associated particle imaging for the purpose of active neutron interrogation. In this paper, the performance and device specifications of these compact generators that employ rf driven ion sources will be discussed. Initial measurements of the generator performance include a beam spot size of 1 mm in diameter and a neutron yield of 2x10(5) n/s with air cooling.