NASA Astrophysics Data System (ADS)
Yamaguchi, M. S.; Yano, T.; Gouda, N.
2018-03-01
We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.
Off-equatorial circular orbits in magnetic fields of compact objects
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Kovář, Jiří; Karas, Vladimír
2009-04-01
We present results of investigation of the off-equatorial circular orbits existence in the vicinity of neutron stars, Schwarzschild black holes with plasma ring, and near Kerr-Newman black holes and naked singularities.
NASA Astrophysics Data System (ADS)
Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.
2017-12-01
The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.
Hydrodynamic simulations of stellar wind disruption by a compact X-ray source
NASA Technical Reports Server (NTRS)
Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.
1990-01-01
This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.
Quasiperiodic Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.; Murdin, P.
2000-11-01
The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...
NASA Astrophysics Data System (ADS)
Moritani, Yuki; Kawano, Takafumi; Chimasu, Sho; Kawachi, Akiko; Takahashi, Hiromitsu; Takata, Jumpei; Carciofi, Alex C.
2018-05-01
High-dispersion spectroscopic monitoring of HESS J0632+057 has been carried out over four orbital cycles in order to search for orbital modulation, covering the entire orbital phase. We have measured the radial velocity of the Hα emission line with the method introduced by Shafter, Szkody, and Thorstensen (1986, ApJ, 308, 765), which has been successfully applied to some Be stars. The velocity is seen to increase much earlier than expected for the orbital period of 315 d, and much more steeply than expected at around "apastron." The period of the Hα modulation is found to be 308^{+26}_{-23} d. We have also analyzed Swift/XRT data from 2009 to 2015 to study the orbital modulation, selecting the data with good statistics (≥30 counts). With additional two-year data to the previous works, the orbital period has been updated to 313^{+11}_{-8} d, which is consistent with the previous X-ray periods and the spectroscopic one. Previous XMM-Newton and Chandra observations prefer a period of 313 d. With the new period, assuming that Hα velocities accurately trace the motion of the Be star, we have derived a new set of orbital parameters. In the new orbit, which is less eccentric (e ≃ 0.6), two outbursts occur: after apastron and just after periastron. Also, the column density in bright phase (4.7^{+0.9}_{-08}× 10^{21} cm^{-2}) is higher than in faint phase (2.2 ± 0.5 × 1021 cm-2). These facts suggest that outbursts occur when the compact object passes nearby/through the Be disk. The mass function implies that the mass of the compact object is less than 2.5 M⊙, assuming that the mass of the Be star is 13.2-18.2 M⊙ (Aragona et al. 2010, ApJ, 724, 306), unless the inclination is extremely small. The photon index indicates that the spectra become softer when the system is bright. These suggest that the compact object is a pulsar.
Periastron shifts of stellar orbits near the Galactic Center
NASA Astrophysics Data System (ADS)
Rubilar, G. F.; Eckart, A.
2001-07-01
The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.
NASA Astrophysics Data System (ADS)
Collins, Nathan A.; Hughes, Scott A.
2004-06-01
Astronomical observations have established that extremely compact, massive objects are common in the Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or future gravitational-wave measurements) and to test whether they have the characteristics of black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in practice requires that we be able to compare against objects with the “wrong” multipole structure. In this paper, we present tools for constructing the spacetimes of bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor intensive. Our construction has two particularly desirable properties. First, the spacetimes which we present are good deep into the strong field of the object—we do not use a “large r” expansion (except to make contact with weak field intuition). Second, our spacetimes reduce to the exact black hole spacetimes of general relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy spacetime with those measured from an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are in fact the black holes of general relativity.
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
Solution of the flyby problem for large space debris at sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.
2016-05-01
the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin T.
2008-01-01
This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.
X-Ray Polarization from High Mass X-Ray Binaries
NASA Technical Reports Server (NTRS)
Kallman, T.; Dorodnitsyn, A.; Blondin, J.
2015-01-01
X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.
NASA Astrophysics Data System (ADS)
Rodríguez, J. F.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have used the perturbations of the exact solutions of the Einstein equations to estimate the relativistic wave emission of a test particle orbiting around a black hole. We show how the hamiltonian equations of motion of a test particle augmented with the radiation-reaction force can establish a priori constraints on the possible phenomena occurring in the merger of compact objects. The dynamical evolution consists of a helicoidal sequence of quasi-circular orbits, induced by the radiation-reaction and the background spacetime. Near the innermost stable circular orbit the evolution is followed by a smooth transition and finally plunges geodesically into the black hole horizon. This analysis gives physical insight of the merger of two equal masses objects.
Estimating gravitational radiation from super-emitting compact binary systems
NASA Astrophysics Data System (ADS)
Hanna, Chad; Johnson, Matthew C.; Lehner, Luis
2017-06-01
Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.
Predicting gravitational lensing by stellar remnants
NASA Astrophysics Data System (ADS)
Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.
2018-03-01
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shangyun; Chen, Songbai; Jing, Jiliang, E-mail: shangyun_wang@163.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn
Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case ofmore » the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.« less
Numerical Researches on Dynamical Systems with Relativistic Spin
NASA Astrophysics Data System (ADS)
Han, W. B.
2010-04-01
It is well known that spinning compact binaries are one of the most important research objects in the universe. Especially, EMRIs (extreme mass ratio inspirals) involving stellar compact objects which orbit massive black holes, are considered to be primary sources of gravitational radiation (GW) which could be detected by the space-based interferometer LISA. GW signals from EMRIs can be used to test general relativity, measure the masses and spins of central black holes and study essential physics near horizons. Compared with the situation without spin, the complexity of extreme objects, most of which rotate very fast, is much higher. So the dynamics of EMRI systems are numerically and analytically studied. We focus on how the spin effects on the dynamics of these systems and the produced GW radiations. Firstly, an ideal model of spinning test particles around Kerr black hole is considered. For equatorial orbits, we present the correct expression of effective potential and analyze the stability of circular orbits. Especially, the gravitational binding energy and frame-dragging effect of extreme Kerr black hole are much bigger than those without spin. For general orbits, spin can monotonically enlarge orbital inclination and destroy the symmetry of orbits about equatorial plane. It is the most important that extreme spin can produce orbital chaos. By carefully investigating the relations between chaos and orbital parameters, we point out that chaos usually appears for orbits with small pericenter, big eccentricity and orbital inclination. It is emphasized that Poincaré section method is invalid to detect the chaos of spinning particles, and the way of systems toward chaos is the period-doubling bifurcation. Furthermore, we study how spins effect on GW radiations from spinning test particles orbiting Kerr black holes. It is found that spins can increase orbit eccentricity and then make h+ component be detected more easily. But for h× component, because spins change orbital inclination in a complicated way, it is more difficult to build GW signal templates. Secondly, based on the scalar gravity theory, a numerical relativistic model of EMRIs is constructed to consider the self-gravity and radiation reaction of low-mass objects. Finally, we develop a new method with multiple steps for Hamilton systems to meet the needs of numerical researches. This method can effectively maintain each conserved quantity of the separable Hamilton system. In addition, for constrained system with a few first integrals, we present a new numerical stabilization method named as adjustment-stabilization method, which can maintain all known conserved quantities in a given dynamical system and greatly improve the numerical accuracy. Our new method is the most complete stabilization method up to now.
Installation of new Generation General Purpose Computer (GPC) compact unit
NASA Technical Reports Server (NTRS)
1991-01-01
In the Kennedy Space Center's (KSC's) Orbiter Processing Facility (OPF) high bay 2, Spacecraft Electronics technician Ed Carter (right), wearing clean suit, prepares for (26864) and installs (26865) the new Generation General Purpose Computer (GPC) compact IBM unit in Atlantis', Orbiter Vehicle (OV) 104's, middeck avionics bay as Orbiter Systems Quality Control technician Doug Snider looks on. Both men work for NASA contractor Lockheed Space Operations Company. All three orbiters are being outfitted with the compact IBM unit, which replaces a two-unit earlier generation computer.
Flyby of large-size space debris objects and their transition to the disposal orbits in LEO
NASA Astrophysics Data System (ADS)
Baranov, Andrey A.; Grishko, Dmitriy A.; Razoumny, Yury N.; Jun, Li
2017-06-01
The article focuses on the flyby issue involving large-size space debris (LSSD) objects in low Earth orbits. The data on overall sizes of the known upper-stages and last stages of launch-vehicles make it possible to emphasize five compact groups of such objects from the Satellite catalogue in 600-2000 km altitude interval. The flyby maneuvers are executed by a single space vehicle (SV) that transfers the current captured LSSD object to the specially selected circular or elliptical disposal orbit (DO) and after a period of time returns to capture a new one. The flight is always realized when a value of the Right Ascension of the Ascending Node (RAAN) is approximately the same for the current DO and for an orbit of the following LSSD object. Distinctive features of changes in mutual distribution of orbital planes of LSSD within a group are shown on the RAAN deviations' evolution portrait. In case of the first three groups (inclinations 71°, 74° and 81°), the lines describing the relative orientation of orbital planes are quasi-parallel. Such configuration allows easy identification of the flyby order within a group, and calculation of the mission duration and the required total ΔV. In case of the 4th and the 5th groups the RAAN deviations' evolution portrait represents a conjunction of lines chaotically intersecting. The article studies changes in mission duration and in the required ΔV depending on the catalogue number of the first object in the flyby order. The article also contains a comparative efficiency analysis of the two world-wide known schemes applicable to LSSD objects' de-orbiting; the analysis is carried out for all 5 distinguished LSSD groups.
Understanding the importance of transient resonances in extreme mass ratio inspirals
NASA Astrophysics Data System (ADS)
Berry, C. P. L.; Cole, R. H.; Cañizares, P.; Gair, J. R.
2017-05-01
Extreme mass ratio inspirals (EMRIs) occur when a compact object orbits a much larger one, like a solar-mass black hole around a supermassive black hole. The orbit has 3 frequencies which evolve through the inspiral. If the orbital radial frequency and polar frequency become commensurate, the system passes through a transient resonance. Evolving through resonance causes a jump in the evolution of the orbital parameters. We study these jumps and their impact on EMRI gravitational-wave detection. Jumps are smaller for lower eccentricity orbits; since most EMRIs have small eccentricities when passing through resonances, we expect that the impact on detection will be small. Neglecting the effects of transient resonances leads to a loss of ∼ 4% of detectable signals for an astrophysically motivated population of EMRIs.
Gravitational Waves From the Kerr/CFT Correspondence
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas
Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.
A Christmas comet falling onto a neutron star
NASA Astrophysics Data System (ADS)
Campana, S.
The Sun and the planets are the main, but not the only, bodies of the Solar System. There are thousands of asteroids and several tens of comets, many of which are still unknown. They are the remnants of the planetesimals that formed at the origin of our Solar System, and they are rocky objects of different dimensions and irregular shape. Sometimes these minor bodies fall onto the Sun or onto planets, like Jupiter. Less dramatic events occur when the infalling bodies do not directly impact onto the target but are tidally disrupted. The tidal disruption of solar mass stars around supermassive black holes has been extensively studied analytically and numerically. In these events the star, as it approaches the black hole, develops into an elongated banana-shaped structure, the most tightly bound debris being at the closer end to the compact object. After completing an (few) eccentric orbit(s), these bound debris fall onto the black hole, emitting energy. Orbital precession may lead to the crossing of the debris orbits producing an accretion disk. Observationally, these events will give rise to luminous events with different temporal decays in different energy bands. Tidal break-up events occur also in planetary systems around normal stars but these events are too faint to be detected. Things change when the star is a compact object. Indeed planets have been discovered around radio pulsars, making likely the existence also of orbiting minor bodies. The direct impact of minor bodies onto neutron stars has been studied in the past and it has been envisaged as a possible (local) explanation for Gamma-Ray Bursts (GRBs), producing short-duration (˜ seconds) events. To explain the peculiarities of GRB 101225A (Christmas burst) we propose that it resulted from the tidal disruption event of a minor body around a neutron star in our Galaxy.
Spacetime and orbits of bumpy black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-15
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation ismore » zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.« less
POSSIBLE CHANGES OF STATE AND RELEVANT TIMESCALES FOR A NEUTRON STAR IN LS I +61 Degree-Sign 303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papitto, A.; Torres, D. F.; Rea, N.
2012-09-10
The properties of the short, energetic bursts recently observed from the {gamma}-ray binary LS I +61 Degree-Sign 303 are typical of those showed by high magnetic field neutron stars (NSs) and thus provide a strong indication in favor of a NS being the compact object in the system. Here, we discuss the transitions among the states accessible to a NS in a system like LS I +61 Degree-Sign 303, such as the ejector, propeller, and accretor phases, depending on the NS spin period, magnetic field, and rate of mass captured. We show how the observed bolometric luminosity ({approx}> few Multiplication-Signmore » 10{sup 35} erg s{sup -1}) and its broadband spectral distribution indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent by the system in each of them. Even taking into account the constraint set by the observed {gamma}-ray luminosity, we found that the total age of the system is compatible with being Almost-Equal-To 5-10 kyr, comparable to the typical spin-down ages of high-field NSs. The results obtained are discussed in the context of the various evolutionary stages expected for a NS with a high-mass companion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de
2016-01-01
We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail themore » evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.« less
NASA Astrophysics Data System (ADS)
Grinberg, V.; Leutenegger, M. A.; Hell, N.; Pottschmidt, K.; Böck, M.; García, J. A.; Hanke, M.; Nowak, M. A.; Sundqvist, J. O.; Townsend, R. H. D.; Wilms, J.
2015-04-01
Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. Appendix A is available in electronic form at http://www.aanda.org
Self-force correction to geodetic spin precession in Kerr spacetime
NASA Astrophysics Data System (ADS)
Akcay, Sarp
2017-08-01
We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.
Opening the CHOCBOX: clumpy stellar winds in Cyg X-1
NASA Astrophysics Data System (ADS)
Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration
2017-10-01
Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.
On the origin of X-ray variability of SS 433
NASA Astrophysics Data System (ADS)
Band, D. L.; Grindlay, J. E.
1984-10-01
The X-ray flares observed from the central source in SS 433 by the Einstein telescope are attributed to surges in the mass transfer rate due to changes in the critical Roche volume of the companion. Analysis of the Roche potential for a primary with spin misaligned with the orbital axis, as required by the slaved disk model, predicts that the critical Roche volume will contract twice per orbit if the orbit is circular. A critical Roche volume fractional change of 1-2 percent is found by applying this potential to SS 433. The nutation of the companion should not affect the steady precession of its spin. Aspects of this work strengthen the evidence that the compact object might be a black hole.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
Detection and laser ranging of orbital objects using optical methods
NASA Astrophysics Data System (ADS)
Wagner, P.; Hampf, D.; Sproll, F.; Hasenohr, T.; Humbert, L.; Rodmann, J.; Riede, W.
2016-09-01
Laser ranging to satellites (SLR) in earth orbit is an established technology used for geodesy, fundamental science and precise orbit determination. A combined active and passive optical measurement system using a single telescope mount is presented which performs precise ranging measurements of retro reflector equipped objects in low earth orbit (LEO). The German Aerospace Center (DLR) runs an observatory in Stuttgart where a system has been assembled completely from commercial off-the-shelf (COTS) components. The visible light directed to the tracking camera is used to perform angular measurements of objects under investigation. This is done astrometrically by comparing the apparent target position with cataloged star positions. First successful satellite laser ranging was demonstrated recently using an optical fiber directing laser pulses onto the astronomical mount. The transmitter operates at a wavelength of 1064 nm with a repetition rate of 3 kHz and pulse energy of 25 μJ. A motorized tip/tilt mount allows beam steering of the collimated beam with μrad accuracy. The returning photons reflected from the object in space are captured with the tracking telescope. A special low aberration beam splitter unit was designed to separate the infrared from visible light. This allows passive optical closed loop tracking and operation of a single photon detector for time of flight measurements at a single telescope simultaneously. The presented innovative design yields to a compact and cost effective but very precise ranging system which allows orbit determination.
NASA Astrophysics Data System (ADS)
Tsuboi, Masato; Kitamura, Yoshimi; Tsutsumi, Takahiro; Uehara, Kenta; Miyoshi, Makoto; Miyawaki, Ryosuke; Miyazaki, Atsushi
2017-11-01
The Galactic Center is the nuclear region of the nearest spiral galaxy, the Milky Way, and contains the supermassive black hole with M˜ 4× {10}6 {M}⊙ , Sagittarius A* (Sgr A*). One of the basic questions about the Galactic Center is whether or not Sgr A* is the only “massive” black hole in the region. The IRS13E complex is a very intriguing infrared (IR) object that contains a large dark mass comparable to the mass of an intermediate mass black hole (IMBH) from the proper motions of the main member stars. However, the existence of the IMBH remains controversial. There are some objections to accepting the existence of the IMBH. In this study, we detected ionized gas with a very large velocity width ({{Δ }}{v}{FWZI}˜ 650 km s-1) and a very compact size (r˜ 400 au) in the complex using the Atacama Large Millimeter/submillimeter Array (ALMA). We also found an extended component connecting with the compact ionized gas. The properties suggest that this is an ionized gas flow on the Keplerian orbit with high eccentricity. The enclosed mass is estimated to be {10}4 {M}⊙ by the analysis of the orbit. The mass does not conflict with the upper limit mass of the IMBH around Sgr A*, which is derived by the long-term astrometry with the Very Long Baseline Array (VLBA). In addition, the object probably has an X-ray counterpart. Consequently, a very fascinating possibility is that the detected ionized gas is rotating around an IMBH embedded in the IRS13E complex.
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
Supernova kicks and dynamics of compact remnants in the Galactic Centre
NASA Astrophysics Data System (ADS)
Bortolas, Elisa; Mapelli, Michela; Spera, Mario
2017-08-01
The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.
Dynamical Evolution Induced by Planet Nine
NASA Astrophysics Data System (ADS)
Batygin, Konstantin; Morbidelli, Alessandro
2017-12-01
The observational census of trans-Neptunian objects with semimajor axes greater than ˜ 250 {au} exhibits unexpected orbital structure that is most readily attributed to gravitational perturbations induced by a yet-undetected, massive planet. Although the capacity of this planet to (I) reproduce the observed clustering of distant orbits in physical space, (II) facilitate the dynamical detachment of their perihelia from Neptune, and (III) excite a population of long-period centaurs to extreme inclinations is well-established through numerical experiments, a coherent theoretical description of the dynamical mechanisms responsible for these effects remains elusive. In this work, we characterize the dynamical processes at play from semi-analytic grounds. We begin by considering a purely secular model of orbital evolution induced by Planet Nine and show that it is at odds with the ensuing stability of distant objects. Instead, the long-term survival of the clustered population of long-period Kuiper Belt objects (KBOs) is enabled by a web of mean-motion resonances driven by Planet Nine. Then, by taking a compact-form approach to perturbation theory, we show that it is the secular dynamics embedded within these resonances that regulate the orbital confinement and perihelion detachment of distant KBOs. Finally, we demonstrate that the onset of large-amplitude oscillations of the orbital inclinations is accomplished through the capture of low-inclination objects into a high-order secular resonance, and we identify the specific harmonic that drives the evolution. In light of the developed qualitative understanding of the governing dynamics, we offer an updated interpretation of the current observational data set within the broader theoretical framework of the Planet Nine hypothesis.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
Coherent states for quantum compact groups
NASA Astrophysics Data System (ADS)
Jurĉo, B.; Ŝťovíĉek, P.
1996-12-01
Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.
On-orbit test results from the EO-1 Advanced Land Imager
NASA Astrophysics Data System (ADS)
Evans, Jenifer B.; Digenis, Constantine J.; Gibbs, Margaret D.; Hearn, David R.; Lencioni, Donald E.; Mendenhall, Jeffrey A.; Welsh, Ralph D.
2002-01-01
The Advanced Land Imager (ALI) is the primary instrument flown on the first Earth Observing mission (EO-1), launched on November 21, 2000. It was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. During the first ninety days on orbit, the instrument performance was evaluated by collecting several Earth scenes and comparing them to identical scenes obtained by Landsat7. In addition, various on-orbit calibration techniques were exercised. This paper will present an overview of the EO-1 mission activities during the first ninety days on-orbit, details of the ALI instrument performance and a comparison with the ground calibration measurements.
Testing general relativity with compact-body orbits: a modified Einstein–Infeld–Hoffmann framework
NASA Astrophysics Data System (ADS)
Will, Clifford M.
2018-04-01
We describe a general framework for analyzing orbits of systems containing compact objects (neutron stars or black holes) in a class of Lagrangian-based alternative theories of gravity that also admit a global preferred reference frame. The framework is based on a modified Einstein–Infeld–Hoffmann (EIH) formalism developed by Eardley and by Will, generalized to include the possibility of Lorentz-violating, preferred-frame effects. It uses a post-Newtonian N-body Lagrangian with arbitrary parameters that depend on the theory of gravity and on ‘sensitivities’ that encode the effects of the bodies’ internal structure on their motion. We determine the modified EIH parameters for the Einstein-Æther and Khronometric vector-tensor theories of gravity. We find the effects of motion relative to a preferred universal frame on the orbital parameters of binary systems containing neutron stars, such as a class of ultra-circular pulsar-white dwarf binaries; the amplitudes of the effects depend upon ‘strong-field’ preferred-frame parameters \\hatα1 and \\hatα2 , which we relate to the fundamental modified EIH parameters. We also determine the amplitude of the ‘Nordtvedt effect’ in a triple system containing the pulsar J0337+1715 in terms of the modified EIH parameters.
Passive Optical Link Budget for LEO Space Surveillance
NASA Astrophysics Data System (ADS)
Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.
The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.
Longterm lightcurves of X-ray binaries
NASA Astrophysics Data System (ADS)
Clarkson, William
The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE/ASM (chapter 8), establishing an improved orbital ephemeris and suggesting the system may be in a state of rapid post- supernova evolution. In chapter 8 we follow this up with a direct search for the X-ray supernova remnant expected from such a system, concluding that with present observations the diffuse emission from Cir X-1 is indistinguishable from scattering by dust-grains in the interstellar medium.
INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.
The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration.more » When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.« less
NASA Astrophysics Data System (ADS)
Kupfer, T.; Ramsay, G.; van Roestel, J.; Brooks, J.; MacFarlane, S. A.; Toma, R.; Groot, P. J.; Woudt, P. A.; Bildsten, L.; Marsh, T. R.; Green, M. J.; Breedt, E.; Kilkenny, D.; Freudenthal, J.; Geier, S.; Heber, U.; Bagnulo, S.; Blagorodnova, N.; Buckley, D. A. H.; Dhillon, V. S.; Kulkarni, S. R.; Lunnan, R.; Prince, T. A.
2017-12-01
We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of {P}{orb}=44.66279+/- 1.16× {10}-4 minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, {T}{eff} = 39 400+/- 500 K and {log}g = 5.74 ± 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass {M}{sdOB}=0.23+/- 0.12 {M}⊙ with a WD companion ({M}{WD}=0.72+/- 0.17 {M}⊙ ). The mass ratio was found to be q={M}{sdOB}/{M}{WD}=0.32+/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of ≈ 0.47 {M}⊙ . To put constraints on the structure and evolutionary history of the sdOB star we compared the derived {T}{eff}, {log}g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 {M}⊙ , which left the common envelope ≈ 1.1 {Myr} ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
On the Milankovitch orbital elements for perturbed Keplerian motion
NASA Astrophysics Data System (ADS)
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-03-01
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.
Grinberg, V.; Leutenegger, M. A.; Hell, N.; ...
2015-04-16
Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object’s X-rays to probe the wind structure. In this paper, we analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability ismore » most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. Finally, a qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure.« less
Equatorial Geodesics Around the Magnetars
NASA Astrophysics Data System (ADS)
Alfradique, Viviane A. P.; Troconis, Orlenys N.; Negreiros, Rodrigo P.
Neutron stars manifest themselves as different classes of astrophysical sources that are associated to distinct phenomenology. Here we focus our attention on magnetars (or strongly magnetized neutron stars) that are associated to Soft Gamma Repeaters and Anomalous X-ray Pulsars. The magnetic field on surface of these objects, reaches values greater than 1015 G. Under intense magnetic fields, relativistic effects begin to be decisive for the definition of the structure and evolution of these objects. We are tempted to question ourselves to how strengths fields affect the structure of neutron star. In this work, our objective is study and compare two solutions of Einstein-Maxwell equations: the Bonnor solution, which is an analytical solution that describe the exterior spacetime for a massive compact object which has a magnetic field that is characterize as a dipole field and a complete solution that describe the interior and exterior spacetime for the same source found by numerical methods). For this, we describe the geodesic equations generated by such solutions. Our results show that the orbits generated by the Bonnor solution are the same as described by numerical solution. Also, show that the inclusion of magnetic fields with values up to 1017G in the center of the star does not modify sharply the particle orbits described around this star, so the use of Schwarzschild solution for the description of these orbits is a reasonable approximation.
New inclination changing eclipsing binaries in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.
2018-01-01
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood. Full Table 4 and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A46
NASA Astrophysics Data System (ADS)
Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.
2011-06-01
A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010
The Orbit of the Gamma-Ray Binary 1FGL J1018.6−5856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monageng, I. M.; McBride, V. A.; Kniazev, A. Y.
2017-09-20
Gamma-ray binaries are a small subclass of the high mass X-ray binary population that exhibit emission across the whole electromagnetic spectrum. We present the radial velocities of 1FGL J1018.6−5856 based on the observations obtained with the Southern African Large Telescope. We combine our measurements with those published in the literature to get a broad phase coverage. The mass function obtained supports a neutron star compact object, although a black hole mass is possible for the very low inclination angles. The improved phase coverage allows constraints to be placed on the orbital eccentricity ( e = 0.31 ± 0.16), which agreesmore » with the estimates from the high-energy data.« less
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. Lounge records his height. The two crewmembers are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids.
2013-07-11
The Close Orbiting Propellant Plume Elemental Recognition (COPPER) was developed by students from St. Louis University as a technology demonstration mission whose objective is to test the suitability of a commercially-available compact uncooled microbolometer (tiny infrared camera) array for scientific imagery of Earth in the long-wave infrared range (LWIR, 7-13 microns). Launched by NASA’s CubeSat Launch Initiative on the ELaNa IV mission as an auxiliary payload aboard the U.S. Air Force-led Operationally Responsive Space (ORS-3) Mission on November 19, 2013.
The puzzling orbital period evolution of the LMXB AX J1745.6-2901
NASA Astrophysics Data System (ADS)
Ponti, G.; De, K.; Munoz-Darias, T.; Stella, L.; Nandra, K.
2017-10-01
The discovery of gravitational waves through mergers of binary black holes raises the question of how such compact systems form, renewing issues related to the orbital evolution of binary systems. Eclipsing X-ray binaries are excellent tools to constrain the orbital period evolution and how the system loses angular momentum. I will present an X-ray eclipse timing analysis (spanning an interval of more than 20 yr) of one of such objects, AX J1745.6-2901. Its orbital period is decreasing at a rate Pdotorb=-4.03+-0.32 e-11 s s-1, at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic braking, and it might result from either non-conservative mass transfer or magnetic activity changing the quadrupole moment of the companion star. I will also show that imprinted on the long-term evolution of the orbit, there are highly significant eclipse leads delays of 10-30 s, characterized by a clear state dependence in which, on average, eclipses occur earlier during the hard state. Finally, I will discuss whether accretion disc winds might have an impact onto the orbital evolution.
Monsters in the sky. I mostri del cielo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, P.
1980-01-01
The book treats astronomical objects and phenomena which remain unexplained or unproven by current investigators. Specific objects discussed include comets, satellite clouds surrounding the earth, tektites, the planet Vulcan (within the orbit of Mercury), Planet X (beyond Pluto), the Gum Nebula, planetary nebulae, supernovae, supernova remnants, transient X-ray sources, the possible extinction of the dinosaurs by an X-ray explosion and super-supernovae. Attention is also given to the star Eta Carinae, black holes, BL Lacertae objects, active galaxies, Markarian galaxies, N and compact galaxies, Seyfert galaxies, quasars, redshift anomalies, Stephan's quintet of galaxies, and intergalactic black holes or black dwarfs whichmore » may account for the mass necessary to bind together clusters of galaxies.« less
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
CIRiS: Compact Infrared Radiometer in Space
NASA Astrophysics Data System (ADS)
Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.
2016-09-01
The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.
An atlas of ultraviolet spectra of star-forming galaxies
NASA Technical Reports Server (NTRS)
Kinney, A. L.; Bohlin, R. C.; Calzetti, D.; Panagia, N.; Wyse, Rosemary F. G.
1993-01-01
A systematic study is presented of the UV spectra of star-forming galaxies of different morphological type and activity class using a sample drawn from a uniformly reduced IUE data set. The spectra for a wide variety of galaxies, including normal spiral, LINER, starburst, blue compact, blue compact dwarf, and Seyfert 2 galaxies, are presented in the form of spectral energy distributions to demonstrate the overall characteristics according to morphology and activity class and in the form of absolute flux distributions to better show the absorption and emission features of individual objects. The data support the picture based on UV spectra of the Orbiting Astronomical Observatory and of the Astronautical Netherlands Satellite that spiral galaxies of later Hubble class have more flux at the shortest UV wavelengths than do spiral galaxies of earlier Hubble class.
Quantum dressing orbits on compact groups
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Šťovíček, Pavel
1993-02-01
The quantum double is shown to imply the dressing transformation on quantum compact groups and the quantum Iwasawa decompositon in the general case. Quantum dressing orbits are described explicitly as *-algebras. The dual coalgebras consisting of differential operators are related to the quantum Weyl elements. Besides, the differential geometry on a quantum leaf allows a remarkably simple construction of irreducible *-representations of the algebras of quantum functions. Representation spaces then consist of analytic functions on classical phase spaces. These representations are also interpreted in the framework of quantization in the spirit of Berezin applied to symplectic leaves on classical compact groups. Convenient “coherent states” are introduced and a correspondence between classical and quantum observables is given.
Orbital stability of compact three-planets systems.
NASA Astrophysics Data System (ADS)
Gavino, Sacha; Lissauer, Jack
2018-04-01
Recent discoveries unveiled a significant number of compact multi-planetary systems, where the adjacent planets orbits are much closer to those found in the Solar System. Studying the orbital stability of such compact systems provides information on how they form and how long they survive. We performed a general study of three Earth-like planets orbiting a Sun-mass star in circular and coplanar prograde orbits. The simulations were performed over a wide range of mutual Hill radii and were conducted for virtual times reaching at most 10 billion years. Both equally-spaced and unequally spaced planet systems are investigated. We recover the results of previous studies done for systems of planets spaced uniformly in mutual Hill radius and we investigate mean motion resonances and test chaos. We also study systems with different initial spacing between the adjacent inner pair of planets and the outer pair of planets and we displayed their lifetime on a grid at different resolution. Over 45000 simulations have been done. We then characterize isochrones for lifetime of systems of equivalent spacing. We find that the stability time increases significantly for values of mutual Hill radii beyond 8. We also study the affects of mean motion resonances, the degree of symmetry in the grid and test chaos.
Spectroscopic Observations of the Mass Donor Star in SS 433
NASA Astrophysics Data System (ADS)
Hillwig, T. C.; Gies, D. R.
2008-03-01
The microquasar SS 433 is an interacting massive binary consisting of an evolved mass donor and a compact companion that ejects relativistic jets. The mass donor was previously identified through spectroscopic observations of absorption lines in the blue part of the spectrum that showed Doppler shifts associated with orbital motion and strength variations related to the orbital modulation of the star-to-disk flux ratio and to disk obscuration. However, subsequent observations revealed other absorption features that lacked these properties and that were probably formed in the disk gas outflow. We present follow-up observations of SS 433 at orbital and precession phases identical to those from several previous studies, with the goals of confirming the detection of the mass donor spectrum and providing more reliable masses for the two system components. We show that the absorption features present as well as those previously observed almost certainly belong to the mass donor star, and find revised masses of 12.3 ± 3.3 and 4.3 ± 0.8 M⊙ for the mass donor and compact object, respectively. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and SECYT (Argentina).
INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303
NASA Astrophysics Data System (ADS)
Chernyakova, Masha; Neronov, A.; Walter, R.
LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.
Probing the clumpy winds of giant stars with high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern
2016-04-01
Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.
Accretion onto stellar mass black holes
NASA Astrophysics Data System (ADS)
Deegan, Patrick
2009-12-01
I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.
MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT
NASA Technical Reports Server (NTRS)
Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.
2018-01-01
Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.
The periodic dynamics of the irregular heterogeneous celestial bodies
NASA Astrophysics Data System (ADS)
Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng
2017-02-01
In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.
Spin Evolution of Stellar Progenitors in Compact Binaries
NASA Astrophysics Data System (ADS)
Steinle, Nathan; Kesden, Michael
2018-01-01
Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.
ESA's Integral discovers hidden black holes
NASA Astrophysics Data System (ADS)
2003-10-01
An artist's impression of the mechanisms in an interacting binar hi-res Size hi-res: 28 kb An artist's impression of the mechanisms in an interacting binary system An artist's impression of the mechanisms in an interacting binary system. The supermassive companion star (on the right-hand side) ejects a lot of gas in the form of 'stellar wind'. The compact black hole orbits the star and, due to its strong gravitational attraction, collects a lot of the gas. Some of it is funnelled and accelerated into a hot disc. This releases a large amount of energy in all spectral bands, from gamma rays through to visible and infrared. However, the remaining gas surrounding the black hole forms a thick cloud which blocks most of the radiation. Only the very energetic gamma rays can escape and be detected by Integral. XMM-Newton spacecraft hi-res Size hi-res: 254 kb Credits: ESA. Illustration by Ducros XMM-Newton spacecraft Detecting the Universe's hot spots. These are binary systems, probably including a black hole or a neutron star, embedded in a thick cocoon of cold gas. They have remained invisible so far to all other telescopes. Integral was launched one year ago to study the most energetic phenomena in the universe. Integral detected the first of these objects, called IGRJ16318-4848, on 29 January 2003. Although astronomers did not know its distance, they were sure it was in our Galaxy. Also, after some analysis, researchers concluded that the new object could be a binary system comprising a compact object, such as a neutron star or a black hole, and a very massive companion star. When gas from the companion star is accelerated and swallowed by the more compact object, energy is released at all wavelengths, from the gamma rays through to visible and infrared light. About 300 binary systems like those are known to exist in our galactic neighbourhood and IGRJ16318-4848 could simply have been one more. But something did not fit: why this particular object had not been discovered so far? Astronomers, who have been observing the object regularly, guess that it had remained invisible because there must be a very thick shell of obscuring material surrounding it. If that was the case, only the most energetic radiation from the object could get through the shell; less-energetic radiation would be blocked. That could explain why space telescopes that are sensitive only to low-energy radiation had overlooked the object, while Integral, specialised in detecting very energetic emissions, did see it. To test their theory, astronomers turned to ESA's XMM-Newton space observatory, which observes the sky in the X-ray wavelengths. As well as being sensitive to high-energy radiation, XMM-Newton is also able to check for the presence of obscuring material. Indeed, XMM-Newton detected this object last February, as well as the existence of a dense 'cocoon' of cold gas with a diameter of similar size to that of the Earth's orbit around the Sun. This obscuring material forming the cocoon is probably 'stellar wind', namely gas ejected by the supermassive companion star. Astronomers think that this gas may be accreted by the compact black hole, forming a dense shell around it. This obscuring cloud traps most of the energy produced inside it. The main author of these results, Roland Walter of the Integral Science Data Centre, Switzerland, explained: "Only photons with the highest energies [above 10 keV] could escape from that cocoon. IGR J16318-4848 has therefore not been detected by surveys performed at lower energies, nor by previous gamma-ray missions that were much less sensitive than Integral." The question now is to find out how many of these objects lurk in the Galaxy. XMM-Newton and Integral together are the perfect tools to do the job. They have already discovered two more new sources embedded in obscuring material. Future observations are planned. Christoph Winkler, ESA Project Scientist for Integral, said: "These early examples of using two complementary ESA high-energy missions, Integral and XMM-Newton, shows the potential for future discoveries in high-energy astrophysics." Notes to Editors: The paper explaining these results will be published in November in a special issue of Astronomy and Astrophysics dedicated to Integral, on the occasion of its first anniversary. Integral The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays and visible light. Integral was launched on a Russian Proton rocket on 17 October 2002 into a highly elliptical orbit around Earth. Its principal targets include regions of the galaxy where chemical elements are being produced and compact objects, such as black holes. XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
Binary Systems as Test-Beds of Gravity Theories
NASA Astrophysics Data System (ADS)
Damour, Thibault
The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.
Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)
NASA Astrophysics Data System (ADS)
Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R. T.; Darlington, E. H.; Des Marais, D.; Espiritu, R.; Fort, D.; Green, R.; Guinness, E.; Hayes, J.; Hash, C.; Heffernan, K.; Hemmler, J.; Heyler, G.; Humm, D.; Hutcheson, J.; Izenberg, N.; Lee, R.; Lees, J.; Lohr, D.; Malaret, E.; Martin, T.; McGovern, J. A.; McGuire, P.; Morris, R.; Mustard, J.; Pelkey, S.; Rhodes, E.; Robinson, M.; Roush, T.; Schaefer, E.; Seagrave, G.; Seelos, F.; Silverglate, P.; Slavney, S.; Smith, M.; Shyong, W.-J.; Strohbehn, K.; Taylor, H.; Thompson, P.; Tossman, B.; Wirzburger, M.; Wolff, M.
2007-05-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15-19 m/pixel, 362-3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.
Nanosail-D: The Small Satellite That Could!
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Casas, Joseph P.; Agasid, Elwood F.; Adams, Charles L.; Laue, Greg; Kitts, Christopher; O'Brien, Sue
2011-01-01
Three years from its initial design review, NanoSail-D successfully deployed its sail on January 20th, 2011. It became the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The NanoSail-D mission had two main objectives: eject a nanosatellite from a microsatellite; deploy its sail from a highly compacted volume and low mass system to validate large structure deployment and potential de-orbit technologies. These objectives were successfully achieved and the de-orbit analysis is in process. This paper presents an overview of the NanoSail-D project and insights into how potential setbacks were overcome. Many lessons have been learned during these past three years and are discussed in light of the phenomenal success and interest that this small satellite has generated. NanoSail-D was jointly designed and built by NASA's Marshall Space Flight Center and NASA's Ames Research Center. ManTech/NeXolve Corporation also provided key sail design support. The NanoSail-D experiment is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Von Braun Center for Science and Innovation and Dynetics Inc. Ground operations support was provided by Santa Clara University, with radio beacon packets received from amateur operators around the world.
NASA Astrophysics Data System (ADS)
Kato, Taichi; Hambsch, Franz-Josef; Monard, Berto; Vanmunster, Tonny; Maeda, Yutaka; Miller, Ian; Itoh, Hiroshi; Kiyota, Seiichiro; Isogai, Keisuke; Kimura, Mariko; Imada, Akira; Tordai, Tamás; Akazawa, Hidehiko; Tanabe, Kenji; Otani, Noritoshi; Ogi, Minako; Ando, Kazuko; Takigawa, Naoki; Dubovsky, Pavol A.; Kudzej, Igor; Shugarov, Sergey Yu.; Katysheva, Natalia; Golysheva, Polina; Gladilina, Natalia; Chochol, Drahomir; Starr, Peter; Kasai, Kiyoshi; Pickard, Roger D.; de Miguel, Enrique; Kojiguchi, Naoto; Sugiura, Yuki; Fukushima, Daiki; Yamada, Eiji; Uto, Yusuke; Kamibetsunawa, Taku; Tatsumi, Taiki; Takeda, Nao; Matsumoto, Katsura; Cook, Lewis M.; Pavlenko, Elena P.; Babina, Julia V.; Pit, Nikolaj V.; Antonyuk, Oksana I.; Antonyuk, Kirill A.; Sosnovskij, Aleksei A.; Baklanov, Aleksei V.; Kafka, Stella; Stein, William; Voloshina, Irina B.; Ruiz, Javier; Sabo, Richard; Dvorak, Shawn; Stone, Geoff; Andreev, Maksim V.; Antipin, Sergey V.; Zubareva, Alexandra M.; Zaostrojnykh, Anna M.; Richmond, Michael; Shears, Jeremy; Dubois, Franky; Logie, Ludwig; Rau, Steve; Vanaverbeke, Siegfried; Simon, Andrei; Oksanen, Arto; Goff, William N.; Bolt, Greg; Dębski, Bartłomiej; Kochanek, Christopher S.; Shappee, Benjamin; Stanek, Krzysztof Z.; Prieto, José L.; Stubbings, Rod; Muyllaert, Eddy; Hiraga, Mitsutaka; Horie, Tsuneo; Schmeer, Patrick; Hirosawa, Kenji
2016-08-01
Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 128 SU UMa-type dwarf novae observed mainly during the 2015-2016 season and characterized these objects. The data have improved the distribution of orbital periods, the relation between the orbital period and the variation of superhumps, and the relation between period variations and the rebrightening type in WZ Sge-type objects. Coupled with new measurements of mass ratios using growing stages of superhumps, we now have a clearer and statistically greatly improved evolutionary path near the terminal stage of evolution of cataclysmic variables. Three objects (V452 Cas, KK Tel, and ASASSN-15cl) appear to have slowly growing superhumps, which is proposed to reflect the slow growth of the 3 : 1 resonance near the stability border. ASASSN-15sl, ASASSN-15ux, SDSS J074859.55+312512.6, and CRTS J200331.3-284941 are newly identified eclipsing SU UMa-type (or WZ Sge-type) dwarf novae. ASASSN-15cy has a short (˜0.050 d) superhump period and appears to belong to EI Psc-type objects with compact secondaries having an evolved core. ASASSN-15gn, ASASSN-15hn, ASASSN-15kh, and ASASSN-16bu are candidate period bouncers with superhump periods longer than 0.06 d. We have newly obtained superhump periods for 79 objects and 13 orbital periods, including periods from early superhumps. In order that future observations will be more astrophysically beneficial and rewarding to observers, we propose guidelines on how to organize observations of various superoutbursts.
Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object
NASA Astrophysics Data System (ADS)
Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.
2010-02-01
We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly excluded. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).
From Measure Zero to Measure Hero: Periodic Kerr Orbits and Gravitational Wave Physics
NASA Astrophysics Data System (ADS)
Perez-Giz, Gabriel
2011-12-01
A direct observational detection of gravitational waves -- perhaps the most fundamental prediction of a theory of curved spacetime -- looms close at hand. Stellar mass compact objects spiraling into supermassive black holes have received particular attention as sources of gravitational waves detectable by space-based gravitational wave observatories. A well-established approach models such an extreme mass ratio inspirals (EMRI) as an adiabatic progression through a series of Kerr geodesics. Thus, the direct detection of gravitational radiation from EMRIs and the extraction of astrophysical information from those waveforms require a thorough knowledge of the underlying geodesic dynamics. This dissertation adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We deduce a topological taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multi-leaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some orbital angular momentum value in the strong-field regime below which zoom-whirl behavior becomes unavoidable. We then generalize the taxonomy to help identify nonequatorial orbits whose radial and polar frequencies are rationally related, or in resonance. The thesis culminates by describing how those resonant orbits can be leveraged for an order of magnitude or more reduction in the computational cost of adiabatic order EMRI trajectories, which are so prohibitively expensive that no such relativistically correct inspirals have been generated to date.
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way.
Schödel, R; Ott, T; Genzel, R; Hofmann, R; Lehnert, M; Eckart, A; Mouawad, N; Alexander, T; Reid, M J; Lenzen, R; Hartung, M; Lacombe, F; Rouan, D; Gendron, E; Rousset, G; Lagrange, A-M; Brandner, W; Ageorges, N; Lidman, C; Moorwood, A F M; Spyromilio, J; Hubin, N; Menten, K M
2002-10-17
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.
Magellan Final Science Reports
NASA Technical Reports Server (NTRS)
Thompson, Thomas W.
1993-01-01
This volume is a brief summary of the scientific results of the Magellan Venus mapping mission as reported by the Magellan science investigators. Magellan has exceeded all of its mission objectives by obtaining high resolution radar images, surface elevation, and radiometry for more than 98% of the planet. The amount of stereo data gathered on Venus is more than that available for any other planet. Magellan's fourth cycle collected gravity data from an elliptical orbit to provide information on the relationships between surface features and the interior of the planet. With the successful completion of the aerobraking experiment, the spacecraft, in its lower orbit around Venus, has captured high resolution gravity near the poles from the nearly circular orbit. Every attempt has been made to provide useful documentation for the complete Magellan data set. Magellan data have been released to the public through the Planetary Data System (PDS) and the National Space Science Data Center (NSSDC) in photographs, lithos, brochures, digital form, and compact discs. With the release of Magellan data on the compact disc read-only-memory (CD-ROM) a revolutionary new way of doing science has resulted. This technology provides a way to store, distribute and access large volumes of data. The Magellan science investigators have utilized this wealth of data to provide answers to questions we have been asking for a long time. I would like to personally thank everyone on the Magellan team for the success of this important mission, a mission that has revealed information that will help us to better understand our own Planet Earth.
STS-35 MS Hoffman's height is recorded by MS Lounge on OV-102's middeck
1990-12-10
STS035-19-021 (December 1990) --- STS-35 Mission Specialist Jeffrey A. Hoffman stretches out on the middeck floor while MS John M. (Mike) Lounge records his height. The two crew members are in front of the forward lockers aboard Columbia, Orbiter Vehicle (OV) 102. Hoffman steadies himself using the stowed treadmill and the lockers. Above Hoffman's head is a plastic bag filled with Development Test Objective (DTO) 634, Trash Compaction and Retention System Demonstration, trash compactor charcoal filtered bag lids. This image was selected by the Public Affairs Office (PAO) for public release.
Merging black holes in non-spherical nuclear star clusters
NASA Astrophysics Data System (ADS)
Petrovich, Cristobal
2018-04-01
The Milky Way and a significant fraction of galaxies are observed to host a central Massive Black Hole (MBH) embedded in a non-spherical nuclear star cluster. I will discuss the orbital evolution of stellar binaries in these environments and argue that their merger rates are expected to be greatly enhanced when the effect from cluster potential is taken into account in the binary-MBH triple system. I will apply our results to compact-object binary mergers mediated by gravitational wave radiation and show that this merger channel can contribute significantly to the LIGO/Virgo detections.
How Simbol-X Will Reveal the Most Obscured High Energy Sources of our Galaxy
NASA Astrophysics Data System (ADS)
Chaty, S.
2009-05-01
The INTEGRAL satellite has revealed a major population of supergiant High Mass X-ray Binaries in our Galaxy, revolutionizing our understanding of binary systems and their evolution. This population, constituted of a compact object orbiting around a supergiant star, have unusual properties, either being extremely absorbed, or exhibiting very short flares. I will first describe the characteristics of these sources, that only intensive multi-wavelength observations have led us to disentangle, before showing that Simbol-X, thanks to its energy range and sensitivity, will allow us to go further in the understanding of these supergiant HMXBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, Joey Shapiro; Cornish, Neil J.
The Laser Interferometer Space Antenna (LISA) is designed to detect gravitational wave signals from astrophysical sources, including those from coalescing binary systems of compact objects such as black holes. Colliding galaxies have central black holes that sink to the center of the merged galaxy and begin to orbit one another and emit gravitational waves. Some galaxy evolution models predict that the binary black hole system will enter the LISA band with significant orbital eccentricity, while other models suggest that the orbits will already have circularized. Using a full 17 parameter waveform model that includes the effects of orbital eccentricity, spinmore » precession, and higher harmonics, we investigate how well the source parameters can be inferred from simulated LISA data. Defining the reference eccentricity as the value one year before merger, we find that for typical LISA sources, it will be possible to measure the eccentricity to an accuracy of parts in a thousand. The accuracy with which the eccentricity can be measured depends only very weakly on the eccentricity, making it possible to distinguish circular orbits from those with very small eccentricities. LISA measurements of the orbital eccentricity can help constraints theories of galaxy mergers in the early universe. Failing to account for the eccentricity in the waveform modeling can lead to a loss of signal power and bias the estimation of parameters such as the black hole masses and spins.« less
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...
2017-10-16
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.
Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A
2017-12-22
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.
STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck
1990-12-10
STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P. A.; Cenko, S. B.; Kennea, J. A.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
A massive pulsar in a compact relativistic binary.
Antoniadis, John; Freire, Paulo C C; Wex, Norbert; Tauris, Thomas M; Lynch, Ryan S; van Kerkwijk, Marten H; Kramer, Michael; Bassa, Cees; Dhillon, Vik S; Driebe, Thomas; Hessels, Jason W T; Kaspi, Victoria M; Kondratiev, Vladislav I; Langer, Norbert; Marsh, Thomas R; McLaughlin, Maura A; Pennucci, Timothy T; Ransom, Scott M; Stairs, Ingrid H; van Leeuwen, Joeri; Verbiest, Joris P W; Whelan, David G
2013-04-26
Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzel, G.; Sitarski, B. N.; Ghez, A. M.
We present new adaptive optics (AO) imaging and spectroscopic measurements of Galactic center source G1 from W. M. Keck Observatory. Our goal is to understand its nature and relationship to G2, which is the first example of a spatially resolved object interacting with a supermassive black hole (SMBH). Both objects have been monitored with AO for the past decade (2003–2014) and are comparatively close to the black hole ( a {sub min} ∼ 200–300 au) on very eccentric orbits ( e {sub G1} ∼ 0.99; e {sub G2} ∼ 0.96). While G2 has been tracked before and during periapsis passagemore » ( T {sub 0} ∼ 2014.2), G1 has been followed since soon after emerging from periapsis ( T {sub 0} ∼ 2001.3). Our observations of G1 double the previously reported observational time baseline, which improves its orbital parameter determinations. G1's orbital trajectory appears to be in the same plane as that of G2 but with a significantly different argument of periapsis (Δ ω = 21° ± 4°). This suggests that G1 is an independent object and not part of a gas stream containing G2, as has been proposed. Furthermore, we show for the first time that (1) G1 is extended in the epochs closest to periapsis along the direction of orbital motion, and (2) it becomes significantly smaller over time (450 au in 2004 to less than 170 au in 2009). Based on these observations, G1 appears to be the second example of an object tidally interacting with an SMBH. G1's existence 14 yr after periapsis, along with its compactness in epochs further from the time of periapsis, suggest that this source is stellar in nature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca
2015-02-01
Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less
Compact OAM microscope for edge enhancement of biomedical and object samples
NASA Astrophysics Data System (ADS)
Gozali, Richard; Nguyen, Thien-An; Bendau, Ethan; Alfano, Robert R.
2017-09-01
The production of orbital angular momentum (OAM) by using a q-plate, which functions as an electrically tunable spatial frequency filter, provides a simple and efficient method of edge contrast in biological and medical sample imaging for histological evaluation of tissue, smears, and PAP smears. An instrument producing OAM, such as a q-plate, situated at the Fourier plane of a 4f lens system, similar to the use of a high-pass spatial filter, allows the passage of high spatial frequencies and enables the production of an image with highly illuminated edges contrasted against a dark background for both opaque and transparent objects. Compared with ordinary spiral phase plates and spatial light modulators, the q-plate has the added advantage of electric control and tunability.
Survival of planets around shrinking stellar binaries
Muñoz, Diego J.; Lai, Dong
2015-01-01
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412
Survival of planets around shrinking stellar binaries.
Muñoz, Diego J; Lai, Dong
2015-07-28
The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.
Pairs of Asteroids Probably of a Common Origin
NASA Astrophysics Data System (ADS)
Vokrouhlický, David; Nesvorný, David
2008-07-01
We report the first observational evidence for pairs of main-belt asteroids with bodies in each pair having nearly identical orbits. The existence of ~60 pairs identified here cannot be reconciled with random fluctuations of the asteroid orbit density and rather suggests a common origin of the paired objects. We propose that the identified pairs formed by (i) collisional disruptions of km-sized and larger parent asteroids, (ii) Yarkovsky-O'Keefe-Radzievski-Paddack (YORP)-induced spin-up and rotational fission of fast-rotating objects, and/or (iii) splitting of unstable asteroid binaries. In case (i), the pairs would be parts of compact collisional families with many km- and sub-km-size members that should be found by future asteroid surveys. Our dynamical analysis suggests that most identified pairs formed within the past lsim1 Myr, in several cases even much more recently. For example, paired asteroids (6070) Rheinland and (54827) 2001 NQ8 probably separated from their common ancestor only 16.5-19 kyr ago. Given their putatively very recent formation, the identified objects are prime candidates for astronomical observations. The title paraphrases that of Hirayama's 1918 paper "Groups of asteroids probably of a common origin," where the first evidence was given for groups of asteroid fragments produced by disruptive collisions.
NASA Astrophysics Data System (ADS)
Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu
2016-03-01
Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.
NASA Astrophysics Data System (ADS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-05-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
NASA Technical Reports Server (NTRS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-01-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
Compact and controlled microfluidic mixing and biological particle capture
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander
2016-11-01
We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Shadows and strong gravitational lensing: a brief review
NASA Astrophysics Data System (ADS)
Cunha, Pedro V. P.; Herdeiro, Carlos A. R.
2018-04-01
For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.
Multi-wavelength Observations of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hernandez Santisteban, Juan Venancio
2016-11-01
The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.
ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtinen, K.; Muinonen, K.; Poutanen, M.
Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth.more » The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.« less
NASA's Gravitational - Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Jennrich, Oliver; McNamara, Paul
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.
The DLR AsteroidFinder for NEOs
NASA Astrophysics Data System (ADS)
Mottola, Stefano; Kuehrt, Ekkehard; Michaelis, Harald; Hoffmann, Harald; Spietz, Peter; Jansen, Frank; Thimo Grundmann, Jan; Hahn, Gerhard; Montenegro, Sergio; Findlay, Ross; Boerner, Anko; Messina, Gabriele; Behnke, Thomas; Tschentscher, Matthias; Scheibe, Karsten; Mertens, Volker; Heidecke, Ansgar
Potential Earth-impacting asteroids that spend most of their time interior to Earth's orbit are extremely difficult to be observed from the ground and remain largely undetected. Firstly, they are mostly located at small solar elongations, where the sky brightness and their faintness due to the large phase angle prevents their discovery. Secondly, these objects tend to have very long synodic orbital periods, which makes observation opportunities rare and impact warning times short. Because of these limitations, even the advent of next generation ground-based asteroid surveys is not likely to radically improve the situation (Veres et al. Icarus 203, p472, 2009). On the other hand, a small satellite with a suitable design can observe close to the Sun and detect these objects efficiently against a dark sky background. For this reason, DLR, the German Aerospace Center, has selected AsteroidFinder as the first experiment to be launched under its new compact satellite national program. The primary goal of the mission is to detect and characterize Near Earth Objects (NEOs), with a particular focus on the population of objects completely contained within Earth's orbit (IEOs or Inner Earth Objects). Current dynamical models predict the existence of more than 1000 such objects down to a size of 100m, of which, due to the abovementioned observation difficulties, only 10 have been discovered to date. Benefitting from the vantage point of a Low Earth Orbit (LEO), AsteroidFinder makes use of a small optical telescope to scan those regions of the sky that are close to the Sun, and therefore beyond the reach of ground based observatories. By estimating the population, the size and the orbital distribution of IEOs, AsteroidFinder will contribute to our knowledge of the inner Solar System, and to the assessment of the impact hazard for the Earth. A secondary goal of the mission is to demonstrate techniques that enable the space-based detection of space debris in the cm size range. With these mission goals, AsteroidFinder also addresses the programmatic goals of the ESA SSA initiative, both for the NEO and space debris domain. The AsteroidFinder mission is based on the DLR SSB standard platform, it employs a 400-cm2 clear-aperture, off-axis design telescope and an array of new technology CCDs. AsteroidFinder, which is presently in its Phase-B development stage, is planned to launch in 2013 with a one-year nominal mission duration and the possibility of an extension.
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles
NASA Astrophysics Data System (ADS)
Rutkowski, Mieszko
2017-01-01
In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.
Searching for Strange Quark Matter Objects in Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn
2017-10-20
The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get verymore » close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less
The Close Stellar Companions to Intermediate-mass Black Holes
NASA Astrophysics Data System (ADS)
MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico
2016-03-01
When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.
Flying on Sun Shine: Sailing in Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhorn, Dean
2012-03-28
On January 20th, 2011, NanoSail-D successfully deployed its sail in space. It was the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The 10m2 sail, deployment mechanism and electronics were packed into a 3U CubeSat with a volume of about 3500cc. The NanoSail-D mission had two objectives: eject a nanosatellite from a minisatellite; deploy its sail from a highly compacted volume to validate large structure deployment and potential de-orbit technologies. NanoSail-D was jointly developed by NASA's Marshall Space Flight Center and Ames Research Center. The ManTech/NeXolve Corporation provided key sail design support.more » NanoSail-D is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Space Test Program, the Von Braun Center for Science and Innovation and Dynetics Inc. The presentation will provide insights into sailcraft advances and potential missions enabled by this emerging in-space propulsion technology.« less
Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer
NASA Astrophysics Data System (ADS)
van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.
2017-11-01
We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.
Tests of general relativity from gravitational wave observations of binary black holes
NASA Astrophysics Data System (ADS)
Del Pozzo, Walter
2017-01-01
Gravitational waves emitted during the coalescence of compact binary systems carry a wealth of information about the merging objects, the remnant object as well as their interaction with space-time. The description of the dynamics of such systems is based on solutions of the theory of general relativity. For any given physical configuration of masses, spins and orbital motion, general relativity predicts the dynamical evolution of the binary system as well as the corresponding gravitational wave signal. During the coalescence of extremely compact objects such as binary black holes, the typical curvature and velocity at play are such that, from the observation of the gravitational wave signal, we can access the most extreme dynamical regimes of gravity. In such conditions, we can test our understanding of gravity by looking for potential departures between the solutions of general relativity and the actual dynamics of space-time. The LIGO observations GW150914 and GW151226 provided wonderful testing grounds for general relativity in the, up to now unaccessible, strong-field dynamical regime of gravity. During my talk, I will review and discuss several of the tests that have been devised to detect violations of the predictions of general relativity from the observation of gravitational waves from coalescing binary systems. The discussion will be based on the results of the analysis of GW150914 and GW151226. Finally, I will conclude by discussing some of the future prospects of extending the current state-of-the-art methodologies to further aspects of general relativity.
Periodic self-lensing from accreting massive black hole binaries
NASA Astrophysics Data System (ADS)
D'Orazio, Daniel J.; Di Stefano, Rosanne
2018-03-01
Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.
SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Stephen R.; Hinkel, Natalie R.; Raymond, Sean N., E-mail: skane@ipac.caltech.edu
2013-11-01
The field of exoplanetary science has experienced a recent surge of new systems that is largely due to the precision photometry provided by the Kepler mission. The latest discoveries have included compact planetary systems in which the orbits of the planets all lie relatively close to the host star, which presents interesting challenges in terms of formation and dynamical evolution. The compact exoplanetary systems are analogous to the moons orbiting the giant planets in our solar system, in terms of their relative sizes and semimajor axes. We present a study that quantifies the scaled sizes and separations of the solarmore » system moons with respect to their hosts. We perform a similar study for a large sample of confirmed Kepler planets in multi-planet systems. We show that a comparison between the two samples leads to a similar correlation between their scaled sizes and separation distributions. The different gradients of the correlations may be indicative of differences in the formation and/or long-term dynamics of moon and planetary systems.« less
Millisecond Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.
The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.
Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics
NASA Astrophysics Data System (ADS)
Mahajan, Bharat; Vadali, Srinivas R.; Alfriend, Kyle T.
2018-03-01
A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit's Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth's angular velocity to the satellite's mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.
NASA Astrophysics Data System (ADS)
El Mellah, I.; Casse, F.
2017-05-01
Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).
NASA Astrophysics Data System (ADS)
Zhang, Hong-Xin; Peng, Eric W.; Côté, Patrick; Liu, Chengze; Ferrarese, Laura; Cuillandre, Jean-Charles; Caldwell, Nelson; Gwyn, Stephen D. J.; Jordán, Andrés; Lançon, Ariane; Li, Biao; Muñoz, Roberto P.; Puzia, Thomas H.; Bekki, Kenji; Blakeslee, John P.; Boselli, Alessandro; Drinkwater, Michael J.; Duc, Pierre-Alain; Durrell, Patrick; Emsellem, Eric; Firth, Peter; Sánchez-Janssen, Rubén
2015-03-01
The origin of ultra-compact dwarfs (UCDs; rh >~ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M sstarf gsim 2× 106 M ⊙ and 92% are as blue as the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ~70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii lsim40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ~40 kpc (4) GCs with M sstarf gsim 2 × 106 M ⊙ have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the "tidally threshed dwarf galaxy" scenario.
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
ERIC Educational Resources Information Center
Wolf, Walter A., Ed.
1977-01-01
Discusses the determination of eutectic composition, the mathematics of chemical equilibrium, the wave functions of one-electron orbitals, and the use of pharmacological agents in introductory chemistry courses. (SL)
NASA Astrophysics Data System (ADS)
Bhalerao, Varun
2012-05-01
My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.
Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager
NASA Astrophysics Data System (ADS)
Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.
2002-09-01
The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.
A study of radar cross section measurement techniques
NASA Technical Reports Server (NTRS)
Mcdonald, Malcolm W.
1986-01-01
Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.
The Constraint of Coplanarity: Compact multi-planet system outer architectures and formation.-UP
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel
The Kepler mission discovered 92 systems with 4 or more transiting exoplanets. Systems like Kepler-11 with six "mini-Neptunes" on orbital periods well inside that of Venus pose a challenge to planet formation theory which is broadly split into two competing paradigms. One theory invokes the formation of Neptunes beyond the "snow line", followed by inward migration and assembly into compact configurations near the star. The alternative is that low density planets form in situ at all distances in the protoplanetary nebula. The two paradigms disagree on the occurrence of Jovian planets at longer orbital periods than the transiting exoplanets since such massive planets would impede the inward migration of multiple volatile-rich planets to within a fraction of 1 AU. The likelihood of all the known planets at systems like Kepler-11 to be transiting is very sensitive to presence of outer Jovian planets for a wide range in orbital distance and relative inclination of the Jovian planet. This can put upper limits on the occurrence of Jovian planets by the condition that the six known planets have to have low mutual inclinations most of the time in order for their current cotransiting state to be plausible. Most of these systems have little or no RV data. Hence, our upper limits may be the best constraints on the occurrence of Jovian planets in compact co-planar systems for years to come, and may help distinguish the two leading paradigms of planet formation theory. Methodology. We propose to use an established n-body code (MERCURY) to perform long-term simulations of systems like Kepler-11 with the addition of a putative Jovian planet considering a range of orbital distances. These simulations will test for which initial conditions a Jovian planet would prevent the known planets from all transiting at the same time. We will 1) determine at what orbital distances and inclinations an outer Jovian planet would make the observed configuration of Kepler-11 very unlikely. 2) Test the effect of an undetected planet in the large dynamical space between Kepler-11 f and Kepler 11 g on our upper limits on a Jovian outer planet. 3) Repeat the analysis for all compact systems of 4 or more transiting planets with published planetary masses (including Kepler-79, Kepler-33, and Kepler-80) 5) Repeat the analysis for all systems of 4 or more transiting planets where the condition of long-term orbital stability provides useful upper limits on planetary masses, using their orbital periods and an appropriate mass-radius relation. 6) Measure an upper limit on the occurrence rate of outer Jovian planets. If we find an occurrence rate significantly lower than the known occurrence rate of Jovian planets from RV surveys, this would be evidence in support of the migration model as Jovian planets are expected impede the assembly of compact coplanar systems of low-density planets close to the host star. Relevance. According to the XRP Solicitation, investigations are expected to directly support the goal of "understanding exoplanetary systems", by doing one or more of the following..."improve understanding of the origins of exoplanetary systems". This proposal will help distinguish between competing paradigms in planet formation with dynamical modeling, and hence will improve our understanding of the origins of exoplanetary systems. This proposal will in no way require analysis of archival Kepler data, and relies only on the published masses, radii and orbital periods of high muliplicity systems discovered by Kepler. Therefore, our proposal is not appropriate for ADAP.
Pilot Kent Rominger compacts trash container
1995-11-05
STS073-356-018 (20 October - 5 November 1995) --- Astronaut Kent V. Rominger, pilot, demonstrates an age-old trash-compacting method on the middeck of the Earth-orbiting Space Shuttle Columbia. Following a meal, Rominger had collected the residue wrappers, etc. and filled a plastic bag. Following his compacting maneuvers, Rominger went on to deposit the sack into a temporary trash-stowage area beneath the middeck. Making his first flight into space, Rominger joined four other NASA astronauts and two guest researchers for more than two weeks' research in support of the United States Microgravity Laboratory (USML-2) mission.
Hubble Witnesses Massive Comet-Like Object Pollute Atmosphere of a White Dwarf
2017-12-08
For the first time, scientists using NASA’s Hubble Space Telescope have witnessed a massive object with the makeup of a comet being ripped apart and scattered in the atmosphere of a white dwarf, the burned-out remains of a compact star. The object has a chemical composition similar to Halley’s Comet, but it is 100,000 times more massive and has a much higher amount of water. It is also rich in the elements essential for life, including nitrogen, carbon, oxygen, and sulfur. These findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system’s Kuiper Belt. These icy bodies apparently survived the star’s evolution as it became a bloated red giant and then collapsed to a small, dense white dwarf. Caption: This artist's concept shows a massive, comet-like object falling toward a white dwarf. New Hubble Space Telescope findings are evidence for a belt of comet-like bodies orbiting the white dwarf, similar to our solar system's Kuiper Belt. The findings also suggest the presence of one or more unseen surviving planets around the white dwarf, which may have perturbed the belt to hurl icy objects into the burned-out star. Credits: NASA, ESA, and Z. Levay (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux
NASA Astrophysics Data System (ADS)
van der Meer, A.; Kaper, L.; di Salvo, T.; Méndez, M.; van der Klis, M.; Barr, P.; Trams, N. R.
2005-03-01
We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase φ ˜ 0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (α ˜ 1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The fluorescence Fe Kα line at 6.4 keV is very prominent; a second Kα line is detected at slightly higher energies (up to 6.7 keV) and a Kβ line at 7.1 keV. In the low-flux interval the Fe Kα line at 6.4 keV is strongly (factor ˜ 30) reduced in strength. In eclipse, the Fe Kβ/Kα ratio is consistent with a value of 0.13. In egress we initially measure a higher ratio, which can be explained by a shift in energy of the Fe K-edge to ~ 7.15 keV, which is consistent with moderately ionised iron, rather than neutral iron, as expected for the stellar wind medium. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter ξ further substantiates this conclusion.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, M.G.
1997-07-22
A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.
We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clearmore » counterexample.« less
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.
NASA Technical Reports Server (NTRS)
2002-01-01
Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.
Compact mass spectrometer for plasma discharge ion analysis
Tuszewski, Michel G.
1997-01-01
A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.
Hamilton-Jacobi modelling of relative motion for formation flying.
Kolemen, Egemen; Kasdin, N Jeremy; Gurfil, Pini
2005-12-01
A precise analytic model for the relative motion of a group of satellites in slightly elliptic orbits is introduced. With this aim, we describe the relative motion of an object relative to a circular or slightly elliptic reference orbit in the rotating Hill frame via a low-order Hamiltonian, and solve the Hamilton-Jacobi equation. This results in a first-order solution to the relative motion identical to the Clohessy-Wiltshire approach; here, however, rather than using initial conditions as our constants of the motion, we utilize the canonical momenta and coordinates. This allows us to treat perturbations in an identical manner, as in the classical Delaunay formulation of the two-body problem. A precise analytical model for the base orbit is chosen with the included effect of zonal harmonics (J(2), J(3), J(4)). A Hamiltonian describing the real relative motion is formed and by differing this from the nominal Hamiltonian, the perturbing Hamiltonian is obtained. Using the Hamilton equations, the variational equations for the new constants are found. In a manner analogous to the center manifold reduction procedure, the non-periodic part of the motion is canceled through a magnitude analysis leading to simple boundedness conditions that cancel the drift terms due to the higher order perturbations. Using this condition, the variational equations are integrated to give periodic solutions that closely approximate the results from numerical integration (1 mm/per orbit for higher order and eccentricity perturbations and 30 cm/per orbit for zonal perturbations). This procedure provides a compact and insightful analytic description of the resulting relative motion.
Explorer Program: X-ray Timing Explorer
NASA Technical Reports Server (NTRS)
1995-01-01
This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.
A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk
NASA Astrophysics Data System (ADS)
Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas
2004-12-01
A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.
Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team
2016-10-01
Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube mission science team will determine composition and distribution of volatiles in lunar regolith as a function of time of day, latitude, regolith age and composition, and thus enable understanding of current dynamics of lunar volatiles.
On the mass of the compact object in the black hole binary A0620-00
NASA Technical Reports Server (NTRS)
Haswell, Carole A.; Robinson, Edward L.; Horne, Keith; Stiening, Rae F.; Abbott, Timothy M. C.
1993-01-01
Multicolor orbital light curves of the black hole candidate binary A0620-00 are presented. The light curves exhibit ellipsoidal variations and a grazing eclipse of the mass donor companion star by the accretion disk. Synthetic light curves were generated using realistic mass donor star fluxes and an isothermal blackbody disk. For mass ratios of q = M sub 1/M sub 2 = 5.0, 10.6, and 15.0 systematic searches were executed in parameter space for synthetic light curves that fit the observations. For each mass ratio, acceptable fits were found only for a small range of orbital inclinations. It is argued that the mass ratio is unlikely to exceed q = 10.6, and an upper limit of 0.8 solar masses is placed on the mass of the companion star. These constraints imply 4.16 +/- 0.1 to 5.55 +/- 0.15 solar masses. The lower limit on M sub 1 is more than 4-sigma above the mass of a maximally rotating neutron star, and constitutes further strong evidence in favor of a black hole primary in this system.
EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I +61° 303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archambault, S.; Archer, A.; Buckley, J. H.
2016-01-20
The TeV binary system LS I +61° 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (>300 GeV). In this article, VERITAS observations of LS I +61° 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity frommore » this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I +61° 303 during the flares, provides constraints on the properties of the accelerator in the source.« less
Gravitational self-force on generic bound geodesics in Kerr spacetime
NASA Astrophysics Data System (ADS)
van de Meent, Maarten
2018-05-01
In this work we present the first calculation of the gravitational self-force on generic bound geodesics in Kerr spacetime to first order in the mass ratio. That is, the local correction to equations of motion for a compact object orbiting a larger rotating black hole due to its own impact on the gravitational field. This includes both dissipative and conservative effects. Our method builds on and extends earlier methods for calculating the gravitational self-force on equatorial orbits. In particular we reconstruct the local metric perturbation in the outgoing radiation gauge from the Weyl scalar ψ4 , which in turn is obtained by solving the Teukolsky equation using semianalytical frequency domain methods. The gravitational self-force is subsequently obtained using (spherical) l -mode regularization. We test our implementation by comparing the large l -behavior against the analytically known regularization parameters. In addition we validate our results by comparing the long-term average changes to the energy, angular momentum, and Carter constant to changes to these constants of motion inferred from the gravitational wave flux to infinity and down the horizon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barack, Leor; Cutler, Curt; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Inspirals of stellar-mass compact objects (COs) into {approx}10{sup 6}M{sub {center_dot}} black holes are especially interesting sources of gravitational waves for the planned Laser Interferometer Space Antenna (LISA). The orbits of these extreme-mass-ratio inspirals (EMRIs) are highly relativistic, displaying extreme versions of both perihelion precession and Lense-Thirring precession of the orbital plane. We investigate the question of whether the emitted waveforms can be used to strongly constrain the geometry of the central massive object, and in essence check that it corresponds to a Kerr black hole (BH). For a Kerr BH, all multipole moments of the spacetime have a simple, uniquemore » relation to M and S, the BH mass, and spin; in particular, the spacetime's mass quadrupole moment Q is given by Q=-S{sup 2}/M. Here we treat Q as an additional parameter, independent of S and M, and ask how well observation can constrain its difference from the Kerr value. This was already estimated by Ryan, but for the simplified case of circular, equatorial orbits, and Ryan also neglected the signal modulations arising from the motion of the LISA satellites. We consider generic orbits and include the modulations due to the satellite motions. For this analysis, we use a family of approximate (basically post-Newtonian) waveforms, which represent the full parameter space of EMRI sources, and which exhibit the main qualitative features of true, general relativistic waveforms. We extend this parameter space to include (in an approximate manner) an arbitrary value of Q, and then construct the Fisher information matrix for the extended parameter space. By inverting the Fisher matrix, we estimate how accurately Q could be extracted from LISA observations of EMRIs. For 1 yr of coherent data from the inspiral of a 10M{sub {center_dot}} black hole into rotating black holes of masses 10{sup 5.5}M{sub {center_dot}}, 10{sup 6}M{sub {center_dot}}, or 10{sup 6.5}M{sub {center_dot}}, we find {delta}(Q/M{sup 3}){approx}10{sup -4}, 10{sup -3}, or 10{sup -2}, respectively (assuming total signal-to-noise ratio of 100, typical of the brightest detectable EMRIs). These results depend only weakly on the eccentricity of the inspiral orbit or the spin of the central object.« less
Dry minor mergers and size evolution of high-z compact massive early-type galaxies
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao
2013-01-01
Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
Material Excavated by a Fresh Impact and Identified as Water Ice
2009-09-24
The Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA Mars Reconnaissance Orbiter, obtained information confirming material excavated by a fresh impact and Identified as water ice.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
Dynamical Stability and Evolution of Kepler’s compact inner multi-planet systems
NASA Astrophysics Data System (ADS)
Pu, Bonan
2017-06-01
NASA’s Kepler mission has revealed a population of highly compact inner multi-planet systems. These systems, typically consisting of 4-6 super-Earths, feature tight orbital spacing between planets as well as low orbital inclinations (~2 deg. ) and eccentricities (~2%). This stands in contrast to Kepler’s singles population, which appears to feature higher orbital obliquities and eccentricities, as well as a lower transit timing variation fraction indicative of lower true planet multiplicities.In this talk, I will present some previous and ongoing research aimed at understanding the dynamical evolution of these Kepler systems. First, I will present numerical N-body investigations on the long-term stability of multi-planet systems, the results of which suggest that Kepler’s systems are near the edge of stability. Next, I will discuss some current research on the dynamics of planetary close encounters and collisions, and their implications for the ultimate fate of dynamically unstable multi-planet systems. Finally, I will highlight some recent results on the dynamical stability and evolution of inner multi-planet systems when they are accompanied by external giant planet and/or stellar companions.
NASA Astrophysics Data System (ADS)
Galley, Chad R.; Rothstein, Ira Z.
2017-05-01
We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.
Central region of SKKUCY-9 compact cyclotron
NASA Astrophysics Data System (ADS)
Jung, S. Y.; Kim, H. W.; Ghergherehchi, M.; Park, J. K.; Chai, J. S.; Kim, S. H.
2014-04-01
The development of a 9 MeV compact cyclotron for the production of radioisotopes for medical applications has been recently completed. The machine accelerates negative hydrogen ions generated from an internal PIG (Penning Ion Gauge) ion source following spiral orbits. Some of the structures designed for early beam acceleration, including a pair of center poles providing ions a circular direction, the head of the ion source, and the electrodes, are located in the center of the cyclotron. In this paper we discuss and evaluate the design of the central region that pulls the ions from the chimney of the ion source and directs them into the equilibrium orbit. The magnetic field produced by the center poles was analyzed using the magnetic solver in OPERA-3D TOSCA, and the phase error and ion equilibrium orbit, which is dependent on the kinetic energy within the designed field, were calculated using CYCLONE v8.4. The electric field produced in the acceleration gap was designed using an electrostatic solver. Then, the single beam trajectory was calculated by our own Cyclotron Beam Dynamics (CBD) code. The early orbits, vertical oscillation, acceptable RF phase and the energy gain during the early turns was evaluated. Final goal was to design the central region by the iterative optimization process and verify it with 1 MeV beam experiment.
Lightweight Phase-Change Material For Solar Power
NASA Technical Reports Server (NTRS)
Stark, Philip
1993-01-01
Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.
A complete waveform model for compact binaries on eccentric orbits
NASA Astrophysics Data System (ADS)
George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2017-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .
Zhang, Yuanyuan; Bell, Eric F.
2017-01-13
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanyuan; Bell, Eric F.
Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less
How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
NASA Astrophysics Data System (ADS)
Liu, W.; Hinnov, L.; Wu, H.; Pas, D.
2017-12-01
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
Accuracy of Binary Black Hole waveforms for Advanced LIGO searches
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela
2015-04-01
Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.
On E-discretization of tori of compact simple Lie groups. II
NASA Astrophysics Data System (ADS)
Hrivnák, Jiří; Juránek, Michal
2017-10-01
Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.
The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.
2018-04-01
Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.
Accreting Double White Dwarf Binaries: Implications for LISA
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki
2017-09-01
We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna (LISA) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ˜2700 of these systems will be observable with a negative chirp of 0.1 yr-2 by a space-based GW detector like LISA. We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.
A PIONIER and Incisive Look at the Interacting Binary SS Lep
NASA Astrophysics Data System (ADS)
Blind, N.; Boffin, H. M. J.; Berger, J.-P.; Lebouquin, J.-B.; Mérand, A.
2011-09-01
Symbiotic stars are excellent laboratories to study a broad range of poorly understood physical processes, such as mass loss of red giants, accretion onto compact objects, and evolution of nova-like outbursts. As their evolution is strongly influenced by the mass transfer episodes, understanding the history of these systems requires foremost to determine which process is at play: Roche lobe overflow, stellar wind accretion, or some more complex mixture of both. We report here an interferometric study of the symbiotic system SS Leporis, performed with the unique PIONIER instrument. By determining the binary orbit and revisiting the parameters of the two stars, we show that the giant does not fill its Roche lobe, and that the mass transfer most likely occurs via the accretion of an important part of the giant's wind.
Finding binaries from phase modulation of pulsating stars with Kepler
NASA Astrophysics Data System (ADS)
Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim
2017-09-01
Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.
NASA Astrophysics Data System (ADS)
Ubertini, Pietro; Sidoli, L.; Sguera, V.; Bazzano, A.
2009-12-01
Supergiant Fast X-ray Transients (SFXTs) are one of the most interesting (and unexpected) results of the INTEGRAL mission. They are a new class of HMXBs displaying short hard X-ray outbursts (duration less tha a day) characterized by fast flares (few hours timescale) and large dinamic range (10E3-10E4). The physical mechanism driving their peculiar behaviour is still unclear and highly debated: some models involve the structure of the supergiant companion donor wind (likely clumpy, in a spherical or non spherical geometry) and the orbital properties (wide separation with eccentric or circular orbit), while others involve the properties of the neutron star compact object and invoke very low magnetic field values (B < 1E10 G) or alternatively very high (B>1E14 G, magnetars). The picture is still highly unclear from the observational point of view as well: no cyclotron lines have been detected in the spectra, thus the strength of the neutron star magnetic field is unknown. Orbital periods have been measured in only 4 systems, spanning from 3.3 days to 165 days. Even the duty cycle seems to be quite different from source to source. The Energetic X-ray Imaging Survey Telescope (EXIST), with its hard X-ray all-sky survey and large improved limiting sensitivity, will allow us to get a clearer picture of SFXTs. A complete census of their number is essential to enlarge the sample. A long term and continuous as possible X-ray monitoring is crucial to -(1) obtain the duty cycle, -(2 )investigate their unknown orbital properties (separation, orbital period, eccentricity),- (3) to completely cover the whole outburst activity, (4)-to search for cyclotron lines in the high energy spectra. EXIST observations will provide crucial informations to test the different models and shed light on the peculiar behaviour of SFXTs.
Exoplanet recycling in massive white-dwarf debris discs
NASA Astrophysics Data System (ADS)
Van Lieshout, Rik
2017-06-01
When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.
On the timing properties of SAX J1808.4-3658 during its 2015 outburst
NASA Astrophysics Data System (ADS)
Sanna, A.; Di Salvo, T.; Burderi, L.; Riggio, A.; Pintore, F.; Gambino, A. F.; Iaria, R.; Tailo, M.; Scarano, F.; Papitto, A.
2017-10-01
We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuSTAR observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin-down at an average rate \\dot{ν }_{SD}=1.5(2)× 10^{-15} Hz s-1. We also discuss possible corrections to the spin-down rate accounting for mass accretion on to the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate \\dot{P}_{orb}=3.6(4)× 10^{-12} s s-1, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magnetodipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.
Collision probability at low altitudes resulting from elliptical orbits
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1990-01-01
The probability of collision between a spacecraft and another object is calculated for various altitude and orbit conditions, and factors affecting the probability are discussed. It is shown that a collision can only occur when the spacecraft is located at an altitude which is between the perigee and apogee altitudes of the object and that the probability per unit time is largest when the orbit of the object is nearly circular. However, at low altitudes, the atmospheric drag causes changes with time of the perigee and the apogee, such that circular orbits have a much shorter lifetime than many of the elliptical orbits. Thus, when the collision probability is integrated over the lifetime of the orbiting object, some elliptical orbits are found to have much higher total collision probability than circular orbits. Rocket bodies used to boost payloads from low earth orbit to geosynchronous orbit are an example of objects in these elliptical orbits.
NASA Astrophysics Data System (ADS)
Will, Clifford M.; Wiseman, Alan G.
1996-10-01
We derive the gravitational waveform and gravitational-wave energy flux generated by a binary star system of compact objects (neutron stars or black holes), accurate through second post-Newtonian order (O[(v/c)4]=O[(Gm/rc2)2]) beyond the lowest-order quadrupole approximation. We cast the Einstein equations into the form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve it formally as a retarded integral over the past null cone of the chosen field point. The part of this integral that involves the matter sources and the near-zone gravitational field is evaluated in terms of multipole moments using standard techniques; the remainder of the retarded integral, extending over the radiation zone, is evaluated in a novel way. The result is a manifestly convergent and finite procedure for calculating gravitational radiation to arbitrary orders in a post-Newtonian expansion. Through second post-Newtonian order, the radiation is also shown to propagate toward the observer along true null rays of the asymptotically Schwarzschild spacetime, despite having been derived using flat-spacetime wave equations. The method cures defects that plagued previous ``brute-force'' slow-motion approaches to the generation of gravitational radiation, and yields results that agree perfectly with those recently obtained by a mixed post-Minkowskian post-Newtonian method. We display explicit formulas for the gravitational waveform and the energy flux for two-body systems, both in arbitrary orbits and in circular orbits. In an appendix, we extend the formalism to bodies with finite spatial extent, and derive the spin corrections to the waveform and energy loss.
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-Xin; Peng, Eric W.; Li, Biao
2015-03-20
The origin of ultra-compact dwarfs (UCDs; r{sub h} ≳ 10 pc)—objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies—has been hotly debated in the 15 years since their discovery. Even whether UCDs should be considered galactic in origin, or simply the most extreme star clusters, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs and 911 GCs associated with the central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M {sub *} ≳ 2× 10{sup 6} M {sub ☉} and 92% are as blue asmore » the classic blue GCs, nearly triple the confirmed sample of Virgo UCDs, providing by far the best opportunity for studying global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of blue GCs in the inner ∼70 kpc and as steep as that of red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than GCs, and blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have an orbital anisotropy profile that is tangentially biased at radii ≲40 kpc and radially biased farther out, whereas blue GCs become more tangentially biased at larger radii beyond ∼40 kpc; (4) GCs with M {sub *} ≳ 2 × 10{sup 6} M {sub ☉} have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially biased orbital structure of UCDs at large radii is in general agreement with the 'tidally threshed dwarf galaxy' scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew
Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength ofmore » the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.« less
NASA Astrophysics Data System (ADS)
Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.
2017-04-01
In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.
NASA Astrophysics Data System (ADS)
Poisson, Eric
1996-11-01
Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ, the mass of the orbiting star, M, the mass of the central black hole, and J, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. For concreteness we consider a typical system consisting of a 10Msolar black hole orbiting a nonrotating black hole of mass 106Msolar, whose gravitational waves are monitored during an entire year before the orbiting mass reaches the innermost stable circular orbit. Defining χ≡cJ/GM2 and η≡μ/M, we find Δχ~=5×10-2/ρ, Δη/η~=6×10-2/ρ, and ΔM/M~=2×10-3/ρ. Here, ρ denotes the signal-to-noise ratio associated with the signal and its measurement. That these uncertainties are all much smaller than 1/ρ, the signal-to-noise ratio level, is due to the large number of wave cycles received by the detector in the course of one year. These are the main results of this paper. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.
NASA Astrophysics Data System (ADS)
Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn
2016-12-01
To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.
High performance optical payloads for microsatellites
NASA Astrophysics Data System (ADS)
Geyl, Roland; Rodolfo, Jacques; Girault, Jean-Philippe
2017-09-01
Safran is presenting two concepts of optical payloads for microsatellites combining high performances and extremely compact volume. The first one offer 10-m Ground Sampling Distance (GSD) over 60x40 km2 area from 600 km orbit optimized for twilight conditions. The second one is offering a much higher resolution of 1.8-m over 11x7,5 km2 area from the same 600 km orbit. The two concepts are based on advanced innovative diffraction limited optical system packaged in a unique very compact volume lower than 8U = 200x200x200 mm making them the ideal solution for 15- 100 kg microsatellites. The maximum number of pixels is served to the end-user space imagery community thanks to 35 mm Full Frame sensors offering, as of today, 6000x4000 pixels. Up to 10 spectral bands from 475 to 900 nm can be offered thanks to 2D structured filters.
The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.
Kaupp, Martin
2007-01-15
The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.
SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators
Luo, Yun
2015-08-29
SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yun
2015-06-24
SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
Throwing Icebergs at White Dwarfs
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that of a large asteroid up to several times the mass of Jupiter. These potential polluters have very wide orbits that allow them to maintain ice and volatile materials.At the end of the progenitors lifetime it loses a significant amount of mass, causing the orbits of the surviving objects in the system to expand. After this stage, the stellar companion gravitationally perturbs the potential polluters onto extremely eccentric orbits, bringing these massive and long-period objects close enough accrete onto what is now the white dwarf.The Need for ObservationsThe likelihood distributions for orbital parameters of the systems that result in white dwarfs polluted by Neptune-like planets and Kuiper-belt-analog objects. The black arrows mark the parameters for one of the few observed systems, WD 1425+540, for comparison. [Stephan et al. 2017]By running large Monte Carlo simulations, Stephan and collaborators demonstrate that this scenario can successfully produce accretion of both Neptune-like planets and Kuiper-belt-analog objects. Their simulation results indicate that 1% of all white dwarfs should accrete Neptune-like planets, and 7.5% of all white dwarfs should accrete Kuiper-belt-analog objects.While these fractions are broadly consistent with observations, its hard to say with certainty whether this model is correct, as observations are scant. Only 200 polluted white dwarfs have been observed, and of these, only 15 have had detailed abundance measurements made. Next steps for understanding white-dwarf pollution certainly must includegathering more observations of polluted white dwarfs and establishing the statistics of what is polluting them.CitationAlexander P. Stephan et al 2017 ApJL 844 L16. doi:10.3847/2041-8213/aa7cf3
Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx)
2009-01-01
environment encountered by medium-earth orbits (MEO). at an altitude range from 6,000 to 15.000 km "’. The discovery of the earth’s radiation...forecast models that enable future space missions in the medium Earth orbit regime to enable better spacecraft designed to withstand the harsh environment...the size of the sensor and to exploit a compact layout. The inside spherical section has an attraction voltage and the outside section has the
NASA Astrophysics Data System (ADS)
Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.
2010-03-01
The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.
NASA Astrophysics Data System (ADS)
MacLeod, Morgan Elowe
This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.
NASA Astrophysics Data System (ADS)
Bini, Donato; Damour, Thibault; Geralico, Andrea
2018-05-01
The (first-order) gravitational self-force correction to the spin-orbit precession of a spinning compact body along a slightly eccentric orbit around a Schwarzschild black hole is computed through the ninth post-Newtonian order and to second order in the eccentricity, improving recent results by Kavanagh et al. [Phys. Rev. D 96, 064012 (2017), 10.1103/PhysRevD.96.064012]. We show that our higher-accurate theoretical estimates of the spin precession exhibits an improved agreement with corresponding numerical self-force data. We convert our new theoretical results into its corresponding effective-one-body counterpart, thereby determining several new post-Newtonian terms in the gyrogravitomagnetic ratio gS * .
Kepler-444 Planetary System Artist Concept
2015-01-28
The tightly packed system, named Kepler-444, is home to five small planets in very compact orbits. The planets were detected from the dimming that occurs when they transit the disk of their parent star, as shown in this artist conception.
Compaction and sedimentary basin analysis on Mars
NASA Astrophysics Data System (ADS)
Gabasova, Leila R.; Kite, Edwin S.
2018-03-01
Many of the sedimentary basins of Mars show patterns of faults and off-horizontal layers that, if correctly understood, could serve as a key to basin history. Sediment compaction is a possible cause of these patterns. We quantified the possible role of differential sediment compaction for two Martian sedimentary basins: the sediment fill of Gunjur crater (which shows concentric graben), and the sediment fill of Gale crater (which shows outward-dipping layers). We assume that basement topography for these craters is similar to the present-day topography of complex craters that lack sediment infill. For Gunjur, we find that differential compaction produces maximum strains consistent with the locations of observed graben. For Gale, we were able to approximately reproduce the observed layer orientations measured from orbiter image-based digital terrain models, but only with a >3 km-thick donut-shaped past overburden. It is not immediately obvious what geologic processes could produce this shape.
Using GEO Optical Observations to Infer Orbit Populations
NASA Technical Reports Server (NTRS)
Matney, Mark; Africano, John
2002-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit. When observing very dim objects with small field-of-view telescopes, though, the observations are generally too short to obtain accurate orbital elements. However, it is possible to use such observations to statistically characterize the small object environment. A telescope pointed at a particular spot could potentially see objects in a number of different orbits. Inevitably, when looking at one region for certain types of orbits, there are objects in other types of orbits that cannot be seen. Observation campaigns are designed with these limitations in mind and are set up to span a number of regions of the sky, making it possible to sample all potential orbits under consideration. Each orbit is not seen with the same probability, however, so there are observation biases intrinsic to any observation campaign. Fortunately, it is possible to remove such biases and reconstruct a meaningful estimate of the statistical orbit populations of small objects in GEO. This information, in turn, can be used to investigate the nature of debris sources and to characterize the risk to GEO spacecraft. This paper describes these statistical tools and presents estimates of small object GEO populations.
Dual-wavelength laser with topological charge
NASA Astrophysics Data System (ADS)
Yu, Haohai; Xu, Miaomiao; Zhao, Yongguang; Wang, Yicheng; Han, Shuo; Zhang, Huaijin; Wang, Zhengping; Wang, Jiyang
2013-09-01
We demonstrate the simultaneous oscillation of different photons with equal orbital angular momentum in solid-state lasers for the first time to our knowledge. Single tunable Hermite-Gaussian (HG0,n) (0 ≤ n ≤ 7) laser modes with dual wavelength were generated using an isotropic cavity. With a mode-converter, the corresponding Laguerre-Gaussian (LG0,n) laser modes were obtained. The oscillating laser modes have two types of photons at the wavelengths of 1077 and 1081 nm and equal orbital angular momentum of nħ per photon. These results identify the possibility of simultaneous oscillation of different photons with equal and controllable orbital angular momentum. It can be proposed that this laser should have promising applications in many fields based on its compact structure, tunable orbital angular momentum, and simultaneous oscillation of different photons with equal orbital angular momentum.
Potential for on-orbit manufacture of large space structures using the pultrusion process
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.
1987-01-01
On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces.
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M D
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-01-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism. PMID:29333523
SOFIP: A Short Orbital Flux Integration Program
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Hebert, J. J.; Butler, E. L.; Barth, J. L.
1979-01-01
A computer code was developed to evaluate the space radiation environment encountered by geocentric satellites. The Short Orbital Flux Integration Program (SOFIP) is a compact routine of modular compositions, designed mostly with structured programming techniques in order to provide core and time economy and ease of use. The program in its simplest form produces for a given input trajectory a composite integral orbital spectrum of either protons or electrons. Additional features are available separately or in combination with the inclusion of the corresponding (optional) modules. The code is described in detail, and the function and usage of the various modules are explained. A program listing and sample outputs are attached.
Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral
NASA Astrophysics Data System (ADS)
Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.
2018-04-01
The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.
Active space debris removal by a hybrid propulsion module
NASA Astrophysics Data System (ADS)
DeLuca, L. T.; Bernelli, F.; Maggi, F.; Tadini, P.; Pardini, C.; Anselmo, L.; Grassi, M.; Pavarin, D.; Francesconi, A.; Branz, F.; Chiesa, S.; Viola, N.; Bonnal, C.; Trushlyakov, V.; Belokonov, I.
2013-10-01
During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of the propulsion unit. Only explorative tests were performed in the past on this rocket configuration, which appears to be suitable as de-orbiting system of new satellites as well as for direct application on large debris in the framework of a mission for debris removal. The paper describes some critical aspects of the mission with particular concern to the target selection, the hybrid propulsion module, the operations as well as the systems needed to rendezvous and dock with the target, and the disposal strategy.
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
REVIEWS OF TOPICAL PROBLEMS: Small-scale structure of dark matter and microlensing
NASA Astrophysics Data System (ADS)
Gurevich, Aleksandr V.; Zybin, Kirill P.; Sirota, V. A.
1997-09-01
It has been revealed using microlensing that a considerable part, possibly more than half, of the dark matter in the halo of our Galaxy consists of objects with a mass spectrum ranging from 0.05 to 0.8 of the solar mass. What is the nature of these objects? There exist two hypotheses. According to one, these are Jupiter type planets or small stars (brown and white dwarfs) consisting of normal baryonic matter. According to the other, these are non-compact objects, i.e., small-scale formations in non-baryonic dark matter. Here, a theory is proposed describing the possibility of the existence of non-compact objects in the halo of our Galaxy, their structure and formation from non-baryonic matter. The theory of microlensing on compact and non-compact objects is considered in detail. The results of microlensing observations are described and compared with theory. Possible astrophysical manifestations of the presence of small-scale structure are pointed out. The field is being extensively studied and is of fundamental interest for cosmology and astrophysics.
Accreting Double White Dwarf Binaries: Implications for LISA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.
We explore the long-term evolution of mass-transferring white dwarf (WD) binaries undergoing both direct-impact and disk accretion and explore implications of such systems to gravitational-wave (GW) astronomy. We cover a broad range of initial component masses and show that these systems, the majority of which lie within the Laser Interferometer Space Antenna ( LISA ) sensitivity range, exhibit prominent negative orbital frequency evolution (chirp) for a significant fraction of their lifetimes. Using a galactic population synthesis, we predict ∼2700 of these systems will be observable with a negative chirp of 0.1 yr{sup −2} by a space-based GW detector like LISAmore » . We also show that detections of mass-transferring double WD systems by LISA may provide astronomers with unique ways of probing the physics governing close compact object binaries.« less
Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects
NASA Astrophysics Data System (ADS)
Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.
2017-10-01
We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea
During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for diskmore » formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.« less
Moonlets wandering on a leash-ring
NASA Astrophysics Data System (ADS)
Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.; Spahn, F.; da Cruz, C.
2007-09-01
Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the `shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of `propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial `streaks' seen in the F ring. The related `thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).
Geotechnical Tests on Asteroid Simulant Orgueil
NASA Technical Reports Server (NTRS)
Garcia, Alexander D'marco
2017-01-01
In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill through the surface of an asteroid. Most of the known asteroids are believed to be left over material during the formation of the solar system that never accreted to form planets. Asteroids can be found in several groups such as Trojan Asteroids, Near Earth Asteroids (NEAs) and the main asteroid belt. The Trojan Asteroids orbit the 4th and 5th Lagrange points of major planets in the Solar System while the NEA's have orbits that are close to and sometimes intersect with Earths orbit and the Main Asteroid Belt which is found between the orbit of Mars and Jupiter. Gravitational perturbations can alter the orbit of asteroids in the Main Asteroid Belt causing them to move closer to earth causing them to become in the NEA class.
Migration of comets to near-Earth space
NASA Astrophysics Data System (ADS)
Ipatov, S. I.
The orbital evolution of more than 21000 Jupiter-crossing objects under the gravitational influence of planets was investigated. For orbits close to that of Comet 2P, the mean collision probabilities of Jupiter-crossing objects with the terrestrial planets were greater by two orders of magnitude than for some other comets. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects (<0.1%) got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Some of them even got inner-Earth orbits (Q<0.983 AU) and Aten orbits for millions of years. Most former trans-Neptunian objects that have typical near-Earth object orbits moved in such orbits for millions of years, so during most of this time they were extinct comets or disintegrated into mini-comets.
Intermediate mass black holes in AGN discs - I. Production and growth
NASA Astrophysics Data System (ADS)
McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.
2012-09-01
Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).
HUBBLE MEASURES VELOCITY OF GAS ORBITING BLACK HOLE
NASA Technical Reports Server (NTRS)
2002-01-01
A schematic diagram of velocity measurements of a rotating disk of hot gas in the core of active galaxy M87. The measurement was made by studying how the light from the disk is redshifted and blueshifted -- as part of the swirling disk spins in earth's direction and the other side spins away from earth. The gas on one side of the disk is speeding away from Earth, at a speed of about 1.2 million miles per hour (550 kilometers per second). The gas on the other side of the disk is orbiting around at the same speed, but in the opposite direction, as it approaches viewers on Earth. This high velocity is the signature of the tremendous gravitational field at the center of M87. This is clear evidence that the region harbors a massive black hole, since it contains only a fraction of the number of stars that would be necessary to create such a powerful attraction. A black hole is an object that is so massive yet compact nothing can escape its gravitational pull, not even light. The object at the center of M87 fits that description. It weights as much as three billion suns, but is concentrated into a space no larger than our solar system. The observations were made with HST's Faint Object Spectrograph. Credit: Holland Ford, Space Telescope Science Institute/Johns Hopkins University; Richard Harms, Applied Research Corp.; Zlatan Tsvetanov, Arthur Davidsen, and Gerard Kriss at Johns Hopkins; Ralph Bohlin and George Hartig at Space Telescope Science Institute; Linda Dressel and Ajay K. Kochhar at Applied Research Corp. in Landover, Md.; and Bruce Margon from the University of Washington in Seattle. NASA PHOTO CAPTION STScI-PR94-23b
Lense-Thirring Precession of Accretion Disks and Quasi-Periodic Oscillations in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Markovic, D.; Lamb, F. K.
2003-05-01
It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the 20-300 Hz quasi-periodic X-ray brightness oscillations (QPOs) observed in some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored warping modes of geometrically thin disks in the presence of gravitomagnetic and radiation torques. We have found a family of overdamped, low-frequency gravitomagnetic (LFGM) modes all of which have precession frequencies lower than a certain critical frequency ωcrit, which is 1 Hz for a compact object of solar mass. A radiation warping torque can cause a few of the lowest-frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies ≳10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The highest-frequency HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values as large as 50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.
Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible
NASA Astrophysics Data System (ADS)
Northway, P.
2015-12-01
As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.
A NEW GUI FOR GLOBAL ORBIT CORRECTION AT THE ALS USING MATLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pachikara, J.; Portmann, G.
2007-01-01
Orbit correction is a vital procedure at particle accelerators around the world. The orbit correction routine currently used at the Advanced Light Source (ALS) is a bit cumbersome and a new Graphical User Interface (GUI) has been developed using MATLAB. The correction algorithm uses a singular value decomposition method for calculating the required corrector magnet changes for correcting the orbit. The application has been successfully tested at the ALS. The GUI display provided important information regarding the orbit including the orbit errors before and after correction, the amount of corrector magnet strength change, and the standard deviation of the orbitmore » error with respect to the number of singular values used. The use of more singular values resulted in better correction of the orbit error but at the expense of enormous corrector magnet strength changes. The results showed an inverse relationship between the peak-to-peak values of the orbit error and the number of singular values used. The GUI interface helps the ALS physicists and operators understand the specifi c behavior of the orbit. The application is convenient to use and is a substantial improvement over the previous orbit correction routine in terms of user friendliness and compactness.« less
The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.
Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D
2011-11-30
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.
Numerical computation of the effective-one-body potential q using self-force results
NASA Astrophysics Data System (ADS)
Akcay, Sarp; van de Meent, Maarten
2016-03-01
The effective-one-body theory (EOB) describes the conservative dynamics of compact binary systems in terms of an effective Hamiltonian approach. The Hamiltonian for moderately eccentric motion of two nonspinning compact objects in the extreme mass-ratio limit is given in terms of three potentials: a (v ) , d ¯ (v ) , q (v ) . By generalizing the first law of mechanics for (nonspinning) black hole binaries to eccentric orbits, [A. Le Tiec, Phys. Rev. D 92, 084021 (2015).] recently obtained new expressions for d ¯(v ) and q (v ) in terms of quantities that can be readily computed using the gravitational self-force approach. Using these expressions we present a new computation of the EOB potential q (v ) by combining results from two independent numerical self-force codes. We determine q (v ) for inverse binary separations in the range 1 /1200 ≤v ≲1 /6 . Our computation thus provides the first-ever strong-field results for q (v ) . We also obtain d ¯ (v ) in our entire domain to a fractional accuracy of ≳10-8 . We find that our results are compatible with the known post-Newtonian expansions for d ¯(v ) and q (v ) in the weak field, and agree with previous (less accurate) numerical results for d ¯(v ) in the strong field.
Initial Checkout Results of the Compact Infrared Camera (circ) for Earth Observation
NASA Astrophysics Data System (ADS)
Kato, E.; Katayama, H.; Sakai, M.; Nakajima, Y.; Kimura, T.; Nakau, K.; Tonooka, H.
2015-04-01
Compact Infrared Camera (CIRC) is a technology-demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. CIRC is the first microbolometer sensor without a calibration function in orbit, like a shutter system or an onboard blackbody. The main objective of the CIRC is to detect wildfires, which are major and chronic disasters affecting various countries of Southeast Asia, particularly considering the effects of global warming and climate change. The CIRC achieves a small size (approximately 200 mm), light mass (approximately 3 kg), and low electrical power consumption (<20 W) by employing athermal optics and a shutterless system. The CIRC can be consequently mounted on multiple satellites to enable highfrequency observation. Installation of CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase observation frequency. We present the initial check-out results of the CIRC onboard ALOS-2. Since the initial check-out phase (July 4-14, 2014), the CIRC has acquired the images of Earth. CIRC was demonstrated to function according to its intended design. After the early calibration validation phase, which confirmed the temperature accuracy of observed data, CIRC data has been available to the public January 2015 onward. We also introduce a few observational results about wildfire, volcanoes, and heat-island.
Object Toolkit Version 4.2 Users Manual
2014-10-31
48 Figure 39. Geocentric Orbit Dialog Box...Z Side at (0.44, -0.44, 1.46). ............................................ 114 Figure 133. Geocentric Orbit Dialog Box...building an object for MEM, Object Toolkit has an Orbit menu that allows the user to specify and edit a heliocentric or geocentric orbit. The dialog
Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
Scheduler for monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W
2015-04-28
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Monitoring objects orbiting earth using satellite-based telescopes
Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.
2015-06-30
An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.
Relativistic compact stars with charged anisotropic matter
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Channuie, Phongpichit
2018-05-01
In this article, we perform a detailed theoretical analysis of new exact solutions with anisotropic fluid distribution of matter for compact objects subject to hydrostatic equilibrium. We present a family solution to the Einstein-Maxwell equations describing a spherically symmetric, static distribution of a fluid with pressure anisotropy. We implement an embedding class one condition to obtain a relation between the metric functions. We generalize the properties of a spherical star with hydrostatic equilibrium using the generalised Tolman-Oppenheimer-Volkoff (TOV) equation. We match the interior solution to an exterior Reissner-Nordström one, and study the energy conditions, speed of sound, and mass-radius relation of the star. We also show that the obtained solutions are compatible with observational data for the compact object Her X-1. Regarding our results, the physical behaviour of the present model may serve for the modeling of ultra compact objects.
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
The 2009 Mars Telecommunications Orbiter
NASA Technical Reports Server (NTRS)
Wilson, G. R.; DePaula, R.; Diehl, R. E.; Edwards, C. D.; Fitzgerald, R. J.; Franklin, S. F.; Kerridge, S. A.; Komarek, T. A.; Noreen, G. K.
2004-01-01
The first spacecraft with a primary function of providing communication links while orbiting a foreign planet has begun development for a launch in 2009. NASA's Mars Telecommunications Orbiter would use three radio bands to magnify the benefits of other future Mars missions and enable some types of missions otherwise impractical. It would serve as the Mars hub for a growing interplanetary Internet. And it would pioneer the use of planet-to-planet laser communications to demonstrate the possibility for even greater networking capabilities in the future. With Mars Telecommunications Orbiter overhead in the martian sky, the Mars Science Laboratory rover scheduled to follow the orbiter to Mars by about a month could send to Earth more than 100 times as much data per day as it could otherwise send. The orbiter will be designed for the capability of relaying up to 15 gigabits per day from the rover, equivalent to more than three full compact discs each day. The same benefits would accrue to other future major Mars missions from any nation.
On the number of light rings in curved spacetimes of ultra-compact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-01-01
In a very interesting paper, Cunha, Berti, and Herdeiro have recently claimed that ultra-compact objects, self-gravitating horizonless solutions of the Einstein field equations which have a light ring, must possess at least two (and, in general, an even number of) light rings, of which the inner one is stable. In the present compact paper we explicitly prove that, while this intriguing theorem is generally true, there is an important exception in the presence of degenerate light rings which, in the spherically symmetric static case, are characterized by the simple dimensionless relation 8 πrγ2 (ρ +pT) = 1 [here rγ is the radius of the light ring and { ρ ,pT } are respectively the energy density and tangential pressure of the matter fields]. Ultra-compact objects which belong to this unique family can have an odd number of light rings. As a concrete example, we show that spherically symmetric constant density stars with dimensionless compactness M / R = 1 / 3 possess only one light ring which, interestingly, is shown to be unstable.
The 26.3-h orbit and multiwavelength properties of the `redback' millisecond pulsar PSR J1306-40
NASA Astrophysics Data System (ADS)
Linares, Manuel
2018-01-01
We present the discovery of the variable optical and X-ray counterparts to the radio millisecond pulsar (MSP) PSR J1306-40, recently discovered by Keane et al. We find that both the optical and X-ray fluxes are modulated with the same period, which allows us to measure for the first time the orbital period Porb = 1.097 16[6] d. The optical properties are consistent with a main-sequence companion with spectral type G to mid K and, together with the X-ray luminosity (8.8 × 1031 erg s-1 in the 0.5-10 keV band, for a distance of 1.2 kpc), confirm the redback classification of this pulsar. Our results establish the binary nature of PSR J1306-40, which has the longest Porb among all known compact binary MSPs in the Galactic disc. We briefly discuss these findings in the context of irradiation and intrabinary shock emission in compact binary MSPs.
MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.
Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a codemore » we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.« less
Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion
NASA Astrophysics Data System (ADS)
Barack, Leor
The question of motion in a gravitationally bound two-body system is a longstanding open problem of General Relativity. When the mass ratio eta; is small, the problem lends itself to a perturbative treatment, wherein corrections to the geodesic motion of the smaller object (due to radiation reaction, internal structure, etc.) are accounted for order by order in η, using the language of an effective gravitational self-force. The prospect for observing gravitational waves from compact objects inspiralling into massive black holes in the foreseeable future has in the past 15 years motivated a program to obtain a rigorous formulation of the self-force and compute it for astrophysically interesting systems. I will give a brief survey of this activity and its achievements so far, and will identify the challenges that lie ahead. As concrete examples, I will discuss recent calculations of certain conservative post-geodesic effects of the self-force, including the O(η ) correction to the precession rate of the periastron. I will highlight the way in which such calculations allow us to make a fruitful contact with other approaches to the two-body problem.
Hard X-ray spectra of neutron stars and black hole candidates
NASA Technical Reports Server (NTRS)
Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.
1997-01-01
The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Is the Eureka cluster a collisional family of Mars Trojan asteroids?
NASA Astrophysics Data System (ADS)
Christou, Apostolos A.; Borisov, Galin; Dell'Oro, Aldo; Cellino, Alberto; Bagnulo, Stefano
2017-09-01
We explore the hypothesis that the Eureka family of sub-km asteroids in the L5 region of Mars could have formed in a collision. We estimate the size distribution index from available information on family members; model the orbital dispersion of collisional fragments; and carry out a formal calculation of the collisional lifetime as a function of size. We find that, as initially conjectured by Rivkin et al. (2003), the collisional lifetime of objects the size of (5261) Eureka is at least a few Gyr, significantly longer than for similar-sized Main Belt asteroids. In contrast, the observed degree of orbital compactness is inconsistent with all but the least energetic family-forming collisions. Therefore, the family asteroids may be ejecta from a cratering event sometime in the past ∼ 1 Gyr if the orbits are gradually dispersed by gravitational diffusion and the Yarkovsky effect (Ćuk et al., 2015). The comparable sizes of the largest family members require either negligible target strength or a particular impact geometry under this scenario (Durda et al., 2007; Benavidez et al., 2012). Alternatively, the family may have formed by a series of YORP-induced fission events (Pravec et al., 2010). The shallow size distribution of the family is similar to that of small MBAs (Gladman et al., 2009) interpreted as due to the dominance of this mechanism for Eureka-family-sized asteroids (Jacobson et al., 2014). However, our population index estimate is likely a lower limit due to the small available number of family asteroids and observational incompleteness. Future searches for fainter family members, further observational characterisation of the known Trojans' physical properties as well as orbital and rotational evolution modelling will help distinguish between different formation models.
WR 148: identifying the companion of an extreme runaway massive binary*
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony F. J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-05-01
WR 148 (HD 197406) is an extreme runaway system considered to be a potential candidate for a short-period (4.3173 d) rare WR + compact object binary. Provided with new high-resolution, high signal-to-noise spectra from the Keck observatory, we determine the orbital parameters for both the primary WR and the secondary, yielding respective projected orbital velocity amplitudes of 88.1 ± 3.8 km s-1 and 79.2 ± 3.1 km s-1 and implying a mass ratio of 1.1 ± 0.1. We then apply the shift-and-add technique to disentangle the spectra and obtain spectra compatible with a WN7ha and an O4-6 star. Considering an orbital inclination of ˜67°, derived from previous polarimetry observations, the system's total mass would be a mere 2-3M_{⊙}, an unprecedented result for a putative massive binary system. However, a system comprising a 37 M_{⊙} secondary (typical mass of an O5V star) and a 33 M_{⊙} primary (given the mass ratio) would infer an inclination of ˜18°. We therefore reconsider the previous methods of deriving the orbital inclination based on time-dependent polarimetry and photometry. While the polarimetric results are inconclusive requiring better data, the photometric results favour low inclinations. Finally, we compute WR 148's space velocity and retrace the runaway's trajectory back to the Galactic plane (GP). With an ejection velocity of 198 ± 27 km s-1 and a travel time of 4.7 ± 0.8 Myr to reach its current location, WR 148 was most likely ejected via dynamical interactions in a young cluster.
Accretion torques in X-ray pulsars
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.
1977-01-01
An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
Photometric Studies of Orbital Debris at GEO
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Abercromby, Kira J.; Rodriguez-Cowardin, Heather M.; Barker, Ed; Foreman, Gary; Horstman, Matt
2009-01-01
We report on optical observations of debris at geosynchronous Earth orbit (GEO) using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan s 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope s field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected with MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit and calibrated colors for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials.
A retrograde object near Jupiter's orbit
NASA Astrophysics Data System (ADS)
Connors, M.; Wiegert, P.
2018-02-01
Asteroid 2007 VW266 is among the rare objects with a heliocentric retrograde orbit, and its semimajor axis is within a Hill sphere radius of that of Jupiter. This raised the interesting possibility that it could be in co-orbital retrograde resonance with Jupiter, a second "counter-orbital" object in addition to recently discovered 2015 BZ509. We find instead that the object is in 13/14 retrograde mean motion resonance (also referred to as 13/-14). The object is shown to have entered its present orbit about 1700 years ago, and it will leave it in about 8000 years, both through close approach to Jupiter. Entry and exit states both avoid 1:1 retrograde resonance, but the retrograde nature is preserved. The temporary stable state is due to an elliptic orbit with high inclination keeping nodal passages far from the associated planet. We discuss the motion of this unusual object based on modeling and theory, and its observational prospects.
Formation of Compact Ellipticals in the merging star cluster scenario
NASA Astrophysics Data System (ADS)
Urrutia Zapata, Fernanda Cecilia; Theory and star formation group
2018-01-01
In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are dark matter dominated objects. If our scenario is true, then they would be dark matter free very extended and massive "star clusters".
Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury
NASA Technical Reports Server (NTRS)
Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony
2004-01-01
A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.
Classifying and Finding Nearby Compact Stellar Systems
NASA Astrophysics Data System (ADS)
Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie
2018-01-01
Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.
The discovery and orbit of /2060/ Chiron
NASA Technical Reports Server (NTRS)
Kowal, C. T.; Liller, W.; Marsden, B. G.
1979-01-01
'Slow-moving Object Kowal' was discovered as an asteroidal object of photographic magnitude about 18 on photographic plates made on October 18 and 19, 1977 with the 122-cm Schmidt telescope at Palomar Observatory. It was determined that the object was located between 14 and 17 AU from the earth in a low-inclination, near-circular orbit. Examination of subsequent plates and earlier observations of the area allowed a more exact calculation of the orbital elements, which suggest the object to be in 3:5 resonance with Saturn at a perihelion of 8.5 AU. The object's orbital behavior suggests that of an inactive comet perturbed by Saturn from a previous orbit, however its magnitude is uncharacteristically large for a comet. It is proposed that object Kowal was once an ordinary minor planet that was deflected into its present orbit by collisions with other minor planets and a series of encounters with Jupiter and Saturn. The object has received the minor planet number (2060) and the name of Chiron has been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schäfer, Gerhard
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.
Dry minor mergers and size evolution of high-z compact massive early-type galaxies
NASA Astrophysics Data System (ADS)
Oogi, Taira; Habe, Asao
2012-09-01
Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.
Inspirals into a charged black hole
NASA Astrophysics Data System (ADS)
Zhu, Ruomin; Osburn, Thomas
2018-05-01
We model the quasicircular inspiral of a compact object into a more massive charged black hole. Extreme and intermediate mass-ratio inspirals are considered through a small mass-ratio approximation. Reissner-Nordström spacetime is used to describe the charged black hole. The effect of radiation reaction on the smaller body is quantified through calculation of electromagnetic and gravitational energy fluxes via solution of Einstein's and Maxwell's equations. Inspiral trajectories are determined by matching the orbital energy decay rate to the rate of radiative energy dissipation. We observe that inspirals into a charged black hole evolve more rapidly than comparable inspirals into a neutral black hole. Through analysis of a variety of inspiral configurations, we conclude that electric charge is an important effect concerning gravitational wave observations when the charge exceeds the threshold |Q |/M ≳0.071 √{ɛ }, where ɛ is the mass ratio.
Waste Processing Research and Technology Development at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John; Kliss, Mark
2004-01-01
The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.
Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance
NASA Astrophysics Data System (ADS)
Singh, K. P.; Stewart, G. C.; Westergaard, N. J.; Bhattacharayya, S.; Chandra, S.; Chitnis, V. R.; Dewangan, G. C.; Kothare, A. T.; Mirza, I. M.; Mukerjee, K.; Navalkar, V.; Shah, H.; Abbey, A. F.; Beardmore, A. P.; Kotak, S.; Kamble, N.; Vishwakarama, S.; Pathare, D. P.; Risbud, V. M.; Koyande, J. P.; Stevenson, T.; Bicknell, C.; Crawford, T.; Hansford, G.; Peters, G.; Sykes, J.; Agarwal, P.; Sebastian, M.; Rajarajan, A.; Nagesh, G.; Narendra, S.; Ramesh, M.; Rai, R.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Subbarao, K.; Gupta, T.; Thakkar, N.; Singh, A. K.; Bajpai, A.
2017-06-01
The Soft X-ray focusing Telescope (SXT), India's first X-ray telescope based on the principle of grazing incidence, was launched aboard the AstroSat and made operational on October 26, 2015. X-rays in the energy band of 0.3-8.0 keV are focussed on to a cooled charge coupled device thus providing medium resolution X-ray spectroscopy of cosmic X-ray sources of various types. It is the most sensitive X-ray instrument aboard the AstroSat. In its first year of operation, SXT has been used to observe objects ranging from active stars, compact binaries, supernova remnants, active galactic nuclei and clusters of galaxies in order to study its performance and quantify its characteriztics. Here, we present an overview of its design, mechanical hardware, electronics, data modes, observational constraints, pipeline processing and its in-orbit performance based on preliminary results from its characterization during the performance verification phase.
NASA Astrophysics Data System (ADS)
Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred
2015-09-01
The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.
Design and experimental evaluation of compact radial-inflow turbines
NASA Technical Reports Server (NTRS)
Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.
1991-01-01
The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.
Optical Studies of Orbital Debris at GEO Using Two Telescopes
NASA Technical Reports Server (NTRS)
Seitzer, P.; Abercromby, K. J.; Rodriquez,H. M.; Barker, E.
2008-01-01
Beginning in March, 2007, optical observations of debris at geosynchronous orbit (GEO) were commenced using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan's 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope's field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected on MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope then follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. Objects fainter than 15th are largely uncataloged and have a completely different angular rate distribution than brighter objects. Combining the information obtained for both faint and bright objects yields a more complete picture of the debris environment rather than just concentrating on the faint debris. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. This paper reports on results from two 14 night runs with both telescopes: in March and November 2007: (1) A significant fraction of objects fainter than R = 15th have eccentric orbits (e > 0.1) (2) Virtually all objects selected on the basis of angular rate are in the GEO and GTO regimes. (3) Calibrated magnitudes and colors in BVRI were obtained for many objects fainter than R = 15th magnitude. This work is supported by NASA's Orbital Debris Program Office, Johnson Space Center, Houston, Texas, USA.
Orbital Debris and NASA's Measurement Program
NASA Astrophysics Data System (ADS)
Africano, J. L.; Stansbery, E. G.
2002-05-01
Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.
Risk Management of Jettisoned Objects in LEO
NASA Technical Reports Server (NTRS)
Bacon, John B.; Gray, Charles
2011-01-01
The construction and maintenance of the International Space Station (ISS) has led to the release of many objects into its orbital plane, usually during the course of an extra-vehicular activity (EVA). Such releases are often unintentional, but in a growing number of cases, the jettison has been intentional, conducted after a careful assessment of the net risk to the partnership and to other objects in space. Since its launch in 1998 the ISS has contributed on average at least one additional debris object that is simultaneously in orbit with the station, although the number varies widely from zero to eight at any one moment. All of these objects present potential risks to other objects in orbit. Whether it comes from known and tracked orbiting objects or from unknown or untrackable objects, collision with orbital debris can have disastrous consequences. Objects greater than 10cm are generally well documented and tracked, allowing orbiting spacecraft or satellites opportunities to perform evasive maneuvers (commonly known as Debris Avoidance Maneuvers, or DAMs) in the event that imminent collision is predicted. The issue with smaller debris; however, is that it is too numerous to be tracked effectively and yet still poses disastrous consequences if it intercepts a larger object. Due to the immense kinetic energy of any item in orbit, collision with debris as small as 1cm can have catastrophic consequences for many orbiting satellites or spacecraft. Faced with the growing orbital debris threat and the potentially catastrophic consequences of a collision-generated debris shower originating in an orbit crossing the ISS altitude band, in 2007 the ISS program manger asked program specialists to coordinate a multilateral jettison policy amongst the ISS partners. This policy would define the acceptable risk trade rationale for intentional release of a debris object, and other mandatory constraints on such jettisons to minimize the residual risks whenever a jettison was accepted. Although ISS-related debris often presents untenable risks to the EVA crew, IVA crew, or to a departing cargo vehicle for a controlled disposal, such released objects also present a ballistic nuisance to the visiting vehicle traffic, and a potential fragmentation threat to the hundreds of other functional and debris objects whose perigees lie below the ISS orbital altitude. Thus, every such jettison decision is a conscious risk trade.
The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission
NASA Technical Reports Server (NTRS)
Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo;
2013-01-01
High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.
Innovative compact focal plane array for wide field vis and ir orbiting telescopes
NASA Astrophysics Data System (ADS)
Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried
2017-11-01
The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.
Development of mechanical structure for the compact space IR camera MIRIS
NASA Astrophysics Data System (ADS)
Moon, Bongkon; Jeong, Woong-Seob; Cha, Sang-Mok; Park, Youngsik; Ree, Chang-Hee; Lee, Dae-Hee; Park, Sung-Joon; Nam, Uk-Won; Park, Jang-Hyun; Ka, Nung Hyun; Lee, Mi Hyun; Lee, Duk-Hang; Pyo, Jeonghyun; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung-Mok; Matsumoto, Toshio; Yang, Sun Choel; Han, Wonyong
2010-07-01
MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for the mechanical parts of MIRIS.
Low Gas Fractions Connect Compact Star-forming Galaxies to Their z ~ 2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin S.; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2016-11-01
Early quiescent galaxies at z˜ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line toward three such compact, star-forming galaxies (SFGs) at z˜ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions ≳ 5 times lower and gas depletion timescales ≳ 10 times shorter than normal, extended massive SFGs at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100 Myr. These objects are among the most gas-poor objects observed at z\\gt 2, and are outliers from standard gas scaling relations, a result that remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, SFGs are in a rapid state of transition to quiescence in tandem with the buildup of the z˜ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass.
Effect of deformation and orientation on spin orbit density dependent nuclear potential
NASA Astrophysics Data System (ADS)
Mittal, Rajni; Kumar, Raj; Sharma, Manoj K.
2017-11-01
Role of deformation and orientation is investigated on spin-orbit density dependent part VJ of nuclear potential (VN=VP+VJ) obtained within semi-classical Thomas Fermi approach of Skyrme energy density formalism. Calculations are performed for 24-54Si+30Si reactions, with spherical target 30Si and projectiles 24-54Si having prolate and oblate shapes. The quadrupole deformation β2 is varying within range of 0.023 ≤ β2 ≤0.531 for prolate and -0.242 ≤ β2 ≤ -0.592 for oblate projectiles. The spin-orbit dependent potential gets influenced significantly with inclusion of deformation and orientation effect. The spin-orbit barrier and position gets significantly influenced by both the sign and magnitude of β2-deformation. Si-nuclei with β22<0 have higher spin-orbit barrier (compact spin-orbit configuration) in comparison to systems with β2>0. The possible role of spin-orbit potential on barrier characteristics such as barrier height, barrier curvature and on the fusion pocket is also probed. In reference to prolate and oblate systems, the angular dependence of spin-orbit potential is further studied on fusion cross-sections.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Comet and asteroid hazard to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2004-01-01
We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.
Apparent rotation properties of space debris extracted from photometric measurements
NASA Astrophysics Data System (ADS)
Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas
2018-02-01
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.
NASA Astrophysics Data System (ADS)
Franchini, Nicola; Pani, Paolo; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A. R.; Radu, Eugen; Ferrari, Valeria
2017-06-01
Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasiperiodic oscillations (QPOs) observed in the x-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model as a proxy to interpret the QPOs in terms of geodesic frequencies, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models and that the future eXTP mission or a LOFT-like mission can set very stringent constraints on black holes with bosonic hair and on (scalar or Proca) boson stars. The peculiar geodesic structure of compact scalar/Proca boson stars implies that these objects can easily be ruled out as alternative models for x-ray source GRO J1655-40.
Discovery of Compact Quiescent Galaxies at Intermediate Redshifts in DEEP2
NASA Astrophysics Data System (ADS)
Blancato, Kirsten; Chilingarian, Igor; Damjanov, Ivana; Moran, Sean; Katkov, Ivan
2015-01-01
Compact quiescent galaxies in the redshift range 0.6 < z < 1.1 are the missing link needed to complete the evolutionary histories of these objects from the high redshift z ≥ 2 Universe to the local z ~ 0 Universe. We identify the first intermediate redshift compact quiescent galaxies by searching a sample of 1,089 objects in the DEEP2 Redshift Survey that have multi-band photometry, spectral fitting, and readily available structural parameters. We find 27 compact quiescent candidates between z = 0.6 and z = 1.1 where each candidate galaxy has archival Hubble Space Telescope (HST) imaging and is visually confirmed to be early-type. The candidates have half-light radii ranging from 0.83 < Re,c < 7.14 kpc (median Re,c = 1.77 kpc) and virial masses ranging from 2.2E10 < Mdyn < 5.6E11 Msun (median Mdyn = 7.7E10 Msun). Of our 27 compact quiescent candidates, 13 are truly compact with sizes at most half of the size of their z ~ 0 counterparts of the same mass. In addition to their structural properties bridging the gap between their high and low redshift counterparts, our sample of intermediate redshift quiescent galaxies span a large range of ages but is drawn from two distinct epochs of galaxy formation: formation at z > 2 which suggests these objects may be the relics of the observed high redshift compact galaxies and formation at z ≤ 2 which suggests there is an additional population of more recently formed massive compact galaxies. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
User's guide for the Nimbus 7 ERB Solar Analysis Tape (ESAT)
NASA Technical Reports Server (NTRS)
Hickey, J. R.; Major, E. R.; Kyle, H. L.
1984-01-01
Five years of Nimbus 7 ERB solar data is available in compact form on a single ERB solar analysis tape (ESAT). The period covered is November 16, 1978 through October 31, 1983. The Nimbus 7 satellite performs just under 14 orbits a day and the ERB solar telescope observe the Sun once per orbit as the satellite passes + or - near the south pole. The data were carefully calibrated and screened. Mean orbital and daily values are given for the total solar irradiance plus selected spectral intervals. In addition, selected solar activity indicators are on the tape. The ERB experiment, the solar data calibration and screening procedures, the solar activity indicators, and the tape format are described briefly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, G.; Miller, R.; Ogden, L.
2016-09-05
Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrummore » with increasing frequency.« less
NASA Technical Reports Server (NTRS)
Terman, James L.; Taam, Ronald E.; Hernquist, Lars
1995-01-01
Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.
Mass constraints to Sco X-1 from Bowen fluorescence and deep near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Mata Sánchez, D.; Muñoz-Darias, T.; Casares, J.; Steeghs, D.; Ramos Almeida, C.; Acosta Pulido, J. A.
2015-04-01
More than 50 years after the dawn of X-ray astronomy, the dynamical parameters of the prototypical X-ray binary Sco X-1 are still unknown. We combine a Monte Carlo analysis, which includes all the previously known orbital parameters of the system, along with the K-correction to set dynamical constraints to the masses of the compact object (M1 < 1.73 M⊙) and the companion star (0.28 M⊙ < M2 < 0.70 M⊙). For the case of a canonical neutron star mass of M1 ˜ 1.4 M⊙, the orbital inclination is found to be lower than 40°. We also present the best near-infrared spectrum of the source to date. There is no evidence of donor star features on it, but we are able to constrain the veiling factor as a function of the spectral type of the secondary star. The combination of both techniques restricts the spectral type of the donor to be later than K4 and luminosity class IV. It also constrains the contribution of the companion light to the infrared emission of Sco X-1 to be lower than 33 per cent. This implies that the accretion related luminosity of the system in the K band is larger than ˜4 × 1035 erg s-1.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit
NASA Technical Reports Server (NTRS)
Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1992-01-01
The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.
Black holes in binary stellar systems and galactic nuclei
NASA Astrophysics Data System (ADS)
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
On-orbit performance of the Compact Infrared Camera (CIRC) onboard ALOS-2
NASA Astrophysics Data System (ADS)
Sakai, Michito; Katayama, Haruyoshi; Kato, Eri; Nakajima, Yasuhiro; Kimura, Toshiyoshi; Nakau, Koji
2015-10-01
Compact Infrared Camera (CIRC) is a technology demonstration instrument equipped with an uncooled infrared array detector (microbolometer) for space application. Microbolometers have an advantage of not requiring cooling system such as a mechanical cooler and are suitable for resource-limited sensor systems. Another characteristic of the CIRC is its use of an athermal optical system and a shutterless system. The CIRC is small in size (approximately 200 mm), is light weight (approximately 3 kg), and has low electrical power consumption (<20 W) owing to these characteristics. The main objective of CIRC is to detect wildfires, which are major and chronic disasters affecting various countries of Southeast Asia, particularly considering the effects of global warming and climate change. One of the CIRCs was launched in May 24, 2014 as a technology demonstration payload of the Advanced Land Observation Satellite-2 (ALOS- 2). Since the initial functional verification phase (July 4-14, 2014), the CIRC has demonstrated functions according to its intended design. We also confirmed that the noise equivalent differential temperature of the CIRC observation data is less than 0.2 K, the temperature accuracy is within ±4 K, and the spatial resolution is less than 210 m in the calibration validation phase after the initial functional verification phase. The CIRC also detects wildfires in various areas and observes volcano activities and urban heat islands in the operational phase. The other CIRC will be launched in 2015 onboard the CALorimetric Electron Telescope (CALET) of the Japanese Experiment Module (JEM) of the International Space Station. Installation of the CIRCs on the ALOS-2 and on the JEM/CALET is expected to increase the observation frequency. In this study, we present the on-orbit performance including observational results of the CIRC onboard the ALOS-2 and the current status of the CIRC onboard the JEM/CALET.
Origin of orbital debris impacts on LDEF's trailing surfaces
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1993-01-01
A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.
Spherical torus fusion reactor
Martin Peng, Y.K.M.
1985-10-03
The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.
Probing the mysteries of the X-ray binary 4U 1210-64 with ASM, PCA, MAXI, BAT, and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Joel B.; Corbet, Robin H. D.; Mukai, Koji
2014-10-01
4U 1210-64 has been postulated to be a high-mass X-ray binary powered by the Be mechanism. X-ray observations with Suzaku, the ISS Monitor of All-sky X-ray Image (MAXI), and the Rossi X-ray Timing Explorer Proportional Counter Array (PCA) and All Sky Monitor (ASM) provide detailed temporal and spectral information on this poorly understood source. Long-term ASM and MAXI observations show distinct high and low states and the presence of a 6.7101 ± 0.0005 day modulation, interpreted as the orbital period. Folded light curves reveal a sharp dip, interpreted as an eclipse. To determine the nature of the mass donor, themore » predicted eclipse half-angle was calculated as a function of inclination angle for several stellar spectral types. The eclipse half-angle is not consistent with a mass donor of spectral type B5 V; however, stars with spectral types B0 V or B0-5 III are possible. The best-fit spectral model consists of a power law with index Γ = 1.85{sub −0.05}{sup +0.04} and a high-energy cutoff at 5.5 ± 0.2 keV modified by an absorber that fully covers the source as well as partially covering absorption. Emission lines from S XVI Kα, Fe Kα, Fe XXV Kα, and Fe XXVI Kα were observed in the Suzaku spectra. Out of eclipse, the Fe Kα line flux was strongly correlated with unabsorbed continuum flux, indicating that the Fe I emission is the result of fluorescence of cold dense material near the compact object. The Fe I feature is not detected during eclipse, further supporting an origin close to the compact object.« less
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.
2016-06-01
The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).
Launch activity and orbital debris mitigation : second quarter 2002 Quarterly Launch Report
DOT National Transportation Integrated Search
2002-01-01
Since the start of human space activity, the number of orbital debris, or artificial objects orbiting Earth that are no longer functional, : has steadily increased. These debris make up 95 percent of all orbiting space objects and consist of spent sa...
Investigating the temporal domain of massive ionized jets - I. A pilot study
NASA Astrophysics Data System (ADS)
Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Cunningham, N.
2018-03-01
We present sensitive (σ < 10 μJy beam- 1), radio continuum observations using the Australian Telescope Compact Array at frequencies of 6 and 9 GHz towards four massive young stellar objects (MYSOs). From a previous, less sensitive work, these objects are known to harbour ionized jets associated with radio lobes, which result from shock processes. In comparison with that work, further emission components are detected towards each MYSO. These include extended, direct, thermal emission from the ionized jet's stream, new radio lobes indicative of shocks close (<105 au) to the MYSO, three radio Herbig-Haro objects separated by up to 3.8 pc from the jet's launching site, and an IR-dark source coincident with CH3OH maser emission. No significant, integrated flux variability is detected towards any jets or shocked lobes, and only one proper motion is observed (1806± 596{{ km}{ s}^{-1}{ }} parallel to the jet axis of G310.1420+00.7583A). Evidence for precession is detected in all four MYSOs with precession periods and angles within the ranges 66-15 480 yr and 6°-36°, respectively. Should precession be the result of the influence from a binary companion, we infer orbital radii of 30-1800 au.
Known Locations of Carbonate Rocks on Mars
NASA Technical Reports Server (NTRS)
2008-01-01
Green dots show the locations of orbital detections of carbonate-bearing rocks on Mars, determined by analysis of targeted observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) acquired through January 2008. The spectrometer is on NASA's Mars Reconnaissance Orbiter. The base map is color-coded global topography (red is high, blue is low) overlain on mosaicked daytime thermal infrared images. The topography data are from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. The thermal infrared imagery is from the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter. The CRISM team, led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., includes expertise from universities, government agencies and small businesses in the United States and abroad. Arizona State University, Tempe, operates the Thermal Emission Imaging System, which the university developed in collaboration with Raytheon Santa Barbara Remote Sensing. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Odyssey projects for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiters.An optical survey for space debris on highly eccentric and inclined MEO orbits
NASA Astrophysics Data System (ADS)
Schildknecht, Thomas; Flohrer, Tim; Hinze, Andreas; Vananti, Alessandro; Silha, Jiri
Optical surveys for space debris in high-altitude orbits have been conducted since more than fifteen years. Originally these efforts concentrated mainly on the geostationary ring (GEO) and its close region. Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed and, eventually, optical observations were conducted in the framework of an ESA study using ESA' Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. Thirteen nights of surveys of Molniya-type orbits was performed between January and August 2013. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly discovered faint objects were also acquired with AIUB's 1 m ZIMLAT telescope in Zimmerwald, Switzerland. Eventually, 255 basic surveys were performed during these thirteen nights corresponding to about 47 hours of observations. In total 30 uncorrelated faint objects were discovered. On average one uncorrelated object was found every 100 minutes. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process. We also investigated the detection efficiency of our surveys by comparing the observation results with the TLE population by means of ESA's PROOF tool. Furthermore a comparison of the real detections with the statistical population of the ESA MASTER-2009 model was performed. The result shows that the fragment population of objects in Molniya-type orbits is underestimated in the MASTER model.
Information Measures for Statistical Orbit Determination
ERIC Educational Resources Information Center
Mashiku, Alinda K.
2013-01-01
The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…
Discovery of the Closest Hot Subdwarf Binary with White Dwarf Companion
NASA Astrophysics Data System (ADS)
Geier, S.; Marsh, T. R.; Dunlap, B. H.; Barlow, B. N.; Schaffenroth, V.; Ziegerer, E.; Heber, U.; Kupfer, T.; Maxted, P. F. L.; Miszalski, B.; Shporer, A.; Telting, J. H.; Ostensen, R. H.; O'Toole, S. J.; Gänsicke, B. T.; Napiwotzki, R.
2013-01-01
We report the discovery of an extremely close, eclipsing binary system. A white dwarf is orbited by a core He-burning compact hot subdwarf star with a period as short as ≃ 0.04987 d making this system the most compact hot subdwarf binary discovered so far. The subdwarf will start to transfer helium-rich material on short timescales of less than 50 Myr. The ignition of He-burning at the surface may trigger carbon-burning in the core although the WD is less massive than the Chandrasekhar limit (> 0.74 M⊙) making this binary a possible progenitor candidate for a supernova type Ia event.
Automatic trajectory planning for low-thrust active removal mission in low-earth orbit
NASA Astrophysics Data System (ADS)
Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano
2017-03-01
In this paper two strategies are proposed to de-orbit up to 10 non-cooperative objects per year from the region within 800 and 1400 km altitude in Low Earth Orbit (LEO). The underlying idea is to use a single servicing spacecraft to de-orbit several objects applying two different approaches. The first strategy is analogous to the Traveling Salesman Problem: the servicing spacecraft rendezvous with multiple objects in order to physically attach a de-orbiting kit that reduces the perigee of the orbit. The second strategy is analogous to the Vehicle Routing Problem: the servicing spacecraft rendezvous and docks with an object, spirals it down to a lower altitude orbit, undocks, and then spirals up to the next target. In order to maximise the number of de-orbited objects with minimum propellant consumption, an optimal sequence of targets is identified using a bio-inspired incremental automatic planning and scheduling discrete optimisation algorithm. The optimisation of the resulting sequence is realised using a direct transcription method based on an asymptotic analytical solution of the perturbed Keplerian motion. The analytical model takes into account the perturbations deriving from the J2 gravitational effect and the atmospheric drag.
Formation Constraints Indicate a Black Hole Accretor in 47 Tuc X9
NASA Astrophysics Data System (ADS)
Church, Ross P.; Strader, Jay; Davies, Melvyn B.; Bobrick, Alexey
2017-12-01
The luminous X-ray binary 47 Tuc X9 shows radio and X-ray emission consistent with a stellar-mass black hole (BH) accreting from a carbon-oxygen white dwarf. Its location, in the core of the massive globular cluster 47 Tuc, hints at a dynamical origin. We assess the stability of mass transfer from a carbon-oxygen white dwarf onto compact objects of various masses, and conclude that for mass transfer to proceed stably, the accretor must, in fact, be a BH. Such systems can form dynamically by the collision of a stellar-mass BH with a giant star. Tidal dissipation of energy in the giant’s envelope leads to a bound binary with a pericenter separation less than the radius of the giant. An episode of common-envelope evolution follows, which ejects the giant’s envelope. We find that the most likely target is a horizontal-branch star, and that a realistic quantity of subsequent dynamical hardening is required for the resulting binary to merge via gravitational wave emission. Observing one binary like 47 Tuc X9 in the Milky Way globular cluster system is consistent with the expected formation rate. The observed 6.8-day periodicity in the X-ray emission may be driven by eccentricity induced in the ultra-compact X-ray binary’s orbit by a perturbing companion.
NASA Technical Reports Server (NTRS)
McEachen, Michael E.; Murphy, Dave; Meinhold, Shen; Spink, Jim; Eskenazi, Mike; O'Neill, Mark
2017-01-01
Orbital ATK, in partnership with Mark ONeill LLC (MOLLC), has developed a novel solar array platform, PFC-CTA, which provides a significant advance in performance and cost reduction compared to all currently available space solar systems. PFC refers to the Point Focus Concentration of light provided by MOLLCs thin, flat Fresnel optics. These lenses focus light to a point of approximately 100 times the intensity of the ambient light, onto a solar cell of approximately 125th the size of the lens. CTA stands for Compact Telescoping Array, which is the solar array blanket structural platform originally devised by NASA and currently being advanced by Orbital ATK and partners under NASA and AFRL funding to a projected TRL 5+ by late-2018.The NASA Game Changing Development Extreme Environment Solar Power (EESP) Base Phase study has enabled Orbital ATK to refine component designs, perform component level and system performance analyses, and test prototype hardware of the key elements of PFC-CTA, and increased the TRL of PFC-specific technology elements to TRL 4. Key performance metrics currently projected are as follows: Scalability from 5 kW to 300 kW per wing (AM0); Specific Power 500 Wkg (AM0); Stowage Efficiency 100 kWm3; 5:1 margin on pointing tolerance vs. capability; 50 launched cost savings; Wide range of operability between Venus and Saturn by active andor passive thermal management.
Single frequency GPS measurements in real-time artificial satellite orbit determination
NASA Astrophysics Data System (ADS)
Chiaradia, orbit determination A. P. M.; Kuga, H. K.; Prado, A. F. B. A.
2003-07-01
A simplified and compact algorithm with low computational cost providing an accuracy around tens of meters for artificial satellite orbit determination in real-time and on-board is developed in this work. The state estimation method is the extended Kalman filter. The Cowell's method is used to propagate the state vector, through a simple Runge-Kutta numerical integrator of fourth order with fixed step size. The modeled forces are due to the geopotential up to 50th order and degree of JGM-2 model. To time-update the state error covariance matrix, it is considered a simplified force model. In other words, in computing the state transition matrix, the effect of J 2 (Earth flattening) is analytically considered, which unloads dramatically the processing time. In the measurement model, the single frequency GPS pseudorange is used, considering the effects of the ionospheric delay, clock offsets of the GPS and user satellites, and relativistic effects. To validate this model, real live data are used from Topex/Poseidon satellite and the results are compared with the Topex/Poseidon Precision Orbit Ephemeris (POE) generated by NASA/JPL, for several test cases. It is concluded that this compact algorithm enables accuracies of tens of meters with such simplified force model, analytical approach for computing the transition matrix, and a cheap GPS receiver providing single frequency pseudorange measurements.
NASA Astrophysics Data System (ADS)
Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen
2015-05-01
We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
Low Gas Fractions Connect Compact Star-Forming Galaxies to their z~2 Quiescent Descendants
NASA Astrophysics Data System (ADS)
Spilker, Justin; Bezanson, Rachel; Marrone, Daniel P.; Weiner, Benjamin J.; Whitaker, Katherine E.; Williams, Christina C.
2017-01-01
Early quiescent galaxies at z ~ 2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. I will present Karl G. Jansky Very Large Array (VLA) observations of the CO(1-0) line towards three such compact, star-forming galaxies at z ~ 2.3, significantly detecting one. The VLA observations indicate baryonic gas fractions 5 times lower and gas depletion times 10 times shorter than normal, extended massive star-forming galaxies at these redshifts. At their current star formation rates, all three objects will deplete their gas reservoirs within 100Myr. These objects are among the most gas-poor objects observed at z > 2 and are outliers from standard gas scaling relations, a result which remains true regardless of assumptions about the CO-H2 conversion factor. Our observations are consistent with the idea that compact, star-forming galaxies are in a rapid state of transition to quiescence in tandem with the build-up of the z ~ 2 quenched population. In the detected compact galaxy, we see no evidence of rotation or that the CO-emitting gas is spatially extended relative to the stellar light. This casts doubt on recent suggestions that the gas in these compact galaxies is rotating and significantly extended compared to the stars. Instead, we suggest that, at least for this object, the gas is centrally concentrated, and only traces a small fraction of the total galaxy dynamical mass. I will conclude by discussing my ongoing efforts to characterize the gas and star forming properties of this unusual population of galaxies.
Gravitational wave detection in space
NASA Astrophysics Data System (ADS)
Ni, Wei-Tou
Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.
FORTE Compact Intra-cloud Discharge Detection parameterized by Peak Current
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Suszcynsky, D. M.; Jacobson, A. R.; Heavner, B. D.; Smith, D. A.
2002-12-01
The Los Alamos Sferic Array (EDOT) has recorded over 3.7 million lightning-related fast electric field change data records during April 1 - August 31, 2001 and 2002. The events were detected by three or more stations, allowing for differential-time-of-arrival location determination. The waveforms are characterized with estimated peak currents as well as by event type. Narrow Bipolar Events (NBEs), the VLF/LF signature of Compact Intra-cloud Discharges (CIDs), are generally isolated pulses with identifiable ionospheric reflections, permitting determination of event source altitudes. We briefly review the EDOT characterization of events. The FORTE satellite observes Trans-Ionospheric Pulse Pairs (TIPPs, the VHF satellite signature of CIDs). The subset of coincident EDOT and FORTE CID observations are compared with the total EDOT CID database to characterize the VHF detection efficiency of CIDs. The NBE polarity and altitude are also examined in the context of FORTE TIPP detection. The parameter-dependent detection efficiencies are extrapolated from FORTE orbit to GPS orbit in support of the V-GLASS effort (GPS based global detection of lightning).
Space LOX vent system. [for space shuttle orbiter
NASA Technical Reports Server (NTRS)
Erickson, R. C.
1975-01-01
This is the final report summarizing the work completed under contract NAS8-26972. Concept selection, design, fabricating and testing of a prototype compact heat exchanger thermodynamic vent system are discussed. The system is designed to operate in a 2.7m (9 foot) spherical liquid oxygen tank with a heating rate of 32.2 - 35.2 watts (110-120 Btu/hr) and to control pressure to 310 + or - 13.8 kN/sq m (45 + or - 2.0 psia.) the design mission is of 2,590 ks (30 days) duration on board a space shuttle orbiter.
2011-02-02
Jack Lissauer, a planetary scientist and a Kepler science team member at NASA's Ames Research Center, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth. "It’s amazingly compact, it’s amazingly flat, there’s an amazingly large number of big planets orbiting close to their star - we didn’t know such systems could even exist," he said. Photo Credit: (NASA/Paul E. Alers)
2011-02-02
Jack Lissauer, a planetary scientist and a Kepler science team member at NASA's Ames Research Center, speaks during a news conference, Wednesday, Feb. 2, 2010, at NASA Headquarters in Washington. Scientists using NASA's Kepler, a space telescope, recently discovered six planets made of a mix of rock and gases orbiting a single sun-like star, known as Kepler-11, which is located approximately 2,000 light years from Earth."It’s amazingly compact, it’s amazingly flat, there’s an amazingly large number of big planets orbiting close to their star - we didn’t know such systems could even exist." Photo Credit: (NASA/Paul E. Alers)
Probing hybrid modified gravity by stellar motion around Galactic Center
NASA Astrophysics Data System (ADS)
Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.
2016-06-01
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.
On the Holmberg asymmetry of the satellites of disk galaxies
NASA Technical Reports Server (NTRS)
Byrd, Gene G.; Valtonen, Mauri J.
1987-01-01
A tidal explanation for the observation by Holmberg that the satellites of edge-on disk galaxies tend to avoid the sector within + or - 30 deg of the major axes of the disk galaxies is considered. It is shown that satellites with small orbit-to-disk inclinations are likely to become compact and consequently be left out in Holmberg's survey due to the resemblance to stars. The explanation is supported by the observation of an excess of compact galaxies near the major-axis direction of edge-on disk galaxies. The disk tidal explanation also predicts that the asymmetry should be weaker with larger satellites. It is found that the Karachentsev (1972, 1980) binary galaxy sample, where the typical companion is comparable to the primary galaxy, shows no Holmberg effect. The case of M32 as a compact satellite of the Andromeda galaxy is discussed as a nearby observationally supported example of the above processes.
NASA Astrophysics Data System (ADS)
Kähler, Sven; Olsen, Jeppe
2017-11-01
A computational method is presented for systems that require high-level treatments of static and dynamic electron correlation but cannot be treated using conventional complete active space self-consistent field-based methods due to the required size of the active space. Our method introduces an efficient algorithm for perturbative dynamic correlation corrections for compact non-orthogonal MCSCF calculations. In the algorithm, biorthonormal expansions of orbitals and CI-wave functions are used to reduce the scaling of the performance determining step from quadratic to linear in the number of configurations. We describe a hierarchy of configuration spaces that can be chosen for the active space. Potential curves for the nitrogen molecule and the chromium dimer are compared for different configuration spaces. Already the most compact spaces yield qualitatively correct potentials that with increasing size of configuration spaces systematically approach complete active space results.
WR 148 and the not so compact companion
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-11-01
The objective is to determine the nature of the unseen companion of the single-lined spectroscopic binary, WR 148 (= WN7h+?). The absence of companion lines supports a compact companion (cc) scenario. The lack of hard X-rays favours a non-compact companion scenario. Is WR 148 a commonplace WR+OB binary or a rare WR+cc binary?
Asphaltic mixture compaction and density validation : research brief.
DOT National Transportation Integrated Search
2017-02-01
Research Objectives: : Evaluate HMA longitudinal joint type, method and compaction data to produce specification recommendations to ensure the highest density at longitudinal joints : Evaluate thin lift overlay HMA and provide recommendations...
Role of pressure anisotropy on relativistic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan
2018-02-01
We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.
Probing Planckian Corrections at the Horizon Scale with LISA Binaries
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-01
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
Probing Planckian Corrections at the Horizon Scale with LISA Binaries.
Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria
2018-02-23
Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.
Gamma-ray evidence for a stellar-mass black hole near the Galactic center
NASA Technical Reports Server (NTRS)
Ramaty, Reuven; Lingenfelter, Richard E.
1989-01-01
An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.
Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from Earth orbit
NASA Technical Reports Server (NTRS)
Nuth, J. A., III; Wdowiak, T. J.; Kubinec, W. R.
1986-01-01
It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.
Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from earth orbit
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Wdowiak, Thomas J.; Kubinec, William R.
1987-01-01
It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during the night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies.
Pre-late heavy bombardment evolution of the Earth's obliquity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu
2014-11-01
The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, themore » system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.« less
Satellite situation report, volume 33, number 4
NASA Technical Reports Server (NTRS)
1993-01-01
The Satellite Situation Report is a listing of those satellites (objects) currently in orbit and those which have previously orbited the Earth. Some objects are too small or too far from the Earth's surface to be detected; therefore, the Satellite Situation Report does not include all manmade objects orbiting the Earth. Generally, satellites are classified as follows: (1) Payloads may contain one or more functioning or nonfunctioning experiments. Usually only the owners of the satellites know if the experiments are functioning, and there is no one source which indicates the operational status of all payloads and/or experiments. Payloads are normally the first listed in the Satellite Situation Report, i.e., 1982 087A, unless there are multiple payloads for the launch. In which case, the first objects cataloged are usually all payloads, unless a subsequent payload is later identified after objects other than payloads have been cataloged. (2) Platforms are used to support a payload while it is being placed into orbit. A platform may remain in orbit long after its purpose is served, usually longer than rocket bodies. It is usually the first object identified in the Satellite Situation Report listing after the payload(s), i.e., 1982 087B (when a platform is not used, the first object after the payload(s) is usually the rocket body). (3) Rocket bodies are used to place the payload and platform (if one is used) into orbit. Some launches may have more than one rocket body because of the payload weight or the type of orbit or experiment. Most rocket bodies decay within a short time after the payload (and platform) have achieved orbit. Rocket bodies are usually the third object listed in the Satellite Situation Report after the payload(s), i.e., 1982 087C. (4) Debris in orbit occurs when parts (nose cone shrouds, lens or hatch covers) are separated from the payload, when rocket bodies or payloads disintegrate or explode, or when objects are placed into free space from manned orbiting spacecraft during operations. Debris is detected by its size and distance from the Earth. Debris objects are the last objects after payload(s), platform, and rocket body(s) listed in the Satellite Situation Report, i.e., 1982 087D, 1982 087E, 1982 087F.
A Variable Energy CW Compact Accelerator for Ion Cancer Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, Carol J.; Taylor, J.; Edgecock, R.
2016-03-10
Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, amore » joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.« less
Active space debris removal—A preliminary mission analysis and design
NASA Astrophysics Data System (ADS)
Castronuovo, Marco M.
2011-11-01
The active removal of five to ten large objects per year from the low Earth orbit (LEO) region is the only way to prevent the debris collisions from cascading. Among the three orbital regions near the Earth where most catastrophic collisions are predicted to occur, the one corresponding to a sun-synchronous condition is considered the most relevant. Forty-one large rocket bodies orbiting in this belt have been identified as the priority targets for removal. As part of a more comprehensive system engineering solution, a space mission dedicated to the de-orbiting of five rocket bodies per year from this orbital regime has been designed. The selected concept of operations envisages the launch of a satellite carrying a number of de-orbiting devices, such as solid propellant kits. The satellite performs a rendezvous with an identified object and mates with it by means of a robotic arm. A de-orbiting device is attached to the object by means of a second robotic arm, the object is released and the device is activated. The spacecraft travels then to the next target. The present paper shows that an active debris removal mission capable of de-orbiting 35 large objects in 7 years is technically feasible, and the resulting propellant mass budget is compatible with many existing platforms.
Sources of orbital debris and the projected environment for future spacecraft
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1980-01-01
The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.
NASA Technical Reports Server (NTRS)
Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.
2006-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.
Sizing of "Mother Ship and Catcher" Missions for LEO Small Debris and for GEO Large Object Capture
NASA Technical Reports Server (NTRS)
Bacon, John B.
2009-01-01
Most LEO debris lies in a limited number of inclination "bands" associated with specific useful orbits. Objects in such narrow inclination bands have all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then send small, disposable common individual catcher/deboost devices--one for each debris object--as the facility drifts into the same RAAN as each higher object. The dV necessary to catch highly-eccentric orbit debris in the center of the band alternatively allows the capture of less-eccentric debris in a wider inclination range around the center. It is demonstrated that most LEO hazardous debris can be removed from orbit in three years, using a single LEO launch of one mother ship--with its onboard magazine of freeflying low-tech catchers--into each of ten identified bands, with second or potentially third launches into only the three highest-inclination bands. The nearly 1000 objects near the geostationary orbit present special challenges in mass, maneuverability, and ultimate disposal options, leading to a dramatically different architecture and technology suite than the LEO solution. It is shown that the entire population of near-GEO derelict objects can be gathered and tethered together within a 3 year period for future scrap-yard operations using achievable technologies and only two earth launches.
A comparison of spacecraft penetration hazards due to meteoroids and manmade earth-orbiting objects
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1976-01-01
The ability of a typical double-walled spacecraft structure to protect against penetration by high-velocity incident objects is reviewed. The hazards presented by meteoroids are compared to the current and potential hazards due to manmade orbiting objects. It is shown that the nature of the meteoroid number-mass relationship makes adequate protection for large space facilities a conceptually straightforward structural problem. The present level of manmade orbiting objects (an estimated 10,000 in early 1975) does not pose an unacceptable risk to manned space operations proposed for the near future, but it does produce penetration probabilities in the range of 1-10 percent for a 100-m diameter sphere in orbit for 1,000 days. The number-size distribution of manmade objects is such that adequate protection is difficult to achieve for large permanent space facilities, to the extent that future restrictions on such facilities may result if the growth of orbiting objects continues at its historical rate.
Note: A manifold ranking based saliency detection method for camera.
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Rahman, Mohammad Muntasir
2016-09-01
Research focused on salient object region in natural scenes has attracted a lot in computer vision and has widely been used in many applications like object detection and segmentation. However, an accurate focusing on the salient region, while taking photographs of the real-world scenery, is still a challenging task. In order to deal with the problem, this paper presents a novel approach based on human visual system, which works better with the usage of both background prior and compactness prior. In the proposed method, we eliminate the unsuitable boundary with a fixed threshold to optimize the image boundary selection which can provide more precise estimations. Then, the object detection, which is optimized with compactness prior, is obtained by ranking with background queries. Salient objects are generally grouped together into connected areas that have compact spatial distributions. The experimental results on three public datasets demonstrate that the precision and robustness of the proposed algorithm have been improved obviously.
NASA Astrophysics Data System (ADS)
Clark, Pamela E.; Macdowall, Robert J.; Reuter, Dennis; Mauk, Robin
2014-11-01
We are in the process of developing the BIRCH (Broadband IR for Cubesats with High Resolution) Spectrometer for characterization of a range of deep space targets. BIRCH is the first extremely compact Broadband IR spectrometer with high spectral resolution designed to measure water type and component distribution for a science-driven cubesat mission, such as the lunar orbital mission LWaDi (Lunar Water Distribution) designed to determine the systematics of lunar water and volatiles as a function of time of day, latitude, and terrain. The development of cubesat form factor instruments, such as BIRCH, capable of providing high priority science goals identified in the decadal survey is critical to achieve low cost planetary exploration promised by the cubesat paradigm by exploring volatile systems via orbiting or landed packages. On the Moon, as well as Mercury, Mars, and the asteroids, the source, distribution, and role of volatiles is a question of major importance, and has implications for formation processes, including interior structure, differentiation, and the origin of life in the early solar system. The form and distribution of water has implications for human exploration, resource exploitation, and sample curation. Recent lunar missions gave unanticipated evidence for the water from NIR instruments not optimized for finding it. Our instrument includes a compact broadband HgCdTe detector with a linear variable filter and a compact cryocooler (for operation below 140K) attached to a compact optical system with 2 off-axis parabolic mirrors and variable field stop operating below 240K. Its 10 nm or better resolution and longer wavelength upper range (1.3 to 3.7 microns) are necessary to identify and separate features associated with water type (adsorbed, bound, ice) and components. Its 4-sided adjustable iris at the field stop enables a constant spot size (10 x 10 km) regardless of altitude. BIRCH will be able to provide systematic and extensive enough information to understand water’s life cycle, temporal and spatial distribution and interactions as a function of lunar cycles, characteristic features, and regolith composition.
Orbital evolution of some Centaurs
NASA Astrophysics Data System (ADS)
Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim
2002-11-01
In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.
Study of the decay and recovery of orbiting artificial space objects
NASA Technical Reports Server (NTRS)
1976-01-01
The reentry of earth-orbiting space objects unconsumed in the atmosphere represents a potential hazard to populated areas of the earth. The Smithsonian Astrophysical Observatory has conducted a program called Moonwatch, whose purposes were to observe orbiting artificial satellites and reentries of space objects and, if possible, to recover and analyze reentered pieces. In addition, through observations of low-perigee objects, data obtained by Moonwatchers have been instrumental in defining some of the factors affecting satellite decay. The objectives of the program are presented, and the problems that enter into satellite-orbit and decay predictions are addressed. Moonwatchers contributed substantially to increasing an overall prediction capability, and some of the specific achievements over the 6-year period are cited.
Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.
Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W
2005-03-20
A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.
A Note on Expansiveness and Hyperbolicity for Generic Geodesic Flows
NASA Astrophysics Data System (ADS)
Bessa, Mário
2018-06-01
In this short note we contribute to the generic dynamics of geodesic flows associated to metrics on compact Riemannian manifolds of dimension ≥ 2. We prove that there exists a C 2-residual subset R of metrics on a given compact Riemannian manifold such that if g\\in R, then its associated geodesic flow φ tg is expansive if and only if the closure of the set of periodic orbits of φtg is a uniformly hyperbolic set. For surfaces, we obtain a stronger statement: there exists a C 2-residual R such that if g\\in R, then its associated geodesic flow φtg is expansive if and only if φtg is an Anosov flow.
Growth in the Number of SSN Tracked Orbital Objects
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.
2004-01-01
The number of objects in earth orbit tracked by the US Space Surveillance Network (SSN) has experienced unprecedented growth since March, 2003. Approximately 2000 orbiting objects have been added to the "Analyst list" of tracked objects. This growth is primarily due to the resumption of full power/full time operation of the AN/FPS-108 Cobra Dane radar located on Shemya Island, AK. Cobra Dane is an L-band (23-cm wavelength) phased array radar which first became operational in 1977. Cobra Dane was a "Collateral Sensor" in the SSN until 1994 when its communication link with the Space Control Center (SCC) was closed. NASA and the Air Force conducted tests in 1999 using Cobra Dane to detect and track small debris. These tests confirmed that the radar was capable of detecting and maintaining orbits on objects as small as 5-cm diameter. Subsequently, Cobra Dane was reconnected to the SSN and resumed full power/full time space surveillance operations on March 4, 2003. This paper will examine the new data and its implications to the understanding of the orbital debris environment and orbital safety.
New Ultra-Compact Dwarf Galaxies in Clusters
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-02-01
How do ultra-compact dwarf galaxies (UCDs) galaxies that are especially small and dense form and evolve? Scientists have recently examined distant galaxy clusters, searching for more UCDs to help us answer this question.Origins of DwarfsIn recent years we have discovered a growing sample of small, very dense galaxies. Galaxies that are tens to hundreds of light-years across, with masses between a million and a billion solar masses, fall into category of ultra-compact dwarfs (UCDs).An example of an unresolved compact object from the authors survey that is likely an ultra-compact dwarf galaxy. [Adapted from Zhang Bell 2017]How do these dense and compact galaxies form? Two possibilities are commonly suggested:An initially larger galaxy was tidally stripped during interactions with other galaxies in a cluster, leaving behind only its small, dense core as a UCD.UCDs formed as compact galaxies at very early cosmic times. The ones living in a massive dark matter halo may have been able to remain compact over time, evolving into the objectswe see today.To better understand which of these formation scenarios applies to which galaxies, we need a larger sample size! Our census of UCDs is fairly limited and because theyare small and dim, most of the ones weve discovered are in the nearby universe. To build a good sample, we need to find UCDs at higher redshifts as well.A New SampleIn a recent study, two scientists from University of Michigan have demonstrated how we might find more UCDs. Yuanyuan Zhang (also affiliated with Fermilab) and Eric Bell used the Cluster Lensing and Supernova Survey with Hubble (CLASH) to search 17 galaxy clusters at intermediate redshifts of 0.2 z 0.6, looking for unresolved objects that might be UCDs.The mass and size distributions of the UCD candidates reported in this study, in the context of previously known nuclear star clusters, globular clusters (GCs), UCDs, compact elliptical galaxies (cEs), and dwarf galaxies. [Zhang Bell 2017]Zhang and Bell discovered a sample of compact objects grouped around the central galaxies of the clusters that are consistent with ultra-compact galaxies. The inferred sizes (many around 600 light-years in radius) and masses (roughly one billion solar masses) of these objects suggest that this sample may contain some of the densest UCDs discovered to date.The properties of this new set of UCD candidates arent enough to distinguish between formation scenarios yet, but the authors argue that if we find more such galaxies, we will be able to use the statistics of their spatial and color distributions to determine how they were formed.Zhang and Bell estimate that the 17 CLASH clusters studied in this work each contain an average of 2.7 of these objects in the central million light-years of the cluster. The authors work here suggests that searching wide-field survey data for similar discoveries is a plausible way to increase our sample of UCDs. This will allow us to statistically characterize these dense, compact galaxies and better understand their origins.CitationYuanyuan Zhang and Eric F. Bell 2017 ApJL 835 L2. doi:10.3847/2041-8213/835/1/L2
Orbital Evolution of Jupiter-family Comets
NASA Astrophysics Data System (ADS)
Ipatov, S. I.; Mather, J. C.
2004-05-01
The orbital evolution of more than 25,000 Jupiter-family comets (JFCs) under the gravitational influence of planets was studied. After 40 Myr one considered object (with initial orbit close to that of Comet 88P) got aphelion distance Q<3.5 AU, and it moved in orbits with semi-major axis a=2.60-2.61 AU, perihelion distance 1.71.4 AU, Q<2.6 AU, e=0.2-0.3, and i=9-33 deg for 8 Myr (and it had Q<3 AU for 100 Myr). So JFCs can rarely get typical asteroid orbits and move in them for Myrs. In our opinion, it can be possible that Comet 133P (Elst--Pizarro) moving in a typical asteroidal orbit was earlier a JFC and it circulated its orbit also due to non-gravitational forces. JFCs got near-Earth object (NEO) orbits more often than typical asteroidal orbits. A few JFCs got Earth-crossing orbits with a<2 AU and Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). Our results show that the trans-Neptunian belt can provide a significant portion of NEOs, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got NEO orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448). This work was supported by NASA (NAG5-10776) and INTAS (00-240).
NASA Astrophysics Data System (ADS)
Sartori, G.; Valente, G.
2003-02-01
Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space Bbb Rn, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.
Galaxy properties in clusters. II. Backsplash galaxies
NASA Astrophysics Data System (ADS)
Muriel, H.; Coenda, V.
2014-04-01
Aims: We explore the properties of galaxies on the outskirts of clusters and their dependence on recent dynamical history in order to understand the real impact that the cluster core has on the evolution of galaxies. Methods: We analyse the properties of more than 1000 galaxies brighter than M0.1r = - 19.6 on the outskirts of 90 clusters (1 < r/rvir < 2) in the redshift range 0.05 < z < 0.10. Using the line of sight velocity of galaxies relative to the cluster's mean, we selected low and high velocity subsamples. Theoretical predictions indicate that a significant fraction of the first subsample should be backsplash galaxies, that is, objects that have already orbited near the cluster centre. A significant proportion of the sample of high relative velocity (HV) galaxies seems to be composed of infalling objects. Results: Our results suggest that, at fixed stellar mass, late-type galaxies in the low-velocity (LV) sample are systematically older, redder, and have formed fewer stars during the last 3 Gyrs than galaxies in the HV sample. This result is consistent with models that assume that the central regions of clusters are effective in quenching the star formation by means of processes such as ram pressure stripping or strangulation. At fixed stellar mass, LV galaxies show some evidence of having higher surface brightness and smaller size than HV galaxies. These results are consistent with the scenario where galaxies that have orbited the central regions of clusters are more likely to suffer tidal effects, producing loss of mass as well as a re-distribution of matter towards more compact configurations. Finally, we found a higher fraction of ET galaxies in the LV sample, supporting the idea that the central region of clusters of galaxies may contribute to the transformation of morphological types towards earlier types.
NASA Astrophysics Data System (ADS)
Marchand, Tanguy; Bernard, Laura; Blanchet, Luc; Faye, Guillaume
2018-02-01
We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point particles.
A Very Massive Stellar Black Hole in the Milky Way Galaxy
NASA Astrophysics Data System (ADS)
2001-11-01
VLT ISAAC Uncovers an Enigmatic Microquasar Summary One of the most enigmatic stellar systems in our Milky Way Galaxy has been shown to harbour a very massive black hole. With 14 times more mass than the Sun [1], this is the heaviest known stellar black hole in the Galaxy. Using the ISAAC instrument on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory , an international team of astronomers [2] peered into a remote area of the Milky Way to probe the binary system GRS 1915+105 , located almost 40,000 light-years away. They were able to identify the low-mass star that feeds the black hole by means of a steady flow of stellar material. A detailed follow-up study revealed how this star revolves around its hungry companion. The analysis of the orbital motion then made it possible to estimate the mass of the black hole. The observation of the heavy black hole in GRS 1915+105 is opening up fundamental questions about how massive stellar black holes form, and whether or not such objects rotate around their own axes. PR Photo 31a/01 : Schematic drawing of the GRS 1915+105 binary system . PR Photo 31b/01 : ISAAC spectrum of the companion star . PR Photo 31c/01 : The velocity curve from which the mass of the black hole was derived . Miniature Quasars in our Galaxy ESO PR Photo 31a/01 ESO PR Photo 31a/01 [Preview - JPEG: 400 x 399 pix - 44k] [Normal - JPEG: 800 x 797 pix - 192k] Caption : PR Photo 31a/01 shows an artist's impression of the binary stellar system GRS 1915+105 in which a heavy black hole is present. The distance between the donor star and the accreting black hole is about half the distance between the Earth and the Sun. The drawing illustrates how the donor star feeds the black hole via an accretion disk , and also the emergence of jets perpendicular to the disk. In the lower panel the blue colour denotes matter that spirals in the accretion disk, while in the orange region matter is freely falling radially into the black hole. Technical information about this photo is available below. A few objects within our own Galaxy look very much like miniature versions of the very energetic quasars , observed at the centres of remote galaxies. Quasars are believed to harbour supermassive black holes at their centres, and they emit copious amounts of energy as the surrounding matter accretes into a disk and spirals into the hole. Occasionally, quasars spout jets of gas at velocities very close to the speed of light. Microquasars are basically the same thing, but at scales a million times smaller. They are binary stellar systems in our Galaxy in which a more or less normal star orbits a compact object, which may be a neutron star or a black hole. Those microquasars also show energetic outflows and signs of accretion of matter onto the compact object. Not unexpectedly, it appears that the most enigmatic of these systems are the ones that contain a black hole. The discovery of objects that are relatively nearby in cosmological terms and which mimic the properties of the remote quasars has opened up interesting new perspectives and promises to help us to better understand the strange phenomena that are associated with jets and accretion disks around black holes. GRS 1915+105 - A unique galactic laboratory The binary stellar system GRS 1915+105 is one of a handful of microquasars known in our Galaxy. This system was first discovered in 1994 by the GRANAT X-ray satellite. In X-ray radiation, GRS 1915+105 shows bright and sporadic outbursts. The variable X-ray radiation has been interpreted as due to infall of matter onto the black hole from the inner region of a surrounding accretion disk. This enigmatic source was also observed to eject clouds of hot gas at velocities very close to the speed of light. GRS 1915+105 is thus a prototype microquasar and has become a main target for the study of accretion onto a black hole of stellar mass. GRS 1915+105 lies in the constellation Aquila (The Eagle) and is located near the main plane of the Milky Way Galaxy, some 40 000 light-years away from the Sun. A lot of gas and dust in that plane hides it from our view in the visible light. This obscuration has severely impeded any detailed investigation of the system, and it still remained to be proven whether or not it really contains a massive black hole. Identification of the binary companion ESO PR Photo 31b/01 ESO PR Photo 31b/01 [Preview - JPEG: 400 x 262 pix - 45k] [Normal - JPEG: 800 x 523 pix - 128k] Caption : PR Photo 31b/01 shows one of the infrared ISAAC spectra of GRS 1915+105 . It is a K-band spectrum (in the 2.2 µm near-infrared spectral region) that reveals several previously unnoticed spectral features from the companion star that donates matter to the black hole. The presence and characteristics of these lines indicate that this donor star is a low-mass star. Observing how the positions of the strong carbon monoxide bands (CO) shift with time has allowed the astronomers to measure the orbital motion of the donor star, cf. Photo 31c/01 . Technical information about this photo is available below. The team of astronomers [2] therefore decided to perform infrared observations of GRS 1915+105 , in a spectral region where the obscuration of dust is much less severe than in visible light. It is still not a trivial observation since even in the infrared only a few percent of the light emitted by GRS 1915+105 reaches Earth after the long journey through the intervening clouds. A large telescope is needed to register detailed spectra of GRS 1915+105 . The first set of observations was obtained with the multi-mode ISAAC instrument on the VLT 8.2-m ANTU telescope , already in the summer of 1999. The spectra were of very high quality and contained several spectral lines ( PR Photo 31b/01 ). In particular, a number of previously unnoticed spectral features from carbon monoxide molecules were securely identified. These lines are formed in the atmosphere of the star which revolves around the black hole and feeds it with matter (it is therefore known as the "donor star"). A high-quality infrared spectrum was needed to detect and measure these lines because only a small fraction of the light received actually comes from the binary star. Most of the light that is registered by the instrument comes from the surrounding accretion disk or from ejected matter in the neighbourhood, and therefore tends to hide the spectral lines of the donor star. After a careful analysis of the observed spectral lines, the astronomers were able to infer that the star donating matter to the compact object is a low-mass star , with about the same mass as our Sun. But this was only the beginning of this long-term observational programme. Seeing the motion ESO PR Photo 31c/01 ESO PR Photo 31c/01 [Preview - JPEG: 400 x 332 pix - 39k] [Normal - JPEG: 800 x 664 pix - 112k] Caption : PR Photo 31c/01 displays the velocity of the donor star, as determined from the Doppler shifts of the carbon monoxide lines ( PR Photo 31b/01 ). It shows velocities from sixteen observations taken with VLT ANTU/ISAAC between April and September 2000. A periodogram analysis (upper panel) determines the period as 33.5 days and an orbit with this period represents the best fit to the data (lower panel). The orbital velocity of the binary star moving around the black hole is about 140 km/s. The identification of the distinct carbon monoxide bands in the spectrum of the donor star then allowed the astronomers to search for the orbital motion of the system. As the binary star orbits its compact and dark companion, the Doppler motion will induce small shifts in the positions of the spectral lines. Monitoring these shifts reveals how fast the star moves and therefore determines the size and shape of its orbit around the black hole. This in turn makes it possible to determine the mass of the invisible object that is needed to keep the star moving in that orbit. The observational campaign started in April 2000 and continued until September 2000 with observations taken on 16 different nights. The velocity variations revealed by the line shifts were searched for periodicity and the best fit was found for a period of 33.5 days . This is interpreted as the time it takes for the donor star to orbit the compact object. The radial velocity curve for this period is shown in Photo 31c/01 . From the orbital motion, it is then easy to deduce a lower limit on the mass of the compact object. In this way, it was shown that the invisible companion in GRS 1915+105 must in any case be heavier than 9.5 solar masses. The nature of the compact object A compact, unseen companion can either be a neutron star or a black hole. It is quite difficult to distinguish between these two invisible candidates. However, it is known that a neutron star cannot possibly be heavier than about 3 solar masses. If a neutron star were heavier than that, it would no longer be able to support its own weight and would quickly collapse into a black hole. The lower limit on the mass determined for GRS 1915+105 is definitely higher than the maximum possible mass for a neutron star. The conclusion is clear: the compact object in GRS 1915+105 is indeed a black hole . However, the astronomers could do better than this - they were able to deduce not just a minimum, but also the actual mass of the black hole . First, knowing the nature of the donor star gives a good estimate of the mass of that star. Secondly, some constraints can be set on the inclination of the orbit from the known jet features. With this additional information, the astronomers finally concluded that the black hole must weigh as much as 14 solar masses . Until now, about a dozen black holes in the Galaxy have been confirmed by determining their masses in this way. GRS 1915+105 is the heaviest of the stellar black holes so far known in the Milky Way Galaxy . Implications and puzzles Knowing the mass of the black hole in GRS 1915+105 now poses challenges to several fields in astrophysics. First of all, it is not easy to understand how such a massive black hole can be formed in a binary stellar system. It is well known that the most massive stars lose significant fractions of their mass through violent stellar winds at the end of their lives. Interaction among the two stars in a binary system can further increase the mass loss by the massive star. It thus remains to be investigated how any star can retain enough mass to eventually end up forming a black hole as heavy as 14 solar masses. Another puzzling aspect regards the spin of the black hole . That some stellar black holes rotate has been suggested on several grounds. It is believed that when the black hole rotates in the same direction as does the accretion disk, the disk can extend much closer inwards towards the black hole. The result is a hotter disk. Two X-ray binaries are known to be very hot, GRS 1915+105 and Nova Scorpii, and it was therefore believed that these two contain black holes that must spin rapidly. A completely different line of evidence for black hole rotation comes from the quasi-periodic oscillations often seen in X-ray binaries. Those oscillations are generally interpreted as due to effects of the spinning black hole on the surrounding accretion disk, although the exact mechanism is a matter of debate. However, the new mass determination for the black hole in GRS 1915+105 indicates that the picture may not be as simple as that. In fact, if GRS 1915+105 and Nova Scorpii both have rapidly spinning black holes, none of the current theories for the quasi-periodic oscillations seem to work. And so, as is often the case in science, new information also brings new puzzles. More Information The research described in this Press Release will appear in "GRS 1915+105 - An unusually massive stellar black hole in the Galaxy" by Jochen Greiner , Mark McCaughrean and Jean-Gabriel Cuby in the November 29, 2001, issue of the science journal "Nature". The first stage is described in "Identification of the donor in the X-ray binary GRS 1915+105" by Greiner and co-authors and is published in the July 2001 issue of the European research journal "Astronomy and Astrophysics". Note [1]: 1 solar mass = 2 10 30 kg. The mass of the black hole in the X-ray binary stellar system GRS 1915+105 described in this Press Release is therefore nearly 30,000,000,000,000,000,000,000,000,000,000 kg. [2]: The team consists of Jochen Greiner , Mark McCaughrean (Astrophysical Institute Potsdam, Germany) and Jean-Gabriel Cuby (European Southern Observatory, Chile). Technical information about the photos Robert Hynes (University of Southampton, UK) provided software to produce the upper part of Photo 31a/01 . Photo 31b/01 with a K-band spectrum of GRS 1915+105 was obtained with ISAAC on the 8.2-m VLT ANTU telescope at Paranal. It is a sum of five spectra where each exposure is made up of eight integrations of 250 seconds each. The total exposure time is thus 167 minutes. With a one arc second slit, the spectral resolution is about 3000.
Migration of small bodies and dust to the terrestrial planets
NASA Astrophysics Data System (ADS)
Ipatov, Sergei I.; Mather, John C.
2005-02-01
We integrated the orbital evolution of 30,000 Jupiter-family comets, 1300 resonant asteroids, and 7000 asteroidal, trans-Neptunian, and cometary dust particles. For initial orbital elements of bodies close to those of Comets 2P, 10P, 44P, and 113P, a few objects got Earth-crossing orbits with semi-major axes a<2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three objects (from 2P and 10P runs) even got inner-Earth orbits (with aphelion distance Q<0.983 AU) and Aten orbits for Myrs. Our results show that the trans-Neptunian belt can provide a significant portion of near-Earth objects, or the number of trans-Neptunian objects migrating inside the solar system can be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got near-Earth object orbits for millions of years disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes. The probability of a collision of an asteroidal or cometary particle during its lifetime with the Earth was maximum at diameter d˜ 100 mum. At d<10 mum such probability for trans-Neptunian particles was less than that for asteroidal particles by less than an order of magnitude, so the fraction of trans-Neptunian particles with such diameter near Earth can be considerable.
Impact of End-of-Life manoeuvres on the collision risk in protected regions
NASA Astrophysics Data System (ADS)
Frey, Stefan; Lemmens, Stijn; Bastida Virgili, Benjamin; Flohrer, Tim; Gass, Volker
2017-09-01
The Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, issued in 2002 and revised in 2007, address the post mission disposal of objects in orbit. After their mission, objects crossing the Low Earth Orbit (LEO) should have a remaining lifetime in orbit not exceeding 25 years. Objects near the Geostationary Orbit (GEO) region should be placed in an orbit that remains outside of the GEO protected region. In this paper, the impact of satellites and rocket bodies performing End-of-Life (EOL) orbital manoeuvres on the collision risk in the LEO and GEO protected regions is investigated. The cases of full or partial compliance with the IADC post mission disposal guideline are studied. ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model is used to compare the space debris flux rate of the object during the remaining lifetime estimated for the pre-EOL-manoeuvre and for the post-EOL-manoeuvre orbit. The study shows that, on average, the probability of collision can be significantly decreased by performing an EOL-manoeuver.
Changes of Space Debris Orbits After LDR Operation
NASA Astrophysics Data System (ADS)
Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.
2013-09-01
A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris object's size, mass, spin and chemical composition the value and the direction of the vector ?v cannot be estimated with the high accuracy. Therefore, a high precise tracking of the debris will be necessary immediately before the engagement of the LDR and also during this engagement. By extending this tracking and ranging for a few seconds after engagement, the necessary data to evaluate the orbital modification can be produced in the same way as it is done for the catalogue generation. In our paper we discuss the object's orbit changes due to LDR operation for different locations of LDR station and different parameters of the laser energy and telescope diameter. We estimate the future orbit and re-entry parameters taking into account the influence of all important perturbation factors on the space debris orbital motion after LDR.
Parameter estimation accuracies of Galactic binaries with eLISA
NASA Astrophysics Data System (ADS)
Błaut, Arkadiusz
2018-09-01
We study parameter estimation accuracy of nearly monochromatic sources of gravitational waves with the future eLISA-like detectors. eLISA will be capable of observing millions of such signals generated by orbiting pairs of compact binaries consisting of white dwarf, neutron star or black hole and to resolve and estimate parameters of several thousands of them providing crucial information regarding their orbital dynamics, formation rates and evolutionary paths. Using the Fisher matrix analysis we compare accuracies of the estimated parameters for different mission designs defined by the GOAT advisory team established to asses the scientific capabilities and the technological issues of the eLISA-like missions.
On-Orbit Autonomous Assembly from Nanosatellites
NASA Technical Reports Server (NTRS)
Murchison, Luke S.; Martinez, Andres; Petro, Andrew
2015-01-01
The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.
A new direction for dark matter research: intermediate-mass compact halo objects
NASA Astrophysics Data System (ADS)
Chapline, George F.; Frampton, Paul H.
2016-11-01
The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.
Evaluation of a compact tinnitus therapy by electrophysiological tinnitus decompensation measures.
Low, Yin Fen; Argstatter, Heike; Bolay, Hans Volker; Strauss, Daniel J
2008-01-01
Large-scale neural correlates of the tinnitus decompensation have been identified by using wavelet phase stability criteria of single sweep sequences of auditory late responses (ALRs). Our previous work showed that the synchronization stability in ALR sequences might be used for objective quantification of the tinnitus decompensation and attention which link to Jastreboff tinnitus model. In this study, we intend to provide an objective evaluation for quantifying the effect of music therapy in tinnitus patients. We examined neural correlates of the attentional mechanism in single sweep sequences of ALRs in chronic tinnitus patients who underwent compact therapy course by using the maximum entropy auditory paradigm. Results by our measure showed that the extent of differentiation between attended and unattended conditions improved significantly after the therapy. It is concluded that the wavelet phase synchronization stability of ALRs single sweeps can be used for the objective evaluation of tinnitus therapies, in this case the compact tinnitus music therapy.
Comparison of Laboratory and Field Density of Asphalt Mixtures
DOT National Transportation Integrated Search
1991-01-01
The objective of this paper is to investigate the relationships between the measured density of the mixture obtained in the mix design, during quality control of the mixture (laboratory compaction of field produced mix), after initial compaction (cor...
Ultra Compact Optical Pickup with Integrated Optical System
NASA Astrophysics Data System (ADS)
Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori
2006-08-01
Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.
Assisted stellar suicide in V617 Sagittarii
NASA Astrophysics Data System (ADS)
Steiner, J. E.; Oliveira, A. S.; Cieslinski, D.; Ricci, T. V.
2006-02-01
Context: .V617 Sgr is a V Sagittae star - a group of binaries thought to be the galactic counterparts of the Compact Binary Supersoft X-ray Sources - CBSS. Aims: .To check this hypothesis, we measured the time derivative of its orbital period. Methods: .Observed timings of eclipse minima spanning over 30 000 orbital cycles are presented. Results: .We found that the orbital period evolves quite rapidly: P/dot{P} = 1.1×106 years. This is consistent with the idea that V617 Sgr is a wind driven accretion supersoft source. As the binary system evolves with a time-scale of about one million years, which is extremely short for a low mass evolved binary, it is likely that the system will soon end either by having its secondary completely evaporated or by the primary exploding as a supernova of type Ia. Conclusions: .
NASA Astrophysics Data System (ADS)
Lin, Tai-Chia; Wang, Xiaoming; Wang, Zhi-Qiang
2017-10-01
Conventionally, the existence and orbital stability of ground states of nonlinear Schrödinger (NLS) equations with power-law nonlinearity (subcritical case) can be proved by an argument using strict subadditivity of the ground state energy and the concentration compactness method of Cazenave and Lions [4]. However, for saturable nonlinearity, such an argument is not applicable because strict subadditivity of the ground state energy fails in this case. Here we use a convexity argument to prove the existence and orbital stability of ground states of NLS equations with saturable nonlinearity and intensity functions in R2. Besides, we derive the energy estimate of ground states of saturable NLS equations with intensity functions using the eigenvalue estimate of saturable NLS equations without intensity function.
Terrestrial Applications of a Nano-g Accelerometer
NASA Technical Reports Server (NTRS)
Hartley, Frank T.
1996-01-01
The ultra-sensitive accelerometer, developed for NASA to monitor the microgravity environments of Space Shuttle, five orbiters and Space Station, needed to measure accelerations up to 10 mg with an absolute accuracy of 10 nano-g (10(exp -8)g) for at least two orbits (10(exp 4) seconds) to resolve accelerations associated with orbital drag. Also, the accelerometers needed to have less than 10(exp -9) F.S. off-axis sensitivity; to be thermally and magnetically inert; to be immune to quiescent shock, and to have an in-situ calibration capability. Multi-axis compact seismometers, designs that have twelve decades of dynamic range will be described. Density profilometers, precision gradiometers, gyros and vibration isolation designs and applications will be discussed. Finally, examples of transformations of the accelerometer into sensitive anemometers and imaging spectrometers will be presented.
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim
2016-08-01
The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.
NASA Astrophysics Data System (ADS)
Zhao, Er-Gang; Qian, Sheng-Bang; Zejda, Miloslav; Zhang, Bin; Zhang, Jia
2018-05-01
BH Cen is a short-period early-type binary with a period of 0.792d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A 3 = 0.024 d and a period of P 3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer. The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of Ṁ 2 = 2.8 × 10‑6 M ⊙ per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M ⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.
First results from the TOPSAT camera
NASA Astrophysics Data System (ADS)
Greenway, Paul; Tosh, Ian; Morris, Nigel; Burton, Gary; Cawley, Steve
2017-11-01
The TopSat camera is a low cost remote sensing imager capable of producing 2.5 metre resolution panchromatic imagery, funded by the British National Space Centre's Mosaic programme. The instrument was designed and assembled at the Space Science & Technology Department of the CCLRC's Rutherford Appleton Laboratory (RAL) in the UK, and was launched on the 27th October 2005 from Plesetsk Cosmodrome in Northern Russia on a Kosmos-3M. The camera utilises an off-axis three mirror system, which has the advantages of excellent image quality over a wide field of view, combined with a compactness that makes its overall dimensions smaller than its focal length. Keeping the costs to a minimum has been a major design driver in the development of this camera. The camera is part of the TopSat mission, which is a collaboration between four UK organisations; QinetiQ, Surrey Satellite Technology Ltd (SSTL), RAL and Infoterra. Its objective is to demonstrate provision of rapid response high resolution imagery to fixed and mobile ground stations using a low cost minisatellite. The paper "Development of the TopSat Camera" presented by RAL at the 5th ICSO in 2004 described the opto-mechanical design, assembly, alignment and environmental test methods implemented. Now that the spacecraft is in orbit and successfully acquiring images, this paper presents the first results from the camera and makes an initial assessment of the camera's in-orbit performance.
Low-latitude ionospheric research using the CIRCE Mission: instrumentation overview
NASA Astrophysics Data System (ADS)
Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Marquis, P.; Brown, C. M.; Finne, T.; Wolfram, K. D.
2017-08-01
The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time-frame. These nanosatellites will each feature two 1U size ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the orbital plane of the vehicles with special emphasis on studying the morphology of the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, compact UV sensors which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere, showed the temporal evolution of the EIA, and observed a Medium Scale Travelling Ionospheric Disturbance. We present our mission concept, some pertinent information regarding the instrument design, the results of simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.
Radiation drag in the field of a non-spherical source
NASA Astrophysics Data System (ADS)
Bini, D.; Geralico, A.; Passamonti, A.
2015-01-01
The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.
Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems
NASA Astrophysics Data System (ADS)
Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration
2015-04-01
The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
NASA Technical Reports Server (NTRS)
Reid, Concha M.
2011-01-01
Vehicles and stand-alone power systems that enable the next generation of human missions to the moon will require energy storage systems that are safer, lighter, and more compact than current state-of-the-art (SOA) aerospace quality lithium-ion (Li-ion) batteries. NASA is developing advanced Li-ion cells to enable or enhance future human missions to Near Earth Objects, such as asteroids, planets, moons, libration points, and orbiting structures. Advanced, high-performing materials are required to provide component-level performance that can offer the required gains at the integrated cell level. Although there is still a significant amount of work yet to be done, the present state of development activities has resulted in the synthesis of promising materials that approach the ultimate performance goals. This paper on interim progress of the development efforts will present performance of materials and cell components and will elaborate on the challenges of the development activities and proposed strategies to overcome technical issues.
The Peculiar X-ray Transient IGR 16358-4726
NASA Technical Reports Server (NTRS)
Patel, S. K.; Kouveliotou, C.; Tennant, A. F.; Woods, P. M.; King, A.; Ubertini, P.; Winkler, C.; Courvoisier, T.; VanDerKlis, M.; Wachter, S.
2003-01-01
The new transient IGR 16358-4726 was discovered on 2003 March 19 with INTEGRAL. We detected the source serendipitously during our 2003 March 24 observation of SGR 1627 - 4lwith the Chandra X-ray observatory at the 1.7 x 10(exp -l0) ergs/s sq cm flux level ( 2-10 keV) with a very high absorption column (N_H = 3.3 x 10(exp 23)/sq cm and a hard power law spectrum of index 0.5(1). We discovered a very strong flux modulation with a period of 5880(50) s and peak-to-peak pulse fraction of 70(6)% (2-10 keV), clearly visible in the X-ray data. The nature of IGR 16358-4726 remains unresolved. The only neutron star systems known with similar spin periods are low luminosity persistent wind-fed pulsars; if this is a spin period, this transient is a new kind of object. If this is an orbital period, then the system could be a compact Low Mass X-ray Binary (LMXB).
The mass of the compact object in the X-ray binary her X-1/HZ her
NASA Astrophysics Data System (ADS)
Abubekerov, M. K.; Antokhina, E. A.; Cherepashchuk, A. M.; Shimanskii, V. V.
2008-05-01
We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M ⊙ and m v = 2.5 M ⊙. These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M ⊙ and m v = 1.87 ± 0.13 M ⊙. These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.
2017-09-04
The combination of morphological and topographic information from stereo images from NASA's Mars Reconnaissance Orbiter, as well as compositional data from near-infrared spectroscopy has been proven to be a powerful tool for understanding the geology of Mars. Beginning with the OMEGA instrument on the European Space Agency's Mars Express orbiter in 2003, the surface of Mars has been examined at near-infrared wavelengths by imaging spectrometers that are capable of detecting specific minerals and mapping their spatial extent. The CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) instrument on our orbiter is a visible/near-infrared imaging spectrometer, and the HiRISE camera works together with it to document the appearance of mineral deposits detected by this orbital prospecting. Mawrth Vallis is one of the regions on Mars that has attracted much attention because of the nature and diversity of the minerals identified by these spectrometers. It is a large, ancient outflow channel on the margin of the Southern highlands and Northern lowlands. Both the OMEGA and CRISM instruments have detected clay minerals here that must have been deposited in a water-rich environment, probably more than 4 billion years ago. For this reason, Mawrth Vallis is one of the two candidate landing sites for the future Mars Express Rover Mission planned by the European Space Agency. This image was targeted on a location where the CRISM instrument detected a specific mineral called alunite, KAl3(SO4)2(OH)6. Alunite is a hydrated aluminum potassium sulfate, a mineral that is notable because it must have been deposited in a wet acidic environment, rich in sulfuric acid. Our image shows that the deposit is bright and colorful, and extensively fractured. The width of the cutout is 1.2 kilometers. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 60.1 centimeters (23.7 inches) per pixel (with 2 x 2 binning); objects on the order of 180 centimeters (70.9 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA21936
Effect of antistripping additives on the compaction of bituminous concrete.
DOT National Transportation Integrated Search
1981-01-01
The objective of this investigation was to determine the effect of antistripping additives on the compaction of bituminous concrete. To do this, the densities obtained on test sections with and without additive were compared. Comparisons of nuclear d...
WisDOT asphaltic mixture new specifications implementation : field compaction and density.
DOT National Transportation Integrated Search
2016-06-01
The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...
A recipe for echoes from exotic compact objects
NASA Astrophysics Data System (ADS)
Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei
2017-10-01
Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.
Ukrainian network of Optical Stations for man-made space objects observation
NASA Astrophysics Data System (ADS)
Sybiryakova, Yevgeniya
2016-07-01
The Ukrainian Network of Optical Stations (UNOS) for man-made objects research was founded in 2012 as an association of professional astronomers. The main goals of network are: positional and photometric observations of man-made space objects, calculation of orbital elements, research of shape and period of rotation. The network consists of 8 stations: Kiev, Nikolaev, Odesa, Uzhgorod, Lviv, Yevpatoriya, Alchevsk. UNOS has 12 telescopes for observation of man-made space objects. The new original methods of positional observation were developed for optical observation of geosynchronous and low earth orbit satellites. The observational campaigns of LEO satellites held in the network every year. The numerical model of space object motion, developed in UNOS, is using for orbit calculation. The results of orbital elements calculation are represented on the UNOS web-site http://umos.mao.kiev.ua/eng/. The photometric observation of selected objects is also carried out in network.
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurzem, R.; Giersz, M.; Heggie, D. C.
At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We showmore » that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay, tidal inflation, and even disruption of the close-in planets.« less
The Nuclear Spectroscopic Telescope Array (NuSTAR)
NASA Technical Reports Server (NTRS)
Harrison, Fiona A.; Boggs, Steven; Christensen, Finn; Craig, William; Hailey, Charles; Stern, Daniel; Zhang, William; Angelini, Lorella; An, Hong Jun; Bhalereo, Varun;
2010-01-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute field of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a. guest observer program will be proposed for an extended mission to expand the range of scientific targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit. NuSTAR largely avoids SAA passages, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.15-meter focal length through on-orbit deployment of all mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast flexure during ground data processing. Data will be publicly available at GSFC's High Energy Astrophysics Science Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.
RAVAN CubeSat Results: Technologies and Science Demonstrated On Orbit
NASA Astrophysics Data System (ADS)
Swartz, W. H.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Yu, Y.; Briscoe, J. S.; Reilly, N.; Reilly, S.; Reynolds, E.; Carvo, J.; Wu, D.
2017-12-01
Elucidating Earth's energy budget is vital to understanding and predicting climate, particularly the small imbalance between the incident solar irradiance and Earth-leaving fluxes of total and solar-reflected energy. Accurately quantifying the spatial and temporal variation of Earth's outgoing energy from space is a challenge—one potentially rendered more tractable with the advent of multipoint measurements from small satellite or hosted payload constellations. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) 3U CubeSat, launched November 11, 2016, is a pathfinder for a constellation to measure the Earth's energy imbalance. The objective of RAVAN is to establish that compact, broadband radiometers absolutely calibrated to high accuracy can be built and operated in space for low cost. RAVAN demonstrates two key technologies: (1) vertically aligned carbon nanotubes as spectrally flat radiometer absorbers and (2) gallium phase-change cells for on-board calibration and degradation monitoring of RAVAN's radiometer sensors. We show on-orbit results, including calibrated irradiance measurements at both shortwave, solar-reflected wavelengths and in the thermal infrared. These results are compared with both modeled upwelling fluxes and those measured by independent Earth energy instruments in low-Earth orbit. Further, we show the performance of two gallium phase-change cells that are used to monitor the degradation of RAVAN's radiometer sensors. In addition to Earth energy budget technology and science, RAVAN also demonstrates partnering with a commercial vendor for the CubeSat bus, payload integration and test, and mission operations. We conclude with a discussion of how a RAVAN-type constellation could enable a breakthrough in the measurement of Earth's energy budget and lead to superior predictions of future climate.
A Census of Habitable Planets around Nearby stars?
NASA Astrophysics Data System (ADS)
Leger, Alain M.
2015-12-01
One day or another, a spectroscopic mission will be launched searching for biosignatures in the atmospheres of Earth-like planets, i.e. planets located in the Habitable Zone (HZ) of their stars and hopefully rocky. This could be done blindly, the expensive spectroscopic mission searching for the candidates before performing their spectroscopy. According to a clear tendency in the Kepler data, the mean number of Earth-like planets, ηEarth, around the Kepler stars is rather low (10% - 20%). It makes this approach pretty inefficient, most of the stars studied (90% - 80%) having no such planets, and the corresponding mission time being essentially lost. This is more severe when the random position of planets on their orbits is taken into account. An exhaustive census of these planets around the nearby stars, the only ones accessible to the mission, appears desirable priorly to its launch.Up to now, the detection of low mas planets in the HZ of their stars by the Radial Velocity technique is limited to stars with very low activity (~ 2% of F,G,K stars). The detection by transits is limited by the low probability the randomly oriented orbits, few of them leading to a transit (0.5% for solar-type stars). On the other hand, ultra accurate astrometry is less sensitive to stellar activity and could detect Earth-like planets around most of the nearby solar-type stars.We present the project of a space mission, Theia+, that could do the job and measure the masses and orbits of these planets, a key piece of information to derive a possible statement about the likelihood of the actual presence of life on a planet. Other capabilities of the mission regarding Dark Matter, Very Compact Object, Cosmology, and Stellar Formation is also rapidly mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldon, Javier; Ribo, Marc; Paredes, Josep M.
2011-05-01
PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less
Frequency Agile Tm,Ho:YLF Local Oscillator for a Scanning Doppler wind Lidar in Earth Orbit
NASA Technical Reports Server (NTRS)
Menzies, Robert T.; Hemmati, Hamid; Esproles, Carlos
1997-01-01
A compact cw Tm,Ho:YLF laser with single-mode tunability over +/-4 GHz has been developed into a modular unit containing an isolator and photomixer for offset tuning of the LO from a master oscillator which controls the frequency of a Doppler lidar transmitter. This and an alternative diode laser LO will be described.
Dimensionality effects on magnetic properties of FexCo1-x nanoclusters on Pt(1 1 1)
NASA Astrophysics Data System (ADS)
Miranda, I. P.; Igarashi, R. N.; Klautau, A. B.; Petrilli, H. M.
2017-11-01
The behavior of local magnetic moments and exchange coupling parameters of FexCo1-x nanostructures (nanowires and compact clusters) on the fcc Pt(1 1 1) surface is here investigated using the first-principles real-space RS-LMTO-ASA method, in the framework of the DFT. Different configurations of FexCo1-x trimers and heptamers on Pt(1 1 1) are considered, varying the positions and the concentration of Fe or Co atoms. We discuss the influence of dimensionality and stoichiometry changes on the magnetic properties, specially on the orbital moments, which are very important in establishing a nanoscopic understanding of delocalized electron systems. We demonstrate the existence of a strictly decreasing nonlinear trend of the average orbital moments with the Fe concentration for the compact clusters, different from what was found for FexCo1-x nanowires on Pt(1 1 1) and also for corresponding higher-dimensional systems (FexCo1-x monolayer on Pt(1 1 1) and FexCo1-x bulk). The average spin moments, however, are invariably described by a linear function with respect to stoichiometry. In all studied cases, the nearest neighbors exchange couplings have shown to be strongly ferromagnetic.
Li, Shuhui; Wang, Jian
2014-01-01
We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159
High-resolution deployable telescope for satellite applications
NASA Astrophysics Data System (ADS)
Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto
2004-02-01
CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.
Design concept definition study for an improved shuttle waste collection subsystem
NASA Technical Reports Server (NTRS)
1984-01-01
A no-risk approach for developing an Improved Waste Collection Subsystem (WCS) for the shuttle orbiter is described. The GE Improved WCS Concept builds on the experience of 14 Shuttle missions with over 400 man-days of service. This concept employs the methods of the existing flight-proven mature design, augmenting them to eliminate foreseen difficulties and to fully comply with the design requirements. The GE Improved WCS Concept includes separate storage for used wipes. Compaction of the wipes provides a solution to the capacity problem, fully satisfying the 210 man-day storage requirement. The added feature of in-flight serviceable storage space for the wipes creates a variable capacity feature which affords redundancy in the event of wipes compaction system failure. Addition of features permitting in-flight servicing of the feces storage tank creates a variable capacity WCS with easier post-flight servicing to support rapid turnaround of the Shuttle orbiter. When these features are combined with a vacuum pump to evacuate wipes and fecal storage tanks through replaceable odor/bacteria filters to the cabin, the GE Improved WCS satisfies the known requirements for Space Station use, including no venting to space.
Compact high-speed scanning lidar system
NASA Astrophysics Data System (ADS)
Dickinson, Cameron; Hussein, Marwan; Tripp, Jeff; Nimelman, Manny; Koujelev, Alexander
2012-06-01
The compact High Speed Scanning Lidar (HSSL) was designed to meet the requirements for a rover GN&C sensor. The eye-safe HSSL's fast scanning speed, low volume and low power, make it the ideal choice for a variety of real-time and non-real-time applications including: 3D Mapping; Vehicle guidance and Navigation; Obstacle Detection; Orbiter Rendezvous; Spacecraft Landing / Hazard Avoidance. The HSSL comprises two main hardware units: Sensor Head and Control Unit. In a rover application, the Sensor Head mounts on the top of the rover while the Control Unit can be mounted on the rover deck or within its avionics bay. An Operator Computer is used to command the lidar and immediately display the acquired scan data. The innovative lidar design concept was a result of an extensive trade study conducted during the initial phase of an exploration rover program. The lidar utilizes an innovative scanner coupled with a compact fiber laser and high-speed timing electronics. Compared to existing compact lidar systems, distinguishing features of the HSSL include its high accuracy, high resolution, high refresh rate and large field of view. Other benefits of this design include the capability to quickly configure scan settings to fit various operational modes.
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements
NASA Technical Reports Server (NTRS)
Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas
2010-01-01
Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris
Well behaved anisotropic compact star models in general relativity
NASA Astrophysics Data System (ADS)
Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.
2016-11-01
Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).
Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris
NASA Technical Reports Server (NTRS)
Hill, Nicole M.
2009-01-01
There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.
Satellite situation report, volume 31, number 1
NASA Technical Reports Server (NTRS)
1991-01-01
Data computed at GSFC, NORAD, or provided by satellite owners is reported. A space objects box score is presented of objects in orbit and decayed objects. Data of objects in orbit is presented in tabular form and the table headings include name of the object, catalog number, source, launch date, period minutes, inclination, apogee KM., perigee KM., and transmitting frequency.
Migration of Trans-Neptunian Objects to a Near-Earth Space
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)
2002-01-01
Our estimates of the migration of trans-Neptunian objects (TNOs) to a near-Earth space are based on the results of investigations of orbital evolution of TNOs and Jupiter-crossing objects (JCOs). The orbital evolution of TNOs was considered in many papers. Recently we investigated the evolution for intervals of at least 5-10 Myr of 2500 JCOs under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period P(sub alpha)less than 10 yr, and in the second series we took N=500 orbits close to the orbit of Comet 10P Tempel 2 (alpha=3.1 AU, e=0.53, i=12 deg). We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance q of bodies was less than a semimajor axis of the planet.
Colebeck, Amanda C.; Kase, Michael T.; Nichols, Cindy B.; Golden, Marjorie; Huryn, Joseph M.
2016-01-01
The basic objective in prosthetic restoration of confluent maxillary and orbital defects is to achieve a comfortable, cosmetically acceptable prosthesis that restores speech, deglutition, and mastication. It is a challenging task complicated by the size and shape of the defects. The maxillary obturator prosthesis often satisfies the objective of adequate deglutition; however, orbital defects that are not obturated in the medial septal or posterior walls allow air to escape, negatively impacting phonation. This article describes a technique to achieve favorable prosthetic rehabilitation in a patient with a maxillectomy and ipsilateral orbital exenteration. The prosthetic components include maxillary obturator, orbital conformer, and orbital prosthesis connected using rigid magnetic attachments. PMID:25953143
Mars Observer trajectory and orbit design
NASA Technical Reports Server (NTRS)
Beerer, Joseph G.; Roncoli, Ralph B.
1991-01-01
The Mars Observer launch, interplanetary, Mars orbit insertion, and mapping orbit designs are described. The design objective is to enable a near-maximum spacecraft mass to be placed in orbit about Mars. This is accomplished by keeping spacecraft propellant requirements to a minimum, selecting a minimum acceptable launch period, equalizing the spacecraft velocity change requirement at the beginning and end of the launch period, and constraining the orbit insertion maneuvers to be coplanar. The mapping orbit design objective is to provide the opportunity for global observation of the planet by the science instruments while facilitating the spacecraft design. This is realized with a sun-synchronous near-polar orbit whose ground-track pattern covers the planet at progressively finer resolution.
3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2
NASA Astrophysics Data System (ADS)
Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Plewa, P. M.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Habibi, M.; Ott, T.; George, E. M.
2018-06-01
The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (\\dot{M}_w=5× 10^{-7} M_{⊙} yr^{-1}) and slow (50 km s-1) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100 AU) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.
On intrinsic nonlinear particle motion in compact synchrotrons
NASA Astrophysics Data System (ADS)
Hwang, Kyung Ryun
Due to the low energy and small curvature characteristics of compact synchrotrons, there can be unexpected features that were not present or negligible in high energy accelerators. Nonlinear kinetics, fringe field effect, and space charge effect are those features which become important for low energy and small curvature accelerators. Nonlinear kinematics can limit the dynamics aperture for compact machine even if it consists of all linear elements. The contribution of the nonlinear kinematics on nonlinear optics parameters are first derived. As the dipole bending radius become smaller, the dipole fringe field effect become stronger. Calculation of the Lie map generator and corresponding mapping equation of dipole fringe field is presented. It is found that the higher order nonlinear potential is inverse proportional to powers of fringe field extent and correction to focusing and low order nonlinear potential is proportional to powers of fringe field extent. The fringe field also found to cause large closed orbit deviation for compact synchrotrons. The 2:1 and 4:1 space charge resonances are known to cause beam loss, emittance growth and halo formation for low energy high intensity beams. By numerical simulations, we observe a higher order 6:2 space charge resonance, which can successfully be understood by the concatenation of 2:1 and 4:1 resonances via canonical perturbation. We also develop an explicit symplectic tracking method for compact electrostatic storage rings and explore the feasibility of electric dipole moment (EDM) measurements.
NASA Sees Orbiting Stars Flooding Space with Gravitational Waves
NASA Astrophysics Data System (ADS)
2005-05-01
A scientist using NASA's Chandra X-ray Observatory has found evidence that two white dwarf stars are orbiting each other in a death grip, destined to merge. The data indicate that gravitational waves are carrying energy away from the star system at a prodigious rate - making it a prime candidate for future missions designed to directly detect these subtle ripples in space-time. Einstein's General Theory of Relativity predicts that a binary star system should emit gravitational waves, which rush away at the speed of light and cause the stars to move closer together. The orbital period of this system, known as RX J0806.3+1527, or J0806, is decreasing by 1.2 milliseconds every year, a rate consistent with theory. Animation of White Dwarfs Animation of White Dwarfs The white dwarf pair in J0806 might have the smallest orbit of any known binary system with the stars only about 50,000 miles apart, a fifth of the distance from the Earth to the Moon. As the stars swirl closer together, traveling in excess of a million miles per hour, the production of gravitational waves increases. "If confirmed, J0806 could be one of the brightest sources of gravitational waves in our Galaxy," said Tod Strohmayer of NASA's Goddard Space Flight Center of Greenbelt, Md., who presents his results today at the American Astronomical Society meeting in Minneapolis, Minn. "It could be among the first to be detected directly with an upcoming space mission called LISA, the Laser Interferometer Space Antenna." White dwarfs are remnants of stars like our Sun that have used up all their fuel. Along with neutron stars and black holes, white dwarfs are called compact objects because they pack a lot of mass into a small volume. The white dwarfs in the J0806 system each have an estimated mass half that of the Sun, yet are only about the size of Earth. Chandra Light Curve of RX J0806.3+1527 Chandra Light Curve of RX J0806.3+1527 Optical and X-ray observations of J0806 show periodic variations with a period of 321.5 seconds - barely more than five minutes. The observed five-minute period in J0806 is most likely the orbital period of the white dwarf system. However the possibility that it represents the spin of one of its white dwarfs cannot yet be completely ruled out. "It's either the most compact binary known or one of the most unusual systems we've ever seen," said Strohmayer. "Either way it's got a great story to tell." Strohmayer's Chandra X-ray observations, which will be published in an upcoming issue of The Astrophysical Journal, tighten orbital decay estimates made through optical observations in recent years independently by teams led by GianLuca Israel of the Astronomical Observatory of Rome and by Pasi Hakala of the University of Helsinki. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
First Results from the GPS Compact Total Electron Content Sensor (CTECS) on the PSSC2 Nanosat
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Straus, P. R.; Hinkley, D.; Brubaker, T. R.
2011-12-01
The Compact Total Electron Content Sensor (CTECS) is a GPS radio occultation instrument designed for cubesat platforms that utilizes a COTS receiver, modified firmware, and a custom designed antenna. CTECS was placed on the Pico Satellite Solar Cell Testbed 2 (PSSC2) nanosat that was installed on the Space Shuttle Atlantis (STS-135). PSSC2 was successfully released from the shuttle on 20 July 2011. After approximately 2-4 weeks of spacecraft checkout and attitude adjustments, CTECS will be powered on and begin its mission to obtain ionospheric measurements of the total electron content and scintillation. This presentation describes the CTECS instrument, presents ground test data, initial on-orbit data, as well as future flight opportunities.
NASA Astrophysics Data System (ADS)
Rosas-Ortiz, Oscar; Cruz y Cruz, Sara; Enríquez, Marco
2016-10-01
It is shown that each one of the Lie algebras su(1 , 1) and su(2) determine the spectrum of the radial oscillator. States that share the same orbital angular momentum are used to construct the representation spaces of the non-compact Lie group SU(1 , 1) . In addition, three different forms of obtaining the representation spaces of the compact Lie group SU(2) are introduced, they are based on the accidental degeneracies associated with the spherical symmetry of the system as well as on the selection rules that govern the transitions between different energy levels. In all cases the corresponding generalized coherent states are constructed and the conditions to squeeze the involved quadratures are analyzed.
Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s
NASA Technical Reports Server (NTRS)
Kovalik, Joseph M.; Hemmati, Hamid; Biswas, Abhijit; Roberts, William T.
2013-01-01
A compact, low-cost laser communications transceiver was prototyped for downlinking data at 10 Gb/s from Earth-orbiting spacecraft. The design can be implemented using flight-grade parts. With emphasis on simplicity, compactness, and light weight of the flight transceiver, the reduced-complexity design and development approach involves: 1. A high-bandwidth coarse wavelength division multiplexed (CWDM) (4 2.5 or 10-Gb/s data-rate) downlink transmitter. To simplify the system, emphasis is on the downlink. Optical uplink data rate is modest (due to existing and adequate RF uplink capability). 2. Highly simplified and compact 5-cm diameter clear aperture optics assembly is configured to single transmit and receive aperture laser signals. About 2 W of 4-channel multiplexed (1,540 to 1,555 nm) optically amplified laser power is coupled to the optical assembly through a fiber optic cable. It contains a highly compact, precision-pointing capability two-axis gimbal assembly to coarse point the optics assembly. A fast steering mirror, built into the optical path of the optical assembly, is used to remove residual pointing disturbances from the gimbal. Acquisition, pointing, and tracking are assisted by a beacon laser transmitted from the ground and received by the optical assembly, which will allow transmission of a laser beam. 3. Shifting the link burden to the ground by relying on direct detection optical receivers retrofitted to 1-m-diameter ground telescopes. 4. Favored mass and volume reduction over power-consumption reduction. The two major variables that are available include laser transmit power at either end of the link, and telescope aperture diameter at each end of the link. Increased laser power is traded for smaller-aperture diameters. 5. Use of commercially available spacequalified or qualifiable components with traceability to flight qualification (i.e., a flight-qualified version is commercially available). An example is use of Telecordia-qualified fiber optic communication components including active components (lasers, amplifiers, photodetectors) that, except for vacuum and radiation, meet most of the qualifications required for space. 6. Use of CWDM technique at the flight transmitter for operation at four channels (each at 2.5 Gb/s or a total of 10 Gb/s data rate). Applying this technique allows utilization of larger active area photodetectors at the ground station. This minimizes atmospheric scintillation/turbulence induced losses on the received beam at the ground terminal. 7. Use of forward-error-correction and deep-interleaver codes to minimize atmospheric turbulence effects on the downlink beam. Target mass and power consumption for the flight data transmitter system is less than 10 kg and approximately 60 W for the 400-km orbit (900-km slant range), and 12 kg and 120 W for the 2,000-km orbit (6,000-km slant range). The higher mass and power for the latter are the result of employing a higher-power laser only.
Optimization of constellation jettisoning regards to short term collision risks
NASA Astrophysics Data System (ADS)
Handschuh, D.-DA.-A.; Bourgeois, E.
2018-04-01
The space debris problematic is directly linked to the in-orbit collision risk between artificial satellites. With the increase of the space constellation projects, a multiplication of multi-payload launches should occur. In the specific cases where many satellites are injected into orbit with the same launcher upper stage, all these objects will be placed on similar orbits, very close one from each other, at a specific moment where their control capabilities will be very limited. Under this hypothesis, it is up to the launcher operator to ensure that the simultaneous in-orbit injection is safe enough to guarantee the non-collision risk between all the objects under a ballistic hypothesis eventually considering appropriate uncertainties. The purpose of the present study is to find optimized safe separation conditions to limit the in-orbit collision risk following the injection of many objects on very close orbits in a short-delay mission.
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1981-01-01
A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.
Results in orbital evolution of objects in the geosynchronous region
NASA Technical Reports Server (NTRS)
Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1990-01-01
The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.
Growing Magnetic Fields in Central Compact Objects
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Page, D.
2011-10-01
We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.
Massive Compact Halo Objects from the relics of the cosmic quark-hadron transition
NASA Astrophysics Data System (ADS)
Banerjee, Shibaji; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Raha, Sibaji; Sinha, Bikash; Toki, Hiroshi
2003-03-01
The existence of compact gravitational lenses, with masses around 0.5 Msolar, has been reported in the halo of the Milky Way. The nature of these dark lenses is as yet obscure, particularly because these objects have masses well above the threshold for nuclear fusion. In this work, we show that they find a natural explanation as being the evolutionary product of the metastable false vacuum domains (the so-called strange quark nuggets) formed in a first order cosmic quark-hadron transition.
Shields for Enhanced Protection Against High-Speed Debris
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Kerr, Justin H.
2003-01-01
A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arise mainly from breakup of older spacecraft. The improved shields include exterior bumper layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cm3, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape-memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.
Shields for Enhanced Protection Against High-Speed Debris
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Kerr, Justin H.
2003-01-01
A report describes improvements over the conventional Whipple shield (two thin, spaced aluminum walls) for protecting spacecraft against high-speed impacts of orbiting debris. The debris in question arises mainly from breakup of older spacecraft. The improved shields include exterior "bumper" layers composed of hybrid fabrics woven from combinations of ceramic fibers and high-density metallic wires or, alternatively, completely metallic outer layers composed of high-strength steel or copper wires. These shields are designed to be light in weight, yet capable of protecting against orbital debris with mass densities up to about 9 g/cubic cm, without generating damaging secondary debris particles. As yet another design option, improved shields can include sparsely distributed wires made of shape memory metals that can be thermally activated from compact storage containers to form shields of predetermined shape upon arrival in orbit. The improved shields could also be used to augment shields installed previously.
Recombination energy in double white dwarf formation
NASA Astrophysics Data System (ADS)
Nandez, J. L. A.; Ivanova, N.; Lombardi, J. C.
2015-06-01
In this Letter, we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of an ˜1.5 M⊙ red giant star in an ˜30 d orbit with a white dwarf companion.
Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuri I.; Gressel, Oliver; Kobayashi, Hiroshi
We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find,more » in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.« less
Dynamical Constraints on Non-Transiting Planets at Trappist-1
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Truong, Vinh; Ford, Eric; Robertson, Paul; Terrien, Ryan
2018-04-01
The outermost of the seven known planets of Trappist-1 orbits six times closer to its host star than Mercury orbits the sun. The architecture of this system beyond 0.07 AU remains unknown. While the presence of additional planets will ultimately be determined by observations, in the meantime, some constraints can be derived from dynamical models.We will firstly look at the expected signature of additional planets at Trappist-1 on the transit times of the known planets to determine at what distances putatuve planets can be ruled out.Secondly, the remarkably compact configuration of Trappist-1 ensures that the known planets are secularly coupled, keeping their mutual inclinations very small and making their cotransiting geometry likely if Trappist-1h transits. We determine the range of masses and orbital inclinations of a putatuve outer planet that would make the observed configuration unlikely, and compare these to these constraints to those expected from radial velocity observations.
Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs
NASA Astrophysics Data System (ADS)
Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane
2016-12-01
The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
NASA Astrophysics Data System (ADS)
Granja, Carlos; Polansky, Stepan
2016-07-01
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.
Checking the compatibility of the cold Kuiper belt with a planetary instability migration model
NASA Astrophysics Data System (ADS)
Gomes, Rodney; Nesvorný, David; Morbidelli, Alessandro; Deienno, Rogerio; Nogueira, Erica
2018-05-01
The origin of the orbital structure of the cold component of the Kuiper belt is still a hot subject of investigation. Several features of the solar system suggest that the giant planets underwent a phase of global dynamical instability, but the actual dynamical evolution of the planets during the instability is still debated. To explain the structure of the cold Kuiper belt, Nesvorny (2015, AJ 150,68) argued for a "soft" instability, during which Neptune never achieved a very eccentric orbit. Here we investigate the possibility of a more violent instability, from an initially more compact fully resonant configuration of 5 giant planets. We show that the orbital structure of the cold Kuiper belt can be reproduced quite well provided that the cold population formed in situ, with an outer edge between 44 - 45 au and never had a large mass.
Optical Observations of GEO Debris with Two Telescopes
NASA Technical Reports Server (NTRS)
Seitzer, P.; Abercromby, K.; Rodriguez, H.; Barker, E.
2007-01-01
For several years, the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan s 0.6/0.9-m Schmidt telescope on Cerro Tololo Inter-American Observatory in Chile has been used to survey the debris population at GEO in the visible regime. Magnitudes, positions, and angular rates are determined for GEO objects as they move across the telescope s field-of-view (FOV) during a 5-minute window. This short window of time is not long enough to determine a full six parameter orbit so usually a circular orbit is assumed. A longer arc of time is necessary to determine eccentricity and to look for changes in the orbit with time. MODEST can follow objects in real-time, but only at the price of stopping survey operations. A second telescope would allow for longer arcs of orbit to obtain the full six orbital parameters, as well as assess the changes over time. An additional benefit of having a second telescope is the capability of obtaining BVRI colors of the faint targets, aiding efforts to determine the material type of faint debris. For 14 nights in March 2007, two telescopes were used simultaneously to observe the GEO debris field. MODEST was used exclusively in survey mode. As objects were detected, they were handed off in near real-time to the Cerro Tololo 0.9-m telescope for follow-up observations. The goal was to determine orbits and colors for all objects fainter than R = 15th magnitude (corresponds to 1 meter in size assuming a 0.2 albedo) detected by MODEST. The hand-off process was completely functional during the final eight nights and follow-ups for objects from night-to-night were possible. The cutoff magnitude level of 15th was selected on the basis of an abrupt change in the observed angular rate distribution in the MODEST surveys. Objects brighter than 15th magnitude tend to lie on a well defined locus in the angular rate plane (and have orbits in the catalog), while fainter objects fill the plane almost uniformly. We need to determine full six-parameter orbits to investigate what causes this change in observed angular rates. Are these faint objects either the same population of high area-to-mass (A/M) objects on eccentric orbits as discovered by the ESA Space Debris Telescope (Schildknecht, et al. 2004), or are they just normal debris from breakups in GEO?
Gravitational waves and the death-dance of compact stellar binaries
NASA Astrophysics Data System (ADS)
Will, Clifford M.
1996-05-01
The completion of a network of advanced laser-interferometric gravitational-wave observatories (US LIGO and European VIRGO projects) around 2001 will make possible the study of the inspiral and coalescence of binary systems of compact objects (neutron stars and black holes), using gravitational radiation. To extract useful information from the waves, such as the masses and spins of the bodies, theoretical general relativistic gravitational waveforms will be used as templates, cross-correlated against the detector output, in a matched filtering process. Because the broad-band detectors will be very sensitive to the non-linearly evolving phase of the waves, the templates must be extremely accurate in their treatment of the gravitational back-reaction on the orbital frequency, probably as accurate as O[(v/c)^6] beyond the predictions of the quadrupole formula. This presents a major challenge to theorists. Recently, templates accurate to O[(v/c)^4] were obtained by two independent methods (L. Blanchet, T. Damour, B. R. Iyer, C. M. Will and A. G. Wiseman, Phys. Rev. Lett. 74), 3515 (1995), and extensions to O[(v/c)^5] and higher are in progress. We summarize one of these methods, which extends and improves an earlier framework due to Epstein and Wagoner (R. Epstein and R. V. Wagoner, Astrophys. J. 210), 764 (1975), in which Einstein's equations are recast as a flat spacetime wave equation with source comprised of matter confined to compact regions and gravitational non-linearities extending to infinity. The new method (C. M. Will and A. G. Wiseman, Phys. Rev. D, submitted), carried through O[(v/c)^4], is free of divergences or undefined integrals, correctly predicts all gravitational wave ``tail'' effects caused by backscatter of the outgoing radiation off the background curved spacetime, and yields radiation that propagates asymptotically along true null cones of the curved spacetime.
Determining characteristics of artificial near-Earth objects using observability analysis
NASA Astrophysics Data System (ADS)
Friedman, Alex M.; Frueh, Carolin
2018-03-01
Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.
Scout: orbit analysis and hazard assessment for NEOCP objects
NASA Astrophysics Data System (ADS)
Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan B.
2016-10-01
It typically takes a few days for a newly discovered asteroid to be officially recognized as a real object. During this time, the tentative discovery is published on the Minor Planet Center's Near-Earth Object Confirmation Page (NEOCP) until additional observations confirm that the object is a real asteroid rather than an observational artifact or an artificial object. Also, NEOCP objects could have a limited observability window and yet be scientifically interesting, e.g., radar and lightcurve targets, mini-moons (temporary Earth captures), mission accessible targets, close approachers or even impactors. For instance, the only two asteroids discovered before an impact, 2008 TC3 and 2014 AA, both reached the Earth less than a day after discovery. For these reasons we developed Scout, an automated system that provides an orbital and hazard assessment for NEOCP objects within minutes after the observations are available. Scout's rapid analysis increases the chances of securing the trajectory of interesting NEOCP objects before the ephemeris uncertainty grows too large or the observing geometry becomes unfavorable. The generally short observation arcs, perhaps only a few hours or even less, lead severe degeneracies in the orbit estimation process. To overcome these degeneracies Scout relies on systematic ranging, a technique that derives possible orbits by scanning a grid in the poorly constrained space of topocentric range and range rate, while the plane-of-sky position and motion are directly tied to the recorded observations. This scan allows us to derive a distribution of the possible orbits and in turn identify the NEOCP objects of most interest to prioritize followup efforts. In particular, Scout ranks objects according to the likelihood of an impact, estimates the close approach distance, the Earth-relative minimum orbit intersection distance and v-infinity, and computes scores to identify objects more likely to be an NEO, a km-sized NEO, a Potentially Hazardous Asteroid, and those on a geocentric orbit. Moreover, Scout provides an ephemeris service that makes use of the statistical information to support observers in their followup efforts.
On the formation of SMC X-1: The effect of mass and orbital angular momentum loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Li, X.-D., E-mail: litao@nju.edu.cn, E-mail: lixd@nju.edu.cn; The Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing 210093
SMC X-1 is a high-mass X-ray binary with an orbital period of 3.9 days. The mass of the neutron star is as low as ∼1M {sub ☉}, suggesting that it was likely formed through an electron-capture supernova rather than an iron-core collapse supernova. From the present system configurations, we argue that the orbital period at the supernova was ≲ 10 days. Since the mass transfer process between the neutron star's progenitor and the companion star before the supernova should have increased the orbital period to tens of days, a mechanism with efficient orbit angular momentum loss and relatively small massmore » loss is required to account for its current orbital period. We have calculated the evolution of the progenitor binary systems from zero-age main sequence to the pre-supernova stage with different initial parameters and various mass and angular momentum loss mechanisms. Our results show that the outflow from the outer Lagrangian point or a circumbinary disk formed during the mass transfer phase may be qualified for this purpose. We point out that these mechanisms may be popular in binary evolution and significantly affect the formation of compact star binaries.« less
Space station systems analysis study. Part 1, volume 1: Executive study
NASA Technical Reports Server (NTRS)
1976-01-01
Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.
Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit
NASA Astrophysics Data System (ADS)
Buie, M.
2014-07-01
The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time-tagged detection times from which orbit quality can be derived and efficiency by dynamical class. The dominant noise term in the simulations comes from the noise in the background flux caused by thermal emission from zodiacal dust. The model used is sufficient for the study of reasonably low-inclination spacecraft orbits such as are being considered. Results to date are based on the 2002 Bottke NEA orbit-distribution model. The system can work with any orbit-distribution model and with any size-frequency distribution. This tool also serves to quantify the amount of data that will also be collected on main-belt objects by simply testing against the known catalog of bodies. The orbit quality work clearly shows the benefit of a self-followup survey such as Sentinel. Most objects discovered will be seen in multiple observing epochs and the resulting orbits will preclude losing track of them for decades to come (or longer). All of the ephemeris calculations, including investigation of orbit determination quality, are done with the OpenOrb software package. The presentation for this meeting will be based on results of modeling the Sentinel Mission and other similar variants. The focus will be on evaluating the survey completion for different dynamical classes as well as for different sized objects. Within the fidelity of such statistically-based models, the planned Sentinel observatory is well capable of a huge step forward in the efforts to build a complete catalog of all objects that could pose future harm to planet Earth.
Target Assembly to Check Boresight Alignment of Active Sensors
NASA Technical Reports Server (NTRS)
Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael
2011-01-01
A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.
CRISM Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2008-01-01
Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.
Report of the workshop on intelligent compaction for soils and HMA.
DOT National Transportation Integrated Search
2008-04-01
This document summarizes the discussion and findings of a workshop on intelligent compaction for soils and hot-mix asphalt held in West Des Moines, Iowa, on April 2-4, 2008. The objective of the meeting was to provide a collaborative exchange of idea...
Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T. A.; Hamm, R. W.
2017-11-01
The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.
NASA Astrophysics Data System (ADS)
Kipping, D. M.; Torres, G.; Henze, C.; Teachey, A.; Isaacson, H.; Petigura, E.; Marcy, G. W.; Buchhave, L. A.; Chen, J.; Bryson, S. T.; Sandford, E.
2016-04-01
Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91+/- 0.02) {R}{{J}}, a low orbital eccentricity ({0.06}-0.04+0.10), and an equilibrium temperature of (131+/- 3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323 ± 0.0006d), paving the way for follow-up of this K = 11.8 mag target.
Drifting Recovery Base Concept for GEO Derelict Object Capture
NASA Technical Reports Server (NTRS)
Bacon, John B.
2009-01-01
Over 250 objects hover within 6 m/sec of perfect geostationary orbit. Over half of these objects lie within 0.1 m/sec of the GEO velocity. Such items have 62% of the total velocity required to achieve Earth gravitational escape. A conceptual architecture is proposed to clean this orbit area of derelict objects while providing a demonstration mission for many facets of future asteroid mining operations. These near-GEO objects average nearly 2000kg each, consisting of (typically functioning) power systems, batteries, and large quantities of components and raw aerospace-grade refined materials. Such a demonstration collection system could capture, collect and remove all GEO derelict objects in an international effort to create a depot of components and of aerospace-grade raw materials--with a total mass greater than that of the International Space Station--as a space scrap depot ready for transfer to lunar or Mars orbit, using only two heavy-lift launches and 2-3 years of on-orbit operations.
A new direction for dark matter research: intermediate-mass compact halo objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapline, George F.; Frampton, Paul H., E-mail: george.chapline@gmail.com, E-mail: paul.h.frampton@gmail.com
2016-11-01
The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15 M {sub ⊙} may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of thesemore » stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.« less
High-energy radiation from the relativistic jet of Cygnus X-3
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.
2010-12-01
Cygnus X-3 is an accreting high-mass X-ray binary composed of a Wolf-Rayet star and an unknown compact object, possibly a black hole. The gamma-ray space telescope Fermi found definitive evidence that high-energy emission is produced in this system. We propose a scenario to explain the GeV gamma-ray emission in Cygnus X-3. In this model, energetic electron-positron pairs are accelerated at a specific location in the relativistic jet, possibly related to a recollimation shock, and upscatter the stellar photons to high energies. The comparison with Fermi observations shows that the jet should be inclined close to the line of sight and pairs should not be located within the system. Energetically speaking, a massive compact object is favored. We report also on our investigations of the gamma-ray absorption of GeV photons with the radiation emitted by a standard accretion disk in Cygnus X-3. This study shows that the gamma-ray source should not lie too close to the compact object.
NASA Astrophysics Data System (ADS)
Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.
1999-11-01
The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.
An atlas of H-alpha-emitting regions in M33: A systematic search for SS433 star candidates
NASA Technical Reports Server (NTRS)
Calzetti, Daniela; Kinney, Anne L.; Ford, Holland; Doggett, Jesse; Long, Knox S.
1995-01-01
We report finding charts and accurate positions for 432 compact H-alpha emitting regions in the Local Group galaxy M 33 (NGC 598), in an effort to isolate candidates for an SS433-like stellar system. The objects were extracted from narrow band images, centered in the rest-frame H-alpha (lambda 6563 A) and in the red continuum at 6100 A. The atlas is complete down to V approximately equal to 20 and includes 279 compact HII regions and 153 line emitting point-like sources. The point-like sources undoubtedly include a variety of objects: very small HII regions, early type stars with intense stellar winds, and Wolf-Rayet stars, but should also contain objects with the characteristics of SS433. This extensive survey of compact H-alpha regions in M 33 is a first step towards the identification of peculiar stellar systems like SS433 in external galaxies.
Space Debris and Observational Astronomy
NASA Astrophysics Data System (ADS)
Seitzer, Patrick
2018-01-01
Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.
Estimation of Untracked Geosynchronous Population from Short-Arc Angles-Only Observations
NASA Technical Reports Server (NTRS)
Healy, Liam; Matney, Mark
2017-01-01
Telescope observations of the geosynchronous regime will observe two basic types of objects --- objects related to geosynchronous earth orbit (GEO) satellites, and objects in highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure angular rates, the GTO can occasionally mimic the motion of GEO objects over short arcs. A GEO census based solely on short arc telescope observations may be affected by these ``interlopers''. A census that includes multiple angular rates can get an accurate statistical estimate of the GTO population, and that then can be used to correct the estimate of the geosynchronous earth orbit population.
METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES
Onstott, E.I.; Cremer, G.D.
1959-07-14
A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.
Relativistic model for anisotropic strange stars
NASA Astrophysics Data System (ADS)
Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2017-12-01
In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.
Consideration of lifetime limitation for spent stages in GTO
NASA Astrophysics Data System (ADS)
Sharma, R.; Bandyopadhyay, P.; Adimurthy, V.
It is well known that the time of launch during a day can have substantial effect in determining the orbital life of an object placed in a highly elliptic orbit like GTO (Ref.1). One of the proposed criteria to ensure stable space debris environment is to place the objects in orbits with limited lifetime of up to 25 years. This paper presents the investigations made in this connection for the Launch of GSLV-D1 on April 18, 2001. The decay of objects from elliptic orbits of moderate eccentricity is well understood in the literature where the apogee height decreases fast resulting in the circularization of orbits, which decays gradually under the effect of drag till the reentry. The evolution of objects in GTO orbits, whose perigee altitude falls between 180 km to 650 km and apogee is near the geo-stationary altitudes (35000 km to 36000 km), is determined by a complex interplay of different kind of forces, like upper atmospheric drag and luni-solar gravitation. These orbits are characterized by periodic changes in the altitude of the perigee caused by gravitational perturbations of the moon and the sun. The initial orientation of the orbit just after the launch with respect to the sun and the moon predominantly determines the subsequent histories of the orbital evolution. Therefore, the launch time plays an important role. The long time evolution of objects in GTO orbits can fall into two broad categories; (a) Decay predominantly by luni-solar gravity effect and (b) Decay by combination of atmospheric drag and luni-solar perturbations. In the former case, the perigee is driven below the decay altitude and circularization of the orbit does not take place before the reentry. In the later case, the evolution has phases of complex interplay of drag and luni-solar perturbations. Atmospheric drag generates a retarding force on the space object, but the effects of the sun and the moon on the object are more complex and can result in either increase or decrease in perigee altitude. It is interesting to understand the basic physics of the luni-solar perturbations. A few typical examples presented here illustrate this effect very clearly. It is interesting to note that in GTO orbits the interplay of drag and luni- solar gravity effects can give rise to situations where more drag get translated into more lifetime. Orbital evolution study of the third stage of GSLV-D1, which falls into the second category described above, provides us with a few interesting observations (Ref.2). The orbital lifetime can vary from around 7 months to well beyond 50 years depending on the launch time during the day of launch. A study with respect to few other days during the year to find the effect of sun and moon initial locations on orbital life is also included. For the present launch, the orbital life is around 600 days, which is well within the widely accepted criterion on the lifetime of any manmade space object. It is noted that the osculating perigee altitude decreases and apogee altitude increases when the object comes near the perigee due to oblate earth effects. The decrease in perigee is about 3.5 km and the increase in apogee is 160 km. Utilizing 175 Two Line Element (TLE) sets of the object available in the first 100 days of its life, the suitable ballistic coefficient is estimated and simulations up to re-entry are done. The re-entry is predicted between 7 Nov 2002 and 29 Dec 2002. A continuous monitoring with the available orbital data shows that the predictions continue to be within the above bounds. Ref.1. King-Hele, D.G., "Lifetime Predictions for Satellites in Low inclination Transfer Orbits", Journal of the British Interplanetary Society, Vol.35, pp.339-344, 1982 Ref.2. Priyankar Bandhopadhyay, Sharma, R.K., Adimurthy,V., " The Orbiting Third Stage of GSLV-D1 as Space Debris", VSSC/AERO/TR-001/2001, Vikram Sarabhai Space Centre, Trivandrum, 2001
General Relativistic Effects and QPOs in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Markovic, D.; Lamb, F. K.
We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of weakly damped global gravitomagnetic (Lense-Thirring) warping modes of the inner (viscous) accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is about 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 ~ 0.2. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce QPOs with the coherence observed in low-mass X-ray binaries.
IGR J17329-2731: The birth of a symbiotic X-ray binary
NASA Astrophysics Data System (ADS)
Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.
2018-05-01
We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
NASA Astrophysics Data System (ADS)
Kelecy, Tom; Shoemaker, Michael; Jah, Moriba
2013-08-01
A break-up in Low Earth Orbit (LEO) is simulated for 10 objects having area-to-mass ratios (AMR's) ranging from 0.1-10.0 m2/kg. The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) is applied to determining and characterizing the orbit and atmospheric drag parameters (CdA/m) simultaneously for each of the 10 objects with no a priori orbit or drag information. The results indicate that CAR-MHF shows promise for accurate, unambiguous and autonomous determination of the orbit and drag states.
Toward Microsatellite Based Space Situational Awareness
NASA Astrophysics Data System (ADS)
Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.
2013-09-01
The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments. The placement of a space based space surveillance sensor in low Earth orbit introduces tasking and image processing complexities such as cosmic ray rejection, scattered light from Earth's limb and unique scheduling limitations due to the observer's rapid positional change and we describe first-look microsatellite space surveillance lessons from this unique orbital vantage point..
QUIKVIS- CELESTIAL TARGET AVAILABILITY INFORMATION
NASA Technical Reports Server (NTRS)
Petruzzo, C.
1994-01-01
QUIKVIS computes the times during an Earth orbit when geometric requirements are satisfied for observing celestial objects. The observed objects may be fixed (stars, etc.) or moving (sun, moon, planets). QUIKVIS is useful for preflight analysis by those needing information on the availability of celestial objects to be observed. Two types of analyses are performed by QUIKVIS. One is used when specific objects are known, the other when targets are unknown and potentially useful regions of the sky must be identified. The results are useful in selecting candidate targets, examining the effects of observation requirements, and doing gross assessments of the effects of the orbit's right ascension of the ascending node (RAAN). The results are not appropriate when high accuracy is needed (e.g. for scheduling actual mission operations). The observation duration is calculated as a function of date, orbit node, and geometric requirements. The orbit right ascension of the ascending node can be varied to account for the effects of an uncertain launch time of day. The orbit semimajor axis and inclination are constant throughout the run. A circular orbit is assumed, but a simple program modification will allow eccentric orbits. The geometric requirements that can be processed are: 1) minimum separation angle between the line of sight to the object and the earth's horizon; 2) minimum separation angle between the line of sight to the object and the spacecraft velocity vector; 3) maximum separation angle between the line of sight to the object and the zenith direction; and 4) presence of the spacecraft in the earth's shadow. The user must supply a date or date range, the spacecraft orbit and inclination, up to 700 observation targets, and any geometric requirements to be met. The primary output is the time per orbit that conditions are satisfied, with options for sky survey maps, time since a user-specified orbit event, and bar graphs illustrating overlapping requirements. The output is printed in visually convenient lineprinter form but is also available on data files for use by postprocessors such as external XY plotters. QUIKVIS is written in FORTRAN 77 for batch or interactive execution and has been implemented on a DEC VAX 11/780 operating under VMS with a central memory requirement of approximately 500K of 8 bit bytes. QUIKVIS was developed in 1986 and revised in 1987.
Report of the workshop on intelligent compaction for soils and HMA : executive summary.
DOT National Transportation Integrated Search
2008-04-01
This document summarizes the discussion and findings of a workshop on intelligent compaction for soils and hot-mix asphalt held in West Des Moines, Iowa, on April 2-4, 2008. The objective of the meeting was to provide a collaborative exchange of idea...
A Comparison of Nonlinear Filters for Orbit Determination and Estimation
1986-06-01
Com- mand uses a nonlinear least squares filter for element set maintenance for all objects orbiting the Earth (3). These objects, including active...initial state vector is the singularly averaged classical orbital element set provided by SPACECOM/DOA. The state vector in this research consists of...GSF (G) - - 26.0 36.7 GSF(A) 32.1 77.4 38.8 59.6 The Air Force Space Command is responsible for main- taining current orbital element sets for about
NASA Astrophysics Data System (ADS)
Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.
The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.
Hot super-dense compact object with particular EoS
NASA Astrophysics Data System (ADS)
Tito, E. P.; Pavlov, V. I.
2018-03-01
We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.
Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Krogel, Jaron T.; Reboredo, Fernando A.
2018-01-01
Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.
Testing strong-field gravity with tidal Love numbers
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Franzin, Edgardo; Maselli, Andrea; Pani, Paolo; Raposo, Guilherme
2017-04-01
The tidal Love numbers (TLNs) encode the deformability of a self-gravitating object immersed in a tidal environment and depend significantly both on the object's internal structure and on the dynamics of the gravitational field. An intriguing result in classical general relativity is the vanishing of the TLNs of black holes. We extend this result in three ways, aiming at testing the nature of compact objects: (i) we compute the TLNs of exotic compact objects, including different families of boson stars, gravastars, wormholes, and other toy models for quantum corrections at the horizon scale. In the black-hole limit, we find a universal logarithmic dependence of the TLNs on the location of the surface. (ii) We compute the TLNs of black holes beyond vacuum general relativity, including Einstein-Maxwell, Brans-Dicke, and Chern-Simons gravity. (iii) We assess the ability of present and future gravitational-wave detectors to measure the TLNs of these objects, including the first analysis of TLNs with LISA. Both LIGO, ET, and LISA can impose interesting constraints on boson stars, while LISA is able to probe even extremely compact objects. We argue that the TLNs provide a smoking gun of new physics at the horizon scale and that future gravitational-wave measurements of the TLNs in a binary inspiral provide a novel way to test black holes and general relativity in the strong-field regime.
Passage of a ''Nemesis''-like object through the planetary system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, J.G.
1985-09-01
The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lackmore » of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.« less
Revealing two radio-active galactic nuclei extremely near PSR J0437-4715
NASA Astrophysics Data System (ADS)
Li, Zhixuan; Yang, Jun; An, Tao; Paragi, Zsolt; Deller, Adam; Reynolds, Cormac; Hong, Xiaoyu; Wang, Jiancheng; Ding, Hao; Xia, Bo; Yan, Zhen; Guo, Li
2018-05-01
Newton's gravitational constant G may vary with time at an extremely low level. The time variability of G will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio wavelengths. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of ≥107 K. According to these radio inputs and the absence of counterparts in other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei, rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of G in the near future.
NASA Astrophysics Data System (ADS)
Jones, S.; Paschalidis, N.; Rodriguez, M.; Sittler, E. C., Jr.; Chornay, D. J.; Uribe, P.; Cameron, T.
2017-12-01
A compact Ion and Neutral Mass Spectrometer (INMS) has been developed for GSFC's Dellingr mission, using the 6U CubeSat platform. Dellingr is expected to deploy into ISS orbit in October 2017 to measure the dynamics of the ionosphere-thermosphere-mesosphere and to determine the steady state background atmospheric conditions at this altitude. The INMS makes in situ measurements of ionized and neutral H, He, N, O, N2, O2 densities with M/dM of approximately 10-12 for thermal particles. The INMS is based on particle acceleration, electronically gated time of flight (TOF), electrostatic analyzer, and CEM detectors. The compact instrument has a dual symmetric configuration with ion and neutral sensor heads on opposite sides of the shared electronics. The neutral front-end includes thermionic ionization and ion-blocking grids. The electronics include fast preamplifiers, electric gating, and TOF measurements and processing, C&DH digital electronics for commands, data storage and back-end I/O, and HVPS for detector and sensor biases. The data package includes 400 bins of mass spectra per ion and neutral sensor and key housekeeping and calibration data, in a single time tagged data frame of 14kbits uncompressed. The nominal data sampling is 1 sec corresponding to 7.5km spatial resolution in LEO orbits. This miniaturized instrument occupies a 1.1U volume, weighs only 570g and nominally operates at 1.2W. This presentation will include preliminary flight data of ions and neutrals from the Dellingr mission and outlines improvements incorporated into the design for the Dellingr (Oct 2017), ExoCube2 (Dec 2017) and petitSat (2020) CubeSat missions.
Space Operations Learning Center (SOLC) iPhone/iPad Application
NASA Technical Reports Server (NTRS)
Binebrink, Daniel; Kuok, Heng; Hammond, Malinda; Hull, Scott
2013-01-01
This iPhone application, Space Junk Sammy, is intended to be an educational application designed for Apple iPhones and iPads. This new concept educates kids in an innovative way about how orbital debris affects space missions. Orbital debris is becoming a very significant concern for NASA and all Earthorbiting space missions. Spacecraft in low-Earth orbit are in constant danger of being potentially damaged or destroyed by debris. High-profile spacecraft such as the International Space Station (ISS) and Hubble Space Telescope are dealing with orbital debris on a regular basis. Other basic educational concepts that are portrayed are low-Earth orbits, satellites, ISS, attitude control, and other facts that can be presented in betweenlevel popup screens. The Orbital Debris Cleanup game is relatively simple from the user s technical standpoint. It is a 2D game where the user s avatar is a satellite buddy, named Sammy, in orbit around Earth. Sammy is controlled by the user with the device s gyroscope as well as touchscreen controls. It has equipment used for taking care of the space debris objects on the screen. Sammy also has a claw, a laser deflector, and hydrazine rockets to grab or push the debris objects into a higher orbit or into a lower orbit to burn up in the Earth s atmosphere. The user interface shows Sammy and space debris objects constantly moving from left to right, where Sammy is trying to catch the debris objects before they move off the right side of the screen. Everything will be in constant motion to increase fun and add to the realism of orbiting the Earth. The satellite buddy is used to clean up the space debris and protect other satellites. Later levels will include a laser deflector and hydrazine rockets instead of a robotic claw to push the orbital debris into a higher orbit and out of the path of other satellites
Real-Time Optical Surveillance of LEO/MEO with Small Telescopes
NASA Astrophysics Data System (ADS)
Zimmer, P.; McGraw, J.; Ackermann, M.
J.T. McGraw and Associates, LLC operates two proof-of-concept wide-field imaging systems to test novel techniques for uncued surveillance of LEO/MEO/GEO and, in collaboration with the University of New Mexico (UNM), uses a third small telescope for rapidly queued same-orbit follow-up observations. Using our GPU-accelerated detection scheme, the proof-of-concept systems operating at sites near and within Albuquerque, NM, have detected objects fainter than V=13 at greater than 6 sigma significance. This detection approximately corresponds to a 16 cm object with albedo of 0.12 at 1000 km altitude. Dozens of objects are measured during each operational twilight period, many of which have no corresponding catalog object. The two proof-of-concept systems, separated by ~30km, work together by taking simultaneous images of the same orbital volume to constrain the orbits of detected objects using parallax measurements. These detections are followed-up by imaging photometric observations taken at UNM to confirm and further constrain the initial orbit determination and independently assess the objects and verify the quality of the derived orbits. This work continues to demonstrate that scalable optical systems designed for real-time detection of fast moving objects, which can be then handed off to other instruments capable of tracking and characterizing them, can provide valuable real-time surveillance data at LEO and beyond, which substantively informs the SSA process.
NASA Technical Reports Server (NTRS)
Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.; Blamont, J.; Howard, R. F.; Dumont, P.; Smith, E. J.
1984-01-01
A compact Dopplergraph/magnetograph placed in a continuous solar-viewing orbit will allow us to make major advancements in our understanding of solar internal structure and dynamics. An international program is currently being conducted at JPL and Mt. Wilson to develop such an instrument. By combining a unique magneto-optical resonance filter with CID and CCD cameras we have been able to obtain full- and partial-disk Dopplergrams and magnetograms. Time series of the velocity images are converted into k-omega power spectra which show clear- the solar nonradial p-mode oscilations. Magnetograms suitable for studying the long-term evolution of solar active regions have also been obtained with this instrument. A flight instrument based on this concept is being studied for possible inclusion in the SOHO mission.
Do massive compact objects without event horizon exist in infinite derivative gravity?
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Mazumdar, Anupam
2017-10-01
Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.
Manifestations of dynamo driven large-scale magnetic field in accretion disks of compact objects
NASA Technical Reports Server (NTRS)
Chagelishvili, G. D.; Chanishvili, R. G.; Lominadze, J. G.; Sokhadze, Z. A.
1991-01-01
A turbulent dynamo nonlinear theory of turbulence was developed that shows that in the compact objects of accretion disks, the generated large-scale magnetic field (when the generation takes place) has a practically toroidal configuration. Its energy density can be much higher than turbulent pulsations energy density, and it becomes comparable with the thermal energy density of the medium. On this basis, the manifestations to which the large-scale magnetic field can lead at the accretion onto black holes and gravimagnetic rotators, respectively, are presented.
Large-size space debris flyby in low earth orbits
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.
2017-09-01
the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total Δ V and with amount of detachable de-orbiting units onboard the maneuvering platform and onboard the refueling vehicle.
Near-Earth Objects. Chapter 27
NASA Technical Reports Server (NTRS)
Harris, Alan W.; Drube, Line; McFadden, Lucy A.; Binzel, Richard P.
2014-01-01
A near-Earth object (NEO) is an asteroid or comet orbiting the Sun with a perihelion distance of less than 1.3 Astronomical Units (AU) (1 AU, an astronomical unit, is the mean distance between the Earth and the Sun, around 150 million kilometers). If the orbit of an NEO can bring it to within 0.05 AU of the Earth's orbit, and it is larger than about 120 meters, it is termed a potentially hazardous object (PHO); an object of this size is likely to survive passage through the atmosphere and cause extensive damage on impact. (The acronyms NEA and PHO are used when referring specifically to asteroids.)
A Korean Space Situational Awareness Program : OWL Network
NASA Astrophysics Data System (ADS)
Park, J.; Choi, Y.; Jo, J.; Moon, H.; Im, H.; Park, J.
2012-09-01
We are going to present a brief introduction to the OWL (Optical Wide-field patroL) network, one of Korean space situational awareness facilities. Primary objectives of the OWL network are 1) to obtain orbital information of Korean domestic LEOs using optical method, 2) to monitor GEO-belt over territory of Korea, and 3) to alleviate collisional risks posed to Korean satellites from space debris. For these purposes, we are planning to build a global network of telescopes which consists of five small wide-field telescopes and one 2m class telescope. The network of small telescopes will be dedicated mainly to the observation of domestic LEOs, but many slots will be open to other scientific programs such as GRB follow-up observations. Main targets of 2m telescope not only include artificial objects such as GEO debris and LEO debris with low inclination and high eccentricity, but also natural objects such as near Earth asteroids. We expect to monitor space objects down to 10cm in size in GEO using the 2m telescope system. Main research topics include size distribution and evolution of space debris. We also expect to utilize this facility for physical characterization and population study of near Earth asteroids. The aperture size of the small telescope system is 0.5m with Rechey-Cretian configuration and its field of view is 1.75 deg x 1.75 deg. It is equipped with 4K CCD with 9um pixel size, and its plate scale is 1.3 arcsec/pixel. A chopper wheel is employed to maximize astrometric solutions in a single CCD frame, and a de-rotator is used to compensate field rotation of the alt-az type mount. We have designed a compact end unit in which three rotating parts (chopper wheel, filter wheel, de-rotator) and a CCD camera are integrated, and dedicated telescope/site control boards for the OWL network. The design of 2m class telescope is still under discussion yet is expected to be fixed in the first half of 2013 at the latest. The OWL network will be operated in a fully autonomous mode based on scheduled observation. We have designed a compact and robust system for fully robotic operation. The network operating system located in the headquarter issues command files for observation which are transferred to each local site. After that, the site operating system interprets command files and controls each telescope system. In this way, we obtain and update orbital information of domestic satellites based on purely optical method. A prototype of the network telescope system will be installed at a test bed in Korea in commissioning phase. After the test operation, the design of the network telescope system will be finalized in the end of 2012. The installation of the telescope systems in 3 local sites will be completed in 2013, and the so-called "OWL basic network"" will start normal operations. In the first two years of the second stage of the OWL Project (2014-2015), we plan to place two small wide-field telescopes, and we build the 2m telescope system to complete the OWL network in the 2016.
A laser-optical system to re-enter or lower low Earth orbit space debris
NASA Astrophysics Data System (ADS)
Phipps, Claude R.
2014-01-01
Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.
NASA Astrophysics Data System (ADS)
Brown, Michael E.; Batygin, Konstantin
2016-10-01
We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22
NASA Astrophysics Data System (ADS)
Skinner, Mark A.; Russell, Ray W.; Rudy, Richard J.; Gutierrez, David J.; Kim, Daryl L.; Crawford, Kirk; Gregory, Steve; Kelecy, Tom
2011-12-01
Optical surveys have identified a class of high area-to-mass ratio (HAMR) objects in the vicinity of the Geostationary Earth Orbit (GEO) ring [1]. The exact origin and nature of these objects are not well known, although their proximity to the GEO ring poses a hazard to active GEO satellites. Due to their high area-to-mass ratios, solar radiation pressure perturbs their orbits in ways that makes it difficult to predict their orbital trajectories over periods of time exceeding a week. To better understand these objects and their origins, observations that allow us to derive physical characteristics are required in order to improve the non-conservative force modeling for orbit determination and prediction. Information on their temperatures, areas, emissivities, and albedos may be obtained from thermal infrared, mid-wave infrared (MWIR), and visible measurements. Spectral features may help to identify the composition of the material, and thus possible origins for these objects. We have collected observational data on various HAMR objects from the AMOS observatory 3.6 m AEOS telescope. The thermal-IR spectra of these low-earth orbit objects acquired by the Broadband Array Spectrograph System (BASS) span wavelengths 3-13 μm and constitute a unique data set, providing a means of measuring, as a function of time, object fluxes. These, in turn, allow temperatures and emissivity-area products to be calculated. In some instances we have also collected simultaneous filtered visible photometric data on the observed objects. The multi-wavelength observations of the objects provide possible clues as to the nature of the observed objects. We describe briefly the nature and status of the instrumental programs used to acquire the data, our data of record, our data analysis techniques, and our current results, as well as future plans.
A stand-alone compact EUV microscope based on gas-puff target source.
Torrisi, Alfio; Wachulak, Przemyslaw; Węgrzyński, Łukasz; Fok, Tomasz; Bartnik, Andrzej; Parkman, Tomáš; Vondrová, Šárka; Turňová, Jana; Jankiewicz, Bartłomiej J; Bartosewicz, Bartosz; Fiedorowicz, Henryk
2017-02-01
We report on a very compact desk-top transmission extreme ultraviolet (EUV) microscope based on a laser-plasma source with a double stream gas-puff target, capable of acquiring magnified images of objects with a spatial (half-pitch) resolution of sub-50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi-monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.
1993-01-01
We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.
Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.
1993-01-01
We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.
PSR J1740-3052: a pulsar with a massive companion
NASA Astrophysics Data System (ADS)
Stairs, I. H.; Manchester, R. N.; Lyne, A. G.; Kaspi, V. M.; Camilo, F.; Bell, J. F.; D'Amico, N.; Kramer, M.; Crawford, F.; Morris, D. J.; Possenti, A.; McKay, N. P. F.; Lumsden, S. L.; Tacconi-Garman, L. E.; Cannon, R. D.; Hambly, N. C.; Wood, P. R.
2001-08-01
We report on the discovery of a binary pulsar, PSR J1740-3052, during the Parkes multibeam survey. Timing observations of the 570-ms pulsar at Jodrell Bank and Parkes show that it is young, with a characteristic age of 350kyr, and is in a 231-d, highly eccentric orbit with a companion whose mass exceeds 11Msolar. An accurate position for the pulsar was obtained using the Australia Telescope Compact Array. Near-infrared 2.2-μm observations made with the telescopes at the Siding Spring observatory reveal a late-type star coincident with the pulsar position. However, we do not believe that this star is the companion of the pulsar, because a typical star of this spectral type and required mass would extend beyond the orbit of the pulsar. Furthermore, the measured advance of periastron of the pulsar suggests a more compact companion, for example, a main-sequence star with radius only a few times that of the Sun. Such a companion is also more consistent with the small dispersion measure variations seen near periastron. Although we cannot conclusively rule out a black hole companion, we believe that the companion is probably an early B star, making the system similar to the binary PSR J0045-7319.
Active Debris Removal Using Modified Launch Vehicle Upper Stages
NASA Astrophysics Data System (ADS)
Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea
2013-09-01
During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
NASA Astrophysics Data System (ADS)
Chen, Ying-Tung; Lin, Hsing-Wen; Holman, Matthew J.; Payne, Matthew John; Fraser, Wesley Cristopher; Lacerda, Pedro; Ip, Wing-Huen; Pan-STARRS 1 Builders
2016-10-01
The origin of high inclination objects beyond Jupiter, including trans-Neptunian objects (TNOs) and Centaurs, remains uncertain. We report the discovery of a retrograde TNO, which we nickname "Niku", detected by the Pan-STARRS 1 Outer Solar System Survey. The numerical integrations show that the orbital dynamics of Niku are very similar to those of 2008 KV42 (Drac), with a half-life of ~ 500 Myr and analogous orbital evolution. Comparing similar high inclination members announced by the Minor-Planet Center (q > 10 AU, a < 100 AU and i > 60), we find these objects exhibit a surprising clustering of ascending node, populating a common orbital plane. The statistical significance of 3.8-sigma suggests it is unlikely to be coincidental. An unknown mechanism is required to explain the observed clustering. This discovery may provide a pathway to investigating a possible reservoir of high-inclination objects.
2015-03-27
i.e., temporarily focusing on one object instead of wide area survey) or SOI collection on high interest objects (e.g., unidentified objects ...The Air Force Institute of Technology has spent the last seven years conducting research on orbit identification and object characterization of space... objects through the use of commercial-off-the-shelf hardware systems controlled via custom software routines, referred to simply as TeleTrak. Year
An unusually massive stellar black hole in the Galaxy.
Greiner, J; Cuby, J G; McCaughrean, M J
2001-11-29
The X-ray source known as GRS1915+105 belongs to a group dubbed 'microquasars'. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods have previously been used to infer a variety of masses for the accreting compact object in the range 10-30 solar masses (M middle dot in circle). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 +/- 4 M middle dot in circle for the black hole. Black holes with masses >5-7 M middle dot in circle challenge the conventional picture of black-hole formation in binary systems. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.
Formation of Giant Planets and Brown Dwarves
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2003-01-01
According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.
Point and Compact Hα Sources in the Interior of M33
NASA Astrophysics Data System (ADS)
Moody, J. Ward; Hintz, Eric G.; Joner, Michael D.; Roming, Peter W. A.; Hintz, Maureen L.
2017-12-01
A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebulae, X-ray binaries, etc., can be discovered as point or compact sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.‧5 × 6.‧5 of M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than approximately 10-15 erg cm-2s-1. We have effectively recovered previously mapped H II regions and have identified 152 unresolved point sources and 122 marginally resolved compact sources, of which 39 have not been previously identified in any archive. An additional 99 Hα sources were found to have sufficient archival flux values to generate a Spectral Energy Distribution. Using the SED, flux values, Hα flux value, and compactness, we classified 67 of these sources.
I-Love-Q relations for gravastars and the approach to the black-hole limit
NASA Astrophysics Data System (ADS)
Pani, Paolo
2015-12-01
The multipole moments and the tidal Love numbers of neutron stars and quark stars satisfy certain relations which are almost insensitive to the star's internal structure. A natural question is whether the same relations hold for different compact objects and how they possibly approach the black-hole limit. Here we consider "gravastars," which are hypothetical compact objects sustained by their internal vacuum energy. Such solutions have been proposed as exotic alternatives to the black-hole paradigm because they can be as compact as black holes and exist in any mass range. By constructing slowly rotating, thin-shell gravastars to quadratic order in the spin, we compute the moment of inertia I , the mass quadrupole moment Q , and the tidal Love number λ in exact form. The I -λ -Q relations of a gravastar are dramatically different from those of an ordinary compact star, but the black-hole limit is continuous; i.e., these quantities approach their Kerr counterparts when the compactness is maximum. Therefore, such relations can be used to discern a gravastar from an ordinary compact star but not to break the degeneracy with the black-hole case. Based on these results, we conjecture that the full multipolar structure and the tidal deformability of a spinning, ultracompact gravastar are identical to those of a Kerr black hole. The approach to the black-hole limit is nonpolynomial, thus differing from the critical behavior recently found for strongly anisotropic neutron stars.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
On-chip spin-controlled orbital angular momentum directional coupling
NASA Astrophysics Data System (ADS)
Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong
2018-01-01
Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.
Pressure–temperature evolution of primordial solar system solids during impact-induced compaction
Bland, P. A.; Collins, G. S.; Davison, T. M.; Abreu, N. M.; Ciesla, F. J.; Muxworthy, A. R.; Moore, J.
2014-01-01
Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution. PMID:25465283
Irradiation-driven Mass Transfer Cycles in Compact Binaries
NASA Astrophysics Data System (ADS)
Büning, A.; Ritter, H.
2005-08-01
We elaborate on the analytical model of Ritter, Zhang, & Kolb (2000) which describes the basic physics of irradiation-driven mass transfer cycles in semi-detached compact binary systems. In particular, we take into account a contribution to the thermal relaxation of the donor star which is unrelated to irradiation and which was neglected in previous studies. We present results of simulations of the evolution of compact binaries undergoing mass transfer cycles, in particular also of systems with a nuclear evolved donor star. These computations have been carried out with a stellar evolution code which computes mass transfer implicitly and models irradiation of the donor star in a point source approximation, thereby allowing for much more realistic simulations than were hitherto possible. We find that low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs) with orbital periods ⪉ 6hr can undergo mass transfer cycles only for low angular momentum loss rates. CVs containing a giant donor or one near the terminal age main sequence are more stable than previously thought, but can possibly also undergo mass transfer cycles.
Contribution of explosion and future collision fragments to the orbital debris environment
NASA Technical Reports Server (NTRS)
Su, S.-Y.; Kessler, D. J.
1985-01-01
The time evolution of the near-earth man-made orbital debris environment modeled by numerical simulation is presented in this paper. The model starts with a data base of orbital debris objects which are tracked by the NORAD ground radar system. The current untrackable small objects are assumed to result from explosions and are predicted from data collected from a ground explosion experiment. Future collisions between earth orbiting objects are handled by the Monte Carlo method to simulate the range of collision possibilities that may occur in the real world. The collision fragmentation process between debris objects is calculated using an empirical formula derived from a laboratory spacecraft impact experiment to obtain the number versus size distribution of the newly generated debris population. The evolution of the future space debris environment is compared with the natural meteoroid background for the relative spacecraft penetration hazard.
The Origin of Ultra-Faint Galaxies
NASA Astrophysics Data System (ADS)
Sand, David
2017-08-01
We request 24 orbits of HST/ACS to obtain imaging in F606W and F814W of apparent tidal features in two ultra-faint dwarf galaxies: Hercules and Leo V. This will enable us to test whether the stars in ultra- faint galaxies-as a population-have been affected by Galactic tides. Most of the new dwarfs show signs of tidal interaction in ground-based photometry, several have measured ellipticities greater than 0.5, and kinematics of a subset show velocity gradients. These ubiquitous hints for tidal effects among distant dwarfs is particularly surprising and suggestive. If most ultra-faint dwarfs are disturbed by tides, then recent tests of galaxy formation in the near field have unstable foundations.HST resolution provides an opportunity to assess whether tidal features (accompanied by tentative kinematic gradients) seen in ground-based observations of Hercules and Leo V are genuine or are instead clumps of compact background galaxies masquerading as stellar debris. In Hercules, a further test is possible: searching for a distance gradient along the stretched body of the galaxy. Parallel pointings will sample similar dwarf-centric radii away from the tidal features, assuring an unambiguous result. Whether we confirm or rule out the presence of stellar loss in these objects, the consequences are important-the origin of the ultra-faint dwarfs tells us the lower limit to both galaxy formation and the number of dark matter subhalos inhabiting the Milky Way.This program is only possible with HST: its exquisite resolution can separate compact galaxies from main sequence dwarf stars at faint magnitudes, which even the best multi-band ground-based schemes struggle with.
Origin of 10{sup 15}–10{sup 16} G magnetic fields in the central engine of gamma ray bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Rafael S. de; Opher, Reuven, E-mail: rafael@astro.iag.usp.br, E-mail: opher@astro.iag.usp.br
2010-02-01
Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, ( ∼ 10{sup 15}–10{sup 16} G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, themore » problem is more difficult since, according to general relativity it has ''no hair'' (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas's tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields ∼ 10{sup 15}–10{sup 16} G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the ∼ 10{sup 15}–10{sup 16} G fields when the compact object is a neutron star, but also when it is a black hole.« less
AN/FSY-3 Space Fence System Support of Conjunction Assessment
NASA Astrophysics Data System (ADS)
Koltiska, M.; Du, H.; Prochoda, D.; Kelly, K.
2016-09-01
The Space Fence System is a ground-based space surveillance radar system designed to detect and track all objects in Low Earth Orbit the size of a softball or larger. The system detects many objects that are not currently in the catalog of satellites and space debris that is maintained by the US Air Force. In addition, it will also be capable of tracking many of the deep space objects in the catalog. By providing daily updates of the orbits of these new objects along with updates of most of the objects in the catalog, it will enhance Space Situational Awareness and significantly improve our ability to predict close approaches, aka conjunctions, of objects in space. With this additional capacity for tracking objects in space the Space Surveillance Network has significantly more resources for monitoring orbital debris, especially for debris that could collide with active satellites and other debris.
A disk of scattered icy objects and the origin of Jupiter-family comets.
Duncan, M J; Levison, H F
1997-06-13
Orbital integrations carried out for 4 billion years produced a disk of scattered objects beyond the orbit of Neptune. Objects in this disk can be distinguished from Kuiper belt objects by a greater range of eccentricities and inclinations. This disk was formed in the simulations by encounters with Neptune during the early evolution of the outer solar system. After particles first encountered Neptune, the simulations show that about 1 percent of the particles survive in this disk for the age of the solar system. A disk currently containing as few as approximately 6 x 10(8) objects could supply all of the observed Jupiter-family comets. Two recently discovered objects, 1996 RQ20 and 1996 TL66, have orbital elements similar to those predicted for objects in this disk, suggesting that they are thus far the only members of this disk to be identified.
Complete waveform model for compact binaries on eccentric orbits
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela
2017-01-01
We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin combinations of the quasicircular, spin-aligned template waveforms does not improve the recovery of nonspinning, eccentric signals when e0≥0.1 . This suggests that these two signal manifolds are predominantly orthogonal.
Short gamma-ray bursts and gravitational-wave observations from eccentric compact binaries
NASA Astrophysics Data System (ADS)
Tan, Wei-Wei; Fan, Xi-Long; Wang, F. Y.
2018-03-01
Mergers of compact binaries, such as binary neutron stars (BNSs), neutron star-black hole binaries (NSBHs) and binary black holes (BBHs), are expected to be the best candidates for sources of gravitational waves (GWs) and the leading theoretical models for short gamma-ray bursts (SGRBs). Based on observations of SGRBs, we can derive the merger rates of these compact binaries and study stochastic GW backgrounds (SGWBs) or the co-detection rates of GWs associated with SGRBs (GW-SGRBs). Before that, however, the most important thing is to derive the GW spectrum from a single GW source. Usually, a GW spectrum from a circular-orbit binary is assumed. However, observations of the large spatial offsets of SGRBs from their host galaxies imply that SGRB progenitors may be formed by dynamical processes and will merge with residual eccentricities (er). The orbital eccentricity has an important effect on GW spectra and therefore on the SGWB and GW-SGRB co-detection rate. Our results show that the power spectra of SGWBs from eccentric compact binaries are greatly suppressed at low frequencies (e.g. f ≲ 1 Hz). In particular, SGWBs from binaries with high residual eccentricities (e.g. er ≳ 0.1 for BNSs) will be hard to detect (above the detection frequency of ˜ 100 Hz). Regarding the co-detection rates of GW-SGRB events, they could be ˜1.4 times higher than the circular case within some particular ranges of er (e.g. 0.01 ≲ er ≲ 0.1 for BBHs), but greatly reduced for high residual eccentricities (e.g. er > 0.1 for BNSs). In general, BBH progenitors produce 200 and 10 times higher GW-SGRB events than BNS and NSBH progenitors, respectively. Therefore, binaries with low residual eccentricities (e.g. 0.001 ≲ er ≲ 0.1) and high total masses will be easier to detect by Advanced LIGO (aLIGO). However, only a small fraction of BBHs can be SGRB progenitors (if they can produce SGRBs), because the predicted GW-SGRB event rate (60˜100 per year) is too high compared with recent observations, unless they merge with high residual eccentricities (e.g. er > 0.7).
Effects of perturbations on space debris in supersynchronous storage orbits
NASA Astrophysics Data System (ADS)
Luu, Khanh Kim
1998-12-01
Accumulation of space debris in the geosynchronous region (GEO) has raised attention among spacefaring nations. The current mitigation measure supported is to boost satellites into supersynchronous orbits in the time before station-keeping fuel is expected to be exhausted. Because this solution does not remove mass from space, debris generation by fragmentation events remains a possibility. The collision hazard between inactive satellites in the supersynchronous region raises questions about the consequences of collisions in this regime and possible interaction with GEO. In considering the use of supersynchronous orbits for satellite disposal, the first concern is to determine the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with the GEO population in the future. This involves defining the useful GEO area and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' orbits. This document summarizes background information on debris in the GEO region, sources and management strategies, and then addresses the problem: Will orbits of fragments from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at what altitude should the storage orbit occupy such that collision fragments will not interfere with the GEO population? The methods and tools by which the effects of collisions in the supersynchronous region can be analyzed are discussed. A low-velocity collision model is employed to provide delta-velocities imparted to the fragments. An analytical study of perturbation effects, including solar and lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation pressure, follows in order to evaluate the magnitude of these disturbing forces on the fragmentation debris. Validation of these results by numerical analysis using proven numerical and semianalytical orbit propagators is discussed. The results show that currently practiced reorbiting distances above GEO do not isolate debris from GEO after the occurrence of collisions in the storage orbit.
Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach
NASA Technical Reports Server (NTRS)
Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan
2015-01-01
This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space-track object catalog in LEO. We then use a high precision propagator to propagate all objects over the entire simulation duration. If collisions are detected, the appropriate number of debris objects are created and inserted into the simulation framework. Depending on the scenario, further objects, e.g. due to new launches, can be added. At the end of the simulation, the total number of objects above a cut-off size and the number of detected collisions provide benchmark parameters for the comparison between scenarios. The simulation approach is computationally intensive as it involves tens of thousands of objects; hence we use a highly parallel approach employing up to a thousand cores on the NASA Pleiades supercomputer for a single run. This paper describes our simulation approach, the status of its implementation, the approach to developing scenarios and examples of first test runs.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Accreting Compact Object at the Center of the Supernova Remnant RCW 103.
NASA Astrophysics Data System (ADS)
Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.
2002-05-01
We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen, E-mail: jeroen@space.mit.edu
2012-12-01
Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less
Laboratory simulation of photoionized plasma among astronomical compact objects
NASA Astrophysics Data System (ADS)
Fujioka, Shinsuke; Yamamoto, Norimasa; Wang, Feilu; Salzmann, David; Li, Yutong; Rhee, Yong-Joo; Nishimura, Hiroaki; Takabe, Hideaki; Mima, Kunioki
2008-11-01
X-ray line emission with several-keV of photon energy was observed from photoionized accreting clouds, for example CYGNUS X-3 and VELA X-1, those are exposed by hard x-ray continuum from the compact objects, such as neutron stars, black holes, or white dwarfs, although accreting clouds are thermally cold. The x-ray continuum-induced line emission gives a good insight to the accreting clouds. We will present a novel laboratory simulation of the photoionized plasma under well-characterized conditions by using high-power laser facility. Blackbody radiator with 500-eV of temperature, as a miniature of a hot compact object, was created.Silicon (Si) plasma with 30-eV of electron temperature was produced in the vicinity of the 0.5-keV blackbody radiator. Line emissions of lithium- and helium-like Si ions was clearly observed around 2-keV of photon-energy from the thermally cold Si plasma, this result is hardly interpreted without consideration of the photoionization. Atomic kinetics code reveals importance of inner-shell ionization directly caused by incoming hard x-rays.
Base compaction specification feasibility analysis.
DOT National Transportation Integrated Search
2012-12-01
The objective of this research is to establish the technical engineering and cost : analysis concepts that will enable WisDOT management to objectively evaluate the : feasibility of switching construction specification philosophies for aggregate base...
Compaction of quasi-one-dimensional elastoplastic materials.
Shaebani, M Reza; Najafi, Javad; Farnudi, Ali; Bonn, Daniel; Habibi, Mehdi
2017-06-06
Insight into crumpling or compaction of one-dimensional objects is important for understanding biopolymer packaging and designing innovative technological devices. By compacting various types of wires in rigid confinements and characterizing the morphology of the resulting crumpled structures, here, we report how friction, plasticity and torsion enhance disorder, leading to a transition from coiled to folded morphologies. In the latter case, where folding dominates the crumpling process, we find that reducing the relative wire thickness counter-intuitively causes the maximum packing density to decrease. The segment size distribution gradually becomes more asymmetric during compaction, reflecting an increase of spatial correlations. We introduce a self-avoiding random walk model and verify that the cumulative injected wire length follows a universal dependence on segment size, allowing for the prediction of the efficiency of compaction as a function of material properties, container size and injection force.
Dynamical mass and multiplicity constraints on co-orbital bodies around stars
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Marsh, Thomas R.; Gänsicke, Boris T.
2016-09-01
Objects transiting near or within the disruption radius of both main-sequence (e.g. KOI 1843) and white dwarf (WD 1145+017) stars are now known. Upon fragmentation or disintegration, these planets or asteroids may produce co-orbital configurations of nearly equal mass objects. However, as evidenced by the co-orbital objects detected by transit photometry in the WD 1145+017 system, these bodies are largely unconstrained in size, mass, and total number (multiplicity). Motivated by potential future similar discoveries, we perform N-body simulations to demonstrate if and how debris masses and multiplicity may be bounded due to second-to-minute deviations and the resulting accumulated phase shifts in the osculating orbital period amongst multiple co-orbital equal point masses. We establish robust lower and upper mass bounds as a function of orbital period deviation, but find the constraints on multiplicity to be weak. We also quantify the fuzzy instability boundary, and show that mutual collisions occur in less than 5, 10, and 20 per cent of our simulations for masses of 1021, 1022, and 1023 kg. Our results may provide useful initial rough constraints on other stellar systems with multiple co-orbital bodies.
NASA Technical Reports Server (NTRS)
Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.
2010-01-01
MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.
1973-01-01
This chart describes the Skylab student experiment Objects Within Mercury's Orbit, proposed by Daniel C. Bochsler of Silverton, Oregon. This experiment utilized Skylab's White Light Coronagraph telescope to identify any objects orbiting the Sun within the orbit of Mercury. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Chiron and the Centaurs: Escapees from the Kuiper Belt
NASA Technical Reports Server (NTRS)
Stern, Alan; Campins, Humberto
1996-01-01
The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.
Frequency maps as a probe of secular evolution in the Milky Way
NASA Astrophysics Data System (ADS)
Valluri, Monica
2015-03-01
The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.
Clay Minerals in Mawrth Vallis Region of Mars
NASA Technical Reports Server (NTRS)
2008-01-01
This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold. The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green. The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars. CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.NASA Astrophysics Data System (ADS)
Bennett, J.; Gehly, S.
2016-09-01
This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).
Dynamical lifetimes of asteroids in retrograde orbits
NASA Astrophysics Data System (ADS)
Kankiewicz, Paweł; Włodarczyk, Ireneusz
2017-07-01
The population of known minor bodies in retrograde orbits (I > 90°) that are classified as asteroids is still growing. The aim of our study was to estimate the dynamical lifetimes of these bodies using the latest observational data, including astrometry and physical properties. We selected 25 asteroids with the best-determined orbital elements. We studied their dynamical evolution in the past and future for ±100 Myr (±1 Gyr for three particular cases). We first used orbit determination and cloning to produce swarms of test particles. These swarms were then input into long-term numerical integrations, and the orbital elements were averaged. Next, we collected the available thermal properties of our objects and we used them in an enhanced dynamical model with Yarkovsky forces. We also used a gravitational model for comparison. Finally, we estimated the median lifetimes of 25 asteroids. We found three objects whose retrograde orbits were stable with a dynamical lifetime τ ˜ 10-100 Myr. A large portion of the objects studied displayed smaller values of τ (τ ˜ 1 Myr). In addition, we studied the possible influence of the Yarkovsky effect on our results. We found that the Yarkovsky effect can have a significant influence on the lifetimes of asteroids in retrograde orbits. Because of the presence of this effect, it is possible that the median lifetimes of these objects are extended. Additionally, the changes in orbital elements, caused by Yarkovsky forces, appear to depend on the integration direction. To explain this more precisely, the same model based on new physical parameters, determined from future observations, will be required.
Neutron-star–black-hole binaries produced by binary-driven hypernovae
Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...
2015-12-04
Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E iso ≳10 52 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differentlymore » than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.
Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R
2015-12-04
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52} erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae
NASA Astrophysics Data System (ADS)
Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.
2015-12-01
Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Accretion states in X-ray binaries and their connection to GeV emission
NASA Astrophysics Data System (ADS)
Koerding, Elmar
Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.
Multi-wavelength studies of Redback and Black Widow pulsars
NASA Astrophysics Data System (ADS)
Mignani, Roberto; Salvetti, David; Pallanca, Cristina; Marelli, Martino; De Luca, Andrea; Belfiore, Andrea Mario
2016-07-01
The unexpected Fermi discovery of more than 70 gamma-ray milli-second pulsars (MSPs) outside globular clusters, spurred the scientific interest on these objects, and opened new horizons in MSP astronomy and on the study of the evolution of neutron stars in compact binary systems, including the ablation process of the companion star in the so-called Black Widow (BW) and Redback (RB) systems. It is thought that an important fraction of the tens of unidentified pulsar-like Fermi sources at high latitude are MSPs, yet unidentified, owing to their extremely elusive radio emission. As shown in a few recent cases, optical observations have been instrumental to spot binary MSP candidates through the discovery of periodic modulations in the flux of their putative companions. In this contribution, we report on the recent follow-ups of several candidate binary MSPs carried out with optical and X-ray facilities, e.g. GROND and XMM-Newton, Swift. This program already lead to identification of the Fermi source 3FGL 2036.6-5618 as candidate RB system, through the detection of periodic (orbital) modulation of its X/optical flux (Salvetti et al. 2015).
Circular common-path point diffraction interferometer.
Du, Yongzhao; Feng, Guoying; Li, Hongru; Vargas, J; Zhou, Shouhuan
2012-10-01
A simple and compact point-diffraction interferometer with circular common-path geometry configuration is developed. The interferometer is constructed by a beam-splitter, two reflection mirrors, and a telescope system composed by two lenses. The signal and reference waves travel along the same path. Furthermore, an opaque mask containing a reference pinhole and a test object holder or test window is positioned in the common focal plane of the telescope system. The object wave is divided into two beams that take opposite paths along the interferometer. The reference wave is filtered by the reference pinhole, while the signal wave is transmitted through the object holder. The reference and signal waves are combined again in the beam-splitter and their interference is imaged in the CCD. The new design is compact, vibration insensitive, and suitable for the measurement of moving objects or dynamic processes.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-04-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-06-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
The Phase Space Structure Near Neptune Resonances in the Kuiper Belt
NASA Technical Reports Server (NTRS)
Malhotra, Renu
1996-01-01
The Solar system beyond Neptune is believed to house a population of small primordial bodies left over from the planet formation process. The region up to heliocentric distance -50 AU (a.k.a. the Kuiper Belt) may be the source of the observed short-period comets. In this region, the phase space structure near orbital resonances with Neptune is of special interest for the long-term stability of orbits. There is reason to believe that a significant fraction (perhaps most) of the Kuiper Belt objects reside preferentially in these resonance locations. This paper describes the dynamics of small objects near the major orbital resonances with Neptune. Estimates of the widths of stable resonance zones as well as the properties of resonant orbits are obtained from the circular, planar restricted three-body model. Although this model does not contain the full complexity of the long-term orbital dynamics of Kuiper Belt objects subject to the full N-body perturbations of all the planets, it does provide a baseline for the phase space structure and properties of resonant orbits in the trans-Neptunian Solar system.
2004-03-15
These four panels show the location of the newly discovered planet-like object, dubbed "Sedna," which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed. http://photojournal.jpl.nasa.gov/catalog/PIA05569
NASA Technical Reports Server (NTRS)
2004-01-01
These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.
Some considerations on measuring the Newtonian gravitational constant G in an orbiting laboratory
NASA Technical Reports Server (NTRS)
Baker, Stephen D.
1986-01-01
A common suggestion for measuring the Newtonian gravitational constant G in a near-earth orbiting laboratory is simply to put two balls in orbit around each other and observe the resulting motion, thereby determining G. However, the radial variation with distance of the gravitational field of the earth is so large that tidal forces on the balls in near-earth orbit can be several times greater than the gravitational attraction between the two masses, leading some writers to assume that two objects will not stably orbit about each other and that this method of measuring G in low-earth is impossible, or at least impractical. Certain orbits were identified which are stable (at least over many periods of the spacecraft about the earth). In this case, the objects experience their gravitational interaction for a long time, and it becomes reasonable to consider such orbits as candidates for measurements of G.
The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors
NASA Astrophysics Data System (ADS)
Skoglöv, E.; Erikson, A.
2002-11-01
It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.
Searching gamma-ray bursts for gravitational lensing echoes - Implications for compact dark matter
NASA Technical Reports Server (NTRS)
Nemiroff, R. J.; Norris, J. P.; Wickramasinghe, W. A. D. T.; Horack, J. M.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W. S.
1993-01-01
The first available 44 gamma-ray bursts (GRBs) detected by the Burst and Transient Source Experiment on board the Compton Gamma-Ray Observatory have been inspected for echo signals following shortly after the main signal. No significant echoes have been found. Echoes would have been expected were the GRBs distant enough and the universe populated with a sufficient density of compact objects composing the dark matter. Constraints on dark matter abundance and GRB redshifts from the present data are presented and discussed. Based on these preliminary results, a universe filled to critical density of compact objects between 10 exp 6.5 and 10 exp 8.1 solar masses are now marginally excluded, or the most likely cosmological distance paradigm for GRBs is not correct. We expect future constraints to be able either to test currently popular cosmological dark matter paradigms or to indicate that GRBs do not lie at cosmological distances.
NASA Astrophysics Data System (ADS)
Dubinov, Alexander E.; Ochkina, Elena I.
2018-05-01
State-of-the-art compact recirculating electron accelerators operating at intermediate energies (tens of MeV) are reviewed. The acceleration schemes implemented in the rhodotron, ridgetron, fantron, and cylindertron machines are discussed. Major accelerator components such as the electron guns, accelerating cavities, and bending magnets are described. The parameters of currently operating recirculating accelerators are tabulated, and applications of these accelerators in different processes of irradiation are exemplified.
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
NASA Astrophysics Data System (ADS)
Liu, Chiu-Chu Melissa; Sheshmani, Artan
2017-07-01
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
NASA Astrophysics Data System (ADS)
Sánchez-Ortiz, Noelia; Domínguez-González, Raúl; Krag, Holger
2015-03-01
One of the main objectives of Space Surveillance and Tracking (SST) systems is to support space collision avoidance activities. This collision avoidance capability aims to significantly reduce the catastrophic collision risk of space objects. In particular, for the case of the future European SST, the objective is translated into a risk reduction of one order of magnitude whilst keeping a low number of false alarm events. In order to translate this aim into system requirements, an evaluation of the current catastrophic collision risk for different orbital regimes is addressed. The reduction of such risk depends on the amount of catalogued objects (coverage) and the knowledge of the associated orbits in the catalogue (accuracy). This paper presents an analysis of the impact of those two aspects in the capability to reduce the catastrophic collision risk at some orbital regimes. A reliable collision avoidance support depends on the accuracy of the predicted miss-events. The assessment of possible conjunctions is normally done by computing the estimated miss-distances between objects (which is compared with a defined distance threshold) or by computing the associated collision risk (which is compared with the corresponding accepted collision probability level). This second method is normally recommended because it takes into account the reliability of the orbits and allows reducing false alarm events. The collision risk depends on the estimated miss-distance, the object sizes and the accuracy of the two orbits at the time of event. This accuracy depends on the error of the orbits at the orbit determination epoch and the error derived from the propagation from that epoch up to the time of event. The modified DRAMA ARES (Domínguez-González et al., 2012, 2013a,b; Gelhaus et al., 2014) provides information on the expected number of encounters for a given mission and year. It also provides information on the capacity to reduce the risk of collision by means of avoidance manoeuvres as a function of the accepted collision probability level and the cataloguing performance of the surveillance system (determined by the limiting coverage size-altitude function and the orbital data accuracy). The assessment of avoidance strategies takes into account statistical models of the space object environment, as provided by ESA's MASTER-2009 model, and a mathematical framework for the collision risk estimation as used in satellite operations. In this papers, results are provided for some orbit types, covering different orbital regimes. The analysis is done for different cataloguing capacity levels (accuracy and coverage), concluding that 5 cm are to be covered at LEO for diminishing the catastrophic collision risk by one order of magnitude. For MEO and GEO regime, coverage down to 40 and 100 cm respectively allow similar reduction of risk.
Study on Synergistic Mechanism of Inhibitor Mixture Based on Electron Transfer Behavior
Han, Peng; He, Yang; Chen, Changfeng; Yu, Haobo; Liu, Feng; Yang, Hong; Ma, Yue; Zheng, Yanjun
2016-01-01
Mixing is an important method to improve the performance of surfactants due to their synergistic effect. The changes in bonding interaction and adsorption structure of IM and OP molecules before and after co-adsorbed on Fe(001) surface is calculated by DFTB+ method. It is found that mixture enable the inhibitor molecules with higher EHOMO donate more electrons while the inhibitor molecules with lower ELUMO accept more electrons, which strengthens the bonding interaction of both inhibitor agent and inhibitor additive with metal surface. Meanwhile, water molecules in the compact layer of double electric layer are repulsed and the charge transfer resistance during the corrosion process increases. Accordingly, the correlation between the frontier orbital (EHOMO and ELUMO of inhibitor molecules and the Fermi level of metal) and inhibition efficiency is determined. Finally, we propose a frontier orbital matching principle for the synergistic effect of inhibitors, which is verified by electrochemical experiments. This frontier orbital matching principle provides an effective quantum chemistry calculation method for the optimal selection of inhibitor mixture. PMID:27671332
NASA Technical Reports Server (NTRS)
Edwards, H. W.
1981-01-01
The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.
Transport and equilibrium in field-reversed mirrors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.K.
Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less
Spectrometer Images of Candidate Landing Sites for Next Mars Rover
NASA Technical Reports Server (NTRS)
2007-01-01
This composite shows four examples of 'browse' products the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument obtained of areas on Mars near proposed landing sites for NASA's 2009 Mars Science Laboratory. These examples are from two of more than 30 candidate sites. They are enhanced color images of West Candor chasm (A) and Nili Fossae trough (B); and false color images indicating the presence of hydrated (water-containing) minerals in West Candor (C); and clay-like (phyllosilicate) minerals in Nili Fossae (D). CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.DOE Office of Scientific and Technical Information (OSTI.GOV)
Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan
Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at themore » altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.« less
Successful subtotal orbitectomy in a cat with osteoma
Corgozinho, Katia B; Cunha, Simone CS; Siqueira, Ricardo S; Souza, Heloisa JM
2015-01-01
Case summary A 14-year-old Siamese neutered male cat was evaluated for anorexia and a left periorbital mass. Skull radiographic findings showed a well-defined lesion resembling new compact bone formation without destruction. A subtotal orbitectomy was indicated. The tumor was removed intact with a normal tissue margin of at least 1 cm. There were no postsurgical complications. Histopathologic examination revealed an osteoma. The cat returned to normal appetite and activity 15 days after surgery. Six months after surgery, there were no gross signs of recurrence. Relevance and novel information Periorbital tumors are infrequently diagnosed in companion animals and most are malignant. In this case, the diagnosis was orbital osteoma. The most commonly affected bone for osteoma in cats is the mandibular bone; few cases have been identified in orbital bones. Orbital surgery has the potential to be challenging owing to complex anatomy, difficult exposure and the tendency to bleed. Surgical complications are common. In this case, although the disease was advanced, subtotal orbitectomy was successfully performed. PMID:28491397
Volatiles Inventory to the Inner Planets Due to Small Bodies Migration
NASA Technical Reports Server (NTRS)
Marov, M. Y.; Ipatov, S. I.
2003-01-01
The concurrent processes of endogeneous and exogeneous origin are assumed to be responsible for the volatile reserves in the terrestrial planets. Volatiles inventory through collisions is rooted in orbital dynamics of small bodies including near-Earth objects (NEOs), short and long-period comets, and trans-Neptunian objects (TNOs), the latter probably supplying a large amount of Jupiter crossing objects (JCOs). Our model testifies that even a relatively small portion (approx. 0.001) of JCOs which transit to orbits with aphelia inside Jupiter's orbit (Q<4.7 AU) and reside such orbits during more than 1 Myr may contribute significantly in collisions with the terrestrial planets. The total mass of volatiles delivered to the Earth from the feeding zone of the giant planets could be greater than the mass of the Earth's oceans.
First spectroscopy of a short-hard GRB: the environment of a compact object merger
NASA Astrophysics Data System (ADS)
de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve
2015-03-01
Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).
NASA Astrophysics Data System (ADS)
Chung, Shin Kee; Wen, Linqing; Blair, David; Cannon, Kipp; Datta, Amitava
2010-07-01
We report a novel application of a graphics processing unit (GPU) for the purpose of accelerating the search pipelines for gravitational waves from coalescing binaries of compact objects. A speed-up of 16-fold in total has been achieved with an NVIDIA GeForce 8800 Ultra GPU card compared with one core of a 2.5 GHz Intel Q9300 central processing unit (CPU). We show that substantial improvements are possible and discuss the reduction in CPU count required for the detection of inspiral sources afforded by the use of GPUs.
A CW FFAG for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, C.; Neuffer, D. V.; Snopok, P.
2012-05-01
An advantage of the cyclotron in proton therapy is the continuous (CW) beam output which reduces complexity and response time in the dosimetry requirements and beam controls. A CW accelerator requires isochronous particle orbits at all energie s through the acceleration cycle and present compact isochronous cyclotrons for proton therapy reach only 250 MeV (kinetic energy) which is required for patient treatment, but low for full Proton Computed Tomography (PCT) capability. PCT specifications ne ed 300-330 MeV in order for protons to transit the human body. Recent innovations in nonscaling FFAG design have achieved isochronous performance in a compact (~3more » m radius) design at these higher energies. Preliminary isochronous designs are presented her e. Lower energy beams can be efficiently extracted for patient treatment without changes to the acceleration cycle and magnet currents.« less
Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments
NASA Astrophysics Data System (ADS)
Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group
2018-01-01
We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.
A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514
NASA Technical Reports Server (NTRS)
Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.
2013-01-01
We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.
The end of the MACHO era, revisited: New limits on MACHO masses from halo wide binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monroy-Rodríguez, Miguel A.; Allen, Christine, E-mail: chris@astro.unam.mx
2014-08-01
In order to determine an upper bound for the mass of the massive compact halo objects (MACHOs), we use the halo binaries contained in a recent catalog by Allen and Monroy-Rodríguez. To dynamically model their interactions with massive perturbers, a Monte Carlo simulation is conducted, using an impulsive approximation method and assuming a galactic halo constituted by massive particles of a characteristic mass. The results of such simulations are compared with several subsamples of our improved catalog of candidate halo wide binaries. In accordance with Quinn et al., we also find our results to be very sensitive to the widestmore » binaries. However, our larger sample, together with the fact that we can obtain galactic orbits for 150 of our systems, allows a more reliable estimate of the maximum MACHO mass than that obtained previously. If we employ the entire sample of 211 candidate halo stars we, obtain an upper limit of 112 M{sub ☉}. However, using the 150 binaries in our catalog with computed galactic orbits, we are able to refine our fitting criteria. Thus, for the 100 most halo-like binaries we obtain a maximum MACHO mass of 21-68 M{sub ☉}. Furthermore, we can estimate the dynamical effects of the galactic disk using binary samples that spend progressively shorter times within the disk. By extrapolating the limits obtained for our most reliable—albeit smallest—sample, we find that as the time spent within the disk tends to zero, the upper bound of the MACHO mass tends to less than 5 M{sub ☉}. The non-uniform density of the halo has also been taken into account, but the limit obtained, less than 5 M{sub ☉}, does not differ much from the previous one. Together with microlensing studies that provide lower limits on the MACHO mass, our results essentially exclude the existence of such objects in the galactic halo.« less
Photometric Studies of GEO Orbital Debris
NASA Technical Reports Server (NTRS)
Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt
2009-01-01
The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
New method for estimating low-earth-orbit collision probabilities
NASA Technical Reports Server (NTRS)
Vedder, John D.; Tabor, Jill L.
1991-01-01
An unconventional but general method is described for estimating the probability of collision between an earth-orbiting spacecraft and orbital debris. This method uses a Monte Caralo simulation of the orbital motion of the target spacecraft and each discrete debris object to generate an empirical set of distances, each distance representing the separation between the spacecraft and the nearest debris object at random times. Using concepts from the asymptotic theory of extreme order statistics, an analytical density function is fitted to this set of minimum distances. From this function, it is possible to generate realistic collision estimates for the spacecraft.
A methodology for selective removal of orbital debris
NASA Technical Reports Server (NTRS)
Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.
1992-01-01
Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.