NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.
2016-06-01
The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen, E-mail: jeroen@space.mit.edu
2012-12-01
Relativistic Lense-Thirring precession of a tilted inner accretion disk around a compact object has been proposed as a mechanism for low-frequency ({approx}0.01-70 Hz) quasi-periodic oscillations (QPOs) in the light curves of X-ray binaries. A substantial misalignment angle ({approx}15 Degree-Sign -20 Degree-Sign ) between the inner-disk rotation axis and the compact-object spin axis is required for the effects of this precession to produce observable modulations in the X-ray light curve. A consequence of this misalignment is that in high-inclination X-ray binaries the precessing inner disk will quasi-periodically intercept our line of sight to the compact object. In the case of neutron-starmore » systems, this should have a significant observational effect, since a large fraction of the accretion energy is released on or near the neutron-star surface. In this Letter, I suggest that this specific effect of Lense-Thirring precession may already have been observed as {approx}1 Hz QPOs in several dipping/eclipsing neutron-star X-ray binaries.« less
Predicting gravitational lensing by stellar remnants
NASA Astrophysics Data System (ADS)
Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.
2018-03-01
Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.
2016-08-01
We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.
Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars
NASA Astrophysics Data System (ADS)
Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.
2018-04-01
There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.
Quasiperiodic Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.; Murdin, P.
2000-11-01
The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
The dynamic ejecta of compact object mergers and eccentric collisions.
Rosswog, Stephan
2013-06-13
Compact object mergers eject neutron-rich matter in a number of ways: by the dynamical ejection mediated by gravitational torques, as neutrino-driven winds, and probably also a good fraction of the resulting accretion disc finally becomes unbound by a combination of viscous and nuclear processes. If compact binary mergers indeed produce gamma-ray bursts, there should also be an interaction region where an ultra-relativistic outflow interacts with the neutrino-driven wind and produces moderately relativistic ejecta. Each type of ejecta has different physical properties, and therefore plays a different role for nucleosynthesis and for the electromagnetic (EM) transients that go along with compact object encounters. Here, we focus on the dynamic ejecta and present results for over 30 hydrodynamical simulations of both gravitational wave-driven mergers and parabolic encounters as they may occur in globular clusters. We find that mergers eject approximately 1 per cent of a Solar mass of extremely neutron-rich material. The exact amount, as well as the ejection velocity, depends on the involved masses with asymmetric systems ejecting more material at higher velocities. This material undergoes a robust r-process and both ejecta amount and abundance pattern are consistent with neutron star mergers being a major source of the 'heavy' (A>130) r-process isotopes. Parabolic collisions, especially those between neutron stars and black holes, eject substantially larger amounts of mass, and therefore cannot occur frequently without overproducing gala- ctic r-process matter. We also discuss the EM transients that are powered by radioactive decays within the ejecta ('macronovae'), and the radio flares that emerge when the ejecta dissipate their large kinetic energies in the ambient medium.
Adams, Robert; Zboray, Robert; Prasser, Horst-Michael
2016-01-01
Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion of the capabilities of the system and its outlook. Copyright © 2015 Elsevier Ltd. All rights reserved.
Magnetar-like emission in different neutron star classes
NASA Astrophysics Data System (ADS)
Rea, N.
2017-10-01
I will present new results on magnetar-like transient events in neutron stars having low dipolar fields or generally catalogued as normal radio pulsars or central compact objects. I will then present simulations of magnetic field evolution that might explain the apparently puzzling behaviour of these objects. Strong surface magnetic field might be an almost ubiquitous properties of pulsars, regardless their external dipolar magnetic field measured via their spin down properties.
Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run
NASA Astrophysics Data System (ADS)
Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration
2017-01-01
Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.
Nested Focusing Optics for Compact Neutron Sources
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.
NASA Astrophysics Data System (ADS)
Yamaguchi, M. S.; Yano, T.; Gouda, N.
2018-03-01
We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.
Accretion torques in X-ray pulsars
NASA Technical Reports Server (NTRS)
Rappaport, S.; Joss, P. C.
1977-01-01
An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.
Studies of compact objects with Einstein - Review and prospects
NASA Technical Reports Server (NTRS)
Grindlay, Jonathan E.
1990-01-01
X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.
Hot super-dense compact object with particular EoS
NASA Astrophysics Data System (ADS)
Tito, E. P.; Pavlov, V. I.
2018-03-01
We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.
Growing Magnetic Fields in Central Compact Objects
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Page, D.
2011-10-01
We study the effects of growth models of magnetic fields in Central Compact Objects (CCOs). Such a field evolution is not a new idea (Blandford, Applegate, & Hernquist 1983) but the evolutionary implications not have been followed up completely (Michel 1994). We discussed the new class of neutron stars which belong to five main types that have mainly been recognized in the last ten years. The possibility that a rapid weakly magnetized pulsar might have formed in SN1987A is commented.
Probing axions with neutron star inspirals and other stellar processes
NASA Astrophysics Data System (ADS)
Hook, Anson; Huang, Junwu
2018-06-01
In certain models of a QCD axion, finite density corrections to the axion potential can result in the axion being sourced by large dense objects. There are a variety of ways to test this phenomenon, but perhaps the most surprising effect is that the axion can mediate forces between neutron stars that can be as strong as gravity. These forces can be attractive or repulsive and their presence can be detected by Advanced LIGO observations of neutron star inspirals. By a numerical coincidence, axion forces between neutron stars with gravitational strength naturally have an associated length scale of tens of kilometers or longer, similar to that of a neutron star. Future observations of neutron star mergers in Advanced LIGO can probe many orders of magnitude of axion parameter space. Because the axion is only sourced by large dense objects, the axion force evades fifth force constraints. We also outline several other ways to probe this phenomenon using electromagnetic signals associated with compact objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit
2016-09-15
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
AN ULTRA-LOW-MASS AND SMALL-RADIUS COMPACT OBJECT IN 4U 1746-37?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaosheng; Qu, Zhijie; Guo, Yanjun
Photospheric radius expansion (PRE) bursts have already been used to constrain the masses and radii of neutron stars. RXTE observed three PRE bursts in 4U 1746-37, all with low touchdown fluxes. We discuss here the possibility of a low-mass neutron star in 4U 1746-37 because the Eddington luminosity depends on stellar mass. With typical values of hydrogen mass fraction and color correction factor, a Monte Carlo simulation was applied to constrain the mass and radius of a neutron star in 4U 1746-37. 4U 1746-37 has a high inclination angle. Two geometric effects, the reflection of the far-side accretion disk andmore » the obscuration of the near-side accretion disk, have also been included in the mass and radius constraints of 4U 1746-37. If the reflection of the far-side accretion disk is accounted for, a low-mass compact object (mass of 0.41 ± 0.14 M {sub ☉} and radius of 8.73 ± 1.54 km at 68% confidence) exists in 4U 1746-37. If another effect operated, 4U 1746-37 may contain an ultra-low-mass and small-radius object (M = 0.21 ± 0.06 M {sub ☉}, R = 6.26 ± 0.99 km at 68% confidence). Combining all possibilities, the mass of 4U 1746-37 is 0.41{sub −0.30}{sup +0.70} M{sub ⊙} at 99.7% confidence. For such low-mass neutron stars, it could be reproduced by a self-bound compact star, i.e., a quark star or quark-cluster star.« less
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?
Fuller; Pruet; Abazajian
2000-09-25
We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.
Off-equatorial circular orbits in magnetic fields of compact objects
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Kovář, Jiří; Karas, Vladimír
2009-04-01
We present results of investigation of the off-equatorial circular orbits existence in the vicinity of neutron stars, Schwarzschild black holes with plasma ring, and near Kerr-Newman black holes and naked singularities.
I-Love-Q relations for gravastars and the approach to the black-hole limit
NASA Astrophysics Data System (ADS)
Pani, Paolo
2015-12-01
The multipole moments and the tidal Love numbers of neutron stars and quark stars satisfy certain relations which are almost insensitive to the star's internal structure. A natural question is whether the same relations hold for different compact objects and how they possibly approach the black-hole limit. Here we consider "gravastars," which are hypothetical compact objects sustained by their internal vacuum energy. Such solutions have been proposed as exotic alternatives to the black-hole paradigm because they can be as compact as black holes and exist in any mass range. By constructing slowly rotating, thin-shell gravastars to quadratic order in the spin, we compute the moment of inertia I , the mass quadrupole moment Q , and the tidal Love number λ in exact form. The I -λ -Q relations of a gravastar are dramatically different from those of an ordinary compact star, but the black-hole limit is continuous; i.e., these quantities approach their Kerr counterparts when the compactness is maximum. Therefore, such relations can be used to discern a gravastar from an ordinary compact star but not to break the degeneracy with the black-hole case. Based on these results, we conjecture that the full multipolar structure and the tidal deformability of a spinning, ultracompact gravastar are identical to those of a Kerr black hole. The approach to the black-hole limit is nonpolynomial, thus differing from the critical behavior recently found for strongly anisotropic neutron stars.
Theoretical models for stellar X-ray polarization in compact objects
NASA Technical Reports Server (NTRS)
Meszaros, P.
1991-01-01
Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.
Sleuthing the Isolated Compact Stars
NASA Astrophysics Data System (ADS)
Drake, J. J.
2004-08-01
In the early 1990's, isolated thermally-emitting neutron stars accreting from the interstellar medium were predicted to show up in their thousands in the ROSAT soft X-ray all-sky survey. The glut of sources would provide unprecedented opportunities for probing the equation of state of ultra-dense matter. Only seven objects have been firmly identified to date. The reasons for this discrepency are discussed and recent high resolution X-ray spectroscopic observations of these objects are described. Spectra of the brightest of the isolated neutron star candidates, RX J1856.5-3754, continue to present interpretational difficulties for current neutron star model atmospheres and alternative models are briefly discussed. RX J1856.5-3754 remains a valid quark star candidate.
NASA Astrophysics Data System (ADS)
Sagunski, Laura; Zhang, Jun; Johnson, Matthew C.; Lehner, Luis; Sakellariadou, Mairi; Liebling, Steven L.; Palenzuela, Carlos; Neilsen, David
2018-03-01
Observations of gravitational radiation from compact binary systems provide an unprecedented opportunity to test general relativity in the strong field dynamical regime. In this paper, we investigate how future observations of gravitational radiation from binary neutron star mergers might provide constraints on finite-range forces from a universally coupled massive scalar field. Such scalar degrees of freedom (d.o.f.) are a characteristic feature of many extensions of general relativity. For concreteness, we work in the context of metric f (R ) gravity, which is equivalent to general relativity and a universally coupled scalar field with a nonlinear potential whose form is fixed by the choice of f (R ). In theories where neutron stars (or other compact objects) obtain a significant scalar charge, the resulting attractive finite-range scalar force has implications for both the inspiral and merger phases of binary systems. We first present an analysis of the inspiral dynamics in Newtonian limit, and forecast the constraints on the mass of the scalar and charge of the compact objects for the Advanced LIGO gravitational wave observatory. We then perform a comparative study of binary neutron star mergers in general relativity with those of a one-parameter model of f (R ) gravity using fully relativistic hydrodynamical simulations. These simulations elucidate the effects of the scalar on the merger and postmerger dynamics. We comment on the utility of the full waveform (inspiral, merger, postmerger) to probe different regions of parameter space for both the particular model of f (R ) gravity studied here and for finite-range scalar forces more generally.
Jets in black-hole and neutron-star X-ray binaries
NASA Astrophysics Data System (ADS)
Kylafis, Nikolaos
2016-07-01
Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.
Origin of 10{sup 15}–10{sup 16} G magnetic fields in the central engine of gamma ray bursts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Rafael S. de; Opher, Reuven, E-mail: rafael@astro.iag.usp.br, E-mail: opher@astro.iag.usp.br
2010-02-01
Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, ( ∼ 10{sup 15}–10{sup 16} G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, themore » problem is more difficult since, according to general relativity it has ''no hair'' (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas's tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields ∼ 10{sup 15}–10{sup 16} G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the ∼ 10{sup 15}–10{sup 16} G fields when the compact object is a neutron star, but also when it is a black hole.« less
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
Accreting neutron stars, black holes, and degenerate dwarf stars.
Pines, D
1980-02-08
During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.
First spectroscopy of a short-hard GRB: the environment of a compact object merger
NASA Astrophysics Data System (ADS)
de Ugarte Postigo, Antonio; Thöne, Christina C.; Rowllinson, Antonia; Benito, Rubén García; Levan, Andrew J.; Gorosabel, Javier; Goldoni, Paolo; Schulze, Steve
2015-03-01
Short gamma-ray bursts (GRBs) are an extremely elusive family of cosmic explosions. They are thought to be related to the violent merger of compact objects (such as a neutron stars or black holes). Their optical counterparts were not discovered until 2005, and since then, there had been no successful spectroscopic observations. Here we present the first spectra of a short GRB, which we use to study the environment and derive implications on the progenitors of these cosmic explosions. This poster is based on the work by de Ugarte Postigo et al. (2014).
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
Grand unification of neutron stars
Kaspi, Victoria M.
2010-01-01
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205
Rotational properties of hypermassive neutron stars from binary mergers
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst
2017-08-01
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
The Scientific Potential of X-ray Polarimetry
NASA Astrophysics Data System (ADS)
Fabian, Andrew C.
2016-04-01
X-ray Polarimetry is a rich, untapped source of information on the geometry and/or magnetic structure of a wide range of cosmic object from accreting black holes to jets and neutron stars. This introductory overview will outline the basics of the production of polarized X-ray emission and emphasise its importance in our quest to understand how compact objects work.
Millisecond Oscillations in X-ray Binaries
NASA Astrophysics Data System (ADS)
van der Klis, M.
The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations, and kilohertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin and orbital motion close around the neutron star, and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and some possibly related phenomena in black-hole candidates, and describe the attempts to use these observations to perform measurements of fundamental physical interest in these systems.
NASA Astrophysics Data System (ADS)
Bhalerao, Varun
2012-05-01
My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.
Compact objects in relativistic theories of gravity
NASA Astrophysics Data System (ADS)
Okada da Silva, Hector
2017-05-01
In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia of slowly rotating neutron stars, both in general relativity and in scalar-tensor gravity. We show that a sufficient amount of pressure anisotropy results in neutron star models whose properties in scalar-tensor theory deviate significantly from their general relativistic counterparts. Moreover, the presence of anisotropy allows these deviations to be considerable even for values of the theory's coupling parameter for which neutron stars in scalar-tensor theory would be otherwise indistinguishable from those in general relativity. Within scalar-tensor theory we also investigate the effects of the scalar field on the crustal torsional oscillations of neutron stars, which have been associated to quasi-periodic oscillations in the X-ray spectra in the aftermath of giant flares. We show that the presence of the scalar field has an influence on the thickness of the stellar crust, and investigate how it affects the oscillation frequencies. Deviations from the predictions of general relativity can be large for certain values of the theory's coupling parameter. However, the influence of the scalar field is degenerate with uncertainties in the equation of state of the star's crust and microphysics effects (electron screening) for values of the coupling allowed by binary pulsar observations. We also derive the stellar structure equations for slowly-rotating neutron stars in a broader class of scalar-tensor theories in which matter and scalar field are coupled through the so-called disformal coupling. We study in great detail how the disformal coupling affects the structure of neutron stars, and we investigate the existence of universal (equation of state-independent) relations connecting the stellar compactness and moment of inertia. In particular, we find that these universal relations can deviate considerably from the predictions of general relativity. (Abstract shortened by ProQuest.).
Development of a compact in situ polarized ³He neutron spin filter at Oak Ridge National Laboratory.
Jiang, C Y; Tong, X; Brown, D R; Chi, S; Christianson, A D; Kadron, B J; Robertson, J L; Winn, B L
2014-07-01
We constructed a compact in situ polarized (3)He neutron spin filter based on spin-exchange optical pumping which is capable of continuous pumping of the (3)He gas while the system is in place in the neutron beam on an instrument. The compact size and light weight of the system simplifies its utilization on various neutron instruments. The system has been successfully tested as a neutron polarizer on the triple-axis spectrometer (HB3) and the hybrid spectrometer (HYSPEC) at Oak Ridge National Laboratory. Over 70% (3)He polarization was achieved and maintained during the test experiments. Over 90% neutron polarization and an average of 25% transmission for neutrons of 14.7 meV and 15 meV was also obtained.
Hard X-ray spectra of neutron stars and black hole candidates
NASA Technical Reports Server (NTRS)
Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.
1997-01-01
The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.
Neutron stars: Observational diversity and evolution
NASA Astrophysics Data System (ADS)
Safi-Harb, S.
2017-12-01
Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.
Neutron star evolution and emission
NASA Astrophysics Data System (ADS)
Epstein, R. I.; Edwards, B. C.; Haines, T. J.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.
Surface emission from neutron stars and implications for the physics of their interiors.
Ozel, Feryal
2013-01-01
Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.
Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements
NASA Astrophysics Data System (ADS)
Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal
2018-03-01
The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
Initial data for high-compactness black hole-neutron star binaries
NASA Astrophysics Data System (ADS)
Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-05-01
For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.
Feasibility study on medical isotope production using a compact neutron generator.
Leung, Ka-Ngo; Leung, James K; Melville, Graeme
2018-07-01
Compact neutron generators can provide high flux of neutrons with energies ranging from thermal (0.025 eV) to 14 MeV. Recent measurements demonstrated high neutron yields from the D- 7 Li fusion reaction at an interaction energy of 500 keV. Using the D- 7 Li reaction and applying new advancements in high flux neutron generator technology along with the commercial availability of high voltage DC power supplies enables the production of useful quantities of radioisotopes for medical applications. Using the known neutron reaction cross-sections, it has been estimated that hundreds-to-thousands MBq (or tens-to-hundreds mCi) of 99 Mo, 225 Ac, 64 Cu and 67 Cu can be obtained from a compact high flux neutron generator. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrodynamic simulations of stellar wind disruption by a compact X-ray source
NASA Technical Reports Server (NTRS)
Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.
1990-01-01
This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.
Adams, Robert; Zboray, Robert; Cortesi, Marco; Prasser, Horst-Michael
2014-04-01
A conceptual design optimization of a fast neutron tomography system was performed. The system is based on a compact deuterium-deuterium fast neutron generator and an arc-shaped array of individual neutron detectors. The array functions as a position sensitive one-dimensional detector allowing tomographic reconstruction of a two-dimensional cross section of an object up to 10 cm across. Each individual detector is to be optically isolated and consists of a plastic scintillator and a Silicon Photomultiplier for measuring light produced by recoil protons. A deterministic geometry-based model and a series of Monte Carlo simulations were used to optimize the design geometry parameters affecting the reconstructed image resolution. From this, it is expected that with an array of 100 detectors a reconstructed image resolution of ~1.5mm can be obtained. Other simulations were performed in order to optimize the scintillator depth (length along the neutron path) such that the best ratio of direct to scattered neutron counts is achieved. This resulted in a depth of 6-8 cm and an expected detection efficiency of 33-37%. Based on current operational capabilities of a prototype neutron generator being developed at the Paul Scherrer Institute, planned implementation of this detector array design should allow reconstructed tomograms to be obtained with exposure times on the order of a few hours. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neutron Interrogation System For Underwater Threat Detection And Identification
NASA Astrophysics Data System (ADS)
Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.
2009-03-01
Wartime and terrorist activities, training and munitions testing, dumping and accidents have generated significant munitions contamination in the coastal and inland waters in the United States and abroad. Although current methods provide information about the existence of the anomaly (for instance, metal objects) in the sea bottom, they fail to identify the nature of the found objects. Field experience indicates that often in excess of 90% of objects excavated during the course of munitions clean up are found to be non-hazardous items (false alarm). The technology to detect and identify waterborne or underwater threats is also vital for protection of critical infrastructures (ports, dams, locks, refineries, and LNG/LPG). We are proposing a compact neutron interrogation system, which will be used to confirm possible threats by determining the chemical composition of the suspicious underwater object. The system consists of an electronic d-T 14-MeV neutron generator, a gamma detector to detect the gamma signal from the irradiated object and a data acquisition system. The detected signal then is analyzed to quantify the chemical elements of interest and to identify explosives or chemical warfare agents.
Estimating gravitational radiation from super-emitting compact binary systems
NASA Astrophysics Data System (ADS)
Hanna, Chad; Johnson, Matthew C.; Lehner, Luis
2017-06-01
Binary black hole mergers are among the most violent events in the Universe, leading to extreme warping of spacetime and copious emission of gravitational radiation. Even though black holes are the most compact objects they are not necessarily the most efficient emitters of gravitational radiation in binary systems. The final black hole resulting from a binary black hole merger retains a significant fraction of the premerger orbital energy and angular momentum. A nonvacuum system can in principle shed more of this energy than a black hole merger of equivalent mass. We study these super-emitters through a toy model that accounts for the possibility that the merger creates a compact object that retains a long-lived time-varying quadrupole moment. This toy model may capture the merger of (low mass) neutron stars, but it may also be used to consider more exotic compact binaries. We hope that this toy model can serve as a guide to more rigorous numerical investigations into these systems.
Neutron stars structure in the context of massive gravity
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.
2017-07-01
Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.
Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory
NASA Astrophysics Data System (ADS)
Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.
2015-12-01
The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Guillot, Sebastien; Kust Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick K.; Mahmoodifar, Simin; Miller, M. Coleman; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael Thomas
2017-08-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We will present our science plan and initial results from the first months of the NICER mission.
Searching for X-ray Pulsations from Neutron Stars Using NICER
NASA Astrophysics Data System (ADS)
Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination
2018-01-01
The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.
Pappas, George; Apostolatos, Theocharis A
2014-03-28
Recently, it was shown that slowly rotating neutron stars exhibit an interesting correlation between their moment of inertia I, their quadrupole moment Q, and their tidal deformation Love number λ (the I-Love-Q relations), independently of the equation of state of the compact object. In the present Letter a similar, more general, universality is shown to hold true for all rotating neutron stars within general relativity; the first four multipole moments of the neutron star are related in a way independent of the nuclear matter equation of state we assume. By exploiting this relation, we can describe quite accurately the geometry around a neutron star with fewer parameters, even if we don't know precisely the equation of state. Furthermore, this universal behavior displayed by neutron stars could promote them to a more promising class of candidates (next to black holes) for testing theories of gravity.
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
Role of pressure anisotropy on relativistic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan
2018-02-01
We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.
Neutron stars in screened modified gravity: Chameleon versus dilaton
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine; Jha, Rahul
2017-04-01
We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.
NASA Astrophysics Data System (ADS)
Wen, Yong-Mei; Wen, De-Hua
2017-06-01
By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
A Compact Self-Driven Liquid Lithium Loop for Industrial Neutron Generation
NASA Astrophysics Data System (ADS)
Stemmley, Steven; Szott, Matt; Kalathiparambil, Kishor; Ahn, Chisung; Jurczyk, Brian; Ruzic, David
2017-10-01
A compact, closed liquid lithium loop has been developed at the University of Illinois to test and utilize the Li-7(d,n) reaction. The liquid metal loop is housed in a stainless steel trench module with embedded heating and cooling. The system was designed to handle large heat and particle fluxes for use in neutron generators as well as fusion devices, solely operating via thermo-electric MHD. The objectives of this project are two-fold, 1) produce a high energy, MeV-level, neutron source and 2) provide a self-healing, low Z, low recycling plasma facing component. The flowing volume will keep a fresh, clean, lithium surface allowing Li-7(d,n) reactions to occur as well as deuterium adsorption in the fluid, increasing the overall neutron output. Expected yields of this system are 107 n/s for 13.5 MeV neutrons and 108 n/s for 2.45 MeV neutrons. Previous work has shown that using a tapered trench design prevents dry out and allows for an increase in velocity of the fluid at the particle strike point. For heat fluxes on the order of 10's MW/m2, COMSOL models have shown that high enough velocities ( 70 cm/s) are attainable to prevent significant lithium evaporation. Future work will be aimed at addressing wettability issues of lithium in the trenches, experimentally determine the velocities required to prevent dry out, and determine the neutron output of the system. The preliminary results and discussion will be presented. DOE SBIR project DE-SC0013861.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam
Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into themore » structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.« less
X ray timing observations and gravitational physics
NASA Technical Reports Server (NTRS)
Michelson, Peter F.; Wood, Kent S.
1989-01-01
Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.
Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...
2014-12-24
In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less
NASA Astrophysics Data System (ADS)
Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.
2017-03-01
A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.
NASA Astrophysics Data System (ADS)
Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.
2018-04-01
A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.
Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...
2014-06-04
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less
POSSIBLE CHANGES OF STATE AND RELEVANT TIMESCALES FOR A NEUTRON STAR IN LS I +61 Degree-Sign 303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papitto, A.; Torres, D. F.; Rea, N.
2012-09-10
The properties of the short, energetic bursts recently observed from the {gamma}-ray binary LS I +61 Degree-Sign 303 are typical of those showed by high magnetic field neutron stars (NSs) and thus provide a strong indication in favor of a NS being the compact object in the system. Here, we discuss the transitions among the states accessible to a NS in a system like LS I +61 Degree-Sign 303, such as the ejector, propeller, and accretor phases, depending on the NS spin period, magnetic field, and rate of mass captured. We show how the observed bolometric luminosity ({approx}> few Multiplication-Signmore » 10{sup 35} erg s{sup -1}) and its broadband spectral distribution indicate that the compact object is most probably close to the transition between working as an ejector all along its orbit and being powered by the propeller effect when it is close to the orbit periastron, in a so-called flip-flop state. By assessing the torques acting onto the compact object in the various states, we follow the spin evolution of the system, evaluating the time spent by the system in each of them. Even taking into account the constraint set by the observed {gamma}-ray luminosity, we found that the total age of the system is compatible with being Almost-Equal-To 5-10 kyr, comparable to the typical spin-down ages of high-field NSs. The results obtained are discussed in the context of the various evolutionary stages expected for a NS with a high-mass companion.« less
NASA Astrophysics Data System (ADS)
Kornev, V. A.; Askinazi, L. G.; Belokurov, A. A.; Chernyshev, F. V.; Lebedev, S. V.; Melnik, A. D.; Shabelsky, A. A.; Tukachinsky, A. S.; Zhubr, N. A.
2017-12-01
The paper presents DD neutron flux measurements in neutron beam injection (NBI) experiments aimed at the optimization of target plasma and heating beam parameters to achieve maximum neutron flux in the TUMAN-3M compact tokamak. Two ion sources of different design were used, which allowed the separation of the beam’s energy and power influence on the neutron rate. Using the database of experiments performed with the two ion sources, an empirical scaling was derived describing the neutron rate dependence on the target plasma and heating beam parameters. Numerical modeling of the neutron rate in the NBI experiments performed using the ASTRA transport code showed good agreement with the scaling.
Note: Coincidence measurements of 3He and neutrons from a compact D-D neutron generator.
Ji, Q; Lin, C-J; Tindall, C; Garcia-Sciveres, M; Schenkel, T; Ludewigt, B A
2017-05-01
Tagging of neutrons (2.45 MeV) with their associated 3 He particles from deuterium-deuterium (D-D) fusion reactions has been demonstrated in a compact neutron generator setup enabled by a high brightness, microwave-driven ion source with a high fraction of deuterons. Energy spectra with well separated peaks of the D-D fusion reaction products, 3 He, tritons, and protons, were measured with a silicon PIN diode. The neutrons were detected using a liquid scintillator detector with pulse shape discrimination. By correlating the 3 He detection events with the neutron detection in time, we demonstrated the tagging of emitted neutrons with 3 He particles detected with a Si PIN diode detector mounted inside the neutron generator vacuum vessel.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
Dark matter, neutron stars, and strange quark matter.
Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R
2010-10-01
We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.
Laboratory simulation of photoionized plasma among astronomical compact objects
NASA Astrophysics Data System (ADS)
Fujioka, Shinsuke; Yamamoto, Norimasa; Wang, Feilu; Salzmann, David; Li, Yutong; Rhee, Yong-Joo; Nishimura, Hiroaki; Takabe, Hideaki; Mima, Kunioki
2008-11-01
X-ray line emission with several-keV of photon energy was observed from photoionized accreting clouds, for example CYGNUS X-3 and VELA X-1, those are exposed by hard x-ray continuum from the compact objects, such as neutron stars, black holes, or white dwarfs, although accreting clouds are thermally cold. The x-ray continuum-induced line emission gives a good insight to the accreting clouds. We will present a novel laboratory simulation of the photoionized plasma under well-characterized conditions by using high-power laser facility. Blackbody radiator with 500-eV of temperature, as a miniature of a hot compact object, was created.Silicon (Si) plasma with 30-eV of electron temperature was produced in the vicinity of the 0.5-keV blackbody radiator. Line emissions of lithium- and helium-like Si ions was clearly observed around 2-keV of photon-energy from the thermally cold Si plasma, this result is hardly interpreted without consideration of the photoionization. Atomic kinetics code reveals importance of inner-shell ionization directly caused by incoming hard x-rays.
Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C
2014-06-01
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.
NASA Astrophysics Data System (ADS)
Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.
2014-06-01
A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Ganda; Jasmina Vujic; Ehud Greenspan
2010-12-01
This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved withmore » the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.« less
Universal charge-radius relation for subatomic and astrophysical compact objects.
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature.
Evidence of Pulsars Metamorphism and Their Connection to Stellar Black Holes
NASA Astrophysics Data System (ADS)
Hujeirat, A. A.
2018-03-01
It is agreed that the progenitors of neutron stars (-NSs) and black holes (-BHs) should be massive stars with M > 9 M_{Sun}. Yet none of these objects have ever been found with [2 M_{Sun}< M < 5 M_{Sun}]. Moreover, numerical modelings show that NSs of reasonable masses can be obtained only if the corresponding central density is beyond the nuclear one: an unverifiable density-regime with unknown physics. Here I intend to clarify the reasons underlying the existence of this mass-gap and propose a new class of invisible ultra-compact objects: the end-stage in the cosmological evolution of pulsars and neutron stars in an ever expanding universe. The present study relies on theoretical and experimental considerations as well as on solution of the non-linear TOV equation modified to include a universal scalar field -φ at the background of supranuclear densities. The computer-code is based on finite volume method using both the first-order Euler and fourth-order Rugge-Kutta integration methods. The inclusion of φ at zero-temperature is motivated by recent observations of the short-living pentaquarks at the LHC. Based on these studies, I argue that pulsars must be born with embryonic super-baryons (SBs) that form through merger of individual neutrons at their centers. The cores of SBs are made of purely incompressible superconducting gluon-quark superfluids (henceforth SuSu-fluids). Such quantum fluids have a uniform supranuclear density and governed by the critical EOSs P = E for baryonic matter and for φ-induced dark energy P_{φ}= -E_{φ}. The incompressibility here ensures that particles communicate at the shortest possible time scale, superfluidity and superconductivity enforce SBs to spin-down promptly as dictated by the Onsager-Feynman equation and to expel vortices and magnetic flux tubes, whereas their lowest energy state grants SBs lifetimes that are comparable to those of protons. These extra-ordinary long lifetimes suggest that conglomeration of SuSu-objects would evolve over several big bang events to possibly form dark matter halos that embed the galaxies in the observable universe. Pulsars and young neutron stars should metamorphose into SuSu-objects: a procedure which is predicted to last for one Gyr or even shorter, depending on their initial compactness. Once the process is completed, then they become extraordinary compact and turn invisible. It turns out that recent observations of particle collisions at the LHC and RHIC, observations of glitching pulsars and primordial galaxies remarkably support the present scenario.
Clumpy wind accretion in supergiant neutron star high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Bozzo, E.; Oskinova, L.; Feldmeier, A.; Falanga, M.
2016-05-01
The accretion of the stellar wind material by a compact object represents the main mechanism powering the X-ray emission in classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. In this work we present the first attempt to simulate the accretion process of a fast and dense massive star wind onto a neutron star, taking into account the effects of the centrifugal and magnetic inhibition of accretion ("gating") due to the spin and magnetic field of the compact object. We made use of a radiative hydrodynamical code to model the nonstationary radiatively driven wind of an O-B supergiant star and then place a neutron star characterized by a fixed magnetic field and spin period at a certain distance from the massive companion. Our calculations follow, as a function of time (on a total timescale of several hours), the transitions of the system through all different accretion regimes that are triggered by the intrinsic variations in the density and velocity of the nonstationary wind. The X-ray luminosity released by the system is computed at each time step by taking into account the relevant physical processes occurring in the different accretion regimes. Synthetic lightcurves are derived and qualitatively compared with those observed from classical supergiant high mass X-ray binaries and supergiant fast X-ray transients. Although a number of simplifications are assumed in these calculations, we show that taking into account the effects of the centrifugal and magnetic inhibition of accretion significantly reduces the average X-ray luminosity expected for any neutron star wind-fed binary. The present model calculations suggest that long spin periods and stronger magnetic fields are favored in order to reproduce the peculiar behavior of supergiant fast X-ray transients in the X-ray domain.
NASA Astrophysics Data System (ADS)
Remillard, R. A.; Lin, D.; Cooper, R. L.; Narayan, R.
2005-12-01
We measure the rates of type I X-ray bursts from a likely complete sample of 37 non-pulsing Galactic X-ray transients observed with the RXTE ASM during 1996-2004. Our strategy is to test the prevailing paradigms for these sources, which are well-categorized in the literature as either neutron-star systems or black hole candidates. Burst rates are measured as a function of the bolometric luminosity, and the results are compared with burst models for neutron stars and for heavy compact objects with a solid surface. We use augmented versions of the models developed by Narayan & Heyl (2002; 2003). For a given mass, we consider a range of conditions in both the radius and the temperature at the boundary below the accretion layer. We find 135 type I bursts in 3.7 Ms of PCA light curves for the neutron-star group, and the burst rate function is generally consistent with the model predictions for bursts from accreting neutron stars. On the other hand, none of the (20) bursts candidates passed spectral criteria for type I bursts in 6.5 Ms of PCA light curves for black-hole binaries and candidates. The burst function upper limits are inconsistent with the predictions of the burst model for heavy compact objects with a solid surface. The consistency probability is found to be below 10-7 for dynamical black-hole binaries, falling to below 10-13 for the additional exposures of black-hole candidates. These results provide indirect evidence that black holes do have event horizons. This research was supported, in part, by NASA science programs.
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
A compact self-flowing lithium system for use in an industrial neutron source
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David
2016-10-01
A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.
A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B.
Tanvir, N R; Levan, A J; Fruchter, A S; Hjorth, J; Hounsell, R A; Wiersema, K; Tunnicliffe, R L
2013-08-29
Short-duration γ-ray bursts are intense flashes of cosmic γ-rays, lasting less than about two seconds, whose origin is unclear. The favoured hypothesis is that they are produced by a relativistic jet created by the merger of two compact stellar objects (specifically two neutron stars or a neutron star and a black hole). This is supported by indirect evidence such as the properties of their host galaxies, but unambiguous confirmation of the model is still lacking. Mergers of this kind are also expected to create significant quantities of neutron-rich radioactive species, whose decay should result in a faint transient, known as a 'kilonova', in the days following the burst. Indeed, it is speculated that this mechanism may be the predominant source of stable r-process elements in the Universe. Recent calculations suggest that much of the kilonova energy should appear in the near-infrared spectral range, because of the high optical opacity created by these heavy r-process elements. Here we report optical and near-infrared observations that provide strong evidence for such an event accompanying the short-duration γ-ray burst GRB 130603B. If this, the simplest interpretation of the data, is correct, then it confirms that compact-object mergers are the progenitors of short-duration γ-ray bursts and the sites of significant production of r-process elements. It also suggests that kilonovae offer an alternative, unbeamed electromagnetic signature of the most promising sources for direct detection of gravitational waves.
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
NASA Astrophysics Data System (ADS)
Fornasini, Francesca M.; Tomsick, John A.; Bachetti, Matteo; Krivonos, Roman A.; Fürst, Felix; Natalucci, Lorenzo; Pottschmidt, Katja; Wilms, Jörn
2017-05-01
IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy ≲ 30 {keV} in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα emission line and a soft excess, which can be accounted for by either a partial-covering absorber with {N}{{H}}≈ {10}23 cm-2, which could be due to the inhomogeneous supergiant wind, or a blackbody component with {kT}={1.74}-0.05+0.04 keV and {R}{BB}≈ 0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.
Gravitational Wave Astronomy:The High Frequency Window
NASA Astrophysics Data System (ADS)
Andersson, Nils; Kokkotas, Kostas D.
As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.
Constraining parameters of the neutron star in the supernova remnant HESS J1731-347
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Puehlhofer, G.; Werner, K.; Santangelo, A.
2014-07-01
The Central Compact Object (CCO) in HESS J1731-347, presumably a neutron star, is one of the brightest sources in this class. Like other CCOs, it potentially provides an "undisturbed" view of thermal radiation generated at the neutron star surface. The shape and normalization of the corresponding X-ray spectrum depends on the emitting area, surface redshift, and gravity acceleration. Thus, its modeling under certain assumptions allows the mass and radius of the neutron star to be constrained. In our analysis, we model the spectrum of the CCO accumulated with XMM-Newton over ˜100 ksec exposure time in three observations. The exposure time has increased by a factor of five since our previous analysis of the source. For the spectral fitting, we use our hydrogen and carbon atmosphere models calculated assuming hydrostatic and radiative equilibria and taking into account pressure ionization and the presence of spectral lines (in case of carbon). We present the resulting constraints on the mass, radius, distance, and temperature of the neutron star.
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
A key factor to the spin parameter of uniformly rotating compact stars: crust structure
NASA Astrophysics Data System (ADS)
Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua
2016-04-01
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
NASA Technical Reports Server (NTRS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2010-01-01
MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma-rays; detected gamma-rays from thermal neutron reactions d. detected gamma-rays from non-thermal neutron reactions and total detected gamma-rays as a function of depth into the annulus volume. These indicated a number of possible independent metrics of perlite compaction. For example the count rate for perlite elements increased from 3600 to 8500 cps for an increase in perlite density from 6 lbs/lcf to 16.5 lbs/cf. Thus the MCNP simulations have confirmed the feasibility of using neutron methods to map the compaction of perlite in the walls of the cryogenic tanks.
Identifying Bright X-Ray Beasts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d
On the ambiguity in relativistic tidal deformability
NASA Astrophysics Data System (ADS)
Gralla, Samuel E.
2018-04-01
The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.
Strongly-Interacting Fermi Gases in Reduced Dimensions
2009-05-29
effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas
Soft gamma rays from black holes versus neutron stars
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1992-01-01
The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.
Associated-particle sealed-tube neutron probe for characterization of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodes, E.; Dickerman, C.E.; Peters, C.W.
1993-10-01
A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.
2014-02-18
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Robert J.
Microtron-based Compact, Portable Gamma-Ray Source. The objective of Phase I of this project was to produce a conceptual design of a prototype compact microtron electron accelerator, which could be designed, built, and demonstrated in Phase II of the project. The conceptual design study included an analysis of the parameters of the microtron and its components, and the expected performance of the prototype microtron as a source of x-rays and/or RF neutrons in the MeV energy range. The major components of the microtron are the magnet, the accelerating system, the power system, the vacuum system, the control system, the beam extractionmore » system and the targets to produce x-rays (and/or neutrons). Our objectives for the design of the prototype were for it to be compact, cost-effective, capable of producing high intensity x-ray (an/or neutron) fluxes. In addition, the prototype was to be easily assembled and disassembled so that components could be easily replaced. The main parameters for the prototype are the following: the range of electron kinetic energies, the output power, the RF frequency band (X-band, C-band, or S-Band), the type of injection (Type I or Type II), the magnet type, i.e. permanent magnet, electromagnet, or a hybrid combination of permanent and electromagnet. The results of the Phase I study and analysis for a prototype microtron are the following: The electron energy range can be varied from below 6 MeV to 9 MeV, the optimal frequency range is S-Band (2-4 GHz) RF frequency, Type II injection (described below), and the magnet type is the hybrid version. The prototype version will be capable of producing gamma ray doses of ~1800 R/min-m and neutron fluxes of up to ~6 x 10 10 n/s with appropriate targets. The results of the Phase I study and analysis are provided below. The proposed Phase II plan was to demonstrate the prototype at low beam power. In the subsequent Phase III, high power tests would be performed, and the design of commercial versions of microtrons with various energies, sizes and types would be produced and marketed, including a more compact and more portable 6 MeV battery-powered model that more closely meets the requirements in the original FOA topic description. In the course of the Phase I study, we also identified another microtron version, one that was larger (not compact) and more powerful than that of the Phase II prototype, which could serve as an intense source of photo- neutrons, up to 4 x 10 12 n/s for use in nuclear medicine, short-lived isotope production, or other applications. In addition, it could produce gamma dose rates up to 130 kR/min-m with a heavy metal bremsstrahlung target. The results and specifications of this were submitted to IPAC16 (Reference [12]) the paper is included in Addendum B. Because this version was beyond the scope of the Phase I project, there is no additional description in the Final Report.« less
Broad Redshifted Line as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Titarchuk, Lev; Kazanas, Demos; Becker, Peter A.
2003-11-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflow
NASA Astrophysics Data System (ADS)
Kazanas, Demosthenes; Titarchuk, Lev; Becker, Peter A.
2004-07-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in v/c, where v is the outflow velocity and c the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
Broad Red-Shifted Lines as a Signature of Outflows
NASA Astrophysics Data System (ADS)
Titarchuck, Lev; Kazanas, Demos; Becker, Peter A.
2006-02-01
We formulate and solve the diffusion problem of line photon propagation in a bulk outflow from a compact object (black hole or neutron star) using a generic assumption regarding the distribution of line photons within the outflow. Thomson scattering of the line photons within the expanding flow leads to a decrease of their energy which is of first order in υ/c, where υ the outflow velocity and c is the speed of light. We demonstrate that the emergent line profile is closely related to the time distribution of photons diffusing through the flow (the light curve) and consists of a broad redshifted feature. We analyzed the line profiles for the general case of outflow density distribution. We emphasize that the redshifted lines are intrinsic properties of the powerful outflow that are supposed to be in many compact objects.
NASA Technical Reports Server (NTRS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, Ann M.; Arens, Ellen E.
2010-01-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Th ere is evidence that some of the perlite has compacted over time, com promising the thermal performance and possibly also structural integr ity of the tanks. Therefore an Non-destructive Testing (NDT) method for measuring the perlite density or void fraction is urgently needed. Methods based on neutrons are good candidates because they can readil y penetrate through the 1.75 cm outer steel shell and through the ent ire 120 cm thickness of the perlite zone. Neutrons interact with the nuclei of materials to produce characteristic gamma rays which are the n detected. The gamma ray signal strength is proportional to the atom ic number density. Consequently, if the perlite is compacted then the count rates in the individual peaks in the gamma ray spectrum will i ncrease. Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. With commercially available portable neutron generators it is possible to produce simul taneously fluxes of neutrons in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scatt ering which is sensitive to Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA) and this is sensitive to Si, AI, Na, Kand H. Thus the two energy ranges produce complementary information. The R&D program has three phases: numerical simulations of neutron and gamma ray transport with MCNP s oftware, evaluation of the system in the laboratory on test articles and finally mapping of the perlite density in the cryogenic tanks at KSC. The preliminary MCNP calculations have shown that the fast/therma l neutron NDT method is capable of distinguishing between expanded an d compacted perlite with excellent statistics.
A central compact object in Kes 79: the hypercritical regime and neutrino expectation
NASA Astrophysics Data System (ADS)
Bernal, C. G.; Fraija, N.
2016-11-01
We present magnetohydrodynamical simulations of a strong accretion on to magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the centre of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called central compact objects (CCOs), which exhibits no evidence for a surrounding pulsar wind nebula. In this work, we show that the submergence of the magnetic field during the hypercritical phase can explain such behaviour for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733 ± 364. In addition, we compute the flavour ratio on Earth for a progenitor model.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.
Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D
2011-11-30
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-04-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
Identification of the central compact object in the young supernova remnant 1E 0102.2-7219
NASA Astrophysics Data System (ADS)
Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.
2018-06-01
Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.
NASA Astrophysics Data System (ADS)
Rebai, M.; Giacomelli, L.; Milocco, A.; Nocente, M.; Rigamonti, D.; Tardocchi, M.; Camera, F.; Cazzaniga, C.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Giaz, A.; Hu, Z. M.; Marchi, T.; Peng, X. Y.; Gorini, G.
2016-11-01
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compact size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.
Universal Charge-Radius Relation for Subatomic and Astrophysical Compact Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4x10{sup 2} and 10{sup 4} fm the upper bound on the net charge is given by the universal relation Z=0.71R{sub fm}, and for larger radii (measured in femtometers or kilometers) Z=7x10{sup -5}R{sub fm}{sup 2}=7x10{sup 31}R{sub km}{sup 2}. For objects with nuclear density the relation corresponds to Z{approx_equal}0.7A{sup 1/3} (10{sup 8}10{sup 12}), where A is the baryonmore » number. For some systems this universal upper bound improves existing charge limits in the literature.« less
Multi-wavelength Observations of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hernandez Santisteban, Juan Venancio
2016-11-01
The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
X-raying a galactic gravitational lense
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2016-09-01
It can be very difficult to detect compact objects that are not accreting in binary systems. Therefore we know very little about such objects and likely would not notice them even if they are very nearby. Two most obvious examples are very old isolated neutron stars (those that may be beyond the death line and hence are lacking pulsed radio or gamma-ray emission) and isolated stellar-mass black holes (none have been identified so far). OGLE3-ULENSPAR-05 is one of the few massive objects identified in microlensing searches for dark massive objects by the OGLE collaboration. We propose to detect the source or set stringent limit on its X-ray luminosity.
NASA Astrophysics Data System (ADS)
Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka; JET Contributors
2017-03-01
At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Dioszegi, I.
2011-10-23
Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is thatmore » neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays cover 30 cm/nanosecond). The main advantage of the technique is its ability to simultaneously provide 2D and 3D imaging of objects and their elemental composition. This work reports on the efficacy of using 14 MeV neutrons tagged by the associated particle neutron time-of-flight technique (APnTOF) to extract neutron induced characteristic gamma-rays from an object-of-interest with high SNR and without interference from nearby clutter.« less
Leung, Ka-Ngo; Lou, Tak Pui
2005-03-22
A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.
Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator
NASA Astrophysics Data System (ADS)
Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.
2014-12-01
Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.
USDA-ARS?s Scientific Manuscript database
Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with...
Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillich, Don; Kovanen, Andrew; Anderson, Tom
The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.
2017-12-01
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.
Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N
2017-12-22
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.
Solid-State Neutron Detector Device
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.
A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.
Ho, Wynn C G; Heinke, Craig O
2009-11-05
The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.
X-Ray Emission from "Uranium" Stars
NASA Technical Reports Server (NTRS)
Schlegel, Eric; Mushotzky, Richard (Technical Monitor)
2005-01-01
The project aims to secure XMM observations of two targets with extremely low abundances of the majority of heavy elements (e.g., log[Fe/H] $\\sim$-4), but that show absorption lines of uranium. The presence of an r-process element such as uranium requires a binary star system in which the companion underwent a supernova explosion. A binary star system raises the distinct possibility of the existence of a compact object, most likely a neutron star, in the binary, assuming it survived the supernova blast. The presence of a compact object then suggests X-ray emission if sufficient matter accretes to the compact object. The observations were completed less than one year ago following a series of reobservations to correct for significant flaring that occurred during the original observations. The ROSAT all-sky survey was used to report on the initial assessment of X-ray emission from these objects; only upper limits were reported. These upper limits were used to justify the XMM observing time, but with the expectation that upper limits would merely be pushed lower. The data analysis hinges critically on the quality and degree of precision with which the background is handled. During the past year, I have spent some time learning the ins and outs of XMM data analysis. In the coming year, I can apply that learning to the analysis of the 'uranium' stars.
The origin of ultra-compact binaries
NASA Technical Reports Server (NTRS)
Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki
1987-01-01
The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.
System Construction of the Stilbene Compact Neutron Scatter Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2012-04-01
We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
Equatorial Geodesics Around the Magnetars
NASA Astrophysics Data System (ADS)
Alfradique, Viviane A. P.; Troconis, Orlenys N.; Negreiros, Rodrigo P.
Neutron stars manifest themselves as different classes of astrophysical sources that are associated to distinct phenomenology. Here we focus our attention on magnetars (or strongly magnetized neutron stars) that are associated to Soft Gamma Repeaters and Anomalous X-ray Pulsars. The magnetic field on surface of these objects, reaches values greater than 1015 G. Under intense magnetic fields, relativistic effects begin to be decisive for the definition of the structure and evolution of these objects. We are tempted to question ourselves to how strengths fields affect the structure of neutron star. In this work, our objective is study and compare two solutions of Einstein-Maxwell equations: the Bonnor solution, which is an analytical solution that describe the exterior spacetime for a massive compact object which has a magnetic field that is characterize as a dipole field and a complete solution that describe the interior and exterior spacetime for the same source found by numerical methods). For this, we describe the geodesic equations generated by such solutions. Our results show that the orbits generated by the Bonnor solution are the same as described by numerical solution. Also, show that the inclusion of magnetic fields with values up to 1017G in the center of the star does not modify sharply the particle orbits described around this star, so the use of Schwarzschild solution for the description of these orbits is a reasonable approximation.
NASA Technical Reports Server (NTRS)
Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub;
2016-01-01
We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT approximately 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kTe approximately 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 MHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a Kaline from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N(sub H) approximately 1.6 x 10(exp 23) cm(exp -2)).
Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?
NASA Astrophysics Data System (ADS)
Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.
2018-04-01
The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.
NASA Astrophysics Data System (ADS)
Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun
2013-02-01
For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. O. Tuemer; L. Doan; C. W. Su
2000-06-04
This paper describes the design and operation of a Compact Integrated Narcotics Detection Instrument (CINDI), which utilizes neutrons emitted from {sup 252}Cf. Neutrons emitted from the front face of CINDI penetrate dense compartment barrier materials with little change in energy but are backscattered by hydrogen-rich materials such as drugs. CINDI has led to a new technology that shows promise for identifying the concealed contraband. Carriers such as vehicles, marine vessels, airplanes, containers, cargo, and luggage will be scanned using both neutron and gamma-ray sources. The signal from both the neutron and gamma-ray backscattering and/or transmission can be used simultaneously tomore » detect and possibly identify the contrabands it has been trained for.« less
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
A Christmas comet falling onto a neutron star
NASA Astrophysics Data System (ADS)
Campana, S.
The Sun and the planets are the main, but not the only, bodies of the Solar System. There are thousands of asteroids and several tens of comets, many of which are still unknown. They are the remnants of the planetesimals that formed at the origin of our Solar System, and they are rocky objects of different dimensions and irregular shape. Sometimes these minor bodies fall onto the Sun or onto planets, like Jupiter. Less dramatic events occur when the infalling bodies do not directly impact onto the target but are tidally disrupted. The tidal disruption of solar mass stars around supermassive black holes has been extensively studied analytically and numerically. In these events the star, as it approaches the black hole, develops into an elongated banana-shaped structure, the most tightly bound debris being at the closer end to the compact object. After completing an (few) eccentric orbit(s), these bound debris fall onto the black hole, emitting energy. Orbital precession may lead to the crossing of the debris orbits producing an accretion disk. Observationally, these events will give rise to luminous events with different temporal decays in different energy bands. Tidal break-up events occur also in planetary systems around normal stars but these events are too faint to be detected. Things change when the star is a compact object. Indeed planets have been discovered around radio pulsars, making likely the existence also of orbiting minor bodies. The direct impact of minor bodies onto neutron stars has been studied in the past and it has been envisaged as a possible (local) explanation for Gamma-Ray Bursts (GRBs), producing short-duration (˜ seconds) events. To explain the peculiarities of GRB 101225A (Christmas burst) we propose that it resulted from the tidal disruption event of a minor body around a neutron star in our Galaxy.
An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT
NASA Astrophysics Data System (ADS)
Asnal, M.; Liamsuwan, T.; Onjun, T.
2015-05-01
Boron Neutron Capture Therapy (BNCT) can be achieved by using a compact neutron generator such as a compact D-T neutron source, in which neutron energy must be in the epithermal energy range with sufficient flux. For these requirements, a Beam Shaping Assembly (BSA) is needed. In this paper, three BSA designs based on the D-T reaction for BNCT are discussed. It is found that the BSA configuration designed by Rasouli et al. satisfies all of the International Atomic Energy Agency (IAEA) criteria. It consists of 14 cm uranium as multiplier, 23 cm TiF3 and 36 cm Fluental as moderator, 4 cm Fe as fast neutron filter, 1 mm Li as thermal neutron filter, 2.6 cm Bi as gamma ray filter, and Pb as collimator and reflector. It is also found that use of specific filters is important for removing the fast and thermal neutrons and gamma contamination. Moreover, an appropriate neutron source plays a key role in providing a proper epithermal flux.
Laser-based fast-neutron spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pomerantz, Ishay; Kishon, Itay; Kleinschmidt, Annika; Schanz, Victor A.; Tebartz, Alexandra; Fernández, Juan Carlos; Gautier, Donald C.; Johnson, Randall Philip; Shimada, Tsutomu; Wurden, Glen Anthony; Roth, Markus
2017-05-01
Great progress has been made in recent years in realizing compact, laser-based neutron generators. These devices, however, are inapplicable for conducting energy-resolved fast-neutron radiography because of the electromagnetic noise produced by the interaction of a strong laser field with matter. To overcome this limitation, we developed a novel neutron time-of-flight detector, largely immune to electromagnetic noise. The detector is based on plastic scintillator, only a few mm in size, which is coupled to a silicon photo-multiplier by a long optical fiber. I will present results we obtained at the Trident Laser Facility at Los Alamos National Laboratory during the summer of 2016. Using this detector, we recorded high resolution, low-background fast neutron spectra generated by the interaction of laser accelerated deuterons with Beryllium. The quality of these spectra was sufficient to resolve the unique neutron absorption spectra of different elements and thus it is the first demonstration of laser-based fast neutron spectroscopy. I will discuss how this achievement paves the way to realizing compact neutron radiography systems for research, security, and commercial applications.
Contribution to fusion research from IAEA coordinated research projects and joint experiments
NASA Astrophysics Data System (ADS)
Gryaznevich, M.; Van Oost, G.; Stöckel, J.; Kamendje, R.; Kuteev, B. N.; Melnikov, A.; Popov, T.; Svoboda, V.; The IAEA CRP Teams
2015-10-01
The paper presents objectives and activities of IAEA Coordinated Research Projects ‘Conceptual development of steady-state compact fusion neutron sources’ and ‘Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research’. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed.
Beltrami–Bernoulli equilibria in plasmas with degenerate electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhiani, V. I., E-mail: vazhab@yahoo.com; Shatashvili, N. L., E-mail: shatash@ictp.it; Mahajan, S. M., E-mail: mahajan@mail.utexas.edu
2015-02-15
A new class of Double Beltrami–Bernoulli equilibria, sustained by electron degeneracy pressure, is investigated. It is shown that due to electron degeneracy, a nontrivial Beltrami–Bernoulli equilibrium state is possible even for a zero temperature plasma. These states are, conceptually, studied to show the existence of new energy transformation pathways converting, for instance, the degeneracy energy into fluid kinetic energy. Such states may be of relevance to compact astrophysical objects like white dwarfs, neutron stars, etc.
Formation Timescales for High-Mass X-ray Binaries in M33
NASA Astrophysics Data System (ADS)
Garofali, Kristen; Williams, Benjamin F.; Hillis, Tristan; Gilbert, Karoline M.; Dolphin, Andrew E.; Eracleous, Michael; Binder, Breanna
2018-06-01
We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival HST and Chandra imaging to find blue stars associated with X-ray positions. We use the HST photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of < 5 Myr and ˜ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from ˜ 8 M⊙ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at < 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.
Scintillating Fiber Technology for a High Neutron Spectrometer
NASA Technical Reports Server (NTRS)
Kuznetsov, Evgeny; Adams, James, Jr.; Christl, Mark; Norwood, Joseph; Watts, John
2014-01-01
Develop a compact low-power neutron spectrometer that uniquely identifies neutrons in the mixed radiation field expected on crewed deep-space missions. Secondary neutrons are generated by cosmic rays striking heavy crewed spacecraft as well as lunar and planetary surfaces1,2. It has been shown that secondary neutrons can account for up to 50% if the total dose-equivalent received by the crew.
Accretion Disk Outflows from Compact Object Mergers
NASA Astrophysics Data System (ADS)
Metzger, Brian
Nuclear reactions play a key role in the accretion disks and outflows associated with the merger of binary compact objects and the central engines of gamma-ray bursts and supernovae. The proposed research program will investigate the impact of nucleosynthesis on these events and their observable signatures by means of analytic calculations and numerical simulations. One focus of this research is rapid accretion following the tidal disruption of a white dwarf (WD) by a neutron star (NS) or black hole (BH) binary companion. Tidal disruption shreds the WD into a massive torus composed of C, O, and/or He, which undergoes nuclear reactions and burns to increasingly heavier elements as it flows to smaller radii towards the central compact object. The nuclear energy so released is comparable to that released gravitationally, suggesting that burning could drastically alter the structure and stability of the accretion flow. Axisymmetric hydrodynamic simulations of the evolution of the torus including nuclear burning will be performed to explore issues such as the mass budget of the flow (accretion vs. outflows) and its thermal stability (steady burning and accretion vs. runaway explosion). The mass, velocity, and composition of outflows from the disk will be used in separate radiative transfer calculations to predict the lightcurves and spectra of the 56Ni-decay powered optical transients from WD-NS/WD-BH mergers. The possible connection of such events to recently discovered classes of sub-luminous Type I supernovae will be assessed. The coalescence of NS-NS/NS-BH binaries also results in the formation of a massive torus surrounding a central compact object. Three-dimensional magnetohydrodynamic simulations of the long-term evolution of such accretion disks will be performed, which for the first time follow the effects of weak interactions and the nuclear energy released by Helium recombination. The nucleosynthetic yield of disk outflows will be calculated using a detailed nuclear reaction network along characteristic Lagrangian trajectories. Results of these calculations will be used to (1) reassess NS-NS/NS-BH mergers as an astrophysical source of heavy r-process nuclei; and (2) calculate the light curves of the optical transients (`kilonovae') powered by the radioactive decay. Separate work will assess the effects that neutrino irradiation from a long-lived neutron star remnant has on the electron fraction of the disk outflows. The strong contrast between the opacities of proton- and neutron-rich matter imply that the presence and lifetime of such a remnant could be imprinted on the kilonova emission. Our investigation sheds light on the central engines of GRBs and other high-energy transients and hence is relevant to NASA's Swift, MAXI, and Fermi missions. Our results will also impact the interpretation of future observations of supernovae and their galactic environments with the Hubble Space Telescope (HST). Our results will also impact follow-up observations of kilonovae, maximizing the impact of HST to constrain the key open questions such as the progenitors of gamma-ray bursts and the origin of r-process nuclei.
Pillar-structured neutron detector based multiplicity system
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...
2017-10-04
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less
Research opportunities with compact accelerator-driven neutron sources
NASA Astrophysics Data System (ADS)
Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.
2016-10-01
Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.
Pillar-structured neutron detector based multiplicity system
NASA Astrophysics Data System (ADS)
Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.
2018-01-01
This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.
Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation
NASA Astrophysics Data System (ADS)
O. Silva, Hector; Berti, Emanuele; Sotani, Hajime
2016-03-01
Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
NASA Astrophysics Data System (ADS)
Bonolis, Luisa
2017-06-01
Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.
Application and Development of Microstructured Solid-State Neutron Detectors
NASA Astrophysics Data System (ADS)
Weltz, Adam D.
Neutron detectors are useful for a number of applications, including the identification of nuclear weapons, radiation dosimetry, and nuclear reactor monitoring, among others. Microstructured solid-state neutron detectors (SSNDs) developed at RPI have the potential to reinvent a variety of neutron detection systems due to their compact size, zero bias requirement, competitive thermal neutron detection efficiency (up to 29%), low gamma sensitivity (below the PNNL recommendation of 10-6 corresponding to a 10 mR/hr gamma exposure), and scalability to large surface areas with a single preamplifier (<20% loss in relative efficiency from 1 to 16 cm2). These microstructured SSNDs have semiconducting substrate etched with a repeated, three-dimensional microstructure of high aspect ratio holes filled with 10B. MCNP simulations optimized the dimensions of each microstructure geometry for each detector application, improving the overall performance. This thesis outlines the development of multiple, novel neutron detection applications using microstructured SSNDs developed at RPI. The Directional and Spectral Neutron Detection System (DSNDS) is a modular and portable system that uses rings of microstructured SSNDs embedded in polyethylene in order to gather real-time information about the directionality and spectrum of an unidentified neutron source. This system can be used to identify the presence of diverted special nuclear material (SNM), determine its position, and gather spectral information in real-time. The compact and scalable zero-bias SSNDs allow for customization and modularity of the detector array, which provides design flexibility and enhanced portability. Additionally, a real-time personal neutron dosimeter is a wearable device that uses a combination of fast and thermal microstructured SSNDs in order to determine an individual's neutron dose rate. This system demonstrates that neutron detection systems utilizing microstructured SSNDs are applicable for personal neutron dosimetry. The development of these systems using the compact, zero-bias microstructured SSNDs lays the groundwork for a new generation of neutron detection tools, outlines the challenges and design considerations associated with the implementation of these devices, and demonstrates the value that these detectors bring to the future of neutron detection systems.
Solid state neutron dosimeter for space applications
NASA Technical Reports Server (NTRS)
Entine, Gerald; Nagargar, Vivek; Sharif, Daud
1990-01-01
Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.
Neutron and antineutron production in accretion onto compact objects
NASA Technical Reports Server (NTRS)
Dermer, C. D.; Ramaty, R.
1986-01-01
Nuclear reactions in the hot accretion plasma surrounding a collapsed star are a source of neutrons, primarily through spallation and pion-producing reactions, and antineutrons, principally through the reaction p+p yields p+p+n+anti-n. We calculate spectra of neutrons and antineutrons produced by a variety of nonthermal energetic particle distributions in which the target particles are either at rest or in motion. If only neutral particles are free to escape the interaction site, a component of the proton and antiproton fluxes in the cosmic radiation results from the neutrons and antineutrons which leave the accretion plasma and subsequently decay in the interstellar medium. This additional antiproton component could account for the enhanced flux of antiprotons in the cosmic radiation, compared to values expected from the standard leaky-box model of cosmic-ray propagation and confinement. Moreover, the low-energy antiproton flux measured by Buffington et al. (1981) could result from target-particle motion in the accretion plasma. This model for the origin of antiprotons predicts a narrow 2.223 MeV line which could be observable.
Saclay Compact Accelerator-driven Neutron Sources (SCANS)
NASA Astrophysics Data System (ADS)
Marchix, A.; Letourneau, A.; Tran, HN; Chauvin, N.; Menelle, A.; Ott, F.; Schwindling, J.
2018-06-01
For next decade, the European neutron scattering community will face of important changes, as many facilities will close, strictly fission-based sources. This statement mainly concerns France with the planned closure of Orphee and ILL. At CEA-Saclay, the project SONATE has been launched in order to provide a high intensity neutron source in Saclay site, this project is based on Compact Accelerator-driven Neutron Sources technology coupled to high-intensity beams. The goal of SONATE is to develop a 50 kW target, aiming to produce at least a neutron yield of 1013 s-1 in pulse mode with a peak current of 100 mA. We have investigated in this document the best combinations of beam/target which would lead to this substantial neutron yields. Further investigations and tests have to be carry out, especially due to sparse data on thick target and such low-energy beams considered in this document. An intermediate step to the SONATE project is under test and development, called IPHI-NEUTRON, which would lead to provide a small-size neutron facility mainly devoted to neutron imagery for industry. This step is based on the existing 3 MeV proton beam, named IPHI. Best target candidates are Lithium and Beryllium, leading respectively to a neutron yield of about 2.1013 s-1 and 4.1012 s-1.
Nucleosynthesis inside Supernova-Driven Supercritical Accretion Disks
NASA Astrophysics Data System (ADS)
Fujimoto, Shin-Ichirou; Arai, Kenzo; Matsuba, Ryuichi; Hashimoto, Masa-Aki; Koike, Osamu; Mineshige, Shin
2001-06-01
We have investigated nucleosynthesis in a supercritical accretion disk around a compact object of 1.4Msolar, using the self-similar solution of an optically thick advection dominated flow. Supercritical accretion is expected to occur in a supernova with fallback material accreting onto a new-born compact object. It has been found that appreciable nuclear reactions take place even for a reasonable value of the viscosity parameter, αvissimeq 0.01, when the accretion rate dot{m}=dot{M}c2/(16LEdd) > 105, where LEdd is the Eddington luminosity. If dot{m} ge 4 × 106, all heavy elements are destroyed to 4He through photodisintegrations at the inner part of the disk. Even 4He is also disintegrated to protons and neutrons near the inner edge when dot{m} ge 2 × 107. If the fallback matter of the supernova explosion has the composition of a helium-rich layer of the progenitor, a considerable amount of 44Ti could be ejected via a jet from the disk.
IRAS observations of binaries with compact objects
NASA Technical Reports Server (NTRS)
Schaefer, B. E.
1986-01-01
The infrared emission data, obtained on 260 binary systems by the all-sky IRAS survey in wavelengths between 12 and 100 microns, are reported. Of all the 260 sources, which contained compact objects including white dwarfs, neutron stars, or possibly black holes, only 32 contained detectable IR radiation. The X-ray emitting Be-type stars (gamma-Cas and X Per) were found to have their energy flux proportional to frequency in the range of the log nu values of 12.7-14.7. However, the GS304-1 flux distribution is unique, in that its flux rises by several orders of magnitude as the wavelength changes from 4000 A to 60 microns. A static dust cloud was detected, with a radius of about 1 AU, which has formed around the classical nova RR Pic since its 1925 eruption. The post-eruption far-IR light curve of a classical nova provides strong evidence for IR emissions from both dust grains formed during the eruption and dust grains existing from previous eruptions.
Baryonic dark clusters in galactic halos and their observable consequences
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Salpeter, Edwin E.
1994-01-01
We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within approximately 1 min of one another are likely to be seen after a total of order 20-30 microlenses have been detected.
Exploring properties of high-density matter through remnants of neutron-star mergers
NASA Astrophysics Data System (ADS)
Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas
2016-03-01
Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraro, F. R.; Pallanca, C.; Lanzoni, B.
2015-07-01
We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting Hubble Space Telescope/Advanced Camera for Surveys images acquired in Director's Discretionary Time shortly after (approximately one month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that is currently brightened by ∼3 mag, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the turn-off/sub-giant-branch region of Terzan 5.more » This supports the scenario that the companion should have recently filled its Roche Lobe. Such a system represents the prenatal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.« less
NASA Astrophysics Data System (ADS)
Rhodes, Edgar A.; Peters, Charles W.
1993-02-01
A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.
Application of Advanced Nuclear Emulsion Technique to Fusion Neutron Diagnostics
NASA Astrophysics Data System (ADS)
Nakayama, Y.; Tomita, H.; Morishima, K.; Yamashita, F.; Hayashi, S.; Cheon, MunSeong; Isobe, M.; Ogawa, K.; Naka, T.; Nakano, T.; Nakamura, M.; Kawarabayashi, J.; Iguchi, T.; Ochiai, K.
In order to measure the 2.5 MeV neutrons produced by DD nuclear fusion reactions, we have developed a compact neutron detector based on nuclear emulsion. After optimization of development conditions, we evaluated the response of the detector to an accelerator-based DD neutron source. The absolute efficiency at an energy of 2.5 MeV was estimated to be (4.1±0.2)×10-6 tracks/neutron.
X-Ray Polarization from High Mass X-Ray Binaries
NASA Technical Reports Server (NTRS)
Kallman, T.; Dorodnitsyn, A.; Blondin, J.
2015-01-01
X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.
A compact gas-filled avalanche counter for DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. Y.; Chyzh, A.; Kwan, E.
2012-08-04
A compact gas-filled avalanche counter for the detection of fission fragments was developed for a highly segmented 4π γ-ray calorimeter, namely the Detector for Advanced Neutron Capture Experiments located at the Lujan Center of the Los Alamos Neutron Science Center. It has been used successfully for experiments with 235U, 238Pu, 239Pu, and 241Pu isotopes to provide a unique signature to differentiate the fission from the competing neutron-capture reaction channel. We also used it to study the spontaneous fission in 252Cf. The design and performance of this avalanche counter for targets with extreme α-decay rate up to ~2.4×108/s are described.
Origin of Magnetar-Scale Crustal Field in PSR J1852+0040 and 'Frozen' Magnetars
NASA Astrophysics Data System (ADS)
Popov, S. B.
2013-08-01
We discuss the origin of strong crustal magnetic field in one of central compact objects (CCOs)-a neutron star PSR J1852+0040 in the supernova remnant Kes 79. Taking into account its relatively long present day spin period we conclude that the field could not be generated via a dynamo mechanism. If this neutron star indeed is a magnetar with field submerged during a strong fall-back episode, then it argues against the dynamo field origin in magnetars. Otherwise, Kes 79 is not a close relative of normal magnetars. A discovery of an anti-magnetar with a millisecond period and strong crustal field identifiable, for example, due to large pulse fraction, would be the proof of the dynamo field origin. Existence of such sources is in correspondence with the present standard picture of neutron star unification. However, the fraction of magnetars with submerged fields can be small-few percent of the total number of CCOs.
USDA-ARS?s Scientific Manuscript database
Source output stability is important for accurate measurement in prompt gamma neutron activation. This is especially true when measuring low-concentration elements such as in vivo nitrogen (~2.5% of body weight). We evaluated the stability of the compact DT neutron generator within an in vivo nitrog...
First neutron generation in the BINP accelerator based neutron source.
Bayanov, B; Burdakov, A; Chudaev, V; Ivanov, A; Konstantinov, S; Kuznetsov, A; Makarov, A; Malyshkin, G; Mekler, K; Sorokin, I; Sulyaev, Yu; Taskaev, S
2009-07-01
Pilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. The results of the first experiments on neutron generation are reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Abdul Aziz; Al Rashid Megat Ahmad, Megat Harun; Md Idris, Faridah
2010-01-05
Malaysian Nuclear Agency's (Nuclear Malaysia) Small Angle Neutron Scattering (SANS) facility--(MYSANS)--is utilizing low flux of thermal neutron at the agency's 1 MW TRIGA reactor. As the design nature of the 8 m SANS facility can allow object resolution in the range between 5 and 80 nm to be obtained. It can be used to study alloys, ceramics and polymers in certain area of problems that relate to samples containing strong scatterers or contrast. The current SANS system at Malaysian Nuclear Agency is only capable to measure Q in limited range with a PSD (128x128) fixed at 4 m from themore » sample. The existing reactor hall that incorporate this MYSANS facility has a layout that prohibits the rebuilding of MYSANS therefore the position between the wavelength selector (HOPG) and sample and the PSD cannot be increased for wider Q range. The flux of the neutron at current sample holder is very low which around 10{sup 3} n/cm{sup 2}/sec. Thus it is important to rebuild the MYSANS to maximize the utilization of neutron. Over the years, the facility has undergone maintenance and some changes have been made. Modification on secondary shutter and control has been carried out to improve the safety level of the instrument. A compact micro-focus SANS method can suit this objective together with an improve cryostat system. This paper will explain some design concept and approaches in achieving higher flux and the modification needs to establish the micro-focused SANS.« less
NASA Astrophysics Data System (ADS)
Matsuda, Norihiro; Izumi, Yuichi; Yamanaka, Yoshiyuki; Gandou, Toshiyuki; Yamada, Masaaki; Oishi, Koji
2017-09-01
Measurements of reaction rates by secondary neutrons produced from beam losses by 17-MeV protons are conducted at a compact cyclotron facility with the foil activation method. The experimentally obtained distribution of the reaction rates of 197Au (n, γ) 198Au on the concrete walls suggests that a target and an electrostatic deflector as machine components for beam extraction of the compact cyclotron are principal beam loss points. The measurements are compared with calculations by the Monte Carlo code: PHITS. The calculated results based on the beam losses are good agreements with the measured ones within 21%. In this compact cyclotron facility, exponential attenuations with the distance from the electrostatic deflector in the distributions of the measured reaction rates were observed, which was looser than that by the inverse square of distance.
Electromagnetic power of merging and collapsing compact objects
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2011-06-01
Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is expected to be relatively small. We also discuss the nature of short gamma-ray bursts and suggest that if the magnetic field is amplified to ˜1014G during the merger or the core collapse, the similarity of the early afterglow properties of long and short gamma-ray bursts can be related to the fact that in both cases a spinning black hole can retain a magnetic field for a sufficiently long time to extract a large fraction of its rotational energy and produce high energy emission via the internal dissipation in the wind.
The Fate of Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalyga, V.; Sidorov, A.; Lobachevsky State University of Nizhny Novgorod
2015-09-07
In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental resultsmore » show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.« less
Note: A portable pulsed neutron source based on the smallest sealed-type plasma focus device.
Niranjan, Ram; Rout, R K; Mishra, Prabhat; Srivastava, Rohit; Rawool, A M; Kaushik, T C; Gupta, Satish C
2011-02-01
Development and operation of a portable and compact pulsed neutron source based on sealed-type plasma focus (PF) device are reported. The unit is the smallest sealed-type neutron producing PF device. The effective volume of the PF unit is 33 cm(3) only. A compact size single capacitor (4 μF) is used as the energy driver. A battery based power supply unit is used for charging the capacitor and triggering the spark gap. The PF unit is operated at 10 kV (200 J) and at a deuterium gas filling pressure of 8 mb. The device is operated over a time span of 200 days and the neutron emissions have been observed for 200 shots without changing the gas in between the shots. The maximum yield of this device is 7.8 × 10(4) neutrons/pulse. Beyond 200 shots the yield is below the threshold (1050 neutrons/pulse) of our (3)He detector. The neutron energy is evaluated using time of flight technique and the value is (2.49 ± 0.27) MeV. The measured neutron pulse width is (24 ± 5) ns. Multishot and long duration operations envisage the potentiality of such portable device for repetitive mode of operation.
New shielding material development for compact accelerator-driven neutron source
NASA Astrophysics Data System (ADS)
Hu, Guang; Hu, Huasi; Wang, Sheng; Han, Hetong; Otake, Y.; Pan, Ziheng; Taketani, A.; Ota, H.; Hashiguchi, Takao; Yan, Mingfei
2017-04-01
The Compact Accelerator-driven Neutron Source (CANS), especially the transportable neutron source is longing for high effectiveness shielding material. For this reason, new shielding material is researched in this investigation. The component of shielding material is designed and many samples are manufactured. Then the attenuation detection experiments were carried out. In the detections, the dead time of the detector appeases when the proton beam is too strong. To grasp the linear range and nonlinear range of the detector, two currents of proton are employed in Pb attenuation detections. The transmission ratio of new shielding material, polyethylene (PE), PE + Pb, BPE + Pb is detected under suitable current of proton. Since the results of experimental neutrons and γ-rays appear as together, the MCNP and PHITS simulations are applied to assisting the analysis. The new shielding material could reduce of the weight and volume compared with BPE + Pb and PE + Pb.
Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.
Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K
2017-07-01
In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hyperon threshold and stellar radii
NASA Astrophysics Data System (ADS)
Lopes, Luiz; Menezes, Debora
2018-05-01
We study how the Λ hyperon threshold influences the radius of the canonical 1.4 Msolar neutron star in the light of the measurements found in the recent literature. We show that the onset of a new degree of freedom not only causes the well known reduction of the maximum mass, but also compacts the neutron stars with high central density. With the help of the strange mesons phi and σ*, we show that it is possible to simulate very compact neutron stars keeping realistic hyperon potentials, UΛ(n0)= ‑28 MeV and UΛΛ(n0/5) in agreement with recents measurements. In the end we generalize these results showing that the onset of a yet not known dark matter particle with mass of 1.04 GeV is able to produce simultaneously a 2 Msolar neutron star and a canonical one with a radius of only 11.62 km.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Neutron Star Mergers and the R process
NASA Astrophysics Data System (ADS)
Joniak, Ronald; Ugalde, Claudio
2017-09-01
About half of the elements of the periodic table that are present today in the Solar System were synthesized before the formation of the Sun via a rapid neutron capture process (r process). However, the astrophysical site of the r process is a longstanding problem that has captivated both experimental and theoretical astrophysicists. Up to date, two possible scenarios for the site of the r process have been suggested: the first involves the high entropy wind of core collapse supernovae, and the second corresponds to the merger of two compact stellar objects such as neutron stars. We will study the robustness of the nucleosynthesis abundance pattern between the second and third r process peaks as produced by neutron star mergers with r process-like neutron exposures. First, we will vary parameters to obtain an understanding of the astrophysical mechanisms that create the r process. Next, we will create a program to obtain the best possible parameters based on a chi-squared test. Once we have the best fits, we will test the effect of fission in the overall isotope abundance pattern distribution. Later on, we will vary the ratio of masses of the two fission fragments and study its effect on elemental abundances. This research was supported by the UIC College of Liberal Arts and Sciences Undergraduate Research Initiative (LASURI).
Binary neutron star mergers: a review of Einstein's richest laboratory.
Baiotti, Luca; Rezzolla, Luciano
2017-09-01
In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.
Binary neutron star mergers: a review of Einstein’s richest laboratory
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Rezzolla, Luciano
2017-09-01
In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein’s richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.
The progenitors of extended emission gamma-ray bursts
NASA Astrophysics Data System (ADS)
Gompertz, B. P.
2015-06-01
Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe, and as such are associated with some of the most extreme processes in nature. They come in two types: long and short, nominally separated either side of a two second divide in gamma-ray emission duration. The short class (those with durations of less than two seconds) are believed to be due to the merger of two compact objects, most likely neutron stars. Within this population, a small subsection exhibit an apparent extra high-energy emission feature, which rises to prominence several seconds after the initial emission event. These are the extended emission (EE) bursts. This thesis investigates the progenitors of the EE sample, including what drives them, and where they fit in the broader context of short GRBs. The science chapters outline a rigorous test of the magnetar model, in which the compact object merger results in a massive, rapidly-rotating neutron star with an extremely strong magnetic field. The motivation for this central engine is the late-time plateaux seen in some short and EE GRBs, which can be interpreted as energy injection from a long-lived central engine, in this case from the magnetar as it loses angular momentum along open field lines. Chapter 2 addresses the energy budget of such a system, including whether the EE component is consistent with the rotational energy reservoir of a millisecond neutron star, and the implications the model has for the physical properties of the underlying magnetar. Chapter 3 proposes a potential mechanism by which EE may arise, and how both classes may be born within the framework of a single central engine. Chapter 4 addresses the broadband signature of both short and EE GRBs, and provides some observational tests that can be used to either support or contradict the model.
An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures
NASA Astrophysics Data System (ADS)
Generozov, A.; Stone, N. C.; Metzger, B. D.; Ostriker, J. P.
2018-05-01
A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. (2018). While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ˜1 - 4 × 104 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ˜60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. (2018). A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (˜10-4 per year at z=0).
METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL
Huston, N.E.
1961-06-01
A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.
Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator
NASA Astrophysics Data System (ADS)
Hamm, Robert W.
2000-12-01
Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.
NASA Astrophysics Data System (ADS)
Rigamonti, D.; Nocente, M.; Giacomelli, L.; Tardocchi, M.; Angelone, M.; Broslawski, A.; Cazzaniga, C.; Figueiredo, J.; Gorini, G.; Kiptily, V.; Korolczuk, S.; Murari, A.; Pillon, M.; Pilotti, R.; Zychor, I.; Contributors, JET
2017-10-01
A new compact gamma-ray spectrometer based on a Silicon Photo-Multiplier (SiPM) coupled to a LaBr3(Ce) crystal has been developed for the upgrade of the Gamma Camera (GC) of JET, where it must operate in a high intensity neutron/gamma-ray admixed field. The work presents the results of an experiment aimed at characterizing the effect of 14 MeV neutron irradiation on both LaBr3(Ce) and SiPM that compose the full detector. The pulse height spectrum from neutron interactions with the crystal has been measured and is successfully reproduced by MCNP simulations. It is calculated that about 8% of the impinging neutrons leave a detectable signal of which less than < 4% of the events occur in the energy region above 3 MeV, which is of interest for gamma-ray spectroscopy applications. Neutron irradiation also partly degrades the performance of the SiPM and this is mostly manifested as an increase of the dark current versus the neutron fluence. However, it was found that the SiPM can be still operated up to a fluence of 4×1010 n/cm2, which is the highest value we experimentally tested. Implications of these results for GC measurements at JET are discussed.
The compact neutron spectrometer at ASDEX Upgrade.
Giacomelli, L; Zimbal, A; Tittelmeier, K; Schuhmacher, H; Tardini, G; Neu, R
2011-12-01
The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and γ radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10(6) s(-1). The DPSD system can operate in acquisition and processing mode. With the latter n-γ discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-γ discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 × 10(5) s(-1) (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 × 10(-10) events per AUG neutron.
Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)
NASA Technical Reports Server (NTRS)
Swank, Jean
2008-01-01
Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.
Testing general relativity with compact-body orbits: a modified Einstein–Infeld–Hoffmann framework
NASA Astrophysics Data System (ADS)
Will, Clifford M.
2018-04-01
We describe a general framework for analyzing orbits of systems containing compact objects (neutron stars or black holes) in a class of Lagrangian-based alternative theories of gravity that also admit a global preferred reference frame. The framework is based on a modified Einstein–Infeld–Hoffmann (EIH) formalism developed by Eardley and by Will, generalized to include the possibility of Lorentz-violating, preferred-frame effects. It uses a post-Newtonian N-body Lagrangian with arbitrary parameters that depend on the theory of gravity and on ‘sensitivities’ that encode the effects of the bodies’ internal structure on their motion. We determine the modified EIH parameters for the Einstein-Æther and Khronometric vector-tensor theories of gravity. We find the effects of motion relative to a preferred universal frame on the orbital parameters of binary systems containing neutron stars, such as a class of ultra-circular pulsar-white dwarf binaries; the amplitudes of the effects depend upon ‘strong-field’ preferred-frame parameters \\hatα1 and \\hatα2 , which we relate to the fundamental modified EIH parameters. We also determine the amplitude of the ‘Nordtvedt effect’ in a triple system containing the pulsar J0337+1715 in terms of the modified EIH parameters.
Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K
2011-01-01
A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.
Probing the clumpy winds of giant stars with high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern
2016-04-01
Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.
Compact NE213 neutron spectrometer with high energy resolution for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimbal, A.; Reginatto, M.; Schuhmacher, H.
Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeV
Binary Systems as Test-Beds of Gravity Theories
NASA Astrophysics Data System (ADS)
Damour, Thibault
The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ˜ 10-6, (2GM/c 2 R)Earth ˜ 10-9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (˜ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.
PALFA Discovers Neutron Stars on a Collision Course
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys location to high precision and establish additional parameters of the system.PSR J1946+2052 is a system of extremes. The binarys total mass is found to be 2.5 solar masses, placing it among the lightest binary-neutron-star systems known. Its orbital period is the shortest weve observed, and the two neutron stars are on track to merge in less time than any other known neutron-star binaries: in just 46 million years. When the two stars reach the final stages of their merger, the effects of the pulsars rapid spin on the gravitational-wave signal will be the largest of any such system discovered to date.More Tests of General RelativityWhat can PSR J1946+2052 do for us? This extreme system will be especially useful as a gravitational laboratory. Continued observations of PSR J1946+2052 will pin down with unprecedented precision parameters like the Einstein delay and the rate of decay of the binarys orbit due to the emission of gravitational waves, testing the predictions of general relativity to an order of magnitude higher precision than was possible before.As we expect there to be thousands of systems like PSR J1946+2052 in our galaxy alone, better understanding this binary and finding more like it continue to be important steps toward interpreting compact-object merger observations in the future.CitationK. Stovall et al 2018 ApJL 854 L22. doi:10.3847/2041-8213/aaad06
The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2017-10-01
Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.
Can JWST Follow Up on Gravitational-Wave Detections?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Bitten by the gravitational-wave bug? While we await Thursdays press conference, heres some food for thought: if LIGO were able to detect gravitational waves from compact-object mergers, how could we follow up on the detections? A new study investigates whether the upcoming James Webb Space Telescope (JWST) will be able to observe electromagnetic signatures of some compact-object mergers.Hunting for MergersStudying compact-object mergers (mergers of black holes and neutron stars) can help us understand a wealth of subjects, like high-energy physics, how matter behaves at nuclear densities, how stars evolve, and how heavy elements in the universe were created.The Laser Interferometer Gravitational-Wave Observatory (LIGO) is searching for the signature ripples in spacetime identifying these mergers, but gravitational waves are squirrelly: LIGO will only be able to localize wave sources to tens of square degrees. If we want to find out more about any mergers LIGO discovers in gravitational waves, well need a follow-up search for electromagnetic counterparts with other observatories.The Kilonova KeyOne possible electromagnetic counterpart is kilonovae, explosions that can be produced during a merger of a binary neutron star or a neutron starblack hole system. If the neutron star is disrupted during the merger, some of the hot mass is flung outward and shines brightly by radioactive decay.Kilonovae are especially promising as electromagnetic counterparts to gravitational waves for three reasons:They emit isotropically, so the number of observable mergers isnt limited by relativistic beaming.They shine for a week, giving follow-up observatories time to search for them.The source location can beeasily recovered.The only problem? We dont currently have any sensitive survey instruments in the near-infrared band (where kilonova emission peaks) that can provide coverage over tens of square degrees. Luckily, we will soon have just the thing: JWST, launching in 2018!JWSTs SearchIntegration time needed for JWSTs NIRCam to detect a kilonova at 200 Mpc, as a function of time since the merger. Different curves correspond to different NIRCam filters. Note that the total time for follow-up is overwhelmingly dominated by things like telescope slew time, rather than by this exposure time. [Bartos et al. 2016]In a recent study, a team of authors led by Imre Bartos (Columbia University) evaluatewhether JWST will be capable of catching these kilonovae if LIGO finds gravitational wave signals.Bartos and collaborators calculate that, given the sensitivity of the different filters on JWSTs Near-Infrared Camera, the instrument should easily be able to detect a kilonova 200 Mpc away (a typical distance at which LIGO might be able to find a neutron-star binary). But theres a catch: 10 deg2 is a really big sky area, and it would take JWST an unfeasible amount of time (days!) to fully cover it.The authors suggest insteadusing a targeted search. Since most mergers are expected to be in or near galaxies, JWST could specifically focus the follow-up search on known galaxies within the searcharea. This approach would bring the total search time down to 12.6 hours, which is within the realm of feasibility. And this time could be reduced even further by concentrating on galaxies most likely to host kilonovae, like those with high star-formation rates.The conclusion: if LIGO is able to detect gravitational waves, JWST will provide an excellent means to follow up on the detection in the attempt toidentify the source.CitationI. Bartos et al 2016 ApJ 816 61. doi:10.3847/0004-637X/816/2/61
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul Demkowicz; Lance Cole; Scott Ploger
The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement systemmore » (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated diametrical shrinkage of 0.9 to 1. 4%, and length shrinkage of 0.2 to 1.1%. The shrinkage was somewhat dependent on compact location within each capsule and within the test train. Compacts exhibited a maximum diametrical shrinkage at a fast neutron fluence of approximately 3×1021 n/cm2. A multivariate statistical analysis indicates that fast neutron fluence as well as compact position in the test train influence compact shrinkage.« less
Probing crustal structures from neutron star compactness
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro
2017-10-01
With various sets of the parameters that characterize the equation of state (EOS) of nuclear matter, we systematically examine the thickness of a neutron star crust and of the pasta phases contained therein. Then, with respect to the thickness of the phase of spherical nuclei, the thickness of the cylindrical phase and the crust thickness, we successfully derive fitting formulas that express the ratio of each thickness to the star's radius as a function of the star's compactness, the incompressibility of symmetric nuclear matter and the density dependence of the symmetry energy. In particular, we find that the thickness of the phase of spherical nuclei has such a strong dependence on the stellar compactness as the crust thickness, but both of them show a much weaker dependence on the EOS parameters. Thus, via determination of the compactness, the thickness of the phase of spherical nuclei as well as the crust thickness can be constrained reasonably, even if the EOS parameters remain to be well-determined.
a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-05-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.
Fast-Neutron Survey With Compact Plastic Scintillation Detectors.
Preston, Rhys M; Tickner, James R
2017-07-01
With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
RX J1856.5-3754: A Strange Star with Solid Quark Surface?
NASA Technical Reports Server (NTRS)
Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan
2003-01-01
The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.
Exclusion Area Radiation Release during the MIT Reactor Design Basis Accident.
1983-05-06
Concrete Wall 116 6.2 Concrete Albedo Dose 121 6.3 Steel Door Scattering Dose 124 7.1 Total Dose Results 133 A.1 Values of N /NO for Neutron -Capture...plate fuel elements arranged in x a compact hexagonal core. This core design maximizes the neutron flux in the DO2 reflector region where numerous...sec) V = Volume of the fuel (cm 3 f Ef = Macroscopic fission cross section (cm ) = Thermal neutron flux ( neutrons /cm2 - sec) = Core-averaged value Yi
Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas
NASA Technical Reports Server (NTRS)
Silver, E.; Flowers, Bobby J. (Technical Monitor)
2003-01-01
The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.
NASA Astrophysics Data System (ADS)
Margon, B.
1982-01-01
A variety of recent optical, radio, and X-ray observations have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
Neutron star mass-radius relation with gravitational field shielding by a scalar field
NASA Astrophysics Data System (ADS)
Zhang, Bo-Jun; Zhang, Tian-Xi; Guggilla, Padmaja; Dokhanian, Mostafa
2013-05-01
The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g., 40 Msolar as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.
NASA Astrophysics Data System (ADS)
Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei
2017-07-01
Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should be able to distinguish between binary black holes and these binary boson stars.
BINP accelerator based epithermal neutron source.
Aleynik, V; Burdakov, A; Davydenko, V; Ivanov, A; Kanygin, V; Kuznetsov, A; Makarov, A; Sorokin, I; Taskaev, S
2011-12-01
Innovative facility for neutron capture therapy has been built at BINP. This facility is based on compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.915-2.5 MeV protons bombarding a lithium target using (7)Li(p,n)(7)Be threshold reaction. In the article, diagnostic techniques for proton beam and neutrons developed are described, results of experiments on proton beam transport and neutron generation are shown, discussed, and plans are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
Colloquium: Astromaterial science and nuclear pasta
NASA Astrophysics Data System (ADS)
Caplan, M. E.; Horowitz, C. J.
2017-10-01
"Astromaterial science" is defined as the study of materials in astronomical objects that are qualitatively denser than materials on Earth. Astromaterials can have unique properties related to their large density, although they may be organized in ways similar to more conventional materials. By analogy to terrestrial materials, this study of astromaterials is divided into hard and soft and one example of each is discussed. The hard astromaterial discussed here is a crystalline lattice, such as the Coulomb crystals in the interior of cold white dwarfs and in the crust of neutron stars, while the soft astromaterial is nuclear pasta found in the inner crusts of neutron stars. In particular, how molecular dynamics simulations have been used to calculate the properties of astromaterials to interpret observations of white dwarfs and neutron stars is discussed. Coulomb crystals are studied to understand how compact stars freeze. Their incredible strength may make crust "mountains" on rotating neutron stars a source for gravitational waves that the Laser Interferometer Gravitational-Wave Observatory (LIGO) may detect. Nuclear pasta is expected near the base of the neutron star crust at densities of 1014 g /cm3 . Competition between nuclear attraction and Coulomb repulsion rearranges neutrons and protons into complex nonspherical shapes such as sheets (lasagna) or tubes (spaghetti). Semiclassical molecular dynamics simulations of nuclear pasta have been used to study these phases and calculate their transport properties such as neutrino opacity, thermal conductivity, and electrical conductivity. Observations of neutron stars may be sensitive to these properties and can be used to interpret observations of supernova neutrinos, magnetic field decay, and crust cooling of accreting neutron stars. This Colloquium concludes by comparing nuclear pasta shapes with some similar shapes seen in biological systems.
Signatures of Heavy Element Production in Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Barnes, Jennifer
2018-06-01
Compact object mergers involving at least one neutron star have long been theorized to be sites of astrophysical nucleosynthesis via rapid neutron capture (the r-process). The observation in light and gravitational waves of the first neutron star merger (GW1701817) this past summer provided a stunning confirmation of this theory. Electromagnetic emission powered by the radioactive decay of freshly synthesized nuclei from mergers encodes information about the composition burned by the r-process, including whether a particular merger event synthesized the heaviest nuclei along the r-process path, or froze out at lower mass number. However, efforts to model the emission in detail must still contend with many uncertainties. For instance, the uncertain nuclear masses far from the valley of stability influence the final composition burned by the r-process, as will weak interactions operating in the merger’s immediate aftermath. This in turn can affect the color electromagnetic emission. Understanding the details of these transients’ spectra will also require a detailed accounting the electronic transitions of r-process elements and ions, in order to identify the strong transitions that underlie spectral formation. This talk will provide an overview of our current understanding of radioactive transients from mergers, with an emphasis on the role of experiment in providing critical inputs for models and reducing uncertainty.
Carbon Atmosphere Discovered On Neutron Star
NASA Astrophysics Data System (ADS)
2009-11-01
Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object. "The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the latest issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere." By analyzing Chandra's X-ray spectrum - akin to a fingerprint of energy - and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed. The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity. By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates. Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter. "Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution." Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth. "For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers." In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star. The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon. The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
Californium--palladium metal neutron source material
Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.
1974-01-22
Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)
Crane, Thomas W.
1986-01-01
The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.
Crane, T.W.
1983-12-21
The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.
NASA Astrophysics Data System (ADS)
Wu, Ying
2009-11-01
The development of a prototype compact neutron generator for the application of associated particle imaging (API) to be used for explosive and contraband detection will be presented. The API technique makes use of the 3.5 MeV alpha particles that are produced simultaneously with the 14 MeV neutrons in the deuterium-tritium (^2D(^3T,n)^4α) fusion reaction to determine the direction of the neutrons and reduce background noise. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. In this work an axial type neutron generator was designed and built with a predicted neutron yield of 10^8 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. It was shown that the measured yield for a D/D gas filled generator was 2x10^5n/s, which scales to 2x10^7 n/s if a D/T gas fill is used. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of > 80% can be obtained with only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the acceleration column, to suppress secondary backscattered electrons produced at the target. Initial measurements of the neutron generator performance including the beam spot size and neutron yield under sealed operation will be discussed, along with suggestions for future improvements.
Formation and Destruction of Jets in X-ray Binaries
NASA Technical Reports Server (NTRS)
Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.
2011-01-01
Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Ondřej; Thompson, Todd A., E-mail: pejcha@astro.princeton.edu, E-mail: thompson@astronomy.ohio-state.edu
2015-03-10
If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E {sub SN}) and nickel yields (M {sub Ni}), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. Wemore » predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M {sub ☉} are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E {sub SN}-M {sub Ni} correlation, we predict a correlation between the mean and width of the NS mass and E {sub SN} distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M {sub ☉} implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties.« less
Small Accelerators for the Next Generation of BNCT Irradiation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Tanaka, K.; Bengua, G.
2005-01-15
The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.
Nonradial oscillation modes of compact stars with a crust
NASA Astrophysics Data System (ADS)
Flores, Cesar Vásquez; Hall, Zack B.; Jaikumar, Prashanth
2017-12-01
Oscillation modes of isolated compact stars can, in principle, be a fingerprint of the equation of state (EoS) of dense matter. We study the non-radial high-frequency l =2 spheroidal modes of neutron stars and strange quark stars, adopting a two-component model (core and crust) for these two types of stars. Using perturbed fluid equations in the relativistic Cowling approximation, we explore the effect of a strangelet or hadronic crust on the oscillation modes of strange stars. The results differ from the case of neutron stars with a crust. In comparison to fluid-only configurations, we find that a solid crust on top of a neutron star increases the p -mode frequency slightly with little effect on the f -mode frequency, whereas for strange stars, a strangelet crust on top of a quark core significantly increases the f -mode frequency with little effect on the p -mode frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, Rodolphe; Passard, Christian; Perot, Bertrand
2015-07-01
The fissile mass in radioactive waste drums filled with compacted metallic residues (spent fuel hulls and nozzles) produced at AREVA NC La Hague reprocessing plant is measured by neutron interrogation with the Differential Die-away measurement Technique (DDT). In the next years, old hulls and nozzles mixed with Ion-Exchange Resins will be measured. The ion-exchange resins increase neutron moderation in the matrix, compared to the waste measured in the current process. In this context, the Nuclear Measurement Laboratory (LMN) of CEA Cadarache has studied a matrix effect correction method, based on a drum monitor, namely a 3He proportional counter located insidemore » the measurement cavity. After feasibility studies performed with LMN's PROMETHEE 6 laboratory measurement cell and with MCNPX simulations, this paper presents first experimental tests performed on the industrial ACC (hulls and nozzles compaction facility) measurement system. A calculation vs. experiment benchmark has been carried out by performing dedicated calibration measurements with a representative drum and {sup 235}U samples. The comparison between calculation and experiment shows a satisfactory agreement for the drum monitor. The final objective of this work is to confirm the reliability of the modeling approach and the industrial feasibility of the method, which will be implemented on the industrial station for the measurement of historical wastes. (authors)« less
Compact neutron imaging system using axisymmetric mirrors
Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E
2014-05-27
A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.
The INTEGRAL long monitoring of persistent ultra compact X-ray bursters
NASA Astrophysics Data System (ADS)
Fiocchi, M.; Bazzano, A.; Ubertini, P.; Bird, A. J.; Natalucci, L.; Sguera, V.
2008-12-01
Context: The combination of compact objects, short period variability and peculiar chemical composition of the ultra compact X-ray binaries make up a very interesting laboratory to study accretion processes and thermonuclear burning on the neutron star surface. Improved large optical telescopes and more sensitive X-ray satellites have increased the number of known ultra compact X-ray binaries allowing their study with unprecedented detail. Aims: We analyze the average properties common to all ultra compact bursters observed by INTEGRAL from 0.2 keV to 150 keV. Methods: We have performed a systematic analysis of the INTEGRAL public data and Key-Program proprietary observations of a sample of the ultra compact X-ray binaries. In order to study their average properties in a very broad energy band, we combined INTEGRAL with BeppoSAX and SWIFT data whenever possible. For sources not showing any significant flux variations along the INTEGRAL monitoring, we build the average spectrum by combining all available data; in the case of variable fluxes, we use simultaneous INTEGRAL and SWIFT observations when available. Otherwise we compared IBIS and PDS data to check the variability and combine BeppoSAX with INTEGRAL /IBIS data. Results: All spectra are well represented by a two component model consisting of a disk-blackbody and Comptonised emission. The majority of these compact sources spend most of the time in a canonical low/hard state, with a dominating Comptonised component and accretion rate dot {M} lower than 10-9 {M⊙}/yr, not depending on the model used to fit the data. INTEGRAL is an ESA project with instruments and Science Data Center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.
Ali, F; Waker, A J; Waller, E J
2014-10-01
Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Upgrade of the compact neutron spectrometer for high flux environments
NASA Astrophysics Data System (ADS)
Osipenko, M.; Bellucci, A.; Ceriale, V.; Corsini, D.; Gariano, G.; Gatti, F.; Girolami, M.; Minutoli, S.; Panza, F.; Pillon, M.; Ripani, M.; Trucchi, D. M.
2018-03-01
In this paper new version of the 6Li-based neutron spectrometer for high flux environments is described. The new spectrometer was built with commercial single crystal Chemical Vapour Deposition diamonds of electronic grade. These crystals feature better charge collection as well as higher radiation hardness. New metal contacts approaching ohmic conditions were deposited on the diamonds suppressing build-up of space charge observed in the previous prototypes. New passive preamplification of the signal at detector side was implemented to improve its resolution. This preamplification is based on the RF transformer not sensitive to high neutron flux. The compact mechanical design allowed to reduce detector size to a tube of 1 cm diameter and 13 cm long. The spectrometer was tested in the thermal column of TRIGA reactor and at the DD neutron generator. The test results indicate an energy resolution of 300 keV (FWHM), reduced to 72 keV (RMS) excluding energy loss, and coincidence timing resolution of 160 ps (FWHM). The measured data are in agreement with Geant4 simulations except for larger energy loss tail presumably related to imperfections of metal contacts and glue expansion.
Cai, Yao; Hu, Huasi; Lu, Shuangying; Jia, Qinggang
2018-05-01
To minimize the size and weight of a vehicle-mounted accelerator-driven D-T neutron source and protect workers from unnecessary irradiation after the equipment shutdown, a method to optimize radiation shielding material aiming at compactness, lightweight, and low activation for the fast neutrons was developed. The method employed genetic algorithm, combining MCNP and ORIGEN codes. A series of composite shielding material samples were obtained by the method step by step. The volume and weight needed to build a shield (assumed as a coaxial tapered cylinder) were adopted to compare the performance of the materials visually and conveniently. The results showed that the optimized materials have excellent performance in comparison with the conventional materials. The "MCNP6-ACT" method and the "rigorous two steps" (R2S) method were used to verify the activation grade of the shield irradiated by D-T neutrons. The types of radionuclide, the energy spectrum of corresponding decay gamma source, and the variation in decay gamma dose rate were also computed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neutron-Star Radius from a Population of Binary Neutron Star Mergers.
Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro
2018-01-19
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2018-03-01
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources
NASA Astrophysics Data System (ADS)
Šimon, V.
2017-07-01
We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuz, M.
1999-05-01
In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uraniummore » was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.« less
The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.
Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L
2005-12-15
Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kohta; Mészáros, Peter; Fox, Derek B.
We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emissionmore » of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.« less
Design of an electron-accelerator-driven compact neutron source for non-destructive assay
NASA Astrophysics Data System (ADS)
Murata, A.; Ikeda, S.; Hayashizaki, N.
2017-09-01
The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.
A Search for Thorne-Zytkow Objects
NASA Astrophysics Data System (ADS)
Levesque, Emily M.; Massey, P.; Morrell, N.; Zytkow, A.
2014-01-01
Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The best features that can be used at present to distinguish TZOs from the general RSG population are the unusually strong heavy-element lines present in their spectra. These elements are the unique products of the star's fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. The positive detection of a TZO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element production in our universe. We recently conducted a high-resolution spectroscopic search for TZOs within our previously-studied samples of RSGs in the Milky Way and Magellanic Clouds. Did we find any? We'll know soon! Come to this talk and find out!
Jets from Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-06-01
With the recent discovery of gravitational waves from the merger of two black holes, its especially important to understand the electromagnetic signals resulting from mergers of compact objects. New simulations successfully follow a merger of two neutron stars that produces a short burst of energy via a jet consistent with short gamma-ray burst (sGRB) detections.Still from the authors simulation showing the two neutron stars, and their magnetic fields, before merger. [Adapted from Ruiz et al. 2016]Challenging SystemWe have long suspected that sGRBs are produced by the mergers of compact objects, but this model has been difficult to prove. One major hitch is that modeling the process of merger and sGRB launch is very difficult, due to the fact that these extreme systems involve magnetic fields, fluids and full general relativity.Traditionally, simulations are only able to track such mergers over short periods of time. But in a recent study, Milton Ruiz (University of Illinois at Urbana-Champaign and Industrial University of Santander, Colombia) and coauthors Ryan Lang, Vasileios Paschalidis and Stuart Shapiro have modeled a binary neutron star system all the way through the process of inspiral, merger, and the launch of a jet.A Merger TimelineHow does this happen? Lets walk through one of the teams simulations, in which dipole magnetic field lines thread through the interior of each neutron star and extend beyond its surface(like magnetic fields found in pulsars). In this example, the two neutron stars each have a mass of 1.625 solar masses.Simulation start (0 ms)Loss of energy via gravitational waves cause the neutron stars to inspiral.Merger (3.5 ms)The neutron stars are stretched by tidal effects and make contact. Their merger produces a hypermassive neutron star that is supported against collapse by its differential (nonuniform) rotation.Delayed collapse into a black hole (21.5 ms)Once the differential rotation is redistributed by magnetic fields and partially radiated away in gravitational waves, the hypermassive neutron star loses its support and collapses to a black hole.Plasma velocities turn around (51.5 ms)Initially the plasma was falling inward, but as the disk of neutron-star debris is accreted onto the black hole, energy is released. This turns the plasma near the black hole poles around and flings it outward.Magnetic field forms a helical funnel (62.5 ms)The fields near the poles of the black hole amplify as they are wound around, creating a funnel that provides the wall of the jet.Jet outflow extends to heights greater than 445 km (64.5 ms)The disk is all accreted and, since the fuel is exhausted, the outflow shuts off (within 100ms)Neutron-Star SuccessPlot showing the gravitational wave signature for one of the authors simulations. The moments of merger of the neutron stars and collapse to a black hole are marked. [Adapted from Ruiz et al. 2016]These simulations show that no initial black hole is needed to launch outflows; a merger of two neutron stars can result in an sGRB-like jet. Another interesting result is that the magnetic field configuration doesnt affect the formation of a jet: neutron stars with magnetic fields confined to their interiors launch jets as effectively as those with pulsar-like magnetic fields. The accretion timescale for both cases is consistent with the duration of an sGRB.While this simulation models milliseconds of real time, its enormously computationally challenging and takes months to simulate. The successes of this simulation represent exciting advances in numerical relativity, as well as in our understanding of the electromagnetic counterparts that may accompany gravitational waves.BonusCheck out this awesome video of the authors simulations. The colors differentiate the plasma density and the white lines depict the pulsar-like magnetic field that initially threads the two merging neutron stars. Watch as the neutron stars evolve through the different stages outlined above, eventually forming a black hole and launching a powerful jet.[Simulations and visualization by M. Ruiz, R. Lang, V. Paschalidis, S. Shapiro and the Illinois Relativity Group REU team: S. Connelly, C. Fan, A. Khan, and P. Wongsutthikoson]CitationMilton Ruiz et al 2016 ApJ 824 L6. doi:10.3847/2041-8205/824/1/L6
Gravitational Waves from Accreting Neutron Stars Undergoing Common-envelope Inspiral
NASA Astrophysics Data System (ADS)
Holgado, A. Miguel; Ricker, Paul M.; Huerta, E. A.
2018-04-01
The common-envelope phase is a likely formation channel for close binary systems containing compact objects. Neutron stars in common envelopes accrete at a fraction of the Bondi–Hoyle–Lyttleton accretion rate, since the stellar envelope is inhomogeneous, but they may still be able to accrete at hypercritical rates (though not enough to become black holes). We show that common-envelope systems consisting of a neutron star with a massive primary may be gravitational-wave (GW) sources detectable in the Advanced LIGO band as far away as the Magellanic Clouds. To characterize their evolution, we perform orbital integrations using 1D models of 12 M ⊙ and 20 M ⊙ primaries, considering the effects of density gradient on the accretion onto the NS and spin evolution. From the range of possible accretion rates relevant to common-envelope evolution, we find that these systems may be louder GW sources than low-mass X-ray binaries like Sco X-1, which are currently the target of directed searches for continuous GWs. We also find that their strain amplitude signal may allow for novel constraints on the orbital separation and inspiral timescale in common envelopes when combined with pre-common-envelope electromagnetic observations.
Physics of systems containing neutron stars
NASA Technical Reports Server (NTRS)
Ruderman, Malvin
1996-01-01
This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.
NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauswein, A.; Ardevol Pulpillo, R.; Janka, H.-T.
2014-11-01
We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ∼6× 10{sup –5} per year. We quantify the uncertainties of this estimate to be within factors of a few mostly becausemore » of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.« less
NASA Astrophysics Data System (ADS)
Galanina, L. I.; Zelenskaya, N. S.
2017-09-01
Within the theoretical formalism that combines a four-body problem with themultiparticle shell model, it is shown that the cross section for the dineuteron-stripping mechanism is consistent with the experimental angular distribution of protons from the 16O( t, p)18O reaction. This makes it possible to find the wave function for the relative motion of the dineutron and 16O and to obtain thereby the probability density W( r) for the dineutron in 18O, the nn-16O interaction potential, and the root-mean-square distance 〈 L〉 nn between the dineutron and 16O. The respective calculations reveal that, at r ≈ 8 fm, the dineutron probability density and a rather deep nn-16O potential become negligible, which leads to the absence of a dineuntron periphery in 18O. It seems that one can explain this fact by a rather large value (12.19 MeV) of the dineutron binding energy in this nucleus. Thus, the 18O nucleus is quite compact an object, despite the excess of two neutrons, and has a neutron skin rather than a periphery.
The cosmic merger rate of neutron stars and black holes
NASA Astrophysics Data System (ADS)
Mapelli, Michela; Giacobbo, Nicola
2018-06-01
Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black hole binaries (BHBs) by means of population-synthesis simulations coupled with the Illustris cosmological simulation. We have performed six different simulations, considering different assumptions for the efficiency of common envelope (CE) ejection and exploring two distributions for the supernova (SN) kicks. The current BHB merger rate derived from our simulations spans from ˜150 to ˜240 Gpc-3 yr-1 and is only mildly dependent on CE efficiency. In contrast, the current merger rates of DNSs (ranging from ˜20 to ˜600 Gpc-3 yr-1) and NSBHs (ranging from ˜10 to ˜100 Gpc-3 yr-1) strongly depend on the assumptions on CE and natal kicks. The merger rate of DNSs is consistent with the one inferred from the detection of GW170817 only if a high efficiency of CE ejection and low SN kicks (drawn from a Maxwellian distribution with one dimensional root mean square σ = 15 km s-1) are assumed.
Compact ion chamber based neutron detector
Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.
2015-10-27
A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.
NASA Technical Reports Server (NTRS)
Strohmayer, Tod
2011-01-01
The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges
Recent Observational Progress on Accretion Disks Around Compact Objects
NASA Astrophysics Data System (ADS)
Miller, Jon M.
2016-04-01
Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.
Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object
NASA Astrophysics Data System (ADS)
Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.
2010-02-01
We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly excluded. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).
NASA Astrophysics Data System (ADS)
Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.
2018-01-01
Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.
Silicon Photomultipliers for Compact Neutron Scatter Cameras
NASA Astrophysics Data System (ADS)
Ruch, Marc L.
The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have now been shown to be viable alternatives to PMTs for neutron detection applications. In this thesis, the development of a handheld NSC based on SiPMs coupled to stilbene bars is presented. An algorithm for performing image reconstruction with this type of device is detailed. Prototype design optimization is achieved using a series of simulations and the construction of the optimized prototype is described. The device is calibrated through a series of collimated measurements, backscatter-gated measurements, and a time-of-flight measurement. Experimental imaging and spectroscopic results are presented for a measurement of a Cf-252 spontaneous fission source. Simulated detector response, based on measurements performed with components of the design, demonstrates that fission sources of different sizes would be distinguishable. Notably, a significant quantity of plutonium can be confidently distinguished from a point neutron source.
Workshop on Physics of Accretion Disks Around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Liang, E (Editor); Stepinski, T. F. (Editor)
1995-01-01
The purpose of the two-day Workshop on Physics of Accretion Disks Around Compact and Young Stars was to bring together workers on accretion disks in the western Gulf region (Texas and Louisiana). Part 2 presents the workshop program, a list of poster presentations, and a list of workshop participants. Accretion disks are believed to surround many stars. Some of these disks form around compact stars, such as white dwarfs, neutron stars, or black holes that are members of binary systems and reveal themselves as a power source, especially in the x-ray and gamma regions of the spectrum. On the other hand, protostellar disks are believed to be accretion disks associated with young, pre-main-sequence stars and manifest themselves mostly in infrared and radio observations. These disks are considered to be a natural outcome of the star formation process. The focus of this workshop included theory and observations relevant to accretion disks around compact objects and newly forming stars, with the primary purpose of bringing the two communities together for intellectual cross-fertilization. The nature of the workshop was exploratory, to see how much interaction is possible between distinct communities and to better realize the local potential in this subject. A critical workshop activity was identification and documentation of key issues that are of mutual interest to both communities.
Compact ion source neutron generator
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe
2015-10-13
A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
Neutron cross sections. Volume I. Resonance parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mughabghab, S.F.; Garber, D.I.
1973-06-01
In contrast to earlier editions, which presented in compact form a summary of the complete store of the neutron data files, this edition aims to provide those portions of neutron data considered to be of prime importance and best suited for inclusion in ready reference form. This volume contains thermal cross sections, resonance properties, resonance parameters, and bibliography for nuclides from H to /sup 257/Fm. Notation and nomenclature, considerations involved in the recommendations, and a table of energyordered resonances are also included. (RWR)
Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity
NASA Astrophysics Data System (ADS)
Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji
2018-01-01
Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.
A young contracting white dwarf in the peculiar binary HD 49798/RX J0648.0-4418?
NASA Astrophysics Data System (ADS)
Popov, S. B.; Mereghetti, S.; Blinnikov, S. I.; Kuranov, A. G.; Yungelson, L. R.
2018-02-01
HD 49798/RX J0648.0-4418 is a peculiar X-ray binary with a hot subdwarf (sdO) mass donor. The nature of the accreting compact object is not known, but its spin period P = 13.2 s and \\dot{P} =-2.15 × 10^{-15} s s-1 proves that it can be only either a white dwarf or a neutron star. The spin-up has been very stable for more than 20 yr. We demonstrate that the continuous stable spin-up of the compact companion of HD 49798 can be best explained by contraction of a young white dwarf with an age ˜2 Myr. This allows us to interpret all the basic parameters of the system in the framework of an accreting white dwarf. We present examples of binary evolution, which result in such systems. If correct, this is the first direct evidence for a white dwarf contraction in early evolutionary stages.
On the Progenitor of Binary Neutron Star Merger GW170817
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimball, C.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ˜40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ˜2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older than 1 Gyr.
Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M
2014-04-01
First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.
Correlated Temporal and Spectral Variability
NASA Technical Reports Server (NTRS)
Swank, Jean H.
2007-01-01
The variability of neutron star and black hole X-ray sources has several dimensions, because of the roles played by different important time-scales. The variations on time scales of hours, weeks, and months, ranging from 50% to orders of magnitude, arise out of changes in the flow in the disk. The most important driving forces for those changes are probably various possible instabilities in the disk, though there may be effects with other dominant causes. The changes in the rate of flow appear to be associated with changes in the flow's configuration, as the accreting material approaches the compact object, for there are generally correlated changes in both the Xray spectra and the character of the faster temporal variability. There has been a lot of progress in tracking these correlations, both for Z and Atoll neutron star low-mass X-ray binaries, and for black hole binaries. I will discuss these correlations and review briefly what they tell us about the physical states of the systems.
Compact D-D/D-T neutron generators and their applications
NASA Astrophysics Data System (ADS)
Lou, Tak Pui
2003-10-01
Neutron generators based on the 2H(d,n)3He and 3H(d,n)4He fusion reactions are the most commonly available neutron sources. The applications of current commercial neutron generators are often limited by their low neutron yield and their short operational lifetime. A new generation of D-D/D-T fusion-based neutron generators has been designed at Lawrence Berkeley National Laboratory (LBNL) by using high current ion beams hitting on a self-loading target that has a large surface area to dissipate the heat load. This thesis describes the rationale behind the new designs and their potential applications. A survey of other neutron sources is presented to show their advantages and disadvantages compared to the fusion-based neutron generator. A prototype neutron facility was built at LBNL to test these neutron generators. High current ion beams were extracted from an RF-driven ion source to produce neutrons. With an average deuteron beam current of 24 mA and an energy of 100 keV, a neutron yield of >109 n/s has been obtained with a D-D coaxial neutron source. Several potential applications were investigated by using computer simulations. The computer code used for simulations and the variance reduction techniques employed were discussed. A study was carried out to determine the neutron flux and resolution of a D-T neutron source in thermal neutron scattering applications for condensed matter experiments. An error analysis was performed to validate the scheme used to predict the resolution. With a D-T neutron yield of 1014 n/s, the thermal neutron flux at the sample was predicted to be 7.3 x 105 n/cm2s. It was found that the resolution of cold neutrons was better than that of thermal neutrons when the duty factor is high. This neutron generator could be efficiently used for research and educational purposes at universities. Additional applications studied were positron production and Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.
An observational method for fast stochastic X-ray polarimetry timing
NASA Astrophysics Data System (ADS)
Ingram, Adam R.; Maccarone, Thomas J.
2017-11-01
The upcoming launch of the first space based X-ray polarimeter in ˜40 yr will provide powerful new diagnostic information to study accreting compact objects. In particular, analysis of rapid variability of the polarization degree and angle will provide the opportunity to probe the relativistic motions of material in the strong gravitational fields close to the compact objects, and enable new methods to measure black hole and neutron star parameters. However, polarization properties are measured in a statistical sense, and a statistically significant polarization detection requires a fairly long exposure, even for the brightest objects. Therefore, the sub-minute time-scales of interest are not accessible using a direct time-resolved analysis of polarization degree and angle. Phase-folding can be used for coherent pulsations, but not for stochastic variability such as quasi-periodic oscillations. Here, we introduce a Fourier method that enables statistically robust detection of stochastic polarization variability for arbitrarily short variability time-scales. Our method is analogous to commonly used spectral-timing techniques. We find that it should be possible in the near future to detect the quasi-periodic swings in polarization angle predicted by Lense-Thirring precession of the inner accretion flow. This is contingent on the mean polarization degree of the source being greater than ˜4-5 per cent, which is consistent with the best current constraints on Cygnus X-1 from the late 1970s.
Neutron star radii, universal relations, and the role of prior distributions
Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.
2016-02-02
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less
NASA Astrophysics Data System (ADS)
Voyles, A. S.; Basunia, M. S.; Batchelder, J. C.; Bauer, J. D.; Becker, T. A.; Bernstein, L. A.; Matthews, E. F.; Renne, P. R.; Rutte, D.; Unzueta, M. A.; van Bibber, K. A.
2017-11-01
Cross sections for the 47Ti(n,p)47Sc and 64Zn(n,p)64Cu reactions have been measured for quasi-monoenergetic DD neutrons produced by the UC Berkeley High Flux Neutron Generator (HFNG). The HFNG is a compact neutron generator designed as a "flux-trap" that maximizes the probability that a neutron will interact with a sample loaded into a specific, central location. The study was motivated by interest in the production of 47Sc and 64Cu as emerging medical isotopes. The cross sections were measured in ratio to the 113In(n,n‧)113mIn and 115In(n,n‧)115mIn inelastic scattering reactions on co-irradiated indium samples. Post-irradiation counting using an HPGe and LEPS detectors allowed for cross section determination to within 5% uncertainty. The 64Zn(n,p)64Cu cross section for 2.76-0.02+0.01 MeV neutrons is reported as 49.3 ± 2.6 mb (relative to 113In) or 46.4 ± 1.7 mb (relative to 115In), and the 47Ti(n,p)47Sc cross section is reported as 26.26 ± 0.82 mb. The measured cross sections are found to be in good agreement with existing measured values but with lower uncertainty (<5%), and also in agreement with theoretical values. This work highlights the utility of compact, flux-trap DD-based neutron sources for nuclear data measurements and potentially the production of radionuclides for medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.
We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less
VLBI of supernovae and gamma-ray bursts
NASA Astrophysics Data System (ADS)
Bartel, N.; Karimi, B.; Bietenholz, M. F.
2017-04-01
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2010-11-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
A compact in vivo neutron activation analysis system to quantify manganese in human hand bone
NASA Astrophysics Data System (ADS)
Liu, Yingzi
As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Markus; Vogel, Sven C.; Bourke, Mark Andrew M.
A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron sourcemore » the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >10 10 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for characterization of irradiated fuels. Potential operational advantages compared to a spallation neutron source include reduced shielding complexity, reduced energy requirements, and a production target free of fission products. Contributors to this report include experts in laser-driven neutron production (Roth, Fernandez), laser design (Haefner, Siders, Leemans), laser target design (Glenzer), spallation target/moderator design (Mocko), neutron instrumentation and characterization applications (Vogel, Bourke).« less
Physicsdesign point for a 1MW fusion neutron source
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald
2016-10-01
We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.
Merger of Two Neutron Stars: Predictions from the Two-families Scenario
NASA Astrophysics Data System (ADS)
Drago, Alessandro; Pagliara, Giuseppe
2018-01-01
If only one family of “neutron stars” exists, their maximum mass must be equal to or larger than 2{M}ȯ and then, only in less than about 18% of cases, the outcome of the merger of two neutron stars is a prompt collapse to a black hole, since the newly formed system can avoid the collapse at least until differential rotation is present. In the so-called two-families scenario, stars made of hadrons are stable only up to about (1.5{--}1.6){M}ȯ , while the most massive compact stars are entirely made of strange quark matter. We show that in this scenario the outcome of the merger of two compact stars, entirely composed by hadrons, is a prompt collapse in at least 34% of the cases. It will therefore be easy to discriminate between the two scenarios once the gravitational waves emitted at the moment of the merger are detected. Finally, we shortly discuss the implications of GW170817‑GRB 170817A.
Searching for Compact Binary Mergers with Advanced LIGO
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey
2017-06-01
Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J
2018-03-02
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.
NASA Astrophysics Data System (ADS)
Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de
2017-09-01
The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.
Front-end electronics and DAQ for the EURITRACK tagged neutron inspection system
NASA Astrophysics Data System (ADS)
Lunardon, M.; Bottosso, C.; Fabris, D.; Moretto, S.; Nebbia, G.; Pesente, S.; Viesti, G.; Bigongiari, A.; Colonna, A.; Tintori, C.; Valkovic, V.; Sudac, D.; Peerani, P.; Sequeira, V.; Salvato, M.
2007-08-01
The EURopean Illicit TRAfficing Countermeasures Kit (EURITRACK) Front-End and Data Acquisition System is a compact set of VME boards interfaced with a standard PC. The system is part of a cargo container inspection portal based on the tagged neutrons technique. The front-end processes all detector signals and checks coincidences between any of the 64 pixels of the alpha particle detector and any gamma-ray signals in 22 NaI(Tl) scintillators. The system is capable of handling the data flow at neutron flux up to the portal limiting value of 108 neutrons/second. Some typical applications are presented.
The Effect of Quantum Fluctuations in Compact Star Observables
NASA Astrophysics Data System (ADS)
Pósfay, P.; Barnaföldi, G. G.; Jakovác, A.
2018-05-01
Astrophysical measurements regarding compact stars are just ahead of a big evolution jump, since the NICER experiment deployed on ISS on 2017 June 14. This will provide soon data that would enable the determination of compact star radius with less than 10% error. This can be further constrained by the new observation of gravitational waves originated from merging neutron stars, GW170817. This poses new challenges to nuclear models aiming to explain the structure of super dense nuclear matter found in neutron stars. Detailed studies of the QCD phase diagram show the importance of bosonic quantum fluctuations in the cold dense matter equation of state. Here we used a demonstrative model with one bosonic and one fermionic degree of freedom coupled by Yukawa coupling, we show the effect of bosonic quantum fluctuations on compact star observables such as mass, radius, and compactness. We have also calculated the difference in the value of compressibility which is caused by quantum fluctuations. The above-mentioned quantities are calculated in the mean field, one-loop, and in high order many loop approximation. The results show that the magnitude of these effects is in the range of 4-5%, which place it into the region where modern measurements may detect it. This forms a base for further investigations that how these results carry over to more complicated models.
NASA Technical Reports Server (NTRS)
Fox, T. A.
1973-01-01
An experimental reflector reactivity study was made with a compact cylindrical reactor using a uranyl fluoride - water fuel solution. The reactor was axially unreflected and radially reflected with segments of molybdenum. The reflector segments were displaced incrementally in both the axial and radial dimensions, and the shutdown of each configuration was measured by using the pulsed-neutron source technique. The reactivity effects for axial and radial displacement of reflector segments are tabulated separately and compared. The experiments provide data for control-system studies of compact-space-power-reactor concepts.
Results for the response function determination of the Compact Neutron Spectrometer
NASA Astrophysics Data System (ADS)
Gagnon-Moisan, F.; Reginatto, M.; Zimbal, A.
2012-03-01
The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a white field (Emax ~ 17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~ 1.5 MeV to ~ 17 MeV). The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the Ente per le Nuove tecnologie, l'Energia e l'Ambiente (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.
Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
Taheri, Ali; Pazirandeh, Ali
2016-12-01
To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekoogar, F; Dowla, F; Wang, T
Recent advancements in the ultra-wide band Radio Frequency Identification (RFID) technology and solid state pillar type neutron detectors have enabled us to move forward in combining both technologies for advanced neutron monitoring. The LLNL RFID tag is totally passive and will operate indefinitely without the need for batteries. The tag is compact, can be directly mounted on metal, and has high performance in dense and cluttered environments. The LLNL coin-sized pillar solid state neutron detector has achieved a thermal neutron detection efficiency of 20% and neutron/gamma discrimination of 1E5. These performance values are comparable to a fieldable {sup 3}He basedmore » detector. In this paper we will discuss features about the two technologies and some potential applications for the advanced safeguarding of nuclear materials.« less
NASA Astrophysics Data System (ADS)
Tarifeño-Saldivia, A.; Tain, J. L.; Domingo-Pardo, C.; Calviño, F.; Cortés, G.; Phong, V. H.; Riego, A.; Agramunt, J.; Algora, A.; Brewer, N.; Caballero-Folch, R.; Coleman-Smith, P. J.; Davinson, T.; Dillmann, I.; Estradé, A.; Griffin, C. J.; Grzywacz, R.; Harkness-Brennan, L. J.; Kiss, G. G.; Kogimtzis, M.; Labiche, M.; Lazarus, I. H.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Morales, A. I.; Nishimura, S.; Page, R. D.; Podolyák, Z. S.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Simpson, J.; Sokol, E.; Surman, R.; Svirkhin, A.; Thomas, S. L.; Tolosa, A.; Woods, P.
2017-04-01
The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in GEANT4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions.
The "neutron channel design"—A method for gaining the desired neutrons
NASA Astrophysics Data System (ADS)
Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.
2016-12-01
The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.
The Aftermath of GW170817: Neutron Star or Black Hole?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-06-01
When two neutron stars merged in August of last year, leading to the first simultaneous detection of gravitational waves and electromagnetic signals, we knew this event was going to shed new light on compact-object mergers.A team of scientists says we now have an answer to one of the biggest mysteries of GW170817: after the neutron stars collided, what object was formed?Artists illustration of the black hole that resulted from GW170817. Some of the material accreting onto the black hole is flung out in a tightly collimated jet. [NASA/CXC/M.Weiss]A Fuzzy DivisionBased on gravitational-wave observations, we know that two neutron stars of about 1.48 and 1.26 solar masses merged in GW170817. But the result an object of 2.7 solar masses doesnt have a definitive identity; the remnant formed in the merger is either the most massive neutron star known or the least massive black hole known.The theoretical mass division between neutron stars and black holes is fuzzy, depending strongly on what model you use to describe the physics of these objects. Observations fall short as well: the most massive neutron star known is perhaps 2.3 solar masses, and the least massive black hole is perhaps 4 or 5, leaving the location of the dividing line unclear. For this reason, determining the nature of GW170817s remnant is an important target as we analyze past observations of the remnant and continue to make new ones.Chandra images of the field of GW170817 during three separate epochs. Each image is 30 x 30. [Adapted from Pooley et al. 2018]Luckily, we may not have long to wait! Led by David Pooley (Trinity University and Eureka Scientific, Inc.), a team of scientists has obtained new Chandra X-ray observations of the remnant of GW170817. By combining this new data with previous observations, the authors have drawn conclusions about what object was left behind after this fateful merger.X-Rays Provide AnswersX-ray radiation is generated in a merger of two neutron stars when the mergers shock wave expands and slams into the surrounding interstellar medium. The earliest X-ray detection from GW170817 around 9 days after the merger likely indicated the moment when that interaction began. GW170817s X-ray emission continued to grow over the first 100 days post-merger, expected as the shock continues to expand.If the merger had produced a neutron star, however, there should be an additional source of X-ray radiation besides the shock: the neutron star itself. This emission should, by now, have started to dominate over the emission from the propagating shock. Instead, Pooley and collaborators find that the observed X-ray flux from GW170817 falls significantly short of whats needed to justify the presence of a highly magnetized, spinning neutron star. For this reason, the authors conclude that GW170817 likely produced a black hole.Future ConfirmationHow can we be sure? Pooley and collaborators point out that we can confirm this theory just by observing GW170817 for another year. Around this time, energy released from the spin-down of a central neutron star would catch up to the decelerating shock front, causing a dramatic brightening in GW170817s X-ray flux.If we dont see this brightening, the authors argue that we can conclude with certainty that GW170817s remnant is a black hole. Either way, continued observations of this remnant are sure to provide a wealth of information about the physics of mergers, shocks, and outflows that we can hope to mine for years to come.CitationDavid Pooley et al 2018 ApJL 859 L23. doi:10.3847/2041-8213/aac3d6
Initial data for black hole-neutron star binaries, with rotating stars
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Muhlberger, Curran; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2016-11-01
The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as {S}{BH}/{M}{BH}2=0.99.
Tidal interactions of inspiraling compact binaries
NASA Technical Reports Server (NTRS)
Bildsten, Lars; Cutler, Curt
1992-01-01
We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.
Current and Future Research at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.
2015-05-28
An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installedmore » in the central cavity of the DANCE array. It will thus provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF 2 crystals of DANCE. Additionally, unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.« less
Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1
NASA Astrophysics Data System (ADS)
Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.
2017-09-01
The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.
Development of New High Resolution Neutron Detector
NASA Astrophysics Data System (ADS)
Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.
2017-09-01
Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doan, T. C.; Li, J.; Lin, J. Y.
2016-07-15
Solid-state neutron detectors with high performance are highly sought after for the detection of fissile materials. However, direct-conversion neutron detectors based on semiconductors with a measureable efficiency have not been realized. We report here the first successful demonstration of a direct-conversion semiconductor neutron detector with an overall detection efficiency for thermal neutrons of 4% and a charge collection efficiency as high as 83%. The detector is based on a 2.7 μm thick {sup 10}B-enriched hexagonal boron nitride (h-BN) epitaxial layer. The results represent a significant step towards the realization of practical neutron detectors based on h-BN epilayers. Neutron detectors basedmore » on h-BN are expected to possess all the advantages of semiconductor devices including wafer-scale processing, compact size, light weight, and ability to integrate with other functional devices.« less
NASA Technical Reports Server (NTRS)
Dal Canton, Tito; Harry, Ian W.
2017-01-01
We describe the methodology and novel techniques used to construct a set of waveforms, or template bank, applicable to searches for compact binary coalescences in Advanced LIGO's second observing run. This template bank is suitable for observing systems composed of two neutron stars, two black holes, or a neutron star and a black hole. The Post-Newtonian formulation is used to model waveforms with total mass less than 4 Solar Mass and the most recent effective-one-body model, calibrated to numerical relativity to include the merger and ringdown, is used for total masses greater than 4 Solar Mass. The effects of spin precession, matter, orbital eccentricity and radiation modes beyond the quadrupole are neglected. In contrast to the template bank used to search for compact binary mergers in Advanced LIGO's first observing run, here we are including binary-black-hole systems with total mass up to several hundreds of solar masses, thereby improving the ability to observe such systems. We introduce a technique to vary the starting frequency of waveform filters so that our bank can simultaneously contain binary-neutron-star and high-mass binary-black hole waveforms. We also introduce a lower-bound on the filter waveform length, to exclude very short-duration, high-mass templates whose sensitivity is strongly reduced by the characteristics and performance of the interferometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toeroek, Gabriel; Bakala, Pavel; Sramkova, Eva
2010-05-01
Boutloukos et al. discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M{sub 0} = 2.2 {+-} 0.3 M{sub sun}. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentummore » j = cJ/GM {sup 2}. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M {approx} M{sub 0}[1 + 0.55(j + j {sup 2})]. It is therefore impossible to estimate the mass without independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3 M{sub sun}. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.« less
The iron complex in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.
2013-05-01
An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.
A SCILAB Program for Computing Rotating Magnetic Compact Objects
NASA Astrophysics Data System (ADS)
Papasotiriou, P. J.; Geroyannis, V. S.
We implement the so-called ``complex-plane iterative technique'' (CIT) to the computation of classical differentially rotating magnetic white dwarf and neutron star models. The program has been written in SCILAB (© INRIA-ENPC), a matrix-oriented high-level programming language, which can be downloaded free of charge from the site http://www-rocq.inria.fr/scilab. Due to the advanced capabilities of this language, the code is short and understandable. Highlights of the program are: (a) time-saving character, (b) easy use due to the built-in graphics user interface, (c) easy interfacing with Fortran via online dynamic link. We interpret our numerical results in various ways by extensively using the graphics environment of SCILAB.
Etched tracks and serendipitous dosimetry.
Fleischer, Robert L; Chang, Sekyung; Farrell, Jeremy; Herrmann, Rachel C; MacDonald, Jonathan; Zalesky, Marek; Doremus, Robert H
2006-01-01
Nuclear tracks in detectors that just happened to be there can be found in unexpected places. Eyeglasses, household glass, minerals, objects that were exposed to nuclear explosions, and space equipment on the moon are examples. Such materials allow us to measure doses of past radon exposures, cosmic-ray fluences, fission rates and neutrons. Incidental results include measuring mountain-building rates and deciding where finding oil is likely (or unlikely); in another case erosion rates of surface materials in space are found. New results that assess the effects of hydration layers on the leaching out from glass surfaces of imbedded alpha-recoil nuclei imply that long-term, retrospective radon measurements can be made more reliable by selecting only glass with compact hydration layers.
NASA Astrophysics Data System (ADS)
Carpano, S.; Haberl, F.; Maitra, C.
2018-01-01
The supernova impostor SN 2010da located in NGC 300, later identified as a likely Supergiant B[e] High-mass X-ray binary (Lau et al. 2016, ApJ, 830, 142 and Villar et al. 2016, ApJ, 830, 11), was observed in outburst during two long (139 and 82 ks) XMM-Newton observations performed on 2016 December 17 to 20. We report the discovery of a strong periodic modulation in the X-ray flux with a pulse period of 31.6 s and a very rapid spin-up, and confirm therefore that the compact object is a neutron star.
REVIEWS OF TOPICAL PROBLEMS: Cygnus X-3: a powerful galactic source of hard radiation
NASA Astrophysics Data System (ADS)
Vladimirskiĭ, B. M.; Gal'per, A. M.; Luchkov, B. I.; Stepanyan, A. A.
1985-02-01
A review is given of experimental and theoretical research on the galactic source Cyg X-3, whose electromagnetic spectrum extends from radio frequencies to ultrahigh-energy (Eγ ~ 1016 eV) γ-rays. Cyg X-3 also has a high x-ray luminosity (1038 erg/sec) and exhibits diversified sporadic and periodic variations, most notably occasional radio outbursts and a 4h.8 infrared, x-ray, and γ-ray cycle. Analysis of the observations indicates that Cyg X-3 is a close binary system comprising a compact relativistic object (neutron star, black hole) and a dwarf companion losing mass. Particles are accelerated to 1016 eV within the system.
SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Gallmeier, Franz X; Rennich, Mark J
2016-01-01
Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less
Electronic neutron sources for compensated porosity well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A. X.; Antolak, A. J.; Leung, K. -N.
2012-08-01
The viability of replacing Americium–Beryllium (Am–Be) radiological neutron sources in compensated porosity nuclear well logging tools with D–T or D–D accelerator-driven neutron sources is explored. The analysis consisted of developing a model for a typical well-logging borehole configuration and computing the helium-3 detector response to varying formation porosities using three different neutron sources (Am–Be, D–D, and D–T). The results indicate that, when normalized to the same source intensity, the use of a D–D neutron source has greater sensitivity for measuring the formation porosity than either an Am–Be or D–T source. The results of the study provide operational requirements that enablemore » compensated porosity well logging with a compact, low power D–D neutron generator, which the current state-of-the-art indicates is technically achievable.« less
Thermal Neutron Radiography using a High-flux Compact Neutron Generator
NASA Astrophysics Data System (ADS)
Taylor, Michael; Sengbusch, Evan; Seyfert, Chris; Moll, Eli; Radel, Ross
A novel neutron imaging system has been designed and constructed by Phoenix Nuclear Labs to investigate specimens when conventional X-ray imaging will not suffice. A first-generation electronic neutron generator is actively being used by the United States Army and is coupled with activation films for neutron radiography to inspect munitions and other critical defence and aerospace components. A second-generation system has been designed to increase the total neutron output from an upgraded gaseous deuterium target to 5×1011 DD n/s, generating higher neutron flux at the imaging plane and dramatically reducing interrogation time, while maintaining high spatial resolution and low geometric unsharpness. A description of the neutron generator and imaging system, including the beamline, target and detector platform, is given in this paper. State of the art neutron moderators, collimators and imaging detector components are also discussed in the context of increasing specimen throughput and optimizing image quality. Neutron radiographs captured with the neutron radiography system will be further compared against simulated images using the MCNP nuclear simulation code.
The exotic remnants of compact object binary mergers
NASA Astrophysics Data System (ADS)
Duez, Matthew
2017-01-01
The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.
Short Gamma-Ray Bursts from the Merger of Two Black Holes
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Lazzati, Davide; Giacomazzo, Bruno
2016-04-01
Short gamma-ray bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars or a neutron star and a black hole (BH). The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger BH powers the burst. The recent tentative detection by the Fermi satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two BHs has challenged this standard paradigm. Here, we show that the evolution of two high-mass, low-metallicity stars with main-sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion can produce a short GRB. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magnetorotational instability, and hence the viscosity. The disk remains “long-lived dead” until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short GRB.
Signatures of neutrino cooling in the SN1987A scenario
NASA Astrophysics Data System (ADS)
Fraija, N.; Bernal, C. G.; Hidalgo-Gaméz, A. M.
2014-07-01
The neutrino signal from SN1987A confirmed the core-collapse scenario and the possible formation of a neutron star. Although this compact object has eluded all observations, theoretical and numerical developments have allowed a glimpse of the fate of it. In particular, a hypercritical accretion model has been proposed to forecast the accretion of ˜0.15 M⊙ in two hours and the subsequent submergence of the magnetic field in the newborn neutron star. In this paper, we revisit Chevalier's model in a numerical framework, focusing on the neutrino cooling effect on the supernova fall-back dynamics. For that, using a customized version of the FLASH code, we carry out numerical simulations of the accretion of matter on to the newborn neutron star in order to estimate the size of the neutrino-sphere, the emissivity and luminosity of neutrinos. As a signature of this phase, we estimate the neutrinos expected on SK neutrino experiment and their flavour ratios. This is academically important because, although currently it was very difficult to detect 1.46 thermal neutrinos and their oscillations, these fingerprints are the only viable and reliable way to confirm the hypercritical phase. Perhaps new techniques for detecting neutrino oscillations will arise in the near future allowing us to confirm our estimates.
Equations of state for neutron stars and core-collapse supernovae
NASA Astrophysics Data System (ADS)
Oertel, Micaela; Providência, Constança
2018-04-01
Modelling compact stars is a complex task which depends on many ingredients, among others the properties of dense matter. In this contribution models for the equation of state (EoS) of dense matter will be discussed, relevant for the description of core-collapse supernovae, compact stars and compact star mergers. Such EoS models have to cover large ranges in baryon number density, temperature and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. Some implications for compact star astrophysics will be highlighted, too.
Chandra Uncovers New Evidence For Event Horizons Surrounding Black Holes
NASA Astrophysics Data System (ADS)
2001-01-01
SAN DIEGO -- Astronomers have used NASA's Chandra X-ray Observatory to study some of the darkest black holes yet observed. Their work strongly confirms the reality of the "event horizon," the one-way membrane around black holes predicted by Einstein's theory of relativity. The findings were presented today at the American Astronomical Society meeting by Drs. Michael Garcia, Jeffrey McClintock, Ramesh Narayan, and Stephen Murray of the Harvard-Smithsonian Center for Astrophysics and Dr. Paul Callanan of University College, Cork, Ireland. With results that fundamentally differ from earlier black hole studies, Garcia and his colleagues have shown that some recently discovered black holes are not only ultra-dense, but actually possess event horizons that "vacuum up" energy from their surroundings. "It is a bit odd to say we've discovered something by seeing almost nothing at all -- less than the smile of the Cheshire cat, so to speak," said Garcia, lead author on a paper submitted to the Astrophysical Journal, "but, in essence, this is what we have done." Using data from Chandra and previous X-ray satellites like ROSAT, the Chandra team studied a dozen "X-ray novas," so named because they occasionally erupt as brilliant X-ray sources then settle into decades of dormancy. The great outpouring of X rays is due to a stream of gas that is pulled from the surface of a Sun-like companion star onto a compact object, either a black hole or a neutron star. By comparing the energy output from the dormant X-ray novas, the team discovered that the sources with black holes emitted only one percent as much energy while dormant as did the X-ray novae with neutron stars. "The most straightforward explanation of these observations is that the black hole candidates we have studied have event horizons that swallow just about all of the energy that surrounds them," said Murray. "Indeed, one could even say that this work shows why black holes deserve to be called ‘black.’" "The event horizon is the defining characteristic of a black hole, but obviously it is very difficult to detect since any infalling material at the event horizon is observable for only an instant as it plunges inward at the speed of light," said McClintock. "The comparison of black holes and their close cousins, the neutron stars, may be the most promising way to get a handle on the event horizon." If the collapsed star is a neutron star with a solid surface, energy must be released when infalling matter strikes that surface. In contrast, if the accreting object is a black hole, there is no surface for the matter to strike. Instead, both the energy and the matter will be lost from view forever once they cross the event horizon. A small amount of energy can escape just before the matter crosses the event horizon, but the scientists believe that it should be much less than the energy released by matter hitting a neutron star surface. "Watching matter flowing into a black hole is like sitting upstream of a waterfall and watching the water seemingly vanish over the edge," said Narayan, chairman of the Harvard Astronomy Department. "However, if the waterfall were replaced by a dam -- the analog of a neutron star surface -- then the water would pile up and one would see a mighty lake". Why are dormant black hole sources a hundred times fainter than the neutron star sources? The amount of material falling towards the collapsed star and the subsequent energy release are believed to be nearly the same, whether the compact object is a black hole or a neutron star. Therefore, the remarkable difference in brightness comes, according to the team, because of the event horizon, where the inward pull of gravity becomes infinitely strong. This is in contrast to the situation of neutron stars that have a more normal surface. By observing the motion of the companion star in an X-ray nova, the mass of the collapsed star can be estimated. In some cases, this mass is more than three times that of the Sun. Over that limit, gravitational forces would crush a neutron star or any compact object into a black hole, according to Einstein’s relativity theory. This provides a crucial test for identifying black holes. "It is difficult to appreciate the astounding sensitivity of Chandra to X rays," said Callanan. "For the faintest black hole we detected, Chandra measured literally a handful of photons." The researchers used the Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory for exposure times varying roughly from 10,000 to 40,000 seconds per object. The ACIS X-ray camera was developed for NASA by Pennsylvania State University and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This work was supported by funds from NASA and NSF. During the AAS meeting, the scientists involved in this release can be reached at the AAS Press Room at the Town & Country Resort in San Diego, CA. The phone numbers for the Press Room are (619) 908-5057, (619) 908-5040, and (619) 908-5041 from January 8-11. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.
1978-01-01
There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.
NASA Astrophysics Data System (ADS)
Kaplan, Jeffrey Daniel
2014-01-01
Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.
Prototyping an active neutron veto for SuperCDMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, Robert; Loer, Ben
2015-08-17
Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less
Prototyping an Active Neutron Veto for SuperCDMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calkins, Robert; Loer, Ben
2015-08-17
Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results frommore » our R&D and prototyping efforts.« less
Lahmann, B; Milanese, L M; Han, W; Gatu Johnson, M; Séguin, F H; Frenje, J A; Petrasso, R D; Hahn, K D; Jones, B
2016-11-01
A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahmann, B.; Milanese, L. M.; Han, W.
A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahmann, B., E-mail: lahmann@mit.edu; Milanese, L. M.; Han, W.
A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons.« less
Lahmann, B.; Milanese, L. M.; Han, W.; ...
2016-07-20
A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protonsmore » at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. In conclusion, these results are in excellent agreement with previous work applied to DT neutrons.« less
NASA Astrophysics Data System (ADS)
Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.
2016-10-01
For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattimer, James M.
Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less
NASA Astrophysics Data System (ADS)
Lattimer, James M.
2015-02-01
Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, J.; Abbott, B. P.; Abbott, R.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{submore » 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.« less
IGR J17329-2731: The birth of a symbiotic X-ray binary
NASA Astrophysics Data System (ADS)
Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.
2018-05-01
We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.
NASA Astrophysics Data System (ADS)
Agathos, M.; Del Pozzo, W.; Li, T. G. F.; Van Den Broeck, C.; Veitch, J.; Vitale, S.
2014-04-01
The direct detection of gravitational waves with upcoming second-generation gravitational wave observatories such as Advanced LIGO and Advanced Virgo will allow us to probe the genuinely strong-field dynamics of general relativity (GR) for the first time. We have developed a data analysis pipeline called TIGER (test infrastructure for general relativity), which uses signals from compact binary coalescences to perform a model-independent test of GR. In this paper we focus on signals from coalescing binary neutron stars, for which sufficiently accurate waveform models are already available which can be generated fast enough on a computer that they can be used in Bayesian inference. By performing numerical experiments in stationary, Gaussian noise, we show that for such systems, TIGER is robust against a number of unmodeled fundamental, astrophysical, and instrumental effects, such as differences between waveform approximants, a limited number of post-Newtonian phase contributions being known, the effects of neutron star tidal deformability on the orbital motion, neutron star spins, and instrumental calibration errors.
Astrophysics on the Edge: New Instrumental Developments at the ING
NASA Astrophysics Data System (ADS)
Santander-García, M.; Rodríguez-Gil, P.; Tulloch, S.; Rutten, R. G. M.
Present and future key instruments at the Isaac Newton Group of Telescopes (ING) are introduced, and their corresponding latest scientific highlights are presented. GLAS (Ground-layer Laser Adaptive optics System): The recently installed 515 nm laser, mounted on the WHT (William Herschel Telescope), produces a bright artificial star at a height of 15 km. This enables almost full-sky access to Adaptive Optics observations. Recent commissioning observations with the NAOMI+GLAS system showed that very significant improvement in image quality can be obtained, e.g. down to 0.16 arcsec in the H band. QUCAM2 and QUCAM3: Two Low Light Level (L3) CCD cameras for fast or faint-object spectroscopy with the twin-armed ISIS spectrograph at the WHT. Their use opens a new window of high time-frequency observations, as well as access to fainter objects. They are powerful instruments for research on compact objects such as white dwarfs, neutron stars or black holes, stellar pulsations, and compact binaries.HARPS-NEF (High-Accuracy Radial-velocity Planet Searcher of the New Earths Facility): An extremely stable, high-resolution (R ˜ 120, 000) spectrograph for the WHT which is being constructed for commissioning in 2009-2010. Its radial velocity stability of < 1 m s- 1 may in the future be even further improved by using a Fabry-Perot laser-comb, a wavelength calibration unit capable of achieving an accuracy of 1 cm s- 1. This instrument will effectively allow to search for earth-like exoplanets.
NASA Astrophysics Data System (ADS)
Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.
2017-02-01
A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s-1 (1013 s-1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M., E-mail: marica.rebai@mib.infn.it; Nocente, M.; Rigamonti, D.
2016-11-15
A Single-crystal Diamond (SD) detector prototype was installed at Joint European Torus (JET) in 2013 and the achieved results have shown its spectroscopic capability of measuring 2.5 MeV neutrons from deuterium plasmas. This paper presents measurements of the SD response function to monoenergetic neutrons, which is a key point for the development of a neutron spectrometer based on SDs and compares them with Monte Carlo simulations. The analysis procedure allows for a good reconstruction of the experimental results. The good pulse height energy resolution (equivalent FWHM of 80 keV at 2.5 MeV), gain stability, insensitivity to magnetic field, and compactmore » size make SDs attractive as compact neutron spectrometers of high flux deuterium plasmas, such as for instance those needed for the ITER neutron camera.« less
Constructing neutron stars with a gravitational Higgs mechanism
NASA Astrophysics Data System (ADS)
Franchini, Nicola; Coates, Andrew; Sotiriou, Thomas P.
2018-03-01
In scalar-tensor theories, spontaneous scalarization is a phase transition that can occur in ultradense environments such as neutron stars. The scalar field develops a nontrivial configuration once the stars exceeds a compactness threshold. We recently pointed out that, if the scalar exhibits some additional coupling to matter, it could give rise to significantly different microphysics in these environments. In this work we study, at the nonperturbative level, a toy model in which the photon is given a large mass when spontaneous scalarization occurs. Our results demonstrate clearly the effectiveness of spontaneous scalarization as a Higgs-like mechanism in neutron stars.
Solid state neutron detector and method for use
Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren
2002-01-01
Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
Coyne, Mychaela Dawn; Neumann, Colby R; Zhang, Xinxin; Byrne, Patrick; Liu, Yingzi; Weaver, Connie M; Nie, Linda Huiling
2018-04-16
This study presents the development of a non-invasive method for monitoring Na in human bone. Many diseases, such as hypertension and osteoporosis, are closely associated with sodium (Na) retention in the human body. Na retention is generally evaluated by calculating the difference between dietary intake and excretion. There is currently no method to directly quantify Na retained in the body. Bone is a storage for many elements, including Na, which renders bone Na an ideal biomarker to study Na metabolism and retention. Approach: A customized compact deuterium-deuterium (DD) neutron generator was used to produce neutrons for in vivo neutron activation analysis (IVNAA), with a moderator/ reflector/ shielding assembly optimized for human hand irradiation in order to maximize the thermal neutron flux inside the irradiation cave and to limit radiation exposure to the hand and the whole body. Main Results: The experimental results show that the system is able to detect sodium levels in the bone as low as 12 g Na/g dry bone with an effective dose to the body of about 27 μSv. The simulation results agree with the numbers estimated from the experiment. Significance: This is expected to be a feasible method for measuring the change of Na in bone. The low detection limit indicates this will be a useful system to study the association between Na retention and related diseases. © 2018 Institute of Physics and Engineering in Medicine.
NASA Astrophysics Data System (ADS)
Page, D.; Geppert, U.; Zannias, T.
2000-08-01
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
Colliding black holes and pulsating compact objects
NASA Astrophysics Data System (ADS)
Andrade, Zeferino
2000-08-01
This thesis presents a study of two kinds of sources of gravitational waves: black hole collisions and pulsating compact objects (either a black hole or a star) The computational solution of the Einstein field equations for the coalescence of two black holes is of great interest for both theoretical and astrophysical reasons. Despite the strong motivation for results, outstanding mathematical and numerical problems have prevented a complete analysis of two black hole systems. Workers in the field have resorted to approximate techniques that make the study of such systems tractable. In Chapter 2 we use the close limit approximation to compute the gravitational energy radiated, and the recoil velocity acquired, by a system of two unequal mass black holes colliding head-on. A recent independent comparison of our approximate result with a full numerical analysis of the problem shows excellent agreement. Until recently, vibrations even of relativistically compact stars were studied using Newtonian physics and the weak field limit of general relativity. The study of the problem in the framework of general relativity revealed the existence of modes of vibration (w modes) characteristic of the spacetime geometry and therefore modes not predicted by Newtonian physics. Chapter 3 addresses the question of whether these modes can be excited in a natural astrophysical process. A small particle with a given energy and angular momentum is scattered by a compact star or black hole and in the process excites, although weakly, the w modes. Chapter 4 compares the study of pulsating stars in a Newtonian framework and in a fully relativistic setting. To excite the vibrations of the stellar model we use time dependent surface mass density and surface stress in a thin spherical shell surrounding the star. Even for stars as compact as typical neutron stars (radius ~ 5G/ c2 × mass), the two theories predict essentially the same level of excitation of the f (fluid) modes of the star. The w modes are not excited for these stars. All of the chapters in this thesis, except the introductory chapter, have been published or have been submitted for publication.
Impacts of the Detection of Cassiopeia A Point Source.
Umeda; Nomoto; Tsuruta; Mineshige
2000-05-10
Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.
Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis
NASA Astrophysics Data System (ADS)
Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.
2015-10-01
An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform the operation and measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, J. J.; Huang, Y. F.; Lu, T., E-mail: hyf@nju.edu.cn
2015-05-01
Strange-quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars (SSs), but not neutron stars. According to the SQM hypothesis, the existence of a hydrostatically stable sequence of SQM stars has been predicted, ranging from 1 to 2 solar mass SSs, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the search for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral verymore » close to their host SSs without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as new sources of GW bursts, producing strong GWs at the final stage. The events occurring in our local universe can be detected by upcoming GW detectors, such as Advanced LIGO and the Einstein Telescope. This effect provides a unique probe to SQM objects and is hopefully a powerful tool for testing the SQM hypothesis.« less
The binary progenitors of short and long GRBs and their gravitational-wave emission
NASA Astrophysics Data System (ADS)
Rueda, J. A.; Ruffini, R.; Rodriguez, J. F.; Muccino, M.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Cherubini, C.; Filippi, S.; Kovacevic, M.; Moradi, R.; Pisani, G. B.; Wang, Y.
2018-01-01
We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.
Implications for the Origin of GRB 051103 from LIGO Observations
NASA Technical Reports Server (NTRS)
Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.; Blackburn, L.
2012-01-01
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30. we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.
Implications for the Origin of GRB 051103 from LIGO Observations
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, T. D.; Abbott, R.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barnum, S.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.; Cavaglia, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, S.; Chung, C. T. Y.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Costa, C. A.; Coughlin, M.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Culter, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Das, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; DeBra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Palma, I.; Díaz, M.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garcia, J.; Garofoli, J. A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, N.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li, J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vallisneri, M.; Van Den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Collaboration; Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.
2012-08-01
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at a distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed γ-ray emission with a jet semi-angle of 30°, we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with >99% confidence. If the event occurred in M81, then our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it one of the most distant extragalactic magnetars observed to date.
Approximate universal relations for neutron stars and quark stars
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2017-04-01
Neutron stars and quark stars are ideal laboratories to study fundamental physics at supra nuclear densities and strong gravitational fields. Astrophysical observables, however, depend strongly on the star's internal structure, which is currently unknown due to uncertainties in the equation of state. Universal relations, however, exist among certain stellar observables that do not depend sensitively on the star's internal structure. One such set of relations is between the star's moment of inertia (I), its tidal Love number (Love) and its quadrupole moment (Q), the so-called I-Love-Q relations. Similar relations hold among the star's multipole moments, which resemble the well-known black hole no-hair theorems. Universal relations break degeneracies among astrophysical observables, leading to a variety of applications: (i) X-ray measurements of the nuclear matter equation of state, (ii) gravitational wave measurements of the intrinsic spin of inspiraling compact objects, and (iii) gravitational and astrophysical tests of General Relativity that are independent of the equation of state. We here review how the universal relations come about and all the applications that have been devised to date.
Discovery of Coherent Pulsations from the Ultraluminous X-Ray Source NGC 7793 P13
NASA Technical Reports Server (NTRS)
Furst, F.; Walton, D. J.; Harrison, F. A.; Stern, D.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B.; Madsen, K. K.; Middleton, M. J.;
2016-01-01
We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793P13. The approx. =0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (>>5(sigma)) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of 10(exp 40) erg/ s (assuming isotropy), it is well above the Eddington limit for a 1.4 Stellar Mass accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013-2016 period. This spin-up indicates a magnetic field of B1.51012 G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.
Discovery of the Red-Skewed K-alpha Iron Line in Cyg X-2 with Suzaku
NASA Technical Reports Server (NTRS)
Shaposhnikov, Nikolai; Titarchuk, Lev; Laurent, Philippe
2008-01-01
We report on the Suzaku observation of neutron star low-mass X-ray binary Cygnus X-2 which reveals strong iron K-alpha emission line. The line profile shows a prominent red wing extending down to 4 keV. This discovery increases the number of neutron star sources where red-skewed iron lines were observed and strongly suggests that this phenomenon is common not only in black holes but also in other types of compact objects. We examine the line profile by fitting it with the model which attributes its production to the relativistic effects due to disk reflection of X-ray radiation. We also apply an alternative model where the red wing is a result of down-scattering effect of the first order with respect to electron velocity in the wind outflow. Both models describe adequately the observed line profile. However, the X-ray variability in a state similar to that in the Suzaku observation which we establish by analysing RXTE observation favors the wind origin of the line formation.
Customized compact neutron activation analysis system to quantify manganese (Mn) in bone in vivo
Liu, Yingzi; Mostafaei, Farshad; Sowers, Daniel; Hsieh, Mindy; Zheng, Wei; Nie, Linda H
2018-01-01
Objective In the US alone, millions of workers, including over 300 000 welders, are at high risk of occupational manganese (Mn) exposure. Those who have been chronically exposed to excessive amount of Mn can develop severe neurological disorders similar, but not identical, to the idiopathic Parkinson’s disease. One challenge of identifing the health effects of Mn exposure is to find a reliable biomarker for exposure assessment, especially for long-term cumulative exposure. Approach Mn’s long biological half-life as well as its relatively high concentration in bone makes bone Mn (BnMn) a potentially valuable biomarker for Mn exposure. Our group has been working on the development of a deuterium–deuterium (D–D)-based neutron generator to quantify Mn in bone in vivo. Main results and significance In this paper, we report the latest advancements in our system. With a customized hand irradiation assembly, a fully characterized high purity germanium (HPGe) detector system, and an acceptable hand dose of 36 mSv, a detection limit of 0.64 µg Mn/g bone (ppm) has been achieved. PMID:28060775
Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao
2018-05-17
To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
An ultraluminous X-ray source powered by an accreting neutron star.
Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W
2014-10-09
The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.
Marchese, N; Cannuli, A; Caccamo, M T; Pace, C
2017-01-01
Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Klochkov, D.; Pühlhofer, G.; Suleimanov, V.; Simon, S.; Werner, K.; Santangelo, A.
2013-08-01
Context. The central compact object (CCO) candidate in the center of the supernova remnant shell HESS J1731-347/G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347/G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.
New compact neutron supermirror transmission polarizer
NASA Astrophysics Data System (ADS)
Syromyatnikov, V. G.; Pusenkov, V. M.
2017-06-01
A new compact neutron supermirror transmission polarizer is suggested. The polarizer consists of a set of plates transparent to neutrons placed in the magnet gap. There are no air gaps between the plates. Polarizing supermirror coating without absorbing underlayer is deposited on the polished surfaces of the plates. Magnetic and nonmagnetic layers of the supermirror coating as well as the material of the plates have nearly equal neutron-optical potentials for spin-down neutrons. There is a considerable difference between neutron-optical potentials of layers in the supermirror structure for spin-up neutrons. As a result, spin-up neutrons reflect from the supermirror coating and deviate from their initial trajectories whereas spin-down neutrons do not practically reflect from the coating and, consequently, do not deviate from their initial trajectories. Thus, spin-down neutrons dominate near the axis of distribution of intensity on the angle for the beam transmitted through this polarizer, i.e., the beam is substantially polarized. Application is discussed of this polarizer in a research facility for small angle scattering of monochromatic neutrons with wavelengths λ = 4.5÷20 Å. The polarizing cross section of the beam of this facility is 30×30 mm2. Calculated parameters are presented of a polarizer on silicon plates with supermirror CoFe/TiZr (m = 2) coating. The suggested polarizer is compared with solid state bender, S-bender and widely known transmission neutron polarizer V- cavity in the same spectral range. Two polarizers are used to cover the wavelength range λ = 4.5 ÷20 Å: the first one whose length is 50 мм covers the range λ = 4.5 ÷10 Å and the second one whose length is 21.2 мм covers the range λ = 10 ÷20 Å. The length of each of these polarizers is more than 30 times smaller than that of V-cavity! On the other hand, basic parameters of the proposed polarizer, polarization of the beam falling on the sample P and transmission coefficient T- of the main spin component, exceed those of V-cavity. T- = 0.8 - 0.9 for both polarizers and for each wavelength range. Polarization P is very high. P is better than -0.99 for wavelength range λ = 12.5 ÷ 20 Å at the beam divergence of 24 mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques, J.G.; Ramos, A.R.; Fernandes, A.C.
The behavior of electronic components and circuits under radiation is a concern shared by the nuclear industry, the space community and the high-energy physics community. Standard commercial components are used as much as possible instead of radiation hard components, since they are easier to obtain and allow a significant reduction of costs. However, these standard components need to be tested in order to determine their radiation tolerance. The Portuguese Research Reactor (RPI) is a 1 MW pool-type reactor, operating since 1961. The irradiation of electronic components and circuits is one area where a 1 MW reactor can be competitive, sincemore » the fast neutron fluences required for testing are in most cases well below 10{sup 16} n/cm{sup 2}. A program was started in 1999 to test electronics components and circuits for the LHC facility at CERN, initially using a dedicated in-pool irradiation device and later a beam line with tailored neutron and gamma filters. Neutron filters are essential to reduce the intensity of the thermal neutron flux, which does not produce significant defects in electronic components but produces unwanted radiation from activation of contacts and packages of integrated circuits and also of the printed circuit boards. In irradiations performed within the line-of-sight of the core of a fission reactor there is simultaneous gamma radiation which complicates testing in some cases. Filters can be used to reduce its importance and separate testing with a pure gamma radiation source can contribute to clarify some irradiation results. Practice has shown the need to introduce several improvements to the procedures and facilities over the years. We will review improvements done in the following areas: - Optimization of neutron and gamma filters; - Dosimetry procedures in mixed neutron / gamma fields; - Determination of hardness parameter and 1 MeV-equivalent neutron fluence; - Temperature measurement and control during irradiation; - Follow-up of reactor power operational fluctuations; - Study of gamma radiation effects only. The fission neutron spectrum can be limitative for some of the tests, as most neutrons are in the 1-2 MeV energy range. Significant progress has been made lately in compact neutron generators using D-D and D-T fusion reactions, achieving higher neutron fluxes and longer lifetime than previously available. The advantages of using compact neutron generators for testing of electronic components and circuits will be also discussed. (authors)« less
A compact pulse shape discriminator module for large neutron detector arrays
NASA Astrophysics Data System (ADS)
Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.
2008-11-01
A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.
Equation of state survey of black hole-neutron star mergers
NASA Astrophysics Data System (ADS)
Brege, Wyatt
2016-03-01
By varying across several realistic equations of state in the regime in which most neutron star masses are most likely to appear, we can study how important a role these EOS's play in the properties of the post-merger accretion disk in mixed binary systems. In each system considered, the black hole has a mass of MBH = 7M⊙ and a spin of a* = 0 . 9 , and the neutron star has a mass of 1.2 or 1.4 M⊙. The realistic EOS's chosen satisfy experimental and observational constraints, and explore a wide range of neutron star compactnesses. We will address remaining uncertainties in the NS high-density EOS's and, principally, examine differences in the dynamical ejecta and consider implications for nucleosynthesis.
Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald
2017-01-01
The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.
Kasatov, D; Makarov, A; Shchudlo, I; Taskaev, S
2015-12-01
Epithermal neutron source based on a tandem accelerator with vacuum insulation and lithium target has been proposed, developed and operated in Budker Institute of Nuclear Physics. The source is regarded as a prototype of a future compact device suitable for carrying out BNCT in oncology centers. In this work the measurements of gamma-ray and neutron radiation are presented for the interaction of a 2 MeV proton beam with various materials (Li, C, F, Al, V, Ti, Cu, Mo, stainless steel, and Ta). The obtained results enabled the optimization of the neutron-generating target and the high energy beam transportation path. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Orbit of the Gamma-Ray Binary 1FGL J1018.6−5856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monageng, I. M.; McBride, V. A.; Kniazev, A. Y.
2017-09-20
Gamma-ray binaries are a small subclass of the high mass X-ray binary population that exhibit emission across the whole electromagnetic spectrum. We present the radial velocities of 1FGL J1018.6−5856 based on the observations obtained with the Southern African Large Telescope. We combine our measurements with those published in the literature to get a broad phase coverage. The mass function obtained supports a neutron star compact object, although a black hole mass is possible for the very low inclination angles. The improved phase coverage allows constraints to be placed on the orbital eccentricity ( e = 0.31 ± 0.16), which agreesmore » with the estimates from the high-energy data.« less
Explorer Program: X-ray Timing Explorer
NASA Technical Reports Server (NTRS)
1995-01-01
This booklet describes the X-ray Timing Explorer (XTE), one in a series of Explorer missions administered by the National Aeronautics and Space Administration's (NASA) Office of Space Science and managed by the NASA Goddard Space Flight Center (GSFC). The X-ray astronomy observatory is scheduled for launch into low-Earth orbit by Delta 2 expendable launch vehicle in late summer of 1995. The mission is expected to operate for at least 2 years and will carry out in-depth timing and spectral studies of the X-ray sources in the 2 to 200 kilo-electron Volt (keV) range. XTE is intended to study the temporal and broad-band spectral phenomena associated with stellar and galactic systems containing compact objects, including neutron stars, white dwarfs, and black holes.
NASA Astrophysics Data System (ADS)
Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.
2016-11-01
Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.
2015-10-01
The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.
NASA Astrophysics Data System (ADS)
Semena, Andrey
It is widely accepted that accretion onto magnetized compact objects is channelled to some areas close to magnetic poles of the star. Thickness of this channelled accretion flow intimately depends on details of penetration of highly conducting plasma of the flow to the compact object magnetosphere, i.e. on magnetic diffusivity etc. Until now our knowledge of these plasma properties is scarce. In our work we present our attempts to estimate the thickness of the plasma flow on top of the magnetosphere from observations of accreting intermediate polars (magnetized white dwarfs). We show that properties of aperiodic noise of accreting intermediate polars can be used to put constrains on cooling time of hot plasma, heated in the standing shock wave above the WD surface. Estimates of the cooling time and the mass accretion rate provide us a tool to measure the density of post-shock plasma and the cross-sectional area of the accretion funnel at the WD surface. We have studied aperiodic noise of emission of one of the brightest intermediate polar EX Hya with the help of data in optical and X-ray energy bands. We put an upper limit on the plasma cooling timescale tau <0.2-0.5 sec, on the fractional area of the accretion curtain footprint f < 1.6 × 10(-4) . We show that measurements of accretion column footprints, combined with results of the eclipse mapping, can be used to obtain an upper limit on the penetration depth of the accretion disc plasma at the boundary of the magnetosphere, Delta r / r ≈ 10(-3) If the magnetospheres of accreting neutron stars have similar plasma penetration depths at their boundaries, we predict that footprints of their accretion columns should be very small, with fractional areas < 10(-6) .
NASA Astrophysics Data System (ADS)
Leahy, Denis A.; Ouyed, R.; Niebergal, B.
2006-12-01
Mass is ejected from a quark stars formed by the Quark-Nova process (Ouyed, Dey and Dey, 2002 A&A, 390, L39; Keranen, Ouyed and Jaikumar 2005 ApJ, 681, 485). Some fraction of this ejecta is below escape velocity and falls back toward the compact object. If the magnetic field of the compact object is high enough, the fall-back material forms a shell of iron-rich material which then evolves quasi-statically. We explore the formation and evolution of such a fall-back crust (so-called because the material originates in the crust of the neutron star progenitor to the quark-nova). We find the resulting properites have application to the observed properties of Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). These observed features of SGRs and AXPs are: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated persistant increases in period derivative ; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an Iron line as observed in SGR1900+14; (v) the correlation between the far-Infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that only the youngest SGRs/AXPs are most likely to exhibit strong bursting. We acknowledge funding for this research from the Natural Science and Engineering Research Council of Canada.
A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)
NASA Technical Reports Server (NTRS)
Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki
1998-01-01
We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.
Mapping the QCD Phase Transition with Accreting Compact Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, D.; Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Joliot-Curie str. 6, 141980 Dubna; Poghosyan, G.
2008-10-29
We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in themore » {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.« less
Relativistic jets: An astrophysical laboratory for the Doppler effect
NASA Astrophysics Data System (ADS)
Zakamska, Nadia L.
2018-05-01
Special Relativity is one of the most abstract courses in the standard curriculum for physics majors, and therefore practical applications or laboratory exercises are particularly valuable for providing real-world experiences with this subject. This course poses a challenge for lab development because relativistic effects manifest themselves only at speeds close to the speed of light. The laboratory described in this paper constitutes a low-cost, low-barrier exercise suitable for students whose only background is the standard mechanics-plus-electromagnetism sequence. The activity uses research-quality astronomical data on SS433—a fascinating Galactic X-ray binary consisting of a compact object (a neutron star or a black hole) and a normal star. A pair of moderately relativistic jets moving with v ˜ 0.3 c in opposite directions emanate from the vicinity of the compact object and are clearly detected in optical and radio observations. Following step-by-step instructions, students develop a full kinematic model of a complex real-world source, use the model to fit the observational data, obtain best-fit parameters, and understand the limitations of the model. The observations are in exquisite agreement with the Doppler effect equations of Special Relativity. The complete lab manual, the dataset and the solutions are available in online supplemental materials; this paper presents the scientific and pedagogical background for the exercise.
The Proper Motion of the Central Compact Object RX J0822-4300 in the Supernova Remnant Puppis A
NASA Technical Reports Server (NTRS)
Becker, Werner; Prinz, Tobias; Winkler, P. Frank; Petre, Robert
2012-01-01
Using the High Resolution Camera (HRC) aboard the Chandra X-ray Observatory, we have re-examined the proper motion of the central compact object RX J0822-4300 in the supernova remnant Puppis A. New data from 2010 August, combined with three archival data sets from as early as 1999 December, provide a baseline of 3886 days (more than 10 1/2 years) to perform the measurement. Correlating the four positions of RX J0822-4300 measured in each data set implies a projected proper motion of mu = 71 +/- 12 mas/yr. For a distance of 2 kpc this proper motion is equivalent to a recoil velocity of 672 +/- 115 km/s. The position angle is found to be 244 +/- 11 degrees. Both the magnitude and direction of the proper motion are in agreement with RX J0822-4300 originating near the optical expansion center of the supernova remnant. For a displacement of 371 +/- 31 arcsec between its birth place and today's position we deduce an age of (5.2 +/- 1.0) 10(exp 3) yrs for RX J0822-4300. The age inferred from the neutron star proper motion and filament motions can be considered as two independent measurements of the same quantity. They average to 4450 +/- 750 yrs for the age of the supernova remnant Puppis A.
Foster, J.S. Jr.
1960-04-19
A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.
Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Levesque, Emily M.; Massey, Philip; Żytkow, Anna N.; Morrell, Nidia
2015-01-01
Thorne-Żytkow objects (TŻOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TŻOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The only features that can be used at present to distinguish TŻOs from the general RSG population are the unusually strong heavy-element and lithium lines present in their spectra. These elements are the unique products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. We have recently discovered a TŻO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be characteristic of TŻOs however, up-to-date models and additional observable predictions (including potential asteroseismological signatures) are required to solidify this discovery. The definitive detection of a TŻO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element and lithium production in our universe.
NASA Astrophysics Data System (ADS)
Masoudi, S. Farhad; Rasouli, Fatemeh S.
2015-08-01
Recent studies in BNCT have focused on investigating appropriate neutron sources as alternatives for nuclear reactors. As the most prominent facilities, the electron linac based photoneutron sources benefit from two consecutive reactions, (e, γ) and (γ, n). The photoneutron sources designed so far are composed of bipartite targets which involve practical problems and are far from the objective of achieving an optimized neutron source. This simulation study deals with designing a compact, optimized, and geometrically simple target for a photoneutron source based on an electron linac. Based on a set of MCNPX simulations, tungsten is found to have the potential of utilizing as both photon converter and photoneutron target. Besides, it is shown that an optimized dimension for such a target slows-down the produced neutrons toward the desired energy range while keeping them economy, which makes achieving the recommended criteria for BNCT of deep-tumors more available. This multi-purpose target does not involve complicated designing, and can be considered as a significant step toward finding application of photoneutron sources for in-hospital treatments. In order to shape the neutron beam emitted from such a target, the beam is planned to pass through an optimized arrangement of materials composed of moderators, filters, reflector, and collimator. By assessment with the recommended in-air parameters, it is shown that the designed beam provides high intensity of desired neutrons, as well as low background contamination. The last section of this study is devoted to investigate the performance of the resultant beam in deep tissue. A typical simulated liver tumor, located within a phantom of human body, was subjected to the irradiation of the designed spectrum. The dosimetric results, including evaluated depth-dose curves and carried out in-phantom parameters show that the proposed configuration establishes acceptable agreement between the appropriate neutron intensity, and penetrating deep in tissue in a reasonable treatment time.
Constraints on the Neutron Star and Inner Accretion Flow in Serpens X-1 Using Nustar
NASA Technical Reports Server (NTRS)
Miller, J. M.; Parker, M. L.; Fuerst, F.; Bachetti, M.; Barret, D.; Grefenstette, B. W.; Tendulkar, S.; Harrison, F. A.; Boggs, S. E.; Chakrabarty, D.;
2013-01-01
We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5 sigma level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering "hump" peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection models suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be ZnS (is) greater than 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case,ZnS(is) greater than 0.22 and RNS (is) less than12.6 km (assuming MnS = 1.4 solar mass and a = 0, where a = cJ/GM2). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.
CONSTRAINTS ON THE NEUTRON STAR AND INNER ACCRETION FLOW IN SERPENS X-1 USING NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J. M.; Parker, M. L.; Fabian, A. C.
2013-12-10
We report on an observation of the neutron star low-mass X-ray binary Serpens X-1, made with NuSTAR. The extraordinary sensitivity afforded by NuSTAR facilitated the detection of a clear, robust, relativistic Fe K emission line from the inner disk. A relativistic profile is required over a single Gaussian line from any charge state of Fe at the 5σ level of confidence, and any two Gaussians of equal width at the same confidence. The Compton back-scattering ''hump'' peaking in the 10-20 keV band is detected for the first time in a neutron star X-ray binary. Fits with relativistically blurred disk reflection modelsmore » suggest that the disk likely extends close to the innermost stable circular orbit (ISCO) or stellar surface. The best-fit blurred reflection models constrain the gravitational redshift from the stellar surface to be z {sub NS} ≥ 0.16. The data are broadly compatible with the disk extending to the ISCO; in that case, z {sub NS} ≥ 0.22 and R {sub NS} ≤ 12.6 km (assuming M {sub NS} = 1.4 M {sub ☉} and a = 0, where a = cJ/GM {sup 2}). If the star is as large or larger than its ISCO, or if the effective reflecting disk leaks across the ISCO to the surface, the redshift constraints become measurements. We discuss our results in the context of efforts to measure fundamental properties of neutron stars, and models for accretion onto compact objects.« less
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Byrne, Patrick; Mostafaei, Farshad; Liu, Yingzi; Blake, Scott P; Koltick, David; Nie, Linda H
2016-05-01
The feasibility and methodology of using a compact DD generator-based neutron activation analysis system to measure aluminum in hand bone has been investigated. Monte Carlo simulations were used to simulate the moderator, reflector, and shielding assembly and to estimate the radiation dose. A high purity germanium (HPGe) detector was used to detect the Al gamma ray signals. The minimum detectable limit (MDL) was found to be 11.13 μg g(-1) dry bone (ppm). An additional HPGe detector would improve the MDL by a factor of 1.4, to 7.9 ppm. The equivalent dose delivered to the irradiated hand was calculated by Monte Carlo to be 11.9 mSv. In vivo bone aluminum measurement with the DD generator was found to be feasible among general population with an acceptable dose to the subject.
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Hu, Xu-Yao
2016-06-01
We present a theoretical model framework for general polytropic (GP) hydrodynamic cylinder under self-gravity of infinite length with axial uniformity and axisymmetry. For self-similar dynamic solutions, we derive valuable integrals, analytic asymptotic solutions, sonic critical curves, shock conditions, and global numerical solutions with or without expansion shocks. Among others, we investigate various dynamic solutions featured with central free-fall asymptotic behaviours, corresponding to a collapsed mass string with a sustained dynamic accretion from a surrounding mass reservoir. Depending on the allowed ranges of a scaling index a < -1, such cylindrical dynamic mass accretion rate could be steady, increasing with time and decreasing with time. Physically, such a collapsed mass string or filament would break up into a sequence of sub-clumps and segments as induced by gravitational Jeans instabilities. Depending on the scales involved, such sub-clumps would evolve into collapsed objects or gravitationally bound systems. In diverse astrophysical and cosmological contexts, such a scenario can be adapted on various temporal, spatial and mass scales to form a chain of collapsed clumps and/or compact objects. Examples include the formation of chains of proto-stars, brown dwarfs and gaseous planets along molecular filaments; the formation of luminous massive stars along magnetized spiral arms and circum-nuclear starburst rings in barred spiral galaxies; the formation of chains of compact stellar objects such as white dwarfs, neutron stars, and black holes along a highly condensed mass string. On cosmological scales, one can perceive the formation of chains of galaxies, chains of galaxy clusters or even chains of supermassive and hypermassive black holes in the Universe including the early Universe. All these chains referred to above include possible binaries.
Neutrino Emission from Supernovae
NASA Astrophysics Data System (ADS)
Janka, Hans-Thomas
Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.
242Pu absolute neutron-capture cross section measurement
NASA Astrophysics Data System (ADS)
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.
2017-09-01
The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.
High-efficiency neutron detectors and methods of making same
McGregor, Douglas S.; Klann, Raymond
2007-01-16
Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.
Compact turnkey focussing neutron guide system for inelastic scattering investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandl, G., E-mail: g.brandl@fz-juelich.de; Georgii, R.; Dunsiger, S. R.
2015-12-21
We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date wouldmore » have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.« less
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Concept of DT fuel cycle for a fusion neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.
2015-03-15
A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of thismore » device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)« less
Perspectives of boron-neutron capture therapy of malignant brain tumors
NASA Astrophysics Data System (ADS)
Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.
2017-09-01
Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.
The Nuclear Symmetry Energy and the Mass-Radius Relation of Neutron Stars
NASA Astrophysics Data System (ADS)
Lattimer, James
2017-01-01
The assumptions that i) neutron stars have hadronic crusts, ii) the equation of state is causal, iii) GR is the correct theory of gravity, and iv) their largest observed mass is 2 solar masses, when coupled with recent results from nuclear experiment and theoretical studies of neutron matter, generate powerful constraints on their structure. These include restriction of the radii of typical neutron stars to the range 11-13 km, as well as significant correlations among their masses, compactnesses, moments of inertia, binding energies, and tidal deformabilities. In addition, properties of quark matter, including the location and magnitude of the quark-hadron phase transition, can also be limited. The implications of recent and forthcoming experiments, such as those pertaining to the neutron skin thickness and astrophysical measurements of various structural properties is discussed. For the latter, emphasis is placed on pulsar timing, X-ray observations, supernova neutrino detections, and gravitational waves from mergers involving neutron stars. Supported in part by the US DOE grant DE-AC02-87ER40317.
NASA Astrophysics Data System (ADS)
Suharyana; Riyatun; Octaviana, E. F.
2016-11-01
We have successfully proposed a simulation of a neutron beam-shaping assembly using MCNPX Code. This simulation study deals with designing a compact, optimized, and geometrically simple beam shaping assembly for a neutron source based on a proton cyclotron for BNCT purpose. Shifting method was applied in order to lower the fast neutron energy to the epithermal energy range by choosing appropriate materials. Based on a set of MCNPX simulations, it has been found that the best materials for beam shaping assembly are 3 cm Ni layered with 7 cm Pb as the reflector and 13 cm AlF3 the moderator. Our proposed beam shaping assembly configuration satisfies 2 of 5 of the IAEA criteria, namely the epithermal neutron flux 1.25 × 109 n.cm-2 s-1 and the gamma dose over the epithermal neutron flux is 0.18×10 -13 Gy.cm 2 n -1. However, the ratio of the fast neutron dose rate over neutron epithermal flux is still too high. We recommended that the shifting method must be accompanied by the filter method to reduce the fast neutron flux.
Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA
NASA Astrophysics Data System (ADS)
Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert
2016-03-01
The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.
Spontaneous Scalarization of Black Holes and Compact Stars from a Gauss-Bonnet Coupling.
Silva, Hector O; Sakstein, Jeremy; Gualtieri, Leonardo; Sotiriou, Thomas P; Berti, Emanuele
2018-03-30
We identify a class of scalar-tensor theories with coupling between the scalar and the Gauss-Bonnet invariant that exhibit spontaneous scalarization for both black holes and compact stars. In particular, these theories formally admit all of the stationary solutions of general relativity, but these are not dynamically preferred if certain conditions are satisfied. Remarkably, black holes exhibit scalarization if their mass lies within one of many narrow bands. We find evidence that scalarization can occur in neutron stars as well.
Astrophysics: quark matter in compact stars?
Alford, M; Blaschke, D; Drago, A; Klähn, T; Pagliara, G; Schaffner-Bielich, J
2007-01-18
In a theoretical interpretation of observational data from the neutron star EXO 0748-676, Ozel concludes that quark matter probably does not exist in the centre of neutron stars. However, this conclusion is based on a limited set of possible equations of state for quark matter. Here we compare Ozel's observational limits with predictions based on a more comprehensive set of proposed quark-matter equations of state from the literature, and conclude that the presence of quark matter in EXO 0748-676 is not ruled out.
A new way to make Thorne-Zytkow objects
NASA Technical Reports Server (NTRS)
Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.
1994-01-01
We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.
Current and Future Research at DANCE
NASA Astrophysics Data System (ADS)
Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Hayes, A.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Walker, C. L.; Wilhelmy, J. B.
2015-05-01
An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the
Temperature behavior of CLYC/MPPC detectors
NASA Astrophysics Data System (ADS)
Glodo, Jarek; McClish, Mickel; Hawrami, Rastgo; O'Dougherty, Patrick; Tower, Josh; Gueorguiev, Andrey; Shah, Kanai S.
2013-09-01
He-3 tubes are the most popular thermal neutron detectors. They are easy to use, have good sensitivity for neutron detection, and are insensitive to gamma radiation. Due to low stockpiles of the He-3 gas, alternatives are being sought to replace these devices in many applications. One of the possible alternatives to these devices are scintillators incorporating isotopes with high cross-section for neutron capture (e.g. Li-6 or B-10). Cs2LiYCl6:Ce (CLYC) is one of the scintillators that recently has been considered for neutron detection. This material offers good detection efficiency (~80%), bright response (70,000 photons/neutron), high gamma ray equivalent energy of the neutron signal (>3MeV), and excellent separation between gamma and neutron radiation with pulse shape discrimination. A He-3 tube alternative based on a CLYC scintillator was constructed using a silicon photomultiplier (SiPM) for the optical readout. SiPMs are very compact optical detectors that are an alternative to usually bulky photomultiplier tubes. Constructed detector was characterized for its behavior across a temperature range of -20°C to 50°C.
RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, A. T.; Moldon, J.; Patruno, A.
2015-08-10
The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. At a distance of just 1.37 kpc, PSR J1023+0038 offers an unsurpassed ability to study low-level accretion onto a highly magnetized compact object. We have monitored PSR J1023+0038 intensively using radio imaging with the Karl G. Jansky Very Large Array, the European VLBI Network and the Low Frequency Array, seeing rapidly variable, flat spectrum emission that persists over a period of six months. The flat spectrum and variability aremore » indicative of synchrotron emission originating in an outflow from the system, most likely in the form of a compact, partially self-absorbed jet, as is seen in LMXBs at higher accretion rates. The radio brightness, however, greatly exceeds extrapolations made from observations of more vigorously accreting neutron star LMXB systems. We postulate that PSR J1023+0038 is undergoing radiatively inefficient “propeller-mode” accretion, with the jet carrying away a dominant fraction of the liberated accretion luminosity. We confirm that the enhanced γ-ray emission seen in PSR J1023+0038 since it re-entered an accreting state has been maintained; the increased γ-ray emission in this state can also potentially be associated with propeller-mode accretion. Similar accretion modes can be invoked to explain the radio and X-ray properties of the other two known transitional MSP systems XSS J12270–4859 and PSR J1824–2452I (M28I), suggesting that radiatively inefficient accretion may be a ubiquitous phenomenon among (at least one class of) neutron star binaries at low accretion rates.« less
Evolution of black holes in the galaxy
NASA Astrophysics Data System (ADS)
Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.
2000-08-01
In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.
A model for neutrino emission from nuclear accretion disks
NASA Astrophysics Data System (ADS)
Deaton, Michael
2015-04-01
Compact object mergers involving at least one neutron star can produce short-lived black hole accretion engines. Over tens to hundreds of milliseconds such an engine consumes a disk of hot, nuclear-density fluid, and drives changes to its surrounding environment through luminous emission of neutrinos. The neutrino emission may drive an ultrarelativistic jet, may peel off the disk's outer layers as a wind, may irradiate those winds or other forms of ejecta and thereby change their composition, may change the composition and thermodynamic state of the disk itself, and may oscillate in its flavor content. We present the full spatial-, angular-, and energy-dependence of the neutrino distribution function around a realistic model of a nuclear accretion disk, to inform future explorations of these types of behaviors. Spectral Einstein Code (SpEC).
NASA Astrophysics Data System (ADS)
Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R. B.; Cocolios, T. E.; George, S.; Goriely, S.; Herfurth, F.; Janka, H.-T.; Just, O.; Kowalska, M.; Kreim, S.; Kisler, D.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2015-12-01
Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning-trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N =82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A =128 - 132 region and a reduction of the uncertainties from the precision mass input data.
LISA Sources in Milky Way Globular Clusters
NASA Astrophysics Data System (ADS)
Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Rasio, Frederic A.
2018-05-01
We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ˜21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ˜7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.
LISA Sources in Milky Way Globular Clusters.
Kremer, Kyle; Chatterjee, Sourav; Breivik, Katelyn; Rodriguez, Carl L; Larson, Shane L; Rasio, Frederic A
2018-05-11
We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain ∼21 sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict ∼7 of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.
Development of high flux thermal neutron generator for neutron activation analysis
NASA Astrophysics Data System (ADS)
Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.
2015-05-01
The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomelli, L.; Department of Physics, Università degli Studi di Milano-Bicocca, Milano; Conroy, S.
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectorsmore » are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.« less
Searches for all types of binary mergers in the first Advanced LIGO observing run
NASA Astrophysics Data System (ADS)
Read, Jocelyn
2017-01-01
The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations
Prompt merger collapse and the maximum mass of neutron stars.
Bauswein, A; Baumgarte, T W; Janka, H-T
2013-09-27
We perform hydrodynamical simulations of neutron-star mergers for a large sample of temperature-dependent nuclear equations of state and determine the threshold mass above which the merger remnant promptly collapses to form a black hole. We find that, depending on the equation of state, the threshold mass is larger than the maximum mass of a nonrotating star in isolation by between 30 and 70 percent. Our simulations also show that the ratio between the threshold mass and maximum mass is tightly correlated with the compactness of the nonrotating maximum-mass configuration. We speculate on how this relation can be used to derive constraints on neutron-star properties from future observations.
Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H
2017-02-01
Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5 n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13 Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13 Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3 cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in reasonable time was 4.9 × 10 13 n/s. Results demonstrated that a DD-based BNCT system could be designed to produce neutron beams that have acceptable in-air and in-phantom characteristics. The parameter values were comparable to those of existing BNCT facilities. Continuing efforts are ongoing to improve the DD neutron yield. © 2016 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H B
This months issue has the following articles: (1) Innovative Solutions Reap Rewards--Commentary by George H. Miller; (2) Surveillance on the Fly--An airborne surveillance system can track up to 8,000 moving objects in an area the size of a small city; (3) A Detector Radioactive Particles Can't Evade--An ultrahigh-resolution spectrometer can detect the minute thermal energy deposited by a single gamma ray or neutron; (4) Babel Speeds Communication among Programming Languages--The Babel program allows software applications in different programming languages to communicate quickly; (5) A Gem of a Software Tool--The data-mining software Sapphire allows scientists to analyze enormous data sets generatedmore » by diverse applications; (6) Interferometer Improves the Search for Planets--With externally dispersed interferometry, astronomers can use an inexpensive, compact instrument to search for distant planets; (7) Efficiently Changing the Color of Laser Light--Yttrium-calcium-oxyborate crystals provide an efficient, compact approach to wavelength conversion for high-average-power lasers; (8) Pocket-Sized Test Detects Trace Explosives--A detection kit sensitive to more than 30 explosives provides an inexpensive, easy-to-use tool for security forces everywhere; (9) Tailor-Made Microdevices Serve Big Needs--The Center for Micro- and Nanotechnology develops tiny devices for national security.« less
Cooling of hypernuclear compact stars
NASA Astrophysics Data System (ADS)
Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin
2018-04-01
We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.
National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies
NASA Astrophysics Data System (ADS)
Golda, K. S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R. P.; Behera, B. R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R. K.; Govil, I. M.; Datta, S. K.; Chatterjee, M. B.
2014-11-01
The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5-8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper.
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
Gravitational waves from rotating neutron stars and compact binary systems
NASA Astrophysics Data System (ADS)
Wade, Leslie E., IV
It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) equation of state (EOS). Direct detections of gravitational waves will enrich our current astrophysical knowledge. One such contribution will be through population synthesis of isolated NSs. My collaborators and I show that advanced gravitational-wave detectors can be used to constrain the properties of the Galactic NS population. Gravitational wave detections can also shine light on a currently mysterious astrophysical object: intermediate mass black holes. In developing the IMBHB search, we performed a mock data challenge where signals with total masses up to a few hundred solar masses were injected into recolored data from LIGO's sixth science run. Since this is the first time a matched filter search has been developed to search for IMBHBs, I discuss what was learned during the mock data challenge and how we plan to improve the search going forward. The final aspect of my dissertation focuses on important post-detection science. I present results for a new method of directly measuring the NS EOS. This is done by estimating the parameters of a 4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent. We show that advanced detectors will be capable of measuring the NS radius to within a kilometer for stars with canonical masses. However, this can only be accomplished with binary NS waveform models that are accurate to the rich EOS physics that happens near merger. We show that the waveforms typically used to model binary NS systems result in unavoidable systematic error that can significantly bias the estimation of the NS EOS.
NASA Astrophysics Data System (ADS)
Klochkov, D.; Suleimanov, V.; Pühlhofer, G.; Yakovlev, D. G.; Santangelo, A.; Werner, K.
2015-01-01
Context. Central compact objects (CCOs) in supernova remnants are isolated thermally emitting neutron stars (NSs). They are most probably characterized by a magnetic field strength that is roughly two orders of magnitude lower than that of most of the radio and accreting pulsars. The thermal emission of CCOs can be modeled to obtain constraints on the physical parameters of the star such as its mass, radius, effective temperature, and chemical composition. Aims: The CCO in HESS J1731-347 is one of the brightest objects in this class. Starting from 2007, it was observed several times with different X-ray satellites. Here we present our analysis of two new XMM-Newton observations of the source performed in 2013 which increase the total exposure time of the data available for spectral analysis by a factor of about five compared to the analyses presented before. Methods: We use our numerical spectral models for carbon and hydrogen atmospheres to fit the spectrum of the CCO. From our fits, we derive constraints on the physical parameters of the emitting star such as its mass, radius, distance, and effective temperature. We also use the new data to derive new upper limits on the source pulsations and to confirm the absence of a long-term flux and spectral variability. Results: The analysis shows that atmosphere models are clearly preferred by the fit over the blackbody spectral function. Under the assumption that the X-ray emission is uniformly produced by the entire star surface (supported by the lack of pulsations), hydrogen atmosphere models lead to uncomfortably large distances of the CCO, above 7-8 kpc. On the other hand, the carbon atmosphere model formally excludes distances above 5-6 kpc and is compatible with the source located in the Scutum-Crux (~3 kpc) or Norma-Cygnus (~4.5 kpc) Galactic spiral arm. We provide and discuss the corresponding confidence contours in the NS mass-radius plane. The measured effective temperature indicates that the NS is exceptionally hot for the estimated age of ~30 kyr. We discuss possible cooling scenarios to explain this property, as well as possible additional constraints on the star mass and radius from cooling theory.
Tidal Love numbers of neutron and self-bound quark stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Postnikov, Sergey; Prakash, Madappa; Lattimer, James M.
Gravitational waves from the final stages of inspiraling binary neutron stars are expected to be one of the most important sources for ground-based gravitational wave detectors. The masses of the components are determinable from the orbital and chirp frequencies during the early part of the evolution, and large finite-size (tidal) effects are measurable toward the end of inspiral, but the gravitational wave signal is expected to be very complex at this time. Tidal effects during the early part of the evolution will form a very small correction, but during this phase the signal is relatively clean. The accumulated phase shiftmore » due to tidal corrections is characterized by a single quantity related to a star's tidal Love number. The Love number is sensitive, in particular, to the compactness parameter M/R and the star's internal structure, and its determination could provide an important constraint to the neutron star radius. We show that Love numbers of self-bound strange quark matter stars are qualitatively different from those of normal neutron stars. Observations of the tidal signature from coalescing compact binaries could therefore provide an important, and possibly unique, way to distinguish self-bound strange quark stars from normal neutron stars. Tidal signatures from self-bound strange quark stars with masses smaller than 1M{sub {center_dot}}are substantially smaller than those of normal stars owing to their smaller radii. Thus tidal signatures of stars less massive than 1M{sub {center_dot}}are probably not detectable with Advanced LIGO. For stars with masses in the range 1-2M{sub {center_dot},} the anticipated efficiency of the proposed Einstein telescope would be required for the detection of tidal signatures.« less
Very fast optical flaring from a possible new Galactic magnetar.
Stefanescu, A; Kanbach, G; Słowikowska, A; Greiner, J; McBreen, S; Sala, G
2008-09-25
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.
High-energy astrophysics and the search for sources of gravitational waves
NASA Astrophysics Data System (ADS)
O'Brien, P. T.; Evans, P.
2018-05-01
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Asymmetric core collapse of rapidly rotating massive star
NASA Astrophysics Data System (ADS)
Gilkis, Avishai
2018-02-01
Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.
High-energy astrophysics and the search for sources of gravitational waves.
O'Brien, P T; Evans, P
2018-05-28
The dawn of the gravitational-wave (GW) era has sparked a greatly renewed interest into possible links between sources of high-energy radiation and GWs. The most luminous high-energy sources-gamma-ray bursts (GRBs)-have long been considered as very likely sources of GWs, particularly from short-duration GRBs, which are thought to originate from the merger of two compact objects such as binary neutron stars and a neutron star-black hole binary. In this paper, we discuss: (i) the high-energy emission from short-duration GRBs; (ii) what other sources of high-energy radiation may be observed from binary mergers; and (iii) how searches for high-energy electromagnetic counterparts to GW events are performed with current space facilities. While current high-energy facilities, such as Swift and Fermi, play a crucial role in the search for electromagnetic counterparts, new space missions will greatly enhance our capabilities for joint observations. We discuss why such facilities, which incorporate new technology that enables very wide-field X-ray imaging, are required if we are to truly exploit the multi-messenger era.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Kokkotas, Kostas D.
It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependentmore » and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.« less
Evolution of Supernova Remnants Near the Galactic Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, A.; Piran, T.; Sari, R.
Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less
A Pulsar Wind Nebula Model Applied to Short GRB 050724
NASA Astrophysics Data System (ADS)
Lin, Wei-Li; Wang, Ling-Jun; Dai, Zi-Gao
2018-03-01
A subset of short gamma-ray bursts (sGRBs) have been found to be characterized by near-infrared/optical bumps at ∼1 days, some of which exhibit almost concurrent X-ray flares. Although the near-infrared/optical bumps may be a signature of kilonovae, the X-ray flares are not consistent with kilonovae. It is widely believed that sGRBs are produced by the mergers of double compact objects, during which sub-relativistic ejecta are launched. In this paper, we propose that the above optical/X-ray features are indicative of the formation of long-lived magnetars following the mergers of double neutron stars. Observations and theoretical works imply that the spin-down power of the magnetars is injected into the ejecta as ultra-relativistic electron–positron pairs, i.e., pulsar wind nebulae (PWNe). Here, we suggest such a PWN model and find that the optical bump and X-ray flare observed in GRB 050724 can be well understood in this PWN model. We show that the optical bump and X-ray flare may have different origins. Our results strengthen the evidence for the formation of magnetars in double neutron star mergers and justify the validity of the PWN model.
Breakdown of I-Love-Q Universality in Rapidly Rotating Relativistic Stars
NASA Astrophysics Data System (ADS)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2014-01-01
It was shown recently that normalized relations between the moment of inertia (I), the quadrupole moment (Q), and the tidal deformability (Love number) exist and for slowly rotating neutron stars they are almost independent of the equation of state (EOS). We extend the computation of the I-Q relation to models rotating up to the mass-shedding limit and show that the universality of the relations is lost. With increasing rotation rate, the normalized I-Q relation departs significantly from its slow-rotation limit, deviating up to 40% for neutron stars and up to 75% for strange stars. The deviation is also EOS dependent and for a broad set of hadronic and strange matter EOSs the spread due to rotation is comparable to the spread due to the EOS, if one considers sequences with fixed rotational frequency. Still, for a restricted sample of modern realistic EOSs one can parameterize the deviations from universality as a function of rotation only. The previously proposed I-Love-Q relations should thus be used with care, because they lose their universality in astrophysical situations involving compact objects rotating faster than a few hundred Hz.
Giacomelli, L; Conroy, S; Gorini, G; Horton, L; Murari, A; Popovichev, S; Syme, D B
2014-02-01
The Joint European Torus (JET, Culham, UK) is the largest tokamak in the world devoted to nuclear fusion experiments of magnetic confined Deuterium (D)/Deuterium-Tritium (DT) plasmas. Neutrons produced in these plasmas are measured using various types of neutron detectors and spectrometers. Two of these instruments on JET make use of organic liquid scintillator detectors. The neutron emission profile monitor implements 19 liquid scintillation counters to detect the 2.45 MeV neutron emission from D plasmas. A new compact neutron spectrometer is operational at JET since 2010 to measure the neutron energy spectra from both D and DT plasmas. Liquid scintillation detectors are sensitive to both neutron and gamma radiation but give light responses of different decay time such that pulse shape discrimination techniques can be applied to identify the neutron contribution of interest from the data. The most common technique consists of integrating the radiation pulse shapes within different ranges of their rising and/or trailing edges. In this article, a step forward in this type of analysis is presented. The method applies a tomographic analysis of the 3-dimensional neutron and gamma pulse shape and pulse height distribution data obtained from liquid scintillation detectors such that n/γ discrimination can be improved to lower energies and additional information can be gained on neutron contributions to the gamma events and vice versa.
Evaluation of potential site for mineral processing plant
NASA Astrophysics Data System (ADS)
Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan
2018-01-01
Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.
The Connection Between X-ray Binaries and Star Clusters in the Antennae
NASA Astrophysics Data System (ADS)
Rangelov, Blagoy; Chandar, R.; Prestwich, A.
2011-05-01
High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.
NASA Astrophysics Data System (ADS)
Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.
2005-07-01
We report the discovery of 105 ms X-ray pulsations from the compact central object (CCO) in the supernova remnant Kes 79 using data acquired with the Newton X-Ray Multi-Mirror Mission (XMM-Newton). Two observations of the pulsar taken 6 days apart yield an upper limit on its spin-down rate of P˙<7×10-14 s s-1 and no evidence for binary orbital motion. The implied energy loss rate is E˙<2×1036 ergs s-1, the surface magnetic field strength is Bp<3×1012 G, and the spin-down age is τ>24 kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of PSR J1852+0040 is best characterized by a blackbody model of temperature kTBB=0.44+/-0.03 keV, radius RBB~0.9 km, and Lbol=3.7×1033 ergs s-1 at d=7.1 kpc. The sinusoidal light curve is modulated with a pulsed fraction of >45%, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of PSR J1852+0040 as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, E˙c~4×1036 ergs s-1. The age discrepancy implies that its E˙ has always been below E˙c, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of PSR J1852+0040 suggests a low-luminosity anomalous X-ray pulsar (AXP), but the weak inferred Bp field is incompatible with a magnetar theory of its X-ray luminosity. We cannot exclude accretion from a fallback disk. The ordinary spin parameters discovered from PSR J1852+0040 highlight the difficulty that existing theories of isolated neutron stars have in explaining the high luminosities and temperatures of CCO thermal X-ray spectra.
The Diversity of Kilonova Emission in Short Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Gompertz, B. P.; Levan, A. J.; Tanvir, N. R.; Hjorth, J.; Covino, S.; Evans, P. A.; Fruchter, A. S.; González-Fernández, C.; Jin, Z. P.; Lyman, J. D.; Oates, S. R.; O’Brien, P. T.; Wiersema, K.
2018-06-01
The historic first joint detection of both gravitational-wave and electromagnetic emission from a binary neutron star merger cemented the association between short gamma-ray bursts (SGRBs) and compact object mergers, as well as providing a well-sampled multi-wavelength light curve of a radioactive kilonova (KN) for the first time. Here, we compare the optical and near-infrared light curves of this KN, AT 2017gfo, to the counterparts of a sample of nearby (z < 0.5) SGRBs to characterize their diversity in terms of their brightness distribution. Although at similar epochs AT 2017gfo appears fainter than every SGRB-associated KN claimed so far, we find three bursts (GRBs 050509B, 061201, and 080905A) where, if the reported redshifts are correct, deep upper limits rule out the presence of a KN similar to AT 2017gfo by several magnitudes. Combined with the properties of previously claimed KNe in SGRBs this suggests considerable diversity in the properties of KN drawn from compact object mergers, despite the similar physical conditions that are expected in many NS–NS mergers. We find that observer angle alone is not able to explain this diversity, which is likely a product of the merger type (NS–NS versus NS–BH) and the detailed properties of the binary (mass ratio, spins etc.). Ultimately disentangling these properties should be possible through observations of SGRBs and gravitational-wave sources, providing direct measurements of heavy element enrichment throughout the universe.
Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiktorowicz, G.; Drago, A.; Pagliara, G.
2017-09-10
Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. Accordingmore » to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.« less
Strange Quark Stars in Binaries: Formation Rates, Mergers, and Explosive Phenomena
NASA Astrophysics Data System (ADS)
Wiktorowicz, G.; Drago, A.; Pagliara, G.; Popov, S. B.
2017-09-01
Recently, the possible coexistence of a first family composed of “normal” neutron stars (NSs) with a second family of strange quark stars (QSs) has been proposed as a solution of problems related to the maximum mass and to the minimal radius of these compact stellar objects. In this paper, we study the mass distribution of compact objects formed in binary systems and the relative fractions of quark and NSs in different subpopulations. We incorporate the strange QS formation model provided by the two-families scenario, and we perform a large-scale population synthesis study in order to obtain the population characteristics. According to our results, the main channel for strange QS formation in binary systems is accretion from a secondary companion on an NS. Therefore, a rather large number of strange QSs form by accretion in low-mass X-ray binaries and this opens the possibility of having explosive GRB-like phenomena not related to supernovae and not due to the merger of two NSs. The number of double strange QS systems is rather small, with only a tiny fraction that merge within a Hubble time. This drastically limits the flux of strangelets produced by the merger, which turns out to be compatible with all limits stemming from Earth and lunar experiments. Moreover, this value of the flux rules out at least one relevant channel for the transformation of all NSs into strange QSs by strangelets’ absorption.
MAGNETAR-LIKE ACTIVITY FROM THE CENTRAL COMPACT OBJECT IN THE SNR RCW103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rea, N.; Borghese, A.; Esposito, P.
2016-09-01
The 6.67 hr periodicity and the variable X-ray flux of the central compact object (CCO) at the center of the supernova remnant RCW 103, named 1E 161348–5055, have been always difficult to interpret within the standard scenarios of an isolated neutron star (NS) or a binary system. On 2016 June 22, the Burst Alert Telescope (BAT) on board Swift detected a magnetar-like short X-ray burst from the direction of 1E 161348–5055, also coincident with a large long-term X-ray outburst. Here, we report on Chandra , Nuclear Spectroscopic Telescope Array , and Swift (BAT and XRT) observations of this peculiar sourcemore » during its 2016 outburst peak. In particular, we study the properties of this magnetar-like burst, we discover a hard X-ray tail in the CCO spectrum during outburst, and we study its long-term outburst history (from 1999 to 2016 July). We find the emission properties of 1E 161348–5055 consistent with it being a magnetar. However, in this scenario, the 6.67 hr periodicity can only be interpreted as the rotation period of this strongly magnetized NS, which therefore represents the slowest pulsar ever detected, by orders of magnitude. We briefly discuss the viable slow-down scenarios, favoring a picture involving a period of fall-back accretion after the supernova explosion, similarly to what is invoked (although in a different regime) to explain the “anti-magnetar” scenario for other CCOs.« less
Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.
Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C
2016-05-05
Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
2017-01-01
Hans A. Bethe elucidated our understanding of the fundamental forces of Nature by exploring and explaining countless phenomena occurring in nuclear laboratories and in stars. With the dawn of gravitational wave astronomy we now can probe compact binary mergers - Nature's cosmic collision experiments - to deepen our understanding, especially where strong-field gravitation is involved. In addition to gravitational waves, some mergers are likely to generate observable electromagnetic and/or neutrino radiation, heralding a new era of multimessenger astronomy. Robust numerical algorithms now allow us to simulate these events in full general relativity on supercomputers. We will describe some recent magnetohydrodynamic simulations that show how binary black hole-neutron star and neutron star-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short gamma-ray bursts. We will also show how the magnetorotational collapse of very massive stars to spinning black holes immersed in magnetized accretion disks can launch jets as well, reinforcing the belief that such ``collapsars'' are the progenitors of long gamma-ray bursts. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grants 1300903 and 1602536 and NASA Grant NNX13AH44G.
Kurennoy, S. S.; Garnett, R. W.; Rybarcyk, L. J.
2015-06-18
Interrogation of special nuclear materials can benefit from mobile sources providing significant fluxes of neutrons (10 8/s at 2.5 MeV, 10 10/s at 14.1 MeV) and of photons (>10 12/s at 1-3 MeV). We propose a source that satisfies these requirements simultaneously plus also provides, via the reaction 11B(d,n) 12C(γ 15.1), a significant flux of 15-MeV photons, which are highly penetrating and optimal for inducing photo-fission in actinides. The source is based on a compact (< 5 m) deuteron RF accelerator that delivers an average current of a few mA of deuterons at 3-4 MeV to a boron target.more » The accelerator consists of a short RFQ followed by efficient inter-digital H-mode structures with permanent-magnet-quadrupole beam focusing [Kurennoy et al. (2012)], which suit perfectly for deuteron acceleration at low energies. Our estimates, based on recent measurements, indicate that the required fluxes of both neutrons and photons can be achieved at ~1 mA of 4-MeV deuterons. The goal of the proposed study is to confirm feasibility of the approach and develop requirements for future full system implementation.« less
A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator
NASA Astrophysics Data System (ADS)
Waldmann, O.; Ludewigt, B.
2011-06-01
We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.
Deep Optical Observations of Unusual Neutron Star Calvera with the GTC
NASA Astrophysics Data System (ADS)
Shibanov, Yury; Danilenko, Andrey; Zharikov, Sergey; Shternin, Peter; Zyuzin, Dima
2016-11-01
Calvera is an unusual, isolated neutron star with a pure thermal X-ray spectrum typical of central compact objects in supernova remnants. On the other hand, its rotation period and spin-down rate are typical of ordinary rotation-powered pulsars. It was discovered and studied through X-rays, and has not yet been detected in other spectral domains. We present deep optical imaging of the Calvera field, obtained with the Gran Telescopio Canarias, in the g\\prime and I\\prime bands. Within the vicinity of ≈ 1\\prime\\prime of Calvera, we detected two point-like objects that were invisible at previous shallow observations. However, accurate astrometry showed that neither of them can be identified with the pulsar. We put new upper limits of g\\prime \\gt 27.87 and I\\prime \\gt 26.84 on its optical brightness. We also reanalyzed all available archival X-ray data on Calvera. Comparison of the Calvera thermal emission parameters and upper limits on optical and non-thermal X-ray emission with respective data on rotation-powered pulsars shows that Calvera might belong to the class of ordinary middle-aged pulsars, if we assume that its distance is in the range of 1.5-5 kpc. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, on the island of La Palma, program GTC1-14AMEX.
Searching for Strange Quark Matter Objects in Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y. F.; Yu, Y. B., E-mail: hyf@nju.edu.cn
2017-10-20
The true ground state of hadronic matter may be strange quark matter (SQM). Consequently, observed pulsars may actually be strange quark stars, but not neutron stars. However, proving or disproving the SQM hypothesis still remains a difficult problem to solve due to the similarity between the macroscopical characteristics of strange quark stars and neutron stars. Here, we propose a hopeful method to probe the existence of SQM. In the framework of the SQM hypothesis, strange quark dwarfs and even strange quark planets can also stably exist. Noting that SQM planets will not be tidally disrupted even when they get verymore » close to their host stars due to their extreme compactness, we argue that we could identify SQM planets by searching for very close-in planets among extrasolar planetary systems. Especially, we should keep our eyes on possible pulsar planets with orbital radius less than ∼5.6 × 10{sup 10} cm and period less than ∼6100 s. A thorough search in the currently detected ∼2950 exoplanets around normal main-sequence stars has failed to identify any stable close-in objects that meet the SQM criteria, i.e., lying in the tidal disruption region for normal matter planets. However, the pulsar planet PSR J1719-1438B, with an orbital radius of ∼6 × 10{sup 10} cm and orbital period of 7837 s, is, encouragingly, found to be a good candidate.« less
NASA Astrophysics Data System (ADS)
Skuhersky, Michael
2013-04-01
IsoDAR (Isotope Decay-At-Rest) is a proposed high-intensity source of electron antineutrinos intended for use in searches for beyond standard model physics, the main analysis being a short baseline search for sterile neutrinos at a kiloton scale liquid scintillator detector. The source uses a compact cyclotron to deliver 600kW of protons at 60 MeV/nucleon in the form of H2^+ onto a Beryllium target which produces a large intermediate energy neutron flux. These neutrons thermalize and capture on a 99.9% pure ^7Li sleeve, which produces ^8Li at rest, which subsequently beta decays producing νe. Due to the high neutron fluxes, large duty factor, and low background environment surrounding the neutrino detector, we need to understand the activation risk and design a shield to minimize this risk allowing for the safe operation of the source. I will report on my neutron activation studies and the benchmarking of Geant4 for these applications.
Ab initio predictions of the symmetry energy and recent constraints
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca
2017-01-01
The symmetry energy plays a crucial role in the structure and the dynamics of neutron-rich systems, including the formation of neutron skins, the location of neutron drip lines, as well as intriguing correlations with the structure of compact stars. With experimental efforts in progress or being planned to shed light on the less known aspects of the nuclear chart, microscopic predictions based on ab initio approaches are very important. In recent years, chiral effective field theory has become popular because of its firm connection with quantum chromodynamics and its systematic approach to the development of nuclear forces. Predictions of the symmetry energy obtained from modern chiral interactions will be discussed in the light of recent empirical constraints extracted from heavy ion collisions at 400 MeV per nucleon at GSI. Applications of our equations of state to neutron-rich systems will also be discussed, with particular emphasis on neutron skins, which are sensitive to the density dependence of the symmetry energy.
Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf
NASA Technical Reports Server (NTRS)
Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.
1997-01-01
The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.
Phase transitions in dense matter
NASA Astrophysics Data System (ADS)
Dexheimer, Veronica; Hempel, Matthias; Iosilevskiy, Igor; Schramm, Stefan
2017-11-01
As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PT's) between these phases can vary from steep first order to smooth crossovers, depending on certain conditions. First-order PT's with more than one globally conserved charge, so-called non-congruent PT's, have characteristic differences compared to congruent PT's. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.
Lasche, G.P.
1983-09-29
The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.
Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook
2018-03-01
We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.
NASA Astrophysics Data System (ADS)
Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook
2018-03-01
We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.
The Fate of the Compact Remnant in Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico
Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less
A secular technetium-molybdenum generator
NASA Astrophysics Data System (ADS)
Araujo, Wagner L.; Campos, Tarcisio P. R.
2015-05-01
A compact secular molybdenium generator is subject of this paper. This generator represents a nuclear system that comprises a hydrogen-isotopes fusor, moderator, reflector and shield. Deuterium fusion reactions in a tritiated or deuterated target provide the neutron source. A moderation fluid slowdown the neutron energy which increases 98Mo(n,γ)99Mo capture reaction rates. Neutron reflection minimizes the neutron escape and the radiation shield encloses the device. The neutron yield calculation along with electromagnetic and nuclear simulations were addressed. Results revealed the accelerator equipotential surfaces ranging from -30 to 150 kV, the ion trajectories and the energy beam profile define a deuteron current of 1 A with energy of 180 keV at the target, the spatial distribution of the neutron flux, and the 99Mo and 99mTc activities in function of transmuter operation time. The kinetics of the 99mTc correlated to its precursor activity demonstrates a secular equilibrium providing 2 Ci in a operational time of 150 h. As conclusion, the investigated nuclear and electromagnetic features have demonstrated that such generator shall have a notable potential for feeding the 99mTc clinical application.
The Fate of the Compact Remnant in Neutron Star Mergers
Fryer, Chris L.; Belczynski, Krzysztoff; Ramirez-Ruiz, Enrico; ...
2015-10-06
Neutron star (binary neutron star and neutron star - black hole) mergers are believed to produce short-duration gamma-ray bursts. They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of merger calculations and equation of state studies to determine the fate of the coresmore » of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3-2.4 solar masses. If quick black hole formation is essential in producing gamma-ray bursts, LIGO observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.« less
250 kV 6 mA compact Cockcroft-Walton high-voltage power supply.
Ma, Zhan-Wen; Su, Xiao-Dong; Lu, Xiao-Long; Wei, Zhen; Wang, Jun-Run; Huang, Zhi-Wu; Miao, Tian-You; Su, Tong-Ling; Yao, Ze-En
2016-08-01
A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of the output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.
General Relativistic Non-radial Oscillations of Compact Stars
NASA Astrophysics Data System (ADS)
Hall, Zack, II; Jaikumar, Prashanth
2017-01-01
Currently, we lack a means of identifying the type of matter at the core of compact stars, but in the future, we may be able to use gravitational wave signals produced by fluid oscillations inside compact stars to discover new phases of dense matter. To this end, we study the fluid perturbations inside compact stars such as Neutron Stars and Strange Quark Stars, focusing on modes that couple to gravitational waves. Using a modern equation of state for quark matter that incorporates interactions at moderately high densities, we implement an efficient computational scheme to solve the oscillation equations in the framework of General Relativity, and determine the complex eigenfrequencies that describe the oscillation and damping of the non-radial fluid modes. We discuss the significance of our results for future detection of these modes through gravitational waves. This work is supported in part by the CSULB Graduate Research Fellowship and by the National Science Foundation NSF PHY-1608959.
250 kV 6 mA compact Cockcroft-Walton high-voltage power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhan-Wen; Su, Xiao-Dong; Wei, Zhen
A compact power supply system for a compact neutron generator has been developed. A 4-stage symmetrical Cockcroft-Walton circuit is adopted to produce 250 kV direct current high-voltage. A 2-stage 280 kV isolation transformer system is used to drive the ion source power supply. For a compact structure, safety, and reliability during the operation, the Cockcroft-Walton circuit and the isolation transformer system are enclosed in an epoxy vessel containing the transformer oil whose size is about ∅350 mm × 766 mm. Test results indicate that the maximum output voltage of the power supply is 282 kV, and the stability of themore » output voltage is better than 0.63% when the high voltage power supply is operated at 250 kV, 6.9 mA with the input voltage varying ±10%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eleon, Cyrille; Passard, Christian; Hupont, Nicolas
2015-07-01
Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no.more » 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)« less
A possible macronova in the late afterglow of the long-short burst GRB 060614.
Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming
2015-06-11
Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova--the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole-neutron star merger but a double neutron star merger cannot be ruled out.
NASA Astrophysics Data System (ADS)
Engstrom, Tyler A.
Two research endeavors are described in this dissertation; both undertake problems in solid-state astrophysics, which is a branch of solid-state physics concerning the extreme conditions found within white dwarfs and the solid crusts of neutron stars. As much of our knowledge about these compact objects comes from observation of astrophysical phenomena, Chapter 1 is devoted to the phenomena, and how they can be exploited as material property probes. Several of the most interesting phenomena involve the enormous magnetic fields (B ≥ 1012 gauss) harbored by many neutron stars, and the interaction between these fields and the charged particles within the solid crust. Accordingly, Chapter 2 reviews some theory of strongly-magnetized electrons, which both sets the stage for Chapter 3, and (hopefully) serves as a useful reference for future research. Let it now be made clear that this dissertation focuses exclusively on the "outer crusts," of neutron stars, where no free neutrons are present (rho < 4x1011 g/cc), and the similarly-composed interiors of white dwarfs, which have central densities ˜ 107 g/cc. For the most part we specialize to even lower densities. In Chapter 3, static and dynamic properties of low density (rho ≥ 106 g/cc) outer envelopes of neutron stars are calculated within the nonlinear magnetic Thomas-Fermi model, assuming degenerate electrons. A novel domain decomposition enables proper description of lattice symmetry and may be seen as a prototype for the general class of problems involving nonlinear charge screening of periodic, quasi-low-dimensionality structures, e.g. liquid crystals. We describe a scalable implementation of the method using Hypre. Over the density range considered, the effective shear modulus appears to be a factor of ≈ 20 larger than in the linearlyscreened Coulomb crystal model, which could have implications for observables related to astroseismology as well as low temperature phonon-mediated thermal conductivity. Other findings include incipient c' < 0 elastic instabilities for both bcc and fcc lattices, reminiscent of the situation in some light actinides, and suggestive of a symmetry-lowering transition to a tetragonal or orthorhombic lattice. Chapter 4 describes a systematic search for multicomponent crystal structures, carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase layering diagram and mass-radius-composition dependence, both of which are reported for He-C-O and C-O-Ne white dwarfs. Finite thickness interfacial phases ("interphases") show up at the boundaries between single-component bcc crystalline regions, some of which have lower lattice symmetry than cubic. A second application---quasi-static settling of heavy nuclei in white dwarfs---builds on our equilibrium phase layering method. Tests of this nonequilibrium method reveal extra phases which play the role of transient host phases for the settling species.
Low-power lead-cooled fast reactor loaded with MOX-fuel
NASA Astrophysics Data System (ADS)
Sitdikov, E. R.; Terekhova, A. M.
2017-01-01
Fast reactor for the purpose of implementation of research, education of undergraduate and doctoral students in handling innovative fast reactors and training specialists for atomic research centers and nuclear power plants (BRUTs) was considered. Hard neutron spectrum achieved in the fast reactor with compact core and lead coolant. Possibility of prompt neutron runaway of the reactor is excluded due to the low reactivity margin which is less than the effective fraction of delayed neutrons. The possibility of using MOX fuel in the BRUTs reactor was examined. The effect of Keff growth connected with replacement of natural lead coolant to 208Pb coolant was evaluated. The calculations and reactor core model were performed using the Serpent Monte Carlo code.
High-Energy Neutron Imaging Development at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, J M; Rusnak, B; Shen, S
2005-02-16
We are proceeding with the development of a high-energy (10 MeV) neutron imaging system for use as an inspection tool in nuclear stockpile stewardship applications. Our goal is to develop and deploy an imaging system capable of detecting cubic-mm-scale voids, cracks or other significant structural defects in heavily-shielded low-Z materials within nuclear device components. The final production-line system will be relatively compact (suitable for use in existing facilities within the DOE complex) and capable of acquiring both radiographic and tomographic (CT) images. In this report, we will review our recent programmatic accomplishments, focusing primarily on progress made in FY04. Themore » design status of the high-intensity, accelerator-driven neutron source and large-format imaging detector associated with the system will be discussed and results from a recent high-energy neutron imaging experiment conducted at the Ohio University Accelerator Laboratory (OUAL) will also be presented.« less
High Energy Follow-up Study of Gravitational Wave Transients
NASA Astrophysics Data System (ADS)
Barker, Brandon L.; Patricelli, Barbara
2018-01-01
As second-generation gravitational wave interferometers, such as Advanced Virgo and Advanced LIGO, reach their design sensitivities, a new lens into our universe will become available. Many of the most violent and energetic events in the cosmos, in particular the merger of compact objects and core collapse supernovae, are sources of gravitational waves and are also believed to be connected with Gamma Ray Bursts. Joint observations of electromagnetic and gravitational wave signals will provide an ideal opportunity to study the physics of these transient events and their progenitors. In particular, gamma ray observatories such as Fermi, coupled with precise sky lo- calization, will be crucial to observe the high energy electromagnetic counterparts to gravitational wave signals. We constructed joint binary neutron star and gamma ray burst detection rate estimates using an analysis pipeline and report on the results of this analysis.
The goals of gamma-ray spectroscopy in high energy astrophysics
NASA Technical Reports Server (NTRS)
Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.
1990-01-01
The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.
Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells
NASA Astrophysics Data System (ADS)
Ni, Xiao-Lin; Fang, Lei-Ming; Li, Xin; Chen, Xi-Ping; Xie, Lei; He, Duan-Wei; Kou, Zi-Li
2018-04-01
Not Available Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401503, the Science Challenge Project under Grant No TZ2016001, and the National Natural Science Foundation of China under Grant No 11427810.
Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R
2009-02-01
Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.
Multiple source associated particle imaging for simultaneous capture of multiple projections
Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A
2013-11-19
Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.
NASA Astrophysics Data System (ADS)
Antoni, R.; Passard, C.; Perot, B.; Guillaumin, F.; Mazy, C.; Batifol, M.; Grassi, G.
2018-07-01
AREVA NC is preparing to process, characterize and compact old used fuel metallic waste stored at La Hague reprocessing plant in view of their future storage ("Haute Activité Oxyde" HAO project). For a large part of these historical wastes, the packaging is planned in CSD-C canisters ("Colis Standard de Déchets Compacté s") in the ACC hulls and nozzles compaction facility ("Atelier de Compactage des Coques et embouts"). . This paper presents a new method to take into account the possible presence of fissile material clusters, which may have a significant impact in the active neutron interrogation (Differential Die-away Technique) measurement of the CSD-C canisters, in the industrial neutron measurement station "P2-2". A matrix effect correction has already been investigated to predict the prompt fission neutron calibration coefficient (which provides the fissile mass) from an internal "drum flux monitor" signal provided during the active measurement by a boron-coated proportional counter located in the measurement cavity, and from a "drum transmission signal" recorded in passive mode by the detection blocks, in presence of an AmBe point source in the measurement cell. Up to now, the relationship between the calibration coefficient and these signals was obtained from a factorial design that did not consider the potential for occurrence of fissile material clusters. The interrogative neutron self-shielding in these clusters was treated separately and resulted in a penalty coefficient larger than 20% to prevent an underestimation of the fissile mass within the drum. In this work, we have shown that the incorporation of a new parameter in the factorial design, representing the fissile mass fraction in these clusters, provides an alternative to the penalty coefficient. This new approach finally does not degrade the uncertainty of the original prediction, which was calculated without taking into consideration the possible presence of clusters. Consequently, the accuracy of the fissile mass assessment is improved by this new method, and this last should be extended to similar DDT measurement stations of larger drums, also using an internal monitor for matrix effect correction.
Mostafaei, Farshad; Blake, Scott P; Liu, Yingzi; Sowers, Daniel A; Nie, Linda H
2015-10-01
The subject of whether fluorine (F) is detrimental to human health has been controversial for many years. Much of the discussion focuses on the known benefits and detriments to dental care and problems that F causes in bone structure at high doses. It is therefore advantageous to have the means to monitor F concentrations in the human body as a method to directly assess exposure. F accumulates in the skeleton making bone a useful biomarker to assess long term cumulative exposure to F. This study presents work in the development of a non-invasive method for the monitoring of F in human bone. The work was based on the technique of in vivo neutron activation analysis (IVNAA). A compact deuterium-deuterium (DD) generator was used to produce neutrons. A moderator/reflector/shielding assembly was designed and built for human hand irradiation. The gamma rays emitted through the (19)F(n,γ)(20)F reaction were measured using a HPGe detector. This study was undertaken to (i) find the feasibility of using DD system to determine F in human bone, (ii) estimate the F minimum detection limit (MDL), and (iii) optimize the system using the Monte Carlo N-Particle eXtended (MCNPX) code in order to improve the MDL of the system. The F MDL was found to be 0.54 g experimentally with a neutron flux of 7 × 10(8) n s(-1) and an optimized irradiation, decay, and measurement time scheme. The numbers of F counts from the experiment were found to be close to the (MCNPX) simulation results with the same irradiation and detection parameters. The equivalent dose to the irradiated hand and the effective dose to the whole body were found to be 0.9 mSv and 0.33 μSv, respectively. Based on these results, it is feasible to develop a compact DD generator based IVNAA system to measure bone F in a population with moderate to high F exposure.
Holography with a neutron interferometer
NASA Astrophysics Data System (ADS)
Sarenac, Dusan; Cory, David G.; Pushin, Dmitry A.; Heacock, Benjamin; Huber, Michael G.; Arif, M.; Clark, Charles W.; Shahi, Chandra B.; Cfref Collaboration
2017-01-01
We demonstrate the first neutron hologram of a macroscopic object. Using a Mach-Zehnder neutron interferometer in a configuration similar to the optical setup of Bazhenov et al., our reference beam passes through a fused silica prism that provides a linear phase gradient, and our object beam beam passes through an aluminum spiral phase plate with a topological charge of l = 2 , which was recently used in studies of neutron orbital angular momentum. Interference of reference and object beams in a two-dimensional imaging detector produces the hologram, which is a fork dislocation structure similar to those used to generate atomic and electronic vortex beams. Our neutron hologram is made in an interferometer in which at most one neutron is present at any given time.
DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY
Dessauer, G.
1960-05-10
A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.
Chameleon scalar fields in relativistic gravitational backgrounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk
2009-05-15
We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less
Compact telemetry package for remote monitoring of neutron responses in animals
NASA Technical Reports Server (NTRS)
Baker, C. D.
1974-01-01
Battery-powered telemeter includes FM transmitter and is light enough to be mounted on animal's head. Animal has complete freedom of movement while its neuron responses are transmitted to receiver in laboratory. Construction may also be applied to monitor blood pressure, body temperature, and different muscular signals.
A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivunoro, H.; Lou, T.P.; Leung, K. N.
2003-04-02
Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based onmore » D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.« less
Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques
NASA Astrophysics Data System (ADS)
Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.
2009-12-01
We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2006-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.
Gamma-ray bursts generated from phase transition of neutron stars to quark stars
NASA Astrophysics Data System (ADS)
Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi
2017-02-01
The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.
Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egner, Joanna C.; Groza, Michael; Burger, Arnold
This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.
Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument
Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...
2016-11-08
This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.
2018-01-01
A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.
Perforated semiconductor neutron detectors for battery operated portable modules
NASA Astrophysics Data System (ADS)
McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy
2007-09-01
Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.
Compact objects at the heart of outflows in large and small systems
NASA Astrophysics Data System (ADS)
Sell, Paul Harrison
2013-12-01
This thesis focuses on studying and assessing high-energy feedback generated by both stellar mass and supermassive compact objects. From these two perspectives, I help bridge the gap in understanding how jets and winds can transform their much larger environments in thousands to millions of years, astronomically short timescales. I have acquired X-ray and optical data that aim to elucidate the role these objects play in powering parsec-scale shockwaves in the ISM and in driving kiloparsec-scale outflows in galaxies. I present Chandra X-ray imaging, Hubble Space Telescope imaging, and WIYN Hydra multi-object optical spectroscopic observations. The data reveal the morphologies of the systems and constrain on a range of interesting parameters: power, outflow velocity, density, accretion efficiency, and timescale. My analysis provides perspective on the importance of black holes, both large and small, and neutron stars for driving outflows into the interstellar and intergalactic medium. On kiloparsec scales, I explore the nature of what appear to be merging or recently merging post-starburst galaxies with very high-velocity winds. This work is part of a multiwavelength effort to characterize the niche these galaxies fill in the larger scheme of galaxy evolution. My focus is on the accretion activity of the coalescing supermassive black holes in their cores. This work leads us to compare the relative importance of a massive starburst to the supermassive black holes in the cores of the galaxies. On parsec scales, I present case studies of two prominent microquasars, Galactic X-ray binaries with jets, Circinus X-1 and Cygnus X-1. In the case of Circinus X-1, I present very deep follow-up observations of parsec-scale shock plumes driven by a powerful, bipolar jet. In the case of Cygnus X-1, I present follow-up observations to probe a recently discovered outflow near the binary. I calculate robust, physically motivated limits on the total power needed to drive the outflows in both of these systems.
Relativistic baryonic jets from an ultraluminous supersoft X-ray source.
Liu, Ji-Feng; Bai, Yu; Wang, Song; Justham, Stephen; Lu, You-Jun; Gu, Wei-Min; Liu, Qing-Zhong; Di Stefano, Rosanne; Guo, Jin-Cheng; Cabrera-Lavers, Antonio; Álvarez, Pedro; Cao, Yi; Kulkarni, Shri
2015-12-03
The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows. Here we report the optical spectra of an ultraluminous supersoft X-ray source (ULS) in the nearby galaxy M81 (M81 ULS-1; refs 9, 10). Unexpectedly, the spectra show blueshifted, broad Hα emission lines, characteristic of baryonic jets with relativistic speeds. These time-variable emission lines have projected velocities of about 17 per cent of the speed of light, and seem to be similar to those from the prototype microquasar SS 433 (refs 11, 12). Such relativistic jets are not expected to be launched from white dwarfs, and an origin from a black hole or a neutron star is hard to reconcile with the persistence of M81 ULS-1's soft X-rays. Thus the unexpected presence of relativistic jets in a ULS challenges canonical theories of jet formation, but might be explained by a long-speculated, supercritically accreting black hole with optically thick outflows.
NASA Astrophysics Data System (ADS)
Roy, Soumen; Sengupta, Anand S.; Thakor, Nilay
2017-05-01
Astrophysical compact binary systems consisting of neutron stars and black holes are an important class of gravitational wave (GW) sources for advanced LIGO detectors. Accurate theoretical waveform models from the inspiral, merger, and ringdown phases of such systems are used to filter detector data under the template-based matched-filtering paradigm. An efficient grid over the parameter space at a fixed minimal match has a direct impact on the overall time taken by these searches. We present a new hybrid geometric-random template placement algorithm for signals described by parameters of two masses and one spin magnitude. Such template banks could potentially be used in GW searches from binary neutron stars and neutron star-black hole systems. The template placement is robust and is able to automatically accommodate curvature and boundary effects with no fine-tuning. We also compare these banks against vanilla stochastic template banks and show that while both are equally efficient in the fitting-factor sense, the bank sizes are ˜25 % larger in the stochastic method. Further, we show that the generation of the proposed hybrid banks can be sped up by nearly an order of magnitude over the stochastic bank. Generic issues related to optimal implementation are discussed in detail. These improvements are expected to directly reduce the computational cost of gravitational wave searches.
On the Possibility of Creating a Point-Like Neutron Source
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.; Razin, S. V.; Shaposhnikov, R. A.; Lapin, R. L.; Bokhanov, A. F.; Kazakov, M. Yu.
2018-03-01
We consider the possibility of creating a compact high-power neutron generator with a small emitting area (of the order of 100 μm) and a neutron yield of 1010s-1 on the basis of a deuterium-deuterium fusion reaction (or 1012 s-1 on the basis of a deuterium-tritium fusion reaction). The fusion takes place under bombardment of a deuterium- (or tritium-) saturated target by a high-current (about 100 mA) focused deuterium ion beam with an energy of 100 keV. The ion beam with total current at a level of hundreds of milliamperes and small emittance (less than 0.1 π·mm·mrad), which is crucial for sharp focusing, can be generated by a quasi-gas-dynamic ion source of a new generation created on the basis of a discharge in an open magnetic trap sustained by high-power electromagnetic radiation of the millimeter wavelength range under electron cyclotron resonance conditions. Simulations of the focusing system for the experimentally obtained ion beam show the possibility to create a deuterium ion beam with a transverse size of 200 μm on the neutron-forming target. Prospects for using such a neutron source for neutron tomography are discussed.
Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes
NASA Astrophysics Data System (ADS)
Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.
2018-06-01
To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.
Measurement of the Am 242 m neutron-induced reaction cross sections
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...
2017-02-17
The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions
NASA Astrophysics Data System (ADS)
Syed Mohd, A.; Pütter, S.; Mattauch, S.; Koutsioubas, A.; Schneider, H.; Weber, A.; Brückel, T.
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å-1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions.
Syed Mohd, A; Pütter, S; Mattauch, S; Koutsioubas, A; Schneider, H; Weber, A; Brückel, T
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å -1 . The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
Can We Distinguish Low-mass Black Holes in Neutron Star Binaries?
NASA Astrophysics Data System (ADS)
Yang, Huan; East, William E.; Lehner, Luis
2018-04-01
The detection of gravitational waves (GWs) from coalescing binary neutron stars (NS) represents another milestone in gravitational-wave astronomy. However, since LIGO is currently not as sensitive to the merger/ringdown part of the waveform, the possibility that such signals are produced by a black hole (BH)–NS binary can not be easily ruled out without appealing to assumptions about the underlying compact object populations. We review a few astrophysical channels that might produce BHs below 3 M ⊙ (roughly the upper bound on the maximum mass of an NS), as well as existing constraints for these channels. We show that, due to the uncertainty in the NS equation of state, it is difficult to distinguish GWs from a binary NS system from those of a BH–NS system with the same component masses, assuming Advanced LIGO sensitivity. This degeneracy can be broken by accumulating statistics from many events to better constrain the equation of state, or by third-generation detectors with higher sensitivity to the late-spiral to post-merger signal. We also discuss the possible differences in electromagnetic (EM) counterparts between binary NS and low-mass BH–NS mergers, arguing that it will be challenging to definitively distinguish the two without better understanding of the underlying astrophysical processes.
Stealth configurations in vector-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Tasinato, Gianmassimo
2018-01-01
Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.
Non-destructive method for determining neutron exposure
Gold, R.; McElroy, W.N.
1983-11-01
A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.
High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk
NASA Astrophysics Data System (ADS)
Kumar, Nagendra
2018-02-01
We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.
Lense-Thirring Precession of Accretion Disks and Quasi-Periodic Oscillations in X-Ray Binaries
NASA Astrophysics Data System (ADS)
Markovic, D.; Lamb, F. K.
2003-05-01
It has recently been suggested that gravitomagnetic precession of the inner part of the accretion disk, possibly driven by radiation torques, may be responsible for some of the 20-300 Hz quasi-periodic X-ray brightness oscillations (QPOs) observed in some low-mass binary systems containing accreting neutron stars and black hole candidates. We have explored warping modes of geometrically thin disks in the presence of gravitomagnetic and radiation torques. We have found a family of overdamped, low-frequency gravitomagnetic (LFGM) modes all of which have precession frequencies lower than a certain critical frequency ωcrit, which is 1 Hz for a compact object of solar mass. A radiation warping torque can cause a few of the lowest-frequency LFGM modes to grow with time, but even a strong radiation warping torque has essentially no effect on the LFGM modes with frequencies ≳10-4 Hz. We have also discovered a second family of high-frequency gravitomagnetic (HFGM) modes with precession frequencies that range from ωcrit up to slightly less than the gravitomagnetic precession frequency of a particle at the inner edge of the disk, which is 30 Hz if the disk extends inward to the innermost stable circular orbit around a 2M⊙ compact object with dimensionless angular momentum cJ/GM2 = 0.2. The highest-frequency HFGM modes are very localized spiral corrugations of the inner disk and are weakly damped, with Q values as large as 50. We discuss the implications of our results for the observability of Lense-Thirring precession in X-ray binaries.
A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk
NASA Astrophysics Data System (ADS)
Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas
2004-12-01
A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-04-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
Discovery of two eclipsing X-ray binaries in M 51
NASA Astrophysics Data System (ADS)
Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng
2018-07-01
We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, M; Liu, Y; Nie, L
Purpose: To design a beam shaping assembly (BSA) to shape the 2.45-MeV neutrons produced by a deuterium-deuterium (DD) neutron generator and to optimize the beam output for boron neutron capture therapy of brain tumors Methods: MCNP is used for this simulation study. The simulation model consists of a neutron surface source that resembles an actual DD source and is surrounded by a BSA. The neutron source emits 2.45-MeV neutrons isotropically. The BSA is composed of a moderator, reflector, collimator and filter. Various types of materials and geometries are tested for each component to optimize the neutron output. Neutron characteristics aremore » measured with an 2×2×2-cm{sup 3} air-equivalent cylinder at the beam exit. The ideal BSA is determined by evaluating the in-air parameters, which include epithermal neutron per source neutron, fast neutron dose per epithermal neutron, and photon dose per epithermal neutron. The parameter values are compared to those recommended by the IAEA. Results: The ideal materials for reflector and thermal neutron filter were lead and cadmium, respectively. The thickness for reflector was 43 cm and for filter was 0.5 mm. At present, the best-performing moderator has 25 cm of AlF{sub 3} and 5 cm of MgF{sub 2}. This layout creates a neutron spectrum that has a peak at approximately 10 keV and produces 1.35E-4 epithermal neutrons per source neutron per cm{sup 2}. Additional neutron characteristics, fast neutrons per epithermal neutron and photon per epithermal neutron, are still under investigation. Conclusion: Working is ongoing to optimize the final layout of the BSA. The neutron spectrum at the beam exit window of the final configuration will have the maximum number of epithermal neutrons and limited photon and fast neutron contaminations within the recommended values by IAEA. Future studies will also include phantom experiments to validate the simulation results.« less
NASA Astrophysics Data System (ADS)
Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo
2009-03-01
We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4α) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 μA D/T ion beam current accelerated to 80 kV. The generator utilizes an RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80% can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results from ion source testing, such as the current density, atomic ion fraction, electron temperature, and electron density will be discussed.
Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data
NASA Astrophysics Data System (ADS)
Ming, Jing; Papa, Maria Alessandra; Krishnan, Badri; Prix, Reinhard; Beer, Christian; Zhu, Sylvia J.; Eggenstein, Heinz-Bernd; Bock, Oliver; Machenschalk, Bernd
2018-02-01
In this paper we design a search for continuous gravitational waves from three supernova remnants: Vela Jr., Cassiopeia A (Cas A) and G347.3. These systems might harbor rapidly rotating neutron stars emitting quasiperiodic gravitational radiation detectable by the advanced LIGO detectors. Our search is designed to use the volunteer computing project Einstein@Home for a few months and assumes the sensitivity and duty cycles of the advanced LIGO detectors during their first science run. For all three supernova remnants, the sky positions of their central compact objects are well known but the frequency and spin-down rates of the neutron stars are unknown which makes the searches computationally limited. In a previous paper we have proposed a general framework for deciding on what target we should spend computational resources and in what proportion, what frequency and spin-down ranges we should search for every target, and with what search setup. Here we further expand this framework and apply it to design a search directed at detecting continuous gravitational wave signals from the most promising three supernova remnants identified as such in the previous work. Our optimization procedure yields broad frequency and spin-down searches for all three objects, at an unprecedented level of sensitivity: The smallest detectable gravitational wave strain h0 for Cas A is expected to be 2 times smaller than the most sensitive upper limits published to date, and our proposed search, which was set up and ran on the volunteer computing project Einstein@Home, covers a much larger frequency range.
ESA's Integral discovers hidden black holes
NASA Astrophysics Data System (ADS)
2003-10-01
An artist's impression of the mechanisms in an interacting binar hi-res Size hi-res: 28 kb An artist's impression of the mechanisms in an interacting binary system An artist's impression of the mechanisms in an interacting binary system. The supermassive companion star (on the right-hand side) ejects a lot of gas in the form of 'stellar wind'. The compact black hole orbits the star and, due to its strong gravitational attraction, collects a lot of the gas. Some of it is funnelled and accelerated into a hot disc. This releases a large amount of energy in all spectral bands, from gamma rays through to visible and infrared. However, the remaining gas surrounding the black hole forms a thick cloud which blocks most of the radiation. Only the very energetic gamma rays can escape and be detected by Integral. XMM-Newton spacecraft hi-res Size hi-res: 254 kb Credits: ESA. Illustration by Ducros XMM-Newton spacecraft Detecting the Universe's hot spots. These are binary systems, probably including a black hole or a neutron star, embedded in a thick cocoon of cold gas. They have remained invisible so far to all other telescopes. Integral was launched one year ago to study the most energetic phenomena in the universe. Integral detected the first of these objects, called IGRJ16318-4848, on 29 January 2003. Although astronomers did not know its distance, they were sure it was in our Galaxy. Also, after some analysis, researchers concluded that the new object could be a binary system comprising a compact object, such as a neutron star or a black hole, and a very massive companion star. When gas from the companion star is accelerated and swallowed by the more compact object, energy is released at all wavelengths, from the gamma rays through to visible and infrared light. About 300 binary systems like those are known to exist in our galactic neighbourhood and IGRJ16318-4848 could simply have been one more. But something did not fit: why this particular object had not been discovered so far? Astronomers, who have been observing the object regularly, guess that it had remained invisible because there must be a very thick shell of obscuring material surrounding it. If that was the case, only the most energetic radiation from the object could get through the shell; less-energetic radiation would be blocked. That could explain why space telescopes that are sensitive only to low-energy radiation had overlooked the object, while Integral, specialised in detecting very energetic emissions, did see it. To test their theory, astronomers turned to ESA's XMM-Newton space observatory, which observes the sky in the X-ray wavelengths. As well as being sensitive to high-energy radiation, XMM-Newton is also able to check for the presence of obscuring material. Indeed, XMM-Newton detected this object last February, as well as the existence of a dense 'cocoon' of cold gas with a diameter of similar size to that of the Earth's orbit around the Sun. This obscuring material forming the cocoon is probably 'stellar wind', namely gas ejected by the supermassive companion star. Astronomers think that this gas may be accreted by the compact black hole, forming a dense shell around it. This obscuring cloud traps most of the energy produced inside it. The main author of these results, Roland Walter of the Integral Science Data Centre, Switzerland, explained: "Only photons with the highest energies [above 10 keV] could escape from that cocoon. IGR J16318-4848 has therefore not been detected by surveys performed at lower energies, nor by previous gamma-ray missions that were much less sensitive than Integral." The question now is to find out how many of these objects lurk in the Galaxy. XMM-Newton and Integral together are the perfect tools to do the job. They have already discovered two more new sources embedded in obscuring material. Future observations are planned. Christoph Winkler, ESA Project Scientist for Integral, said: "These early examples of using two complementary ESA high-energy missions, Integral and XMM-Newton, shows the potential for future discoveries in high-energy astrophysics." Notes to Editors: The paper explaining these results will be published in November in a special issue of Astronomy and Astrophysics dedicated to Integral, on the occasion of its first anniversary. Integral The International Gamma Ray Astrophysics Laboratory (Integral) is the first space observatory that can simultaneously observe celestial objects in gamma rays, X-rays and visible light. Integral was launched on a Russian Proton rocket on 17 October 2002 into a highly elliptical orbit around Earth. Its principal targets include regions of the galaxy where chemical elements are being produced and compact objects, such as black holes. XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
Nucleus-acoustic Solitons in Self-gravitating Magnetized Quantum Plasmas
NASA Astrophysics Data System (ADS)
Saaduzzaman, Dewan Mohammad; Amina, Moriom; Mamun, Abdullah Al
2018-03-01
The basic properties of the nucleus-acoustic (NA) solitary waves (SWs) are investigated in a super-dense self-gravitating magnetized quantum plasma (SDSGMQP) system in the presence of an external magnetic field, whose constituents are the non-degenerate light as well as heavy nuclei, and non-/ultra-relativistically degenerate electrons. The Korteweg-de Vries (KdV) equation has been derived by employing the reductive perturbation method. The NA SWs are formed with negative (positive) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure and the obliqueness of the external magnetic field significantly change the basic properties (e.g., amplitude, width, and speed) of NA SWs. The implications of the findings of our present investigation in explaining the physics behind the formation of the NA SWs in astrophysical compact objects like neutron stars are briefly discussed.
Willet, Nicolas; Gohy, Jean-François; Auvray, Loïc; Varshney, Sunil; Jérôme, Robert; Leyh, Bernard
2008-04-01
It is now well established that amphiphilic PS-b-P2VP-b-PEO linear triblock copolymers can form multilayered assemblies, thus core-shell-corona (CSC) micelles, in water. Micellization is triggered by addition of a small amount of water into a dilute solution of the PS-b-P2VP-b-PEO copolymer in a non-selective organic solvent. However, the phenomena that take place at the very beginning of this process are poorly documented. How these copolymer chains are perturbed by addition of water was investigated in this work by light and neutron scattering techniques and transmission electron microscopy. It was accordingly possible to determine the critical water concentration (CWC), the compactness of the nano-objects in solution, their number of aggregation, and their hydrodynamic diameter at each step of the micellization process.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...
2017-10-16
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.
Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A
2017-12-22
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.
Swift and NuSTAR observations of GW170817: Detection of a blue kilonova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, P. A.; Cenko, S. B.; Kennea, J. A.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less
Neutron-Star Merger Detected By Many Eyes and Ears
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Where were you on Thursday, 17 August 2017? I was in Idaho, getting ready for Monday mornings solar eclipse. What I didnt know was that, at the time, around 70 teams around the world were mobilizing to point their ground- and space-based telescopes at a single patch of sky suspected to host the first gravitational-wave-detected merger of two neutron stars.Sudden Leaps for ScienceThe masses for black holes detected through electromagnetic observations (purple), black holes measured by gravitational-wave observations (blue), neutron stars measured with electromagnetic observations (yellow), and the neutron stars that merged in GW170817 (orange). [LIGO-Virgo/Frank Elavsky/NorthwesternUniversity]The process of science is long and arduous, generally occurring at a slow plod as theorists make predictions, and observations are then used to chip away at these theories, gradually confirming or disproving them. It is rare that science progresses forward in a giant leap, with years upon years of theories confirmed in one fell swoop.14 September 2015 marked the day of one such leap, as the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves for the first time simultaneously verifying that black holes exist, that black-hole binaries exist, and that they can merge on observable timescales, emitting signals that directly confirm the predictions of general relativity.As it turns out, 17 August 2017 was another such day. On this day, LIGO observed a gravitational-wave signal unlike its previous black-hole detections. Instead, this was a signal consistent with the merger of two neutron stars.Artists illustrations of the stellar-merger model for short gamma-ray bursts. In the model, 1) two neutron stars inspiral, 2) they merge and produce a gamma-ray burst, 3) a small fraction of their mass is flung out and radiates as a kilonova, 4) a massive neutron star or black hole with a disk remains after the event. [NASA, ESA, and A. Feild (STScI)]What We PredictedTheoretical models describing the merger of two compact objects predict a chirping gravitational-wave signal as the objects spiral closer and closer. Unlike in a black-hole merger, however, the end of the chirp from merging neutron stars should coincide with a phenomenon known as a short gamma-ray burst: a powerful storm of energetic gamma rays produced as the objects finally collide.According to the models, these gravitational waves and gamma rays will be followed by a kilonova a transient source visible in infrared, optical, and ultraviolet which arises from radioactive decay of heavy elements formed in the collision. This source should gradually decay over a timescale of weeks.Lastly, the merger could create a powerful jet of high-energy particles, which could be visible to us in X-ray and radio wavelengths as it is emitted and interacts with its surrounding environment. We could also detect neutrinos from this outflow.What We Saw (and Didnt See)The localization of the gravitational-wave, gamma-ray, and optical signals of the neutron-star merger detected on 17 August, 2017. [Abbott et al. 2017]So what did we see on 17 August, 2017 and thereafter? Heres what was found by the army of collaborations searching in gravitational waves, electromagnetic signals across the spectrum, and neutrinos:Gravitational WavesThe gravitational-wave signature of a binary neutron-star merger was observed with all three gravitational-wave detectors currently operating as a part of the LIGO-Virgo collaboration. GW170817s signal was in the sensitivity band of these detectors for 100 seconds, arriving first at the Virgo detector in Italy, next at LIGO-Livingston in Louisiana 22 milliseconds later, and finally at LIGO-Hanford in Washington 3 milliseconds after that. These detections localized the source to a region of 31 square degrees at a relatively nearby distance of 130 million light-years, and they identified the binary components to be neutron stars.Gamma-Ray BurstThe Fermi Gamma-Ray Burst Monitor detected a short ( 2-second) gamma-ray burst, GRB170817A, which appears to have occurred 1.7 seconds after the merger indicated by the gravitational-wave signal. This source was later identified by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) spacecraft as well.Locations of the many observatories that observed the neutron-star merger first detected on 17 August, 2017. [Abbott et al. 2017]Electromagnetic Counterpart and Host GalaxyThough they were initially foiled by the signals location (the localized region of GW170817 only became visible in Chile 10 hours after its detection), the One-Meter, Two-Hemisphere team used the Swope telescope at Las Campanas Observatory in Chile to discover an optical counterpart to the LIGO and Fermi detection, located in the early-type galaxy NGC 4993. Within an hour, five other teams had independently detected the optical source in NGC 4993, with more following after.In the subsequent hours, days, and weeks, observatories across the electromagnetic spectrum monitored the transient. The source soon faded from view in the ultraviolet and gradually reddened in the optical and infrared bands. Delayed X-ray emission was discovered 9 days after the LIGO signal, and a radio counterpart was discovered a week after that.No NeutrinosThough several neutrino observatories searched for high-energy neutrinos in the direction of NGC 4993 in the two-week period following the merger, none were detected.Summary and timeline of the observations of the neutron-star merger detected on 17 August, 2017 relative to the time tc of the gravitational-wave event. Click for a closer look. [Abbott et al. 2017]A Spectacular ConfirmationSo what do these observations tell us? Our model for neutron-star mergers appears to be remarkably successful! The associated detections of gravitational waves and electromagnetic counterparts have confirmed that merging neutron stars produce the expected gravitational-wave signal, that they are the source of gamma-ray bursts, that some of the heaviest elements in the universe are produced during the collision of these stars, and that jets of high-energy particles are created that subsequently interact with their environment.As with any interesting scientific discovery, new points of exploration have arisen we can now wonder why the gamma-ray burst was unusually weak given its close distance, for instance, or why we didnt detect any neutrinos from the outflow.In spite of our new questions, the combination of these recent discoveries provide a resounding verification of our understanding of how compact objects merge. The various signals that began on 17 August, 2017 have simultaneously confirmed a stack of carefully constructed theories that were crafted over decades to explain how seemingly unrelated electromagnetic signals might all tie together. Its a beautiful thing when science works out this well!For more information, check out the ApJL Focus Issue on this result here:Focus on The Electromagnetic Counterpart of the Neutron Star Binary Merger GW170817 CitationAbbott, B.P. et al 2017 ApJL 848 L12. doi:10.3847/2041-8213/aa91c9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, V. A., E-mail: vli2@hawaii.edu; Dorrill, R.; Duvall, M. J.
2016-02-15
We present the development of the miniTimeCube (mTC), a novel compact neutrino detector. The mTC is a multipurpose detector, aiming to detect not only neutrinos but also fast/thermal neutrons. Potential applications include the counterproliferation of nuclear materials and the investigation of antineutrino short-baseline effects. The mTC is a plastic 0.2% {sup 10}B–doped scintillator (13 cm){sup 3} cube surrounded by 24 Micro-Channel Plate (MCP) photon detectors, each with an 8 × 8 anode totaling 1536 individual channels/pixels viewing the scintillator. It uses custom-made electronics modules which mount on top of the MCPs, making our detector compact and able to both distinguishmore » different types of events and reject noise in real time. The detector is currently deployed and being tested at the National Institute of Standards and Technology Center for Neutron Research nuclear reactor (20 MW{sub th}) in Gaithersburg MD. A shield for further tests is being constructed, and calibration and upgrades are ongoing. The mTC’s improved spatiotemporal resolution will allow for determination of incident particle directions beyond previous capabilities.« less
The suppression of pulsar and gamma-ray burst annihilation lines by magnetic photon splitting
NASA Technical Reports Server (NTRS)
Baring, Matthew G.
1993-01-01
Neutron stars, relativistic and compact by nature, show great potential for the copious creation of electron-positron pairs in the magnetospheres; these rapidly cool, thermalize, and then annihilate. It is therefore expected that many neutron sources might display evidence of pair annihilation lines in the 400-500 keV range. It is shown that magnetic photon splitting, which operates effectively at these energies and in the enormous neutron star magnetic fields, can destroy an annihilation feature by absorbing line photons and reprocessing them to lower energies. In so doing, photon splitting creates a soft gamma-ray bump and a broad quasi-power-law contribution to the X-ray continuum, which is too flat to conflict with the observed X-ray paucity in gamma-ray bursts. The destruction of the line occurs in neutron stars with surface fields of 5 x 10 exp 12 G or maybe even less, depending on the size of the emission region.
Development of the dense plasma focus for short-pulse applications
NASA Astrophysics Data System (ADS)
Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.
2017-01-01
The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, H.; Imura, A.; Furuta, Y.
Recently, technique of Gadolinium loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and 'nuclear Gain (GA)' for IAEA safeguards. For the practical use, R and D of the 1 ton class compact detector, which is measurable above ground, is necessary. Especially, it is important to reduce much amount of fast neutron background induced by cosmic muons with data analysis for the measurement above ground. We developed a prototype of the Gd-LS detector with 200 L of the target volume, which has Pulse Shape Discrimination (PSD) ability for the fast neutronmore » reduction with data analysis. Usually, it is well known that it is difficult to keep high fast neutron reduction power of PSD with the large volume size such as the neutrino reactor monitor. We evaluated the PSD ability of our prototype with real fast neutrons induced by the muons in our laboratory above ground, and we could confirm to keep the high fast neutron reduction power with even our large detector size. (authors)« less
Quasielastic small-angle neutron scattering from heavy water solutions of cyclodextrins
NASA Astrophysics Data System (ADS)
Kusmin, André; Lechner, Ruep E.; Saenger, Wolfram
2011-01-01
We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D _2O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.
NASA Astrophysics Data System (ADS)
Tanvir, Nial
2017-09-01
Merging compact binaries (NS-NS or NS-BH) offer the best prospects for detection of EM signals accompanying gravitational wave (GW) events. They may be seen as bright short-GRBs (SGRBs), but this is likely to be rare due to beaming. Alternatively, more isotropic near-IR emission is predicted to result from the 'kilonova' produced by radioactive decay of neutron star ejecta. However, recent XMM observations have shown unexplained excess X-ray emission several days post-burst in two low-z SGRBs. This may indicate ongoing engine activity which both enhances the nIR emission, and crucially provides a potential new isotropic X-ray signature of compact binary mergers. We propose a detailed study of a further z<0.35 SGRB, to explore this phenomenon and inform future searches for GW counterparts.
Lower bound on the compactness of isotropic ultracompact objects
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-04-01
Horizonless spacetimes describing spatially regular ultracompact objects which, like black-hole spacetimes, possess closed null circular geodesics (light rings) have recently attracted much attention from physicists and mathematicians. In the present paper we raise the following physically intriguing question: how compact is an ultracompact object? Using analytical techniques, we prove that ultracompact isotropic matter configurations with light rings are characterized by the dimensionless lower bound maxr{2 m (r )/r }>7 /12 on their global compactness parameter.
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo
2016-10-01
Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
Assessment of neutron dosemeters around standard sources and nuclear fissile objects.
Raimondi, N; Tournier, B; Groetz, J E; Piot, J; Riebler, E; Crovisier, P; Chambaudet, A; Cabanné, N
2002-01-01
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
The Hunt for a Counterpart to GW150914
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-07-01
On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) in a pre-operative testing state at the time detected its first sign of gravitational-waves. The LIGO team sprang into action, performing data-quality checks on this unexpected signal. Within two days, they had sent a notification to 63 observing teams at observatories representing the entire electromagnetic spectrum, from radio to gamma-ray wavelengths.Illustration of a binary neutron star merger. The neutron stars 1) inspiral, 2) can produce a short gamma-ray burst, 3) can fling out hot, radioactive material in the form of a kilonova, and 4) form a massive neutron star or black hole with a possible remnant debris disk around it. [NASA/ESA/A. Feild (STScI)]Thus began the very first hunt for an electromagnetic counterpart to a detected gravitational wave signal.What were they looking for?As two compact objects in a binary system merge, the system is expected to emit energy in the form of gravitational waves. If both of the compact objects are black holes, were unlikely to see any electromagnetic radiation in the process, unless the merger is occurring in an (improbable) environment filled with gas and dust.But if one or both of the two compact objects is a neutron star, then there are a number of electromagnetic signatures that could occur due to energetic outflows. If a relativistic jet forms, we could see a short gamma-ray burst and X-ray, optical, and radio afterglows. Sub-relativistic outflows could produce optical and near-infrared signals, or a radio blast wave.Timeline of observations of GW150914, separated by wavelength band, and relative to the time of the gravitational-wave trigger. The top row shows LIGO information releases. The bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Click for a closer look! [Abbott et al. 2016]Surprise SignalSince LIGO and Virgo (LIGOs European counterpart), wereprimarily expecting to detect binaries involving neutron stars, they set up a notification system to be able to quickly alert electromagnetic observatories of a gravitational-wave detection. Those observatories would then be able to follow up on the gravitational-wave detectorsrough localization, with the goal of detecting the source by its electromagnetic signature.Given that LIGO had only just come online for testing when GW150914 was detected, its impressive that the pipeline was ready and there were observatories able to follow up so quickly! When the alert went out, 25 teams responded, mobilizing satellites and ground-based telescopes spanning 19 orders of magnitude in electromagnetic wavelength.The Search PartyThe only information the teams were initially given was the localization of the signal to roughly 600 square degrees on the sky. With this starting point, over the next three months, these 25 facilities carefully observed the entirety of the estimated localization area.Footprints of observations in comparison with the initial LIGO localization of GW150914 (black contours). Shown are radio fields (red), optical/infrared fields (green), and X-ray fields (blue circles); not shown are the all-sky Fermi GBM, LAT, INTEGRAL SPI-ACS, and MAXI observations. [Abbott et al. 2016]Some high-energy observatories, like Fermi and INTEGRAL, covered the whole sky. Many optical facilities used a tiling strategy, together covering about 900 square degrees. Still other observatories used a targeted approach, specifically looking at fields that contained a high density of nearby galaxies, in the hopes of detecting signs of a neutron-star merger or a core-collapse supernova.For the transient sources that were found, follow-up spectroscopy and further photometry was performed, to determine if the transient could have been the source of the detected gravitational waves.What Was the Outcome?No electromagnetic counterpart to GW150914 was found. It turns out this isnt surprising; GW150914 was later determined to have been the merger of two black holes, which should not generate an electromagnetic signature.So why report on this? In the publication prepared jointly by LIGO, Virgo, and these 25 teams (with one of the longer author lists youre likely to encounter!), the authors emphasize not the conclusion, but the process leading to it.In spite of the fact that LIGO had not yet even begun its first observing run, the alert system worked, and the community mobilized to cover the entire 600 square degrees of sky with observations and follow-up characterization of candidate sources. If all this can be accomplished for an unexpected signal, imagine how well the system will work for future detections during actual science runs! With any luck, well be identifying the electromagnetic counterparts to gravitational-wave sources soon.CitationB. P. Abbott et al 2016 ApJ 826 L13. doi:10.3847/2041-8205/826/1/L13
A new compact, high sensitivity neutron imaging systema)
NASA Astrophysics Data System (ADS)
Caillaud, T.; Landoas, O.; Briat, M.; Rossé, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.; Park, H. S.; Robey, H. F.; Amendt, P.
2012-10-01
We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (109-1010 neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 × 1010. The resolution of this image was 54 μm and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a 60Co γ-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.
NASA Astrophysics Data System (ADS)
Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.
2014-07-01
Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.
Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E
2016-05-01
To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Topology-preserving quantum deformation with non-numerical parameter
NASA Astrophysics Data System (ADS)
Aukhadiev, Marat; Grigoryan, Suren; Lipacheva, Ekaterina
2013-11-01
We introduce a class of compact quantum semigroups, that we call semigroup deformations of compact Abelian qroups. These objects arise from reduced semigroup -algebras, the generalization of the Toeplitz algebra. We study quantum subgroups, quantum projective spaces and quantum quotient groups for such objects, and show that the group is contained as a compact quantum subgroup in the deformation of itself. The connection with the weak Hopf algebra notion is described. We give a grading on the -algebra of the compact quantum semigroups constructed.
NASA Astrophysics Data System (ADS)
Chernikova, D.; Romodanov, V. L.; Belevitin, A. G.; Afanas`ev, V. V.; Sakharov, V. K.; Bogolubov, E. P.; Ryzhkov, V. I.; Khasaev, T. O.; Sladkov, A. A.; Bitulev, A. A.
2014-05-01
The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the "tailing" of the original neutron pulse and the appearance of an accompanying photon pulse at ~ 3 ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as 58Co, 62Cu, 64Cu and 18F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole.
Application of neutron-gamma analysis for determination of C/N ratio in compost
USDA-ARS?s Scientific Manuscript database
Neutron-gamma analysis is based on the acquisition of gamma rays from neutron irradiated study objects. The intensity and energy of the registered gamma rays gives information on the types and amounts of elements in the studied object. The use of this method for measurements of soil carbon demonstra...