High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave
NASA Technical Reports Server (NTRS)
Ilchenko, V.; Yao, X.; Maleki, L.
1999-01-01
With submillimeter size and optical Q up to 10(sup 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators.
Magnetometer Based on Optoelectronic Microwave Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey
2005-01-01
proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.
Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin
2016-07-01
A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Qiao, Yunfei; Zheng, Shilie; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin
2012-12-17
A compact and electric tuning microwave source based on a diode-pumped composite Nd:YAG-LiNbO(3) cavity microchip laser is demonstrated. The electro-optical element introduces an electric tuning intra-cavity birefringence which causes a tunable frequency difference between two spilt orthogonal polarization states of a longitude mode. Thus a continuously tunable microwave signal with frequency up to 14.12 GHz can be easily generated by beating the two polarization modes on a high speed photodetector.
Compact Microwave Fourier Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry
2009-01-01
A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.
NASA Astrophysics Data System (ADS)
Llopis, O.; Merrer, P. H.; Bouchier, A.; Saleh, K.; Cibiel, G.
2010-02-01
Microwave optical systems for frequency generation are described in this paper. The goal is to reach high spectral purity in the microwave frequency range using ultra high Q optical resonators. The resonators investigated are of two types : resonant (passive) fiber rings and WGM tridimensional resonators. They all feature ultra high optical Q factors, in excess of 108 or 109 near 1550 nm. These resonators also sustain a large number of optical resonances, and the microwave signal is stabilized on two (or more) resonances of this optical comb. Different problems have to be overcome in order to reach a functional system, such as : resonator design and coupling, laser stabilization on a resonance, overall system design, noise optimization... This paper gives an overlook on these problems, and on some solutions we found to work towards a compact and efficient microwave opto-electronic oscillator (OEO). A first result is presented on a 10 GHz OEO based on a resonant fiber ring.
Cyclic additional optical true time delay for microwave beam steering with spectral filtering.
Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J
2014-06-15
Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis.
Stabilizing Microwave Frequency of a Photonic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan; Tu, Meirong
2006-01-01
A scheme for stabilizing the frequency of a microwave signal is proposed that exploits the operational characteristics of a coupled optoelectronic oscillator (COEO) and related optoelectronic equipment. An essential element in the scheme is a fiber mode-locked laser (MLL), the optical frequency of which is locked to an atomic transition. In this scheme, the optical frequency stability of the mode-locked laser is transferred to that of the microwave in the same device. Relative to prior schemes for using wideband optical frequency comb to stabilize microwave signals, this scheme is simpler and lends itself more readily to implementation in relatively compact, rugged equipment. The anticipated development of small, low-power, lightweight, highly stable microwave oscillators based on this scheme would afford great benefits in communication, navigation, metrology, and fundamental sciences. COEOs of various designs, at various stages of development, in some cases called by different names, have been described in a number of prior NASA Tech Briefs articles. A COEO is an optoelectronic apparatus that generates both short (picosecond) optical pulses and a steady microwave signal having an ultrahigh degree of spectral purity. The term "coupled optoelectronic" in the full name of such an apparatus signifies that its optical and electronic oscillations are coupled to each other in a single device. The present frequency-stabilization scheme is best described indirectly by describing the laboratory apparatus used to demonstrate it. The apparatus (see figure) includes a COEO that generates a comb-like optical spectrum, the various frequency components of which interfere, producing short optical pulses. This spectrum is centered at a nominal wavelength of 1,560 nm. The spectrum separation of this comb is about 10 GHz, as determined primarily by the length of an optical loop and the bandpass filter in the microwave feedback loop. The optical loop serves as microwave resonator having a very high value of the resonance quality factor (Q). The optical frequency of MLL is then stabilized by locking it to an atomic transition as described below. The COEO contains a tunable 1-nm band-pass optical filter and a piezoelectric-transducer (PZT) drum over which a stretch of fiber is wound. The 1-nm-wide pass band of the filter provides coarse tuning to overlap the frequency comb with the atomic transition frequency. Controlled stretching of the fiber by means of the PZT drum can be used in conjunction with temperature control for locking the laser frequency. To reference to an atomic resonance at 780 nm in this demonstration setup, the optical output of the COEO at 1,560 nm is fed through an erbium-doped-fiber amplifier (EDFA) to a frequency doubler in the form of a periodically poled lithium niobate (PPLN) crystal. The frequency-doubled output is combined with the output of a separate frequency-stabilized diode laser at a photodetector. As described thus far, the two 780-nm laser subsystems are nominally independent of each other and can, therefore, operate at different frequencies. Hence, at the photodetector, the two laser beams interfere, so that the output of the photodetector includes a beat note (a component at the difference between the two laser frequencies).
High-Q Microsphere Cavity for Laser Stabilization and Optoelectronic Microwave Oscillator
NASA Technical Reports Server (NTRS)
Ilchenko, Vladimir S.; Yao, X. Steve; Maleki, Lute
2000-01-01
With submillimeter size and optical Q up to approximately 10 (exp 10), microspheres with whispering-gallery (WG) modes are attractive new component for fiber-optics/photonics applications and a potential core in ultra-compact high-spectral-purity optical and microwave oscillators. In addition to earlier demonstrated optical locking of diode laser to WG mode in a microsphere, we report on microsphere application in the microwave optoelectronic oscillator, OEO. In OEO, a steady-state microwave modulation of optical carrier is obtained in a closed loop including electro-optical modulator, fiber-optic delay, detector and microwave amplifier. OEO demonstrates exceptionally low phase noise (-140 dBc/Hz at l0kHz from approximately 10GHz carrier) with a fiber length approximately 2km. Current technology allows to put all parts of the OEO, except the fiber, on the same chip. Microspheres, with their demonstrated Q equivalent to a kilometer fiber storage, can replace fiber delays in a truly integrated device. We have obtained microwave oscillation in microsphere-based OEO at 5 to 18 GHz, with 1310nm and 1550nm optical carrier, in two configurations: 1) with external DFB pump laser, and 2) with a ring laser including microsphere and a fiber optic amplifier. Also reported is a simple and efficient fiber coupler for microspheres facilitating their integration with existing fiber optics devices.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion.
Hemawan, Kadek W; Wichman, Indrek S; Lee, Tonghun; Grotjohn, Timothy A; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH(4)/O(2) flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of > or = 10 W microplasma discharges can be produced in the high electric field region of the applicator.
Compact microwave re-entrant cavity applicator for plasma-assisted combustion
NASA Astrophysics Data System (ADS)
Hemawan, Kadek W.; Wichman, Indrek S.; Lee, Tonghun; Grotjohn, Timothy A.; Asmussen, Jes
2009-05-01
The design and experimental operation of a compact microwave/rf applicator is described. This applicator operates at atmospheric pressure and couples electromagnetic energy into a premixed CH4/O2 flame. The addition of only 2-15 W of microwave power to a premixed combustion flame with a flame power of 10-40 W serves to extend the flammability limits for fuel lean conditions, increases the flame length and intensity, and increases the number density and mixture of excited radical species in the flame vicinity. The downstream gas temperature also increases. Optical emission spectroscopy measurements show gas rotational temperatures in the range of 2500-3600 K. At the higher input power of ≥10 W microplasma discharges can be produced in the high electric field region of the applicator.
A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.
Islam, M M; Faruque, M R I; Islam, M T
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.
NASA Astrophysics Data System (ADS)
Chen, Yang
2018-03-01
A novel wideband photonic microwave phase shifter with 360-degree phase tunable range is proposed based on a single dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The two dual-parallel Mach-Zehnder modulators (DP-MZMs) in the DP-QPSK modulator are properly biased to serve as a carrier-suppressed single-sideband (CS-SSB) modulator and an optical phase shifter (OPS), respectively. The microwave signal is applied to the CS-SSB modulator, while a control direct-current (DC) voltage is applied to the OPS. The first-order optical sideband generated from the CS-SSB modulator and the phase tunable optical carrier from the OPS are combined and then detected in a photodetector, where a microwave signal is generated with its phase controlled by the DC voltage applied to the OPS. The proposed technique is theoretically analyzed and experimentally demonstrated. Microwave signals with a carrier frequency from 10 to 23 GHz are continuously phase shifted over 360-degree phase range. The proposed technique features very compact configuration, easy phase tuning and wide operation bandwidth.
A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators
Islam, M. M.; Faruque, M. R. I.; Islam, M. T.
2014-01-01
A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S
2016-03-15
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.
Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.
2016-01-01
Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199
Investigation of a compact coaxially fed switched oscillator.
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2013-09-01
To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ~0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.
Coherent beam control with an all-dielectric transformation optics based lens
NASA Astrophysics Data System (ADS)
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-01
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
Coherent beam control with an all-dielectric transformation optics based lens.
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-05
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
RF Testing Of Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.
1988-01-01
Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.
Stable integrated hyper-parametric oscillator based on coupled optical microcavities.
Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick
2015-12-01
We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.
Preface to the special issue on "Integrated Microwave Photonic Signal Processing"
NASA Astrophysics Data System (ADS)
Azaña, José; Yao, Jianping
2016-08-01
As Guest Editors, we are pleased to introduce this special issue on ;Integrated Microwave Photonic Signal Processing; published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2009-03-30
We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.
Subwavelength grating enabled on-chip ultra-compact optical true time delay line
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R.
2016-01-01
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth. PMID:27457024
Subwavelength grating enabled on-chip ultra-compact optical true time delay line.
Wang, Junjia; Ashrafi, Reza; Adams, Rhys; Glesk, Ivan; Gasulla, Ivana; Capmany, José; Chen, Lawrence R
2016-07-26
An optical true time delay line (OTTDL) is a basic photonic building block that enables many microwave photonic and optical processing operations. The conventional design for an integrated OTTDL that is based on spatial diversity uses a length-variable waveguide array to create the optical time delays, which can introduce complexities in the integrated circuit design. Here we report the first ever demonstration of an integrated index-variable OTTDL that exploits spatial diversity in an equal length waveguide array. The approach uses subwavelength grating waveguides in silicon-on-insulator (SOI), which enables the realization of OTTDLs having a simple geometry and that occupy a compact chip area. Moreover, compared to conventional wavelength-variable delay lines with a few THz operation bandwidth, our index-variable OTTDL has an extremely broad operation bandwidth practically exceeding several tens of THz, which supports operation for various input optical signals with broad ranges of central wavelength and bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Yun, Peter; Tian, Yuan
2014-03-07
A scheme for a Ramsey-coherent population trapping (CPT) atomic clock that eliminates the acousto-optic modulator (AOM) is proposed and experimentally studied. Driven by a periodically microwave modulated current, the vertical-cavity surface-emitting laser emits a continuous beam that switches between monochromatic and multichromatic modes. Ramsey-CPT interference has been studied with this mode-switching beam. In eliminating the AOM, which is used to generate pulsed laser in conventional Ramsey-CPT atomic clock, the physics package of the proposed scheme is virtually the same as that of a conventional compact CPT atomic clock, although the resource budget for the electronics will slightly increase as amore » microwave switch should be added. By evaluating and comparing experimentally recorded signals from the two Ramsey-CPT schemes, the short-term frequency stability of the proposed scheme was found to be 46% better than the scheme with AOM. The experimental results suggest that the implementation of a compact Ramsey-CPT atomic clock promises better frequency stability.« less
High-performance fiber optic link for ECM antenna remoting
NASA Astrophysics Data System (ADS)
Edge, Colin; Burgess, John W.; Wale, Michael J.; Try, Nicholas W.
1998-11-01
The ability to remotely radiate microwave signals has become an essential feature of modern electronic counter-measures (ECM) systems. The use of fiber optics allows remote microwave links to be constructed which have very low propagation loss and dispersion, are very flexible and light in weight, and have a high degree of immunity from external electromagnetic fields, crosstalk and environmental effects. This combination of desirable characteristics are very beneficial to avionic ECM antenna remoting as well as many other applications. GEC-Marconi have developed high performance fiber components for use in a towed radar decoy. The resulting rugged and compact optical transmitter and receiver modules have been developed and proven to maintain the required performance over the full hostile range of environmental conditions encountered on a fast jet. Packaged fiber optic links have been produced which can achieve a compression dynamic range of greater than 87 dB in 1 MHz bandwidth over a 2 to 18 GHz.
Investigation of a compact coaxially fed switched oscillator
NASA Astrophysics Data System (ADS)
Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo
2013-09-01
To generate a relative high frequency mesoband microwave, a compact coaxially fed transmission line switched oscillator with high voltage capability is investigated. The characteristic impedance and voltage capability of the low impedance transmission line (LITL) have been analyzed. It is shown that the working voltage of the oscillator can reach up to 200 kV when it is filled by pressurized nitrogen and charged by a nanosecond driving source. By utilizing a commercial electromagnetic simulation code, the transient performance of the switched oscillator with a lumped resistance load is simulated. It is illustrated that the center frequency of the output signal reaches up to ˜0.6 GHz when the spark gap practically closes with a single channel. Besides, the influence of the closing mode and rapidity of the spark gap, the permittivity of the insulator at the output end of the LITL, and the load impedance on the transient performance of the designed oscillator has been analyzed in quantification. Finally, the good transient performance of the switched oscillator has been preliminarily proved by the experiment.
NASA Astrophysics Data System (ADS)
Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.
2018-03-01
Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.
Compact microwave ion source for industrial applications.
Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok
2012-02-01
A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.
Method of sintering materials with microwave radiation
Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.
1994-01-01
A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.
Modeling of Compaction Wave Behavior in Confined Granular Energetic Material
1990-08-01
Compacted 65% TMD Aggregate Melamine Compaction Wave Microwave DIAGNOSTICS: Interferometry (a) Microwave Interferometry (b) 3 Wall-Mounted Pressure...involved 65% TMD melamine but was run very recently (Dec 1989) The value of compaction wave speed (from the microwave data) just after impact is...47 B. Simulation of PDC-M34 / 65% TMD Melamine (Inert Material) ........ 54 C. Influence of Energy Release / PDC Experiment
Method of sintering materials with microwave radiation
Kimrey, H.D. Jr.; Holcombe, C.E. Jr.; Dykes, N.L.
1994-06-14
Disclosed is a method of sintering ceramic materials. A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article. No Drawings
Transmission spectra changes produced by decreasing compactness of opal-like structures
NASA Astrophysics Data System (ADS)
Andueza, A.; Echeverría, R.; Morales, P.; Sevilla, J.
2009-01-01
Artificial opal-like structures based on spheres and colloidal particles have been fabricated in a controlled way, presenting optical band-gap properties in the optical frequency range. Nonclose packed artificial opals have also been fabricated and studied recently. In order to gain a better understanding of these phenomena, we have studied macroscopic models of nonclose packed fcc lattices using glass spheres (ɛ =7) of 8 mm diameter, and measuring in the microwave region (from 10 to 30 GHz). The results have shown a Bragg resonance tunable with filling factor of the opal, and a strong rejected band similar, also present in close packed samples, much less affected by compactness. The relation of this high order band with spheres single layer behavior is also discussed.
Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.
Akosman, Ahmet E; Sander, Michelle Y
2017-08-07
Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.
Electrode structure of a compact microwave driven capacitively coupled atomic beam source
NASA Astrophysics Data System (ADS)
Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi
2018-01-01
A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.
Highly Compact Circulators in Square-Lattice Photonic Crystal Waveguides
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz. PMID:25415417
Highly compact circulators in square-lattice photonic crystal waveguides.
Jin, Xin; Ouyang, Zhengbiao; Wang, Qiong; Lin, Mi; Wen, Guohua; Wang, Jingjing
2014-01-01
We propose, demonstrate and investigate highly compact circulators with ultra-low insertion loss in square-lattice- square-rod-photonic-crystal waveguides. Only a single magneto- optical square rod is required to be inserted into the cross center of waveguides, making the structure very compact and ultra efficient. The square rods around the center defect rod are replaced by several right-angled-triangle rods, reducing the insertion loss further and promoting the isolations as well. By choosing a linear-dispersion region and considering the mode patterns in the square magneto-optical rod, the operating mechanism of the circulator is analyzed. By applying the finite-element method together with the Nelder-Mead optimization method, an extremely low insertion loss of 0.02 dB for the transmitted wave and ultra high isolation of 46 dB∼48 dB for the isolated port are obtained. The idea presented can be applied to build circulators in different wavebands, e.g., microwave or Tera-Hertz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathore, Kavita, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Munshi, Prabhat, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in; Bhattacharjee, Sudeep, E-mail: kavira@iitk.ac.in, E-mail: pmunshi@iitk.ac.in, E-mail: sudeepb@iitk.ac.in
A new non-invasive diagnostic system is developed for Microwave Induced Plasma (MIP) to reconstruct tomographic images of a 2D emission profile. A compact MIP system has wide application in industry as well as research application such as thrusters for space propulsion, high current ion beams, and creation of negative ions for heating of fusion plasma. Emission profile depends on two crucial parameters, namely, the electron temperature and density (over the entire spatial extent) of the plasma system. Emission tomography provides basic understanding of plasmas and it is very useful to monitor internal structure of plasma phenomena without disturbing its actualmore » processes. This paper presents development of a compact, modular, and versatile Optical Emission Tomography (OET) tool for a cylindrical, magnetically confined MIP system. It has eight slit-hole cameras and each consisting of a complementary metal–oxide–semiconductor linear image sensor for light detection. The optical noise is reduced by using aspheric lens and interference band-pass filters in each camera. The entire cylindrical plasma can be scanned with automated sliding ring mechanism arranged in fan-beam data collection geometry. The design of the camera includes a unique possibility to incorporate different filters to get the particular wavelength light from the plasma. This OET system includes selected band-pass filters for particular argon emission 750 nm, 772 nm, and 811 nm lines and hydrogen emission H{sub α} (656 nm) and H{sub β} (486 nm) lines. Convolution back projection algorithm is used to obtain the tomographic images of plasma emission line. The paper mainly focuses on (a) design of OET system in detail and (b) study of emission profile for 750 nm argon emission lines to validate the system design.« less
Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers
NASA Astrophysics Data System (ADS)
Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.
2016-03-01
We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.
Resonance transparency with low-loss in toroidal planar metamaterial
NASA Astrophysics Data System (ADS)
Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin
2018-03-01
A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.
NASA Astrophysics Data System (ADS)
Sugai, Hajime; Kashima, Shingo; Kimura, Kimihiro; Matsumura, Tomotake; Inoue, Masanori; Ito, Makoto; Nishibori, Toshiyuki; Sekimoto, Yutaro; Ishino, Hirokazu; Sakurai, Yuki; Imada, Hiroaki; Fujii, Takenori
2016-07-01
LiteBIRD aims to detect the footprint of the primordial gravitational wave on the Cosmic Microwave Background (CMB) in a form of polarization pattern called B mode. In order to separate CMB from the Galactic emission, our measurements cover 35 GHz to 450 GHz. The LiteBIRD optics consists of two telescopes: a crossed Dragone type for lower frequencies, which provides a compact configuration with a wide field of view, and a refractor type for higher frequencies. The whole optical system is cooled down to around 5 K to minimize the thermal emission. We use two kinds of approaches of designing calculations as well as the experimental confirmation particularly for the lower frequency telescope.
Method for heat treating and sintering metal oxides with microwave radiation
Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.
1989-01-01
A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.
Compact and broadband antenna based on a step-shaped metasurface.
Li, Ximing; Yang, Jingjing; Feng, Yun; Yang, Meixia; Huang, Ming
2017-08-07
A metasurface (MS) is highly useful for improving the performance of patch antennae and reducing their size due to their inherent and unique electromagnetic properties. In this paper, a compact and broadband antenna based on a step-shaped metasurface (SMS) at an operating frequency of 4.3 GHz is presented, which is fed by a planar monopole and enabled by selecting an SMS with high selectivity. The SMS consists of an array of metallic step-shaped unit cells underneath the monopole, which provide footprint miniaturization and bandwidth expansion. Numerical results show that the SMS-based antenna with a maximum size of 0.42λ02 (where λ 0 is the operating wavelength in free space) exhibits a 22.3% impedance bandwidth (S11 < -10 dB) and a high gain of more than 7.15 dBi within the passband. Experimental results at microwave frequencies verify the performance of the proposed antenna, demonstrating substantial consistency with the simulation results. The compact and broadband antenna therefore predicts numerous potential applications within modern wireless communication systems.
Ma, Y G; Lan, L; Zhong, S M; Ong, C K
2011-10-24
In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America
Microwave Oscillators Based on Nonlinear WGM Resonators
NASA Technical Reports Server (NTRS)
Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry
2006-01-01
Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular resonator mode. The other output of this splitter was combined with the delayed laser signal in another 50:50 fiber-optic splitter used as a combiner. The output.of the combiner was fed to a fast photodiode that demodulated light and generated microwave signal. In this optical configuration, the resonator was incorporated into one arm of a Mach-Zehnder interferometer, which was necessary for the following reasons: It was found that when the output of the resonator was sent directly to a fast photodiode, the output of the photodiode did not include a measurable microwave signal. However, when the resonator was placed in an arm of the interferometer and the delay in the other arm was set at the correct value, the microwave signal appeared. Such behavior is distinctly characteristic of phase-modulated light. The phase-modulation signal had a frequency of about 8 GHz, corresponding to the free spectral range of the resonator. The spectral width of this microwave signal was less than 200 Hz. The threshold pump power for generating the microwave signal was about 1 mW. It would be possible to reduce the threshold power by several orders of magnitude if resonators could be made from crystalline materials in dimensions comparable to those of micro-resonators heretofore made from fused silica.
NASA Astrophysics Data System (ADS)
Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang
2018-02-01
A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.
NASA Astrophysics Data System (ADS)
Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo
2018-03-01
As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.
Loh, Z H; Sia, B Y; Heng, Paul W S; Lee, C C; Liew, Celine V
2011-12-01
Recently, microwave-induced melt granulation was shown to be a promising alternative to conventional melt granulation with improved process monitoring capabilities. This study aimed to compare the physicochemical and compaction properties of granules produced from microwave-induced and conventional melt granulation. Powder admixtures comprising equivalent proportions by weight of lactose 200 M and anhydrous dicalcium phosphate were granulated with polyethylene glycol 3350 under the influence of microwave-induced and conventional heating in a 10-L single pot high shear processor. The properties of the granules and compacts produced from the two processes were compared. Relative to conventional melt granulation, the rates at which the irradiated powders heated up in microwave-induced melt granulation were lower. Agglomerate growth proceeded at a slower rate, and this necessitated longer massing durations for growth induction. These factors prompted greater evaporative moisture losses from the melt granules. Additionally, nonuniform heating of the powders under the influence of microwaves led to increased inter-batch variations in the binder contents of resultant melt granules and a reliance of content homogeneity on massing duration. Agglomerate growth proceeded more rapidly under the influence of conventional heating due to the enhanced heating capabilities of the powders. Melt granules produced using the conventional method possessed higher moisture contents and improved content homogeneity. The compaction behavior of melt granules were affected by their mean sizes, porosities, flow properties, binder, and moisture contents. The last two factors were responsible for the disparities in compaction behavior of melt granules produced from microwave-induced and conventional melt granulation.
Compact microwave imaging system to measure spatial distribution of plasma density
NASA Astrophysics Data System (ADS)
Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.
2004-10-01
We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.
Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F
2017-04-01
We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100 dBc/Hz at 1 Hz offset and <-173 dBc/Hz for all offsets >600 Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.
Integrated transrectal probe for translational ultrasound-photoacoustic imaging
NASA Astrophysics Data System (ADS)
Bell, Kevan L.; Harrison, Tyler; Usmani, Nawaid; Zemp, Roger J.
2016-03-01
A compact photoacoustic transrectal probe is constructed for improved imaging in brachytherapy treatment. A 192 element 5 MHz linear transducer array is mounted inside a small 3D printed casing along with an array of optical fibers. The device is fed by a pump laser and tunable NIR-optical parametric oscillator with data collected by a Verasonics ultrasound platform. This assembly demonstrates improved imaging of brachytherapy seeds in phantoms with depths up to 5 cm. The tuneable excitation in combination with standard US integration provides adjustable contrast between the brachytherapy seeds, blood filled tubes and background tissue.
Ultra-low noise combs in the palm of your hand
NASA Astrophysics Data System (ADS)
Schibli, Thomas R.
Mode-locked lasers are attractive tools for precision measurements and for photonic microwave generation. The technology around these lasers has rapidly evolved, and with the invention of optical frequency combs, fs-technology has become a ubiquitous tool science and engineering. At first, most of these combs were generated by bulky and delicate Kerr-Lens mode-locked Ti:sapphire systems, but have now been mostly replaced by the much more robust and compact fiber lasers. However, the move from table-top solid-state lasers to the fully self-contained fiber systems came with a price: the optical phase noise performance degraded due to design constraints. While this is of no concern for most spectroscopic applications, it poses a challenge for applications that require excellent short-term phase noise performance, such as, for example, required for photonic microwave generation. While much of this has been improved by ingenious laser designs, it remains a challenge to obtain ultra-low phase-noise combs from high-repetition-rate fiber lasers. Here we present a new approach consisting of a monolithic cavity design, in which the laser light is fully confined inside an optical material. Thanks to this monolithic design, these solid-state lasers are inherently robust against environmental perturbations, such as acoustics, vibrations, air pressure and humidity. Opposed to the omnipresent mode-locked fiber lasers, these monolithic lasers exhibit very low round-trip loss, dispersion and nonlinearities. As a result, they produce highly stable pulse trains, with free-running relative line-widths of the order of a few Hz in the optical domain, despite their moderately high fundamental repetition rates of 1 GHz. The compact design further simplifies integration into complex systems, and eliminates the need for an optics bench or a vibration isolated platform. These lasers produce less than 0.2 W of heat, and are fully turn-key. This work was supported by the DARPA PULSE program with a Grant from AMRDEC and by the NSF Early Career Award.
Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia
2017-04-01
This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties. .
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.
2017-11-01
The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming Network (OBFN) based on integrated photonics, with fibre-optics remote antenna feeding capabilities, that addresses the requirements of SoA DRA antennas in space communications, able to feed potentially hundreds of antenna elements with hundred of simultaneous, orthogonal beams. The core of this OBFN is a Photonic Integrated Circuit (PIC) implementing a passive Butler matrix similar to the structure well known by the RF community, but overcoming the issues of scalability, size, compactness and manufacturability associated to the fact of addressing hundred of elements. This fully-integrated beam-former solution also overcomes the opto-mechanical issues and environmental sensitivity of other free-space based OBFNs.
Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei
2010-04-20
We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.
Atomic Clock Based on Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2005-01-01
A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.
Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong
2015-08-24
A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.
High density plasmas and new diagnostics: An overview (invited).
Celona, L; Gammino, S; Mascali, D
2016-02-01
One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.
Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin.
Doreth, Maria; Löbmann, Korbinian; Priemel, Petra; Grohganz, Holger; Taylor, Robert; Holm, René; Lopez de Diego, Heidi; Rades, Thomas
2018-01-01
In situ amorphization is an approach that enables a phase transition of a crystalline drug to its amorphous form immediately prior to administration. In this study, three different polyvinylpyrrolidones (PVP K12, K17 and K25) were selected to investigate the influence of the molecular weight of the polymer on the degree of amorphization of the model drug indomethacin (IND) upon microwaving. Powder mixtures of crystalline IND and the respective PVP were compacted at 1:2 (w/w) IND:PVP ratios, stored at 54% RH and subsequently microwaved with a total energy input of 90 or 180kJ. After storage, all compacts had a similar moisture content (∼10% (w/w)). Upon microwaving with an energy input of 180kJ, 58±4% of IND in IND:PVP K12 compacts was amorphized, whereas 31±8% of IND was amorphized by an energy input of 90kJ. The drug stayed fully crystalline in all IND:PVP K17 and IND:PVP K25 compacts. After plasticization by moisture, PVP K12 reached a T g below ambient temperature (16±2°C) indicating that the T g of the plasticized polymer is a key factor for the success of in situ amorphization. DSC analysis showed that the amorphized drug was part of a ternary glass solution consisting of IND, PVP K12 and water. In dissolution tests, IND:PVP K12 compacts showed a delayed initial drug release due to a lack of compact disintegration, but reached a higher total drug release eventually. In summary, this study showed that the microwave assisted in situ amorphization was highly dependent on the T g of the plasticized polymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Vial, Florian; Gadonna, Katell; Debord, Benoît; Delahaye, Frédéric; Amrani, Foued; Leroy, Olivier; Gérôme, Frédéric; Benabid, Fetah
2016-05-15
We report on a new and highly compact scheme for the generation and sustainment of microwave-driven plasmas inside the core of an inhibited coupling Kagome hollow-core photonic crystal fiber. The microwave plasma generator consists of a split-ring resonator that efficiently couples the microwave field into the gas-filled fiber. This coupling induces the concomitant generation of a microwave surface wave at the fiber core surround and a stable plasma column confined in the fiber core. The scheme allowed the generation of several centimeters long argon microplasma columns with a very low excitation power threshold. This result represents an important step toward highly compact plasma lasers or plasma-based photonic components.
Compact microwave lamp having a tuning block and a dielectric located in a lamp cavity
Simpson, James E.
2000-01-01
A microwave lamp having a compact structure utilizing a coupling slot which has a dielectric member extending therethrough and a tuning block adjoining the coupling slot. A non-conventional waveguide is used which has about the width of a WR-284 waveguide and about the length of a WR-340 waveguide.
Advanced X-Ray Sources Ensure Safe Environments
NASA Technical Reports Server (NTRS)
2008-01-01
Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.
Process for manufacturing tantalum capacitors
Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.
1993-01-01
A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.
Process for manufacturing tantalum capacitors
Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.
1993-02-02
A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.
On-chip dual-comb source for spectroscopy.
Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal
2018-03-01
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).
Compact Fiber-Parametric Devices for Biophotonics Applications
2012-03-01
coming in the fiber from the pump overlap temporally and spatially with the pulses fed back from a Fabry -Perot cavity (Sharping, 2010). Fiber optical...Some laser systems such as the Nd:YAG system used in this study, uses a Fabry -Perot cavity in which two mirrors are arranged parallel to one another... Fabry -Perot cavity formed between one end of the PCF and a metallic mirror (M3). The output coupler is a short-pass dielectric (SPD) or a long-pass
NASA Astrophysics Data System (ADS)
Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.
2017-11-01
Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.
Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.
Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai
2013-07-29
This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated.
Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation
NASA Astrophysics Data System (ADS)
Yu, N.; Tu, M.; Maleki, L.
2002-04-01
Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.
NASA Astrophysics Data System (ADS)
Gubin, M.; Kovalchuk, E.; Petrukhin, E.; Shelkovnikov, A.; Tyurikov, D.; Gamidov, R.; Erdogan, C.; Sahin, E.; Felder, R.; Gill, P.; Lea, S. N.; Kramer, G.; Lipphardt, B.
2002-04-01
The accumulated results of absolute frequency measurements (AFM) carried out in 1997-2000 with transportable double-mode He-Ne/CH4 optical frequency standards (λ = 3 .39μm) in a collaboration of several laboratories are presented. The performance of this secondary optical frequency standard is estimated on the level of 10-13 (in repeatability), and 1 × 10-14/s (in stability). The next steps towards He-Ne/CH4 standards with one order of magnitude better performance, including devices based on monolithic zerodur resonators, are discussed. Important applications of transportable He-Ne/CH4 optical frequency standards have appeared now due to dramatic progress in the field of optical frequency measurements. Used to stabilize the repetition rate of a Ti:Sa fs laser, these compact secondary standards can transfer their performance into the whole optical range covered by a fs comb. Thus they can play the role of a narrow spectrum interrogative oscillator for super-accurate optical or microwave frequency standards substituting in some tasks a H-maser or oscillators based on cryogenic sapphire resonators.
Long-range mutual synchronization of spin Hall nano-oscillators
NASA Astrophysics Data System (ADS)
Awad, A. A.; Dürrenfeld, P.; Houshang, A.; Dvornik, M.; Iacocca, E.; Dumas, R. K.; Åkerman, J.
2017-03-01
The spin Hall effect in a non-magnetic metal with spin-orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.
The Atacama B-mode Search: Status and Prospect
NASA Astrophysics Data System (ADS)
Kusaka, Akito
2013-04-01
The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at degre angular scales. In January 2012, ABS has deployed 240 polarimeters employing transition-edge sensor (TES) bolometers. ABS has unique advantages for the measurement of B modes. This includes a continuously rotating half-wave plate that provides fast and clean modulation, as well as systematically clean optics that consist of a cryogenic side-fed Dragone telescope and feedhorn coupled TES polarimeters. In this talk, we will present the status and prospect of ABS.
Optomechanical detection of weak microwave signals with the assistance of a plasmonic wave
NASA Astrophysics Data System (ADS)
Nejad, A. Asghari; Askari, H. R.; Baghshahi, H. R.
2018-05-01
Entanglement between optical fields and microwave signals can be used as a quantum optical sensing technique to detect received microwave signals from a low-reflecting object which is encompassed by a bright thermal environment. Here, we introduce and analyze an optomechanical system for detecting weak reflected microwave signals from an object of low reflectivity. In our system, coupling and consequently entanglement between microwave and optical photons are achieved by means of a plasmonic wave. The main problem that can be moderated in the field of quantum optical sensing of weak microwave signals is suppressing the destructive effect of high temperatures on the entanglement between microwave signals and optical photons. For this purpose, we will show that our system can perform at high temperatures as well as low ones. It will be shown that the presence of the plasmonic wave can reduce the destructive effect of the thermal noises on the entanglement between microwave and optical photons. Also, we will show that the optomechanical interaction is vital to create an appropriate entanglement between microwave and optical photons.
Effective High-Frequency Permeability of Compacted Metal Powders
NASA Astrophysics Data System (ADS)
Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.
2018-03-01
We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.
NASA Astrophysics Data System (ADS)
Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko
2017-10-01
We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.
Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease
NASA Astrophysics Data System (ADS)
Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu
2015-06-01
A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.
Compact planar microwave blocking filters
NASA Technical Reports Server (NTRS)
U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)
2012-01-01
A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.
Development of an optically-pumped cesium standard at the Aerospace Corporation
NASA Technical Reports Server (NTRS)
Chan, Yat C.
1992-01-01
We have initiated a research program to study the performance of compact optically-pumped cesium (Cs) frequency standards, which have potential for future timekeeping applications in space. A Cs beam clock apparatus has been assembled. Basic functions of the frequency standard have been demonstrated. Clock signals are observed with optical pumping schemes using one or two lasers. With two laser pumping, we are able to selectively place up to 80 percent of the atomic population into one of the clock transition states. The observed pattern of clock signal indicates that the velocity distribution of the Cs atoms contributing to the microwave signal is beam-Maxwellian. Thus, in the optically-pumped Cs frequency standards, the entire Cs population in the atomic beam could be utilized to generate the clock signals. This is in contrast to the conventional Cs beam standards where only approx. 1 percent of the atoms in the beam are used. More efficient Cs consumption can lead to improved reliability and increased useful lifetime of the clock.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash
2017-12-01
Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.
On-chip dual-comb source for spectroscopy
Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L.; Lipson, Michal
2018-01-01
Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (<10 kHz) microwave beat notes. We further use one comb as a reference to probe the formation dynamics of the other comb, thus introducing a technique to investigate comb evolution without auxiliary lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz). PMID:29511733
NASA Astrophysics Data System (ADS)
Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.
2016-07-01
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
NASA Astrophysics Data System (ADS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-05-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
NASA Technical Reports Server (NTRS)
Busca, G.; Bernier, L. G.; Silvestrin, P.; Feltham, S.; Gaygerov, B. A.; Tatarenkov, V. M.
1994-01-01
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small.
Laser pumped 4He magnetometer with light shift suppression
NASA Astrophysics Data System (ADS)
Lin, Zaisheng; Wang, He; Peng, Xiang; Wu, Teng; Guo, Hong
2016-11-01
We report a laser-pumped 4He atomic magnetometer with light shift suppression through the atomic sensor itself. A linearly polarized light is used to optically align the 4He metastable atoms and we monitor the magneto-optical double resonance (MODR) signals produced by the left- and right-circularly orthogonal components. It is shown that light shift leads to the atomic alignment to orientation conversion effect, and thus, the difference between the two MODR signals. One of these two MODR signals is locked at the Larmor frequency and is used to measure the ambient magnetic field, while the differential signal is, simultaneously, fed back to suppress the light shift. The scheme could be of the advantage to the design of compact magnetometers by reducing the systematic errors due to light shift.
Method of making tantalum capacitors
McMillan, April D.; Clausing, Robert E.; Vierow, William F.
1998-01-01
A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.
A reliable, compact, and repetitive-rate high power microwave generation system.
Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun
2015-11-01
A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.
Design and experiment of a cross-shaped mode converter for high-power microwave applications.
Peng, Shengren; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei
2013-12-01
A compact mode converter, which is capable of converting a TM01 mode into a circularly polarized TE11 mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.
A reliable, compact, and repetitive-rate high power microwave generation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang
2015-11-15
A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less
Package Holds Five Monolithic Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.
1996-01-01
Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.
Intermixing optical and microwave signals in GaAs microstrip circuits for phase-locking applications
NASA Astrophysics Data System (ADS)
Li, Ming G.; Chauchard, Eve A.; Lee, Chi H.; Hung, Hing-Loi A.
1990-12-01
The microwave modulation of the interference generated by optical beams that are reflected from the top and bottom surfaces of GaAs substrate adjacent to a microstrip line is studied. The detected modulation is used to directly characterize the electrooptic effect. This optical-microwave intermixing technique is applied to phase-lock a free-running microwave oscillator with picosecond laser pulses. One potential application of this technique is for the optical on-wafer characterization of MMICs.
Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.
2009-01-01
Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370
Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C
2008-10-01
Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.
Bulmer, John; Bullard, Thomas; Dolasinski, Brian; Murphy, John; Sparkes, Martin; Pangovski, Krste; O’Neill, William; Powers, Peter; Haugan, Timothy
2015-01-01
An electromagnetic transmitter typically consists of individual components such as a waveguide, antenna, power supply, and an oscillator. In this communication we circumvent complications associated with connecting these individual components and instead combine them into a non-traditional, photonic enabled, compact transmitter device for tunable, ultrawide band (UWB) radiation. This device is a centimeter scale, continuous, thin film superconducting ring supporting a persistent super-current. An ultrafast laser pulse (required) illuminates the ring (either at a point or uniformly around the ring) and perturbs the super-current by the de-pairing and recombination of Cooper pairs. This generates a microwave pulse where both ring and laser pulse geometry dictates the radiated spectrum’s shape. The transmitting device is self contained and completely isolated from conductive components that are observed to interfere with the generated signal. A rich spectrum is observed that extends beyond 30 GHz (equipment limited) and illustrates the complex super-current dynamics bridging optical, THz, and microwave wavelengths. PMID:26659022
High-stability compact atomic clock based on isotropic laser cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esnault, Francois-Xavier; Holleville, David; Rossetto, Nicolas
2010-09-15
We present a compact cold-atom clock configuration where isotropic laser cooling, microwave interrogation, and clock signal detection are successively performed inside a spherical microwave cavity. For ground operation, a typical Ramsey fringe width of 20 Hz has been demonstrated, limited by the atom cloud's free fall in the cavity. The isotropic cooling light's disordered properties provide a large and stable number of cold atoms, leading to a high signal-to-noise ratio limited by atomic shot noise. A relative frequency stability of 2.2x10{sup -13{tau}-1/2} has been achieved, averaged down to 4x10{sup -15} after 5x10{sup 3} s of integration. Development of such amore » high-performance compact clock is of major relevance for on-board applications, such as satellite-positioning systems. As a cesium clock, it opens the door to a new generation of compact primary standards and timekeeping devices.« less
Experiments and analysis of a compact electrothermal thruster
NASA Technical Reports Server (NTRS)
Asmussen, Jes; Whitehair, Stan
1988-01-01
The description and experimental performance of a compact microwave electrothermal thruster (MET) are presented. This thruster uses a coaxial applicator to couple microwave power into a high pressure discharge. Unlike earlier experiments, it uses no fused quartz in the discharge chamber or the nozzle. This allows high temperatures in the discharge chamber without quartz erosion and melting, thereby improving thruster performance and lifetime. The thruster design is compact, enhancing its potential as a space engine. Experimental tests using nitrogen and helium propellants with input powers levels of 200 W to 1.5 kW are presented. Experimental results, which produce energy efficiencies of 20 to 60 percent and specific impulse of 250 to 450 sec, compare favorably to previous experimental MET performance.
A compact design for the Josephson mixer: The lumped element circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillet, J.-D.; Collège de France, 11 place Marcelin Berthelot, 75005 Paris; Flurin, E.
2015-06-01
We present a compact and efficient design in terms of gain, bandwidth, and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate nondegenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%, and its saturation power reaches −112 dBm.
Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology
NASA Astrophysics Data System (ADS)
Bahl, Inder J.
Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.
Microwave quantum illumination.
Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano
2015-02-27
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.
Development of a Pressure Switched Microfluidic Cell Sorter
NASA Astrophysics Data System (ADS)
Ozbay, Baris; Jones, Alex; Gibson, Emily
2009-10-01
Lab on a chip technology allows for the replacement of traditional cell sorters with microfluidic devices which can be produced less expensively and are more compact. Additionally, the compact nature of microfluidic cell sorters may lead to the realization of their application in point-of-care medical devices. Though techniques have been demonstrated previously for sorting in microfluidic devices with optical or electro-osmotic switching, both of these techniques are expensive and more difficult to implement than pressure switching. This microfluidic cell sorter design also allows for easy integration with optical spectroscopy for identification of cell type. Our current microfluidic device was fabricated with polydimethylsiloxane (PDMS), a polymer that houses the channels, which is then chemically bonded to a glass slide. The flow of fluid through the device is controlled by pressure controllers, and the switching of the cells is accomplished with the use of a high performance pressure controller interfaced with a computer. The cells are fed through the channels with the use of hydrodynamic focusing techniques. Once the experimental setup is fully functional the objective will be to determine switching rates, explore techniques to optimize these rates, and experiment with sorting of other biomolecules including DNA.
High bandwidth electro-optic technology for intersatellite optical communications
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
1992-01-01
The research and development of electronic and electro-optic components for geosynchronous and low earth orbiting satellite optical high bandwidth communications at the NASA-Goddard Space Flight Center is reviewed. Intersatellite optical communications retains a strong reliance on microwave circuit technology in several areas - the microwave to optical interface, the laser transmitter modulation driver and the optical receiver. A microwave to optical interface is described requiring high bandwidth electronic downconverters and demodulators. Electrical bandwidth and current drive requirements for the laser modulation driver for three laser alternatives are discussed. Bandwidth and noise requirements are presented for optical receiver architectures.
Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José
2011-08-29
A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.
Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh
2017-12-01
A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.
Microwave-to-Optical Conversion in WGM Resonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute
2008-01-01
Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.
NASA Astrophysics Data System (ADS)
Zhu, Dazhao; Chen, Youhua; Fang, Yue; Hussain, Anwar; Kuang, Cuifang; Zhou, Xiaoxu; Xu, Yingke; Liu, Xu
2017-12-01
A compact microscope system for three-dimensional (3-D) super-resolution imaging is presented. The super-resolution capability of the system is based on a size-reduced effective 3-D point spread function generated through the fluorescence emission difference (FED) method. The appropriate polarization direction distribution and manipulation allows the panel active area of the spatial light modulator to be fully utilized. This allows simultaneous modulation of the incident light by two kinds of phase masks to be performed with a single spatial light modulator in order to generate a 3-D negative spot. The system is more compact than standard 3-D FED systems while maintaining all the advantages of 3-D FED microscopy. The experimental results demonstrated the improvement in 3-D resolution by nearly 1.7 times and 1.6 times compared to the classic confocal resolution in the lateral and axial directions, respectively.
Extended Coherence Time on the Clock Transition of Optically Trapped Rubidium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleine Buening, G.; Will, J.; Ertmer, W.
2011-06-17
Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of {sup 87}Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stabilitymore » of 2.4x10{sup -11{tau}-1/2}, where {tau} is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.« less
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes
NASA Astrophysics Data System (ADS)
Specht, Paul E.; Jilek, Brook A.
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
Electro-optic modulation of a laser at microwave frequencies for interferometric purposes.
Specht, Paul E; Jilek, Brook A
2017-02-01
A multi-point microwave interferometer (MPMI) concept was previously proposed by the authors for spatially-resolved, non-invasive tracking of a shock, reaction, or detonation front in energetic media [P. Specht et al., AIP Conf. Proc. 1793, 160010 (2017).]. The advantage of the MPMI concept over current microwave interferometry techniques is its detection of Doppler shifted microwave signals through electro-optic (EO) modulation of a laser. Since EO modulation preserves spatial variations in the Doppler shift, collecting the EO modulated laser light into a fiber array for recording with an optical heterodyne interferometer yields spatially-resolved velocity information. This work demonstrates the underlying physical principle of the MPMI diagnostic: the monitoring of a microwave signal with nanosecond temporal resolution using an optical heterodyne interferometer. For this purpose, the MPMI concept was simplified to a single-point construction using two tunable 1550 nm lasers and a 35.2 GHz microwave source. A (110) ZnTe crystal imparted the microwave frequency onto a laser, which was combined with a reference laser for determination of the microwave frequency in an optical heterodyne interferometer. A single, characteristic frequency associated with the microwave source was identified in all experiments, providing a means to monitor a microwave signal on nanosecond time scales. Lastly, areas for improving the frequency resolution of this technique are discussed, focusing on increasing the phase-modulated signal strength.
IRIS - A concept for microwave sensing of soil moisture and ocean salinity
NASA Technical Reports Server (NTRS)
Moghaddam, M.; Njoku, E.
1997-01-01
A concept is described for passive microwave sensing of soil moisture and ocean salinity from space. The Inflatable Radiometric Imaging System (IRIS) makes use of a large-diameter, offset-fed, parabolic-torus antenna with multiple feeds, in a conical pushbroom configuration.
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
Plasmonic phased array feeder enabling ultra-fast beam steering at millimeter waves.
Bonjour, R; Burla, M; Abrecht, F C; Welschen, S; Hoessbacher, C; Heni, W; Gebrewold, S A; Baeuerle, B; Josten, A; Salamin, Y; Haffner, C; Johnston, P V; Elder, D L; Leuchtmann, P; Hillerkuss, D; Fedoryshyn, Y; Dalton, L R; Hafner, C; Leuthold, J
2016-10-31
In this paper, we demonstrate an integrated microwave phoneeded for beamtonics phased array antenna feeder at 60 GHz with a record-low footprint. Our design is based on ultra-compact plasmonic phase modulators (active area <2.5µm2) that not only provide small size but also ultra-fast tuning speed. In our design, the integrated circuit footprint is in fact only limited by the contact pads of the electrodes and by the optical feeding waveguides. Using the high speed of the plasmonic modulators, we demonstrate beam steering with less than 1 ns reconfiguration time, i.e. the beam direction is reconfigured in-between 1 GBd transmitted symbols.
A Review on Passive and Integrated Near-Field Microwave Biosensors
Guha, Subhajit; Jamal, Farabi Ibne
2017-01-01
In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617
Noise and correlations in a microwave-mechanical-optical transducer
NASA Astrophysics Data System (ADS)
Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.
Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.
Optical single photons on-demand teleported from microwave cavities
NASA Astrophysics Data System (ADS)
Barzanjeh, Sh; Vitali, D.; Tombesi, P.
2013-03-01
We propose a scheme for entangling the optical and microwave output modes of the respective cavities by using a micro mechanical resonator. The micro mechanical resonator, on one side, is capacitively coupled to the microwave cavity and, on the other side, it is coupled to a high-finesses optical cavity. We then show how this continuous variable entanglement can be profitably used to teleport the non-Gaussian number state |1> and the superposition (|0\\rangle +|1\\rangle )/\\sqrt 2 from the microwave cavity output mode onto an output of the optical cavity mode with fidelity much larger than the no-cloning limit.
Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.
Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni
2015-11-25
In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.
Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene
Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni
2015-01-01
In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112
Ultra Compact Optical Pickup with Integrated Optical System
NASA Astrophysics Data System (ADS)
Nakata, Hideki; Nagata, Takayuki; Tomita, Hironori
2006-08-01
Smaller and thinner optical pickups are needed for portable audio-visual (AV) products and notebook personal computers (PCs). We have newly developed an ultra compact recordable optical pickup for Mini Disc (MD) that measures less than 4 mm from the disc surface to the bottom of the optical pickup, making the optical system markedly compact. We have integrated all the optical components into an objective lens actuator moving unit, while fully satisfying recording and playback performance requirements. In this paper, we propose an ultra compact optical pickup applicable to portable MD recorders.
Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry.The data include 52 operational channels with low IF module volume (100cm3) and mass (300g) and linearity better than 0.3 over a 330K dynamic range.
Trends of microwave dielectric materials for antenna application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my; Idris, M. S., E-mail: sobri@unimap.edu.my
Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.
Demonstration of Efficient Nonreciprocity in a Microwave Optomechanical Circuit*
NASA Astrophysics Data System (ADS)
Peterson, G. A.; Lecocq, F.; Cicak, K.; Simmonds, R. W.; Aumentado, J.; Teufel, J. D.
2017-07-01
The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here, we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum-gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.
Design and Analysis of a Hyperspectral Microwave Receiver Subsystem
NASA Technical Reports Server (NTRS)
Blackwell, W.; Galbraith, C.; Hancock, T.; Leslie, R.; Osaretin, I.; Shields, M.; Racette, P.; Hillard, L.
2012-01-01
Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance. HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth. A principal challenge is Size/Weight/Power scaling. Objectives of this work: 1) Demonstrate ultra-compact (100 cm3) 52-channel IF processor (enabler); 2) Demonstrate a hyperspectral microwave receiver subsystem; and 3) Deliver a flight-ready system to validate HM sounding.
Quantum electromechanics on silicon nitride nanomembranes.
Fink, J M; Kalaee, M; Pitanti, A; Norte, R; Heinzle, L; Davanço, M; Srinivasan, K; Painter, O
2016-08-03
Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom-mechanical, optical and microwave-would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments.
A Permanent-Magnet Microwave Ion Source For A Compact High-Yield Neutron Generator
NASA Astrophysics Data System (ADS)
Waldmann, O.; Ludewigt, B.
2011-06-01
We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5×1011 n/s for D-T and ˜1×1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60×6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.
Subcarrier multiplexing with dispersion reduction and direct detection
Sargis, Paul D.; Haigh, Ronald E.; McCammon, Kent G.
1997-01-01
An SCM system for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream.
Megahertz-resolution programmable microwave shaper.
Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun
2018-04-15
A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.
Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator
NASA Astrophysics Data System (ADS)
Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.
Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.
Compact tunable and reconfigurable microwave photonic filter for satellite payloads
NASA Astrophysics Data System (ADS)
Santos, M. C.; Yoosefi, O.
2017-11-01
The trend towards the photonic processing of electrical signals at microwave frequencies for satellite payloads is increasing at a breathtaking pace, mainly spurred by prospects of wide electrical bandwidth operation, low mass and volume, reduced electrical noise levels, immunity to electromagnetic interferences and resistance to both temperature and radiation.
Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.
2005-07-26
A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.
Two-dimensional optical architectures for the receive mode of phased-array antennas.
Pastur, L; Tonda-Goldstein, S; Dolfi, D; Huignard, J P; Merlet, T; Maas, O; Chazelas, J
1999-05-10
We propose and experimentally demonstrate two optical architectures that process the receive mode of a p x p element phased-array antenna. The architectures are based on free-space propagation and switching of the channelized optical carriers of microwave signals. With the first architecture a direct transposition of the received signals in the optical domain is assumed. The second architecture is based on the optical generation and distribution of a microwave local oscillator matched in frequency and direction. Preliminary experimental results at microwave frequencies of approximately 3 GHz are presented.
140 GHz pulsed Fourier transform microwave spectrometer
Kolbe, W.F.; Leskovar, B.
1985-07-29
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.
140 GHz pulsed Fourier transform microwave spectrometer
Kolbe, W.F.; Leskovar, B.
1987-10-27
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.
Shao, Zhenfeng; Zhang, Linjing
2016-01-01
Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378
Novel approaches to optomechanical transduction
NASA Astrophysics Data System (ADS)
Cernotik, Ondrej; Hammerer, Klemens
In recent years, mechanical oscillators received attention as a promising tool for frequency conversion between microwaves and light. A general, bi-directional transducer with high efficiency is still far from reach of current technology; finding new strategies for optomechanical transduction allows us to relax the requirements and bring these systems closer to an experimental realization. An interesting example is generation of entanglement between two superconducting qubits using measurement and postselection. Here, the mechanical oscillators interacts directly with the superconducting transmon qubit in such a way that it feels a qubit-state dependent force. This force can then be read out using a cavity field; reading out two such systems sequentially realizes an effective total spin measurement. Starting from a suitable initial state and employing postselection, entanglement can be generated. Another interesting approach is to use an array of optomechanical transducers in which the output fields of one transducer are fed into the input of the next. The periodicity of the array results in a joint dispersion relation for the propagating microwave and optical fields. The resulting structure can be used to control the conversion bandwidth and forward and backward scattering.
NASA Technical Reports Server (NTRS)
Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.
Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko
2011-05-01
A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.
Transmitter And Receiver Design For Microwave Fiber Optic Links
NASA Astrophysics Data System (ADS)
Blauvelt, H.; Yen, H.
1984-11-01
Optical fibers are an attractive media for transmitting microwave signals due to their low attenuation, light weight, immunity from electromagnetic interference and large bandwidth capabilities. In this paper, transmitter and receiver components for microwave fiber optic links are reviewed. Current limitations to link signal to noise imposed by the performance of these components are analyzed and promising trends in component development are discussed.
NASA Astrophysics Data System (ADS)
Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.
2013-12-01
We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.
Subcarrier multiplexing with dispersion reduction and direct detection
Sargis, P.D.; Haigh, R.E.; McCammon, K.G.
1997-01-21
An SCM system is disclosed for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream. 2 figs.
Optical-microwave interactions in semiconductor devices
NASA Astrophysics Data System (ADS)
Figueroa, L.; Slayman, C. W.; Yen, H. W.
1981-03-01
The results of an extensive characterization of microwave-optical devices is presented. The study has concentrated in the optical injection locking of IMPATT oscillators, high-speed analog modulation of (GaAl)As injection laser, mode-locking of (GaAl)As injection laser, and high-speed optical detectors.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2018-03-01
We present an experimental demonstration of converting a microwave field to an optical field via frequency mixing in a cloud of cold 87Rb atoms, where the microwave field strongly couples to an electric dipole transition between Rydberg states. We show that the conversion allows the phase information of the microwave field to be coherently transferred to the optical field. With the current energy level scheme and experimental geometry, we achieve a photon-conversion efficiency of ˜0.3 % at low microwave intensities and a broad conversion bandwidth of more than 4 MHz. Theoretical simulations agree well with the experimental data, and they indicate that near-unit efficiency is possible in future experiments.
Optically transparent microwave screens based on engineered graphene layers.
Grande, M; Bianco, G V; Vincenti, M A; de Ceglia, D; Capezzuto, P; Petruzzelli, V; Scalora, M; Bruno, G; D'Orazio, A
2016-10-03
We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.
NASA Astrophysics Data System (ADS)
Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.
1990-06-01
It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.
Multi-functional quantum router using hybrid opto-electromechanics
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang
2018-03-01
Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources
NASA Astrophysics Data System (ADS)
Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick
2014-02-01
We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.
Fabrication of thin bulk ceramics for microwave circulator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ings, J.B.; Simmins, J.J.; May, J.L.
1995-09-01
Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.
Long, Yun; Zhou, Linjie; Wang, Jian
2016-01-01
Photonic generation of microwave signal is obviously attractive for many prominent advantages, such as large bandwidth, low loss, and immunity to electromagnetic interference. Based on a single integrated silicon Mach–Zehnder modulator (MZM), we propose and experimentally demonstrate a simple and compact photonic scheme to enable frequency-multiplicated microwave signal. Using the fabricated integrated MZM, we also demonstrate the feasibility of microwave amplitude-shift keying (ASK) modulation based on integrated photonic approach. In proof-of-concept experiments, 2-GHz frequency-doubled microwave signal is generated using a 1-GHz driving signal. 750-MHz/1-GHz frequency-tripled/quadrupled microwave signals are obtained with a driving signal of 250 MHz. In addition, a 50-Mb/s binary amplitude coded 1-GHz microwave signal is also successfully generated. PMID:26832305
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
2014-07-28
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
NASA Astrophysics Data System (ADS)
Timmermans, Joris; Gomez-Dans, Jose; Lewis, Philip; Loew, Alexander; Schlenz, Florian
2017-04-01
The large amount of remote sensing data nowadays available provides a huge potential for monitoring crop development, drought conditions and water efficiency. This potential however not been realized yet because algorithms for land surface parameter retrieval mostly use data from only a single sensor. Consequently products that combine different low-level observations from different sensors are hard to find. The lack of synergistic retrieval is caused because it is easier to focus on single sensor types/footprints and temporal observation times, than to find a way to compensate for differences. Different sensor types (microwave/optical) require different radiative transfer (RT) models and also require consistency between the models to have any impact on the retrieval of soil moisture by a microwave instrument. Varying spatial footprints require first proper collocation of the data before one can scale between different resolutions. Considering these problems, merging optical and microwave observations have not been performed yet. The goal of this research was to investigate the potential of integrating optical and microwave RT models within the Earth Observation Land Data Assimilation System (EOLDAS) synergistically to derive biophysical parameters. This system uses a Bayesian data assimilation approach together with observation operators such as the PROSAIL model to estimate land surface parameters. For the purpose of enabling the system to integrate passive microwave radiation (from an ELBARRA II passive microwave radiometer), the Community Microwave Emission Model (CMEM) RT-model, was integrated within the EOLDAS system. In order to quantify the potential, a variety of land surface parameters was chosen to be retrieved from the system, in particular variables that a) impact only optical RT (such as leaf water content and leaf dry matter), b) only impact the microwave RT (such as soil moisture and soil temperature), and c) Leaf Area Index (LAI) that impacts both optical and microwave RT. The results show a high potential when both optical and microwave are used independently. Using only RapidEye only with SAIL RT model, LAI was estimated with R=0.68 with p=0.09, although estimating leaf water content and dry matter showed lower correlations |R|<0.4. The results for retrieving soil temperature and leaf area index retrievals using only (passive microwave) Elbarra-II observations were good with respectively R=[0.85, 0.79], P=[0.0, 0.0], when focusing on dry-spells (of at least 9 days) only the results respectively [R=0.73, and P=0.0], and R=0.89 and R=0.77 for respectively the trend and anomalies. Synergistically using optical and microwave shows also a good potential. This scenario shows that absolute errors improved (with RMSE=1.22 and S=0.89), but with degrading correlations (R=0.59 and P=0.04); the sparse optical observations only improved part of the temporal domain. However in general the synergistic retrieval showed good potential; microwave data provides better information concerning the overall trend of the retrieved LAI due to the regular acquisitions, while optical data provides better information concerning the absolute values of the LAI.
NASA Technical Reports Server (NTRS)
Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar
2014-01-01
Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.
The Optical Green Valley Versus Mid-infrared Canyon in Compact Groups
NASA Technical Reports Server (NTRS)
Walker, Lisa May; Butterfield, Natalie; Johnson, Kelsey; Zucker, Catherine; Gallagher, Sarah; Konstantopoulos, Iraklis; Zabludoff, Ann; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.
2013-01-01
Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in Infrared Array Camera (3.6-8.0 micrometers) color space as well as at intermediate specific star formation rates. However, we find that in compact groups these MIRTGs have already transitioned to the optical ([g-r]) red sequence. We investigate the optical color-magnitude diagram (CMD) of 99 compact groups containing 348 galaxies and compare the optical CMD with mid-infrared (mid-IR) color space for compact group galaxies. Utilizing redshifts available from Sloan Digital Sky Survey, we identified new galaxy members for four groups. By combining optical and mid-IR data, we obtain information on both the dust and the stellar populations in compact group galaxies. We also compare with more isolated galaxies and galaxies in the Coma Cluster, which reveals that, similar to clusters, compact groups are dominated by optically red galaxies. While we find that compact group transition galaxies lie on the optical red sequence, LVL (Local Volume Legacy) + (plus) SINGS (Spitzer Infrared Nearby Galaxies Survey) mid-IR (infrared) transition galaxies span the range of optical colors. The dearth of mid-IR transition galaxies in compact groups may be due to a lack of moderately star-forming low mass galaxies; the relative lack of these galaxies could be due to their relatively small gravitational potential wells. This makes them more susceptible to this dynamic environment, thus causing them to more easily lose gas or be accreted by larger members.
Quantum electromechanics on silicon nitride nanomembranes
Fink, J. M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O.
2016-01-01
Radiation pressure has recently been used to effectively couple the quantum motion of mechanical elements to the fields of optical or microwave light. Integration of all three degrees of freedom—mechanical, optical and microwave—would enable a quantum interconnect between microwave and optical quantum systems. We present a platform based on silicon nitride nanomembranes for integrating superconducting microwave circuits with planar acoustic and optical devices such as phononic and photonic crystals. Using planar capacitors with vacuum gaps of 60 nm and spiral inductor coils of micron pitch we realize microwave resonant circuits with large electromechanical coupling to planar acoustic structures of nanoscale dimensions and femtoFarad motional capacitance. Using this enhanced coupling, we demonstrate microwave backaction cooling of the 4.48 MHz mechanical resonance of a nanobeam to an occupancy as low as 0.32. These results indicate the viability of silicon nitride nanomembranes as an all-in-one substrate for quantum electro-opto-mechanical experiments. PMID:27484751
Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiong; Department of Medical Imaging, The University of Arizona, Tucson, Arizona 85724; School of Information Science and Technology, ShanghaiTech University, Shanghai 200031
2016-04-04
We characterized the thermoacoustic and photoacoustic properties of large-area, few-layer graphene by pulsed microwave and optical excitations. Due to its high electric conductivity and low heat capacity per unit area, graphene lends itself to excellent microwave and optical energy absorption and acoustic signal emanation due to the thermoacoustic effect. When exposed to pulsed microwave or optical radiation, distinct thermoacoustic and photoacoustic signals generated by the few-layer graphene are obtained due to microwave and laser absorption of the graphene, respectively. Clear thermoacoustic and photoacoustic images of large-area graphene sample are achieved. A numerical model is developed and the simulated results aremore » in good accordance with the measured ones. This characterization work may find applications in ultrasound generator and detectors for microwave and optical radiation. It may also become an alternative characterization approach for graphene and other types of two-dimensional materials.« less
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point or...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission... interconnectors' fiber optic systems or microwave radio transmission facilities (where reasonably feasible) with... interconnection of fiber optic facilities, local exchange carriers shall provide: (1) An interconnection point or...
Compact Power Conditioning and RF Systems for a High Power RF Source
2008-12-01
RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system
Miniaturization of Microwave Ablation Antennas
NASA Astrophysics Data System (ADS)
Luyen, Hung
Microwave ablation (MWA) is a promising minimally invasive technique for the treatment of various types of cancers as well as non-oncological diseases. In MWA, an interstitial antenna is typically used to deliver microwave energy to the diseased tissue and heat it up to lethal temperature levels that induce cell death. The desired characteristics of the interstitial antenna include a narrow diameter to minimize invasiveness of the treatment, a low input reflection coefficient at the operating frequency, and a localized heating zone. Most interstitial MWA antennas are fed by coaxial cables and designed for operation at either 915 MHz or 2.45 GHz. Coax-fed MWA antennas are commonly equipped with coaxial baluns to achieve localized heating. However, the conventional implementation of coaxial baluns increases the overall diameters of the antennas and therefore make them more invasive. It is highly desirable to develop less invasive antennas with shorter active lengths and smaller diameters for MWA applications. In this work, we demonstrate the feasibility of using higher frequency microwaves for tissue ablation and present several techniques for decreasing diameters of MWA antennas. First, we investigated MWA at higher frequencies by conducting numerical and experimental studies to compare ablation performance at 10 GHz and 1.9 GHz. Simulation and ex vivo ablation experiment results demonstrate comparable ablation zone dimensions achieved at these two frequencies. Operating at higher frequencies enables interstitial antennas with shorter active lengths. This can be combined with smaller-diameter antenna designs to create less invasive applicators or allow integration of multiple radiating elements on a single applicator to have better control and customization of the heating patterns. Additionally, we present three different coax-fed antenna designs and a non-coaxial-based balanced antenna that have smaller-diameter configurations than conventional coax-fed balun-equipped antennas. The antennas were evaluated and optimized in electromagnetic and thermal simulations. Then prototypes of these antennas were fabricated and experimentally characterized in ex vivo ablation experiments. Simulation and experimental results are in good agreement and demonstrate that the proposed antennas provide good impedance matching and localized heating patterns at their operating frequencies while having about 30% smaller diameters compared to conventional coax-fed balun-equipped MWA antennas.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
NASA Technical Reports Server (NTRS)
Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.
1980-01-01
The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.
140 GHz pulsed fourier transform microwave spectrometer
Kolbe, William F.; Leskovar, Branko
1987-01-01
A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).
Frequency Standards and Metrology
NASA Astrophysics Data System (ADS)
Maleki, Lute
2009-04-01
Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and imaging an event horizon (Invited) / S. Doeleman. Optically-pumped space cesium clock for Galileo: results of the breadboard / R. Ruffieux ... [et al.] -- pt. IV. Optical clocks I: lattice clocks. Optical lattice clock: seven years of progress and next steps (Invited) / H. Katori, M. Takamoto and T. Akatsuka. The Yb optical lattice clock (Invited) / N. D. Demke ... [et al.]. Optical Lattice clock with Sr atoms (Invited) / P. G. Westergaard ... [et al.]. Development of an optical clock based on neutral strontium atoms held in a lattice trap / E. A. Curtis ... [et al.]. Decoherence and losses by collisions in a [symbol]Sr lattice clock / J. S. R. Vellore Winfred ... [et al.]. Lattice Yb optical clock and cryogenic Cs fountain at INRIM / F. Levi ... [et al.] -- pt. V. Optical clocks II: ion clocks. [Symbol]Yb+ single-ion optical frequency standards (Invited) / Chr. Tamm ... [et al.]. An optical clock based on a single trapped [symbol]Sr+ ion (Invited) / H. S. Margolis ... [et al.]. A trapped [symbol]Yb+ ion optical frequency standard based on the [symbol] transition (Invited) / P. Gill ... [et al.]. Overview of highly accurate RF and optical frequency standards at the National Research Council of Canada (Invited) / A. A. Madej ... [et al.] -- pt. VI. Optical frequency combs. Extreme ultraviolet frequency combs for spectroscopy (Invited) / A. Ozawa ... [et al.]. Development of an optical clockwork for the single trapped strontium ion standard at 445 THz / J. E. Bernard ... [et al.]. A phase-coherent link between the visible and infrared spectral ranges using a combination of CW OPO and femtosecond laser frequency comb / E. V. Kovalchuk and A. Peters. Improvements to the robustness of a TI: sapphire-based femtosecond comb at NPL / V. Tsatourian ... [et al.] -- pt. VII. Atomic microwave standards. NIST FI and F2 (Invited) / T. P. Heavner ... [et al.]. Atomic fountains for the USNO master clock (Invited) / C. Ekstrom ... [et al.]. The transportable cesium fountain clock NIM5: its construction and performance (Invited) / T. Li ... [et al.].Compensated multi-pole mercury trapped ion frequency standard and stability evaluation of systematic effects (Invited) / E. A. Burt ... [et al.]. Research of frequency standards in SIOM - atomic frequency standards based on coherent storage (Invited) / B. Yan ... [et al.]. The PTB fountain clock ensemble preliminary characterization of the new fountain CSF2 / N. Nemitz ... [et al.]. The pulsed optically pumped clock: microwave and optical detection / S. Micalizio ... [et al.]. Research on characteristics of pulsed optically pumped rubidium frequency standard / J. Deng ... [et al.]. Status of the continuous cold fountain clocks at METAS-LTF / A. Joyet ... [et al.]. Experiments with a new [symbol]Hg+ ion clock / E. A. Burt ... [et al.]. Optimising a high-stability CW laser-pumped rubidium gas-cell frequency standard / C. Affolderbach ... [et al.]. Raman-Ramsey Cs cell atomic clock / R. Boudot ... [et al.] -- pt. VIII. Microwave resonators & oscillators. Solutions and ultimate limits in temperature compensation of metallic cylindrical microwave resonators (Invited) / A. De Marchi. Cryogenic sapphire oscillators (Invited) / J. G. Hartnett, E. N. Ivanov and M. E. Tobar. Ultra-stable optical cavity: design and experiments / J. Millo ... [et al.]. New results for whispering gallery mode cryogenic sapphire maser oscillators / K. Benmessai ... [et al.] -- pt. IX. Advanced techniques. Fundamental noise-limited optical phase locking at Femtowatt light levels (Invited) / J. Dick ... [et al.]. Microwave and optical frequency transfer via optical fibre / G. Marra ... [et al.]. Ultra-stable laser source for the [symbol]Sr+ single-ion optical frequency standard at NRC / P. Dubé, A. A. Madej and J. E. Bernard. Clock laser system for a strontium lattice clock / T. Legero ... [et al.]. Measurement noise floor for a long-distance optical carrier transmission via fiber / G. Grosche ... [et al.]. Optical frequency transfer over 172 KM of installed fiber / S. Crane -- pt. X. Miniature systems. Chip-scale atomic devices: precision atomic instruments based on MEMS (Invited) / J. Kitching ... [et al.]. CSAC - the chip-scale atomic clock (Invited) / R. Lutwak ... [et al.]. Reaching a few 10[symbol] stability level with a compact cold atom clock / F. X. Esnault ... [et al.]. Evaluation of Lin||Lin CPT for compact and high performance frequency standard / E. Breschi ... [et al.] -- pt. XI. Time scales. Atomic time scales TAI and TI(BIPM): present status and prospects (Invited) / G. Petit. Weight functions for biases in atomic frequency standards / J. H. Shirley -- pt. XII. Interferometers. Definition and construction of noise budget in atom interferometry (Invited) / E. D'Ambriosio. Characterization of a cold atom gyroscope (Invited) / A. Landragin ... [et al.]. A mobile atom interferometer for high precision measurements of local gravity / M. Schmidt ... [et al.]. Demonstration of atom interferometer comprised of geometric beam splitters / Hiromitsu Imai and Atsuo Morinaga -- pt. XIII. New directions. Active optical clocks (Invited) / J. Chen. Prospects for a nuclear optical frequency standard based on Thorium-229 (Invited) / E. Peik ... [et al.]. Whispering gallery mode oscillators and optical comb generators (Invited) / A. B. Matsko ... [et al.]. Frequency comparison using energy-time entangled photons / A. Stefanov -- List of participants.
Obermayer, David; Kappe, C Oliver
2010-01-07
The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.
A Compact Bulk Acousto-Optic Time Integrating Correlator.
1984-11-01
AD-A156 668 A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING 1/1 CORRELATOR(U) ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) D A FOGG NOV 84 ERL-9323-TR...DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. FOGG...LABORATORY TECHNICAL REPORT ERL-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. Fogg SUMMARY This report describes the design and
Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead
NASA Technical Reports Server (NTRS)
Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik
2015-01-01
Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology. This IF processor is universally applicable to other microwave sensing missions requiring compact IF spectrometry. The data include 52 operational channels with low IF module volume (less than 100 cubic centimeters) and mass (less than 300 grams) and linearity better than 0.3 percent over a 330,000 dynamic range.
NASA Tech Briefs, November 2013
NASA Technical Reports Server (NTRS)
2013-01-01
Topics include: Cryogenic Liquid Sample Acquisition System for Remote Space Applications; 5 Spatial Statistical Data Fusion (SSDF); GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters; Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments; Rapid Detection of Herpes Viruses for Clinical Applications; High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications; Datacasting V3.0; An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz; Stacked Transformer for Driver Gain and Receive Signal Splitting; Wireless Integrated Microelectronic Vacuum Sensor System; Fabrication Method for LOBSTER-Eye Optics in <110> Silicon; Compact Focal Plane Assembly for Planetary Science; Fabrication Methods for Adaptive Deformable Mirrors; Visiting Vehicle Ground Trajectory Tool; Workflow-Based Software Development Environment; Mobile Thread Task Manager; A Kinematic Calibration Process for Flight Robotic Arms; Magnetostrictive Alternator; Bulk Metallic Glasses and Composites for Optical and Compliant Mechanisms; Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations; and Intravenous Fluid Generation System.
Ummy, M A; Madamopoulos, N; Razani, M; Hossain, A; Dorsinville, R
2012-10-08
We propose and demonstrate a simple compact, inexpensive, SOA-based, dual-wavelength tunable fiber laser, that can potentially be used for photoconductive mixing and generation of waves in the microwave and THz regions. A C-band semiconductor optical amplifier (SOA) is placed inside a linear cavity with two Sagnac loop mirrors at its either ends, which act as both reflectors and output ports. The selectivity of dual wavelengths and the tunability of the wavelength difference (Δλ) between them is accomplished by placing a narrow bandwidth (e.g., 0.3 nm) tunable thin film-based filter and a fiber Bragg grating (with bandwidth 0.28 nm) inside the loop mirror that operates as the output port. A total output power of + 6.9 dBm for the two wavelengths is measured and the potential for higher output powers is discussed. Optical power and wavelength stability are measured at 0.33 dB and 0.014 nm, respectively.
NASA Technical Reports Server (NTRS)
Opower, Hans (Editor)
1990-01-01
Recent advances in CO2 laser technology and its applications are examined. Topics discussed include the excitation of CO2 lasers by microwave discharge, a compact RF-excited 12-kW CO2 laser, a robotic laser for three-dimensional cutting and welding, three-dimensional CO2-laser material processing with gantry machine systems, and a comparison of hollow metallic waveguides and optical fibers for transmitting CO2-laser radiation. Consideration is given to an aerodynamic window with a pump cavity and a supersonic jet, cutting and welding Al using a high-repetition-rate pulsed CO2 laser, speckle reduction in CO2 heterodyne laser radar systems, high-power-laser float-zone crystal growth, melt dynamics in surface processing with laser radiation, laser hardfacing, surface melting of AlSi10Mg with CO2 laser radiation, material processing with Cu-vapor lasers, light-induced flow at a metal surface, and absorption measurements in high-power CW CO2-laser processing of materials.
Millimeter wave generation by relativistic electron beams and microwave-plasma interaction
NASA Astrophysics Data System (ADS)
Kuo, Spencer
1990-12-01
The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.
Four hot DOGs in the microwave
NASA Astrophysics Data System (ADS)
Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao
2016-01-01
Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.
Microwave platform as a valuable tool for characterization of nanophotonic devices
Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel
2016-01-01
The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Compact high-power microwave divider and combiner.
Guo, L T; Chang, C; Huang, W H; Liu, Y S; Cao, Y B; Liu, C L; Sun, J
2016-02-01
A novel, compact, TM01-TE10 mode power divider and a novel, compact, four-way TE10-TM01 mode power combiner were theoretically designed and experimentally tested as a proof of principle. The theoretical and experimental S parameters are consistent with each other. High-power experiments show that their power capacities are no less than 1.5 GW and 3 GW, respectively. The devices have the merits of high power capacities and low insertion losses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H., E-mail: zhongh14@126.com; Tan, Y.; Liu, Y. Q.
2016-11-15
A single-channel 3 mm interferometer has been developed for plasma density diagnostics in the Sino-UNIted Spherical Tokamak (SUNIST). The extremely compact microwave interferometer utilizes one corrugated feed horn antenna for both emitting and receiving the microwave. The beam path lies on the equatorial plane so the system would not suffer from beam path deflection problems due to the symmetry of the cross section. A focusing lens group and an oblique vacuum window are carefully designed to boost the signal to noise ratio, which allows this system to show good performance even with the small-diameter central column itself as a reflector,more » without a concave mirror. The whole system discards the reference leg for maximum compactness, which is particularly suitable for the small-sized tokamak. An auto-correcting algorithm is developed to calculate the phase evolution, and the result displays good phase stability of the whole system. The intermediate frequency is adjustable and can reach its full potential of 2 MHz for best temporal resolution. Multiple measurements during ohmic discharges proved the interferometer’s capability to track typical density fluctuations in SUNIST, which enables this system to be utilized in the study of MHD activities.« less
Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies
NASA Astrophysics Data System (ADS)
Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.
2017-11-01
Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.
High-temperature superconductivity for avionic electronic warfare and radar systems
NASA Astrophysics Data System (ADS)
Ryan, Paul A.
1994-01-01
The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.
Micro-Coplanar Striplines: New Transmission Media for Microwave Applications
NASA Technical Reports Server (NTRS)
Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.
1998-01-01
In this paper a new transmission line for microwave applications, referred to here as the Micro-Coplanar Stripline (MCPS), is introduced. The propagation characteristics, such as, characteristic impedance (Z(sub 0) and effective dielectric constant (epsilon eff) for a range of MCPS geometries have been modeled using the Finite Difference Time Domain (FDTD) Technique and presented here. Also, preliminary experimental results on the performance of an MCP-Microstrip transition and an MCPS-fed patch antenna are presented. The results indicate several potential applications of the MCPS line in microwave integrated circuit technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torrisi, Giuseppe; University Mediterranea of Reggio Calabria, Reggio Calabria; Mascali, David
2016-02-15
The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chambermore » radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.« less
25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning.
Li, Guoliang; Zheng, Xuezhe; Yao, Jin; Thacker, Hiren; Shubin, Ivan; Luo, Ying; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V
2011-10-10
We report a high-speed ring modulator that fits many of the ideal qualities for optical interconnect in future exascale supercomputers. The device was fabricated in a 130 nm SOI CMOS process, with 7.5 μm ring radius. Its high-speed section, employing PN junction that works at carrier-depletion mode, enables 25 Gb/s modulation and an extinction ratio >5 dB with only 1V peak-to-peak driving. Its thermal tuning section allows the device to work in broad wavelength range, with a tuning efficiency of 0.19 nm/mW. Based on microwave characterization and circuit modeling, the modulation energy is estimated ~7 fJ/bit. The whole device fits in a compact 400 μm2 footprint.
Practical holography III; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Benton, Stephen A.
Various papers on practical holography are presented. Individual topics addressed include: design of large format commercial display holograms, design of a one-step full-color holographic recording system, color reflection holography, full color rainbow hologram using a photoresist plate, secondary effects in processing holograms, archival properties of holograms, survey of properties of volume holographic materials, image stability of DMP-128 holograms, activation monitor for DMP-128, microwave drying effects on dichromated gelatin holograms, sensitization process of dichromated gelatin, holographic optics for vision systems, holographic fingerprint sensor, cross-talk and cross-coupling in multiplexed holographic gratings, compact illuminators for transmission holograms, solar holoconcentrators in dichromated grains, three-dimensional display of scientific data, holographic liquid crystal displays, in situ swelling for hologaphic color control.
Development of a strontium optical lattice clock for space applications
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
With timekeeping being of paramount importance for modern life, much research and major scientific advances have been undertaken in the field of frequency metrology, particularly over the last few years. New Nobel-prize winning technologies have enabled a new era of atomic clocks; namely the optical clock. These have been shown to perform significantly better than the best microwave clocks reaching an inaccuracy of 1.6x10-18 [1]. With such results being found in large lab based apparatus, the focus now has shifted to portability - to enable the accuracy of various ground based clocks to be measured, and compact autonomous performance - to enable such technologies to be tested in space. This could lead to a master clock in space, improving not only the accuracy of technologies on which modern life has come to require such as GPS and communication networks. But also more fundamentally, this could lead to the redefinition of the second and tests of fundamental physics including applications in the fields of ground based and satellite geodesy, metrology, positioning, navigation, transport and logistics etc. Within the European collaboration, Space Optical Clocks (SOC2) [2-3] consisting of various institutes and industry partners across Europe we have tried to tackle this problem of miniaturisation whilst maintaining stability, accuracy (5x10-17) and robustness whilst keeping power consumption to a minimum - necessary for space applications. We will present the most recent results of the Sr optical clock in SOC2 and also the novel compact design features, new methods employed and outlook. References [1] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, "An optical lattice clock with accuracy and stability at the 10-18 level," Nature 506, 71-75 (2014). [2] S. Schiller et al. "Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and advanced subsystems" on "Let's embrace space, volume II" 45, 452-463 (2012). ISBN 978-92-79-22207-8. [3] www.soc2.eu
Advanced RF and microwave functions based on an integrated optical frequency comb source.
Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J
2018-02-05
We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.
A Study on a Microwave-Driven Smart Material Actuator
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.
2001-01-01
NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.
Stabilizing an optoelectronic microwave oscillator with photonic filters
NASA Technical Reports Server (NTRS)
Strekalov, D.; Aveline, D.; Yu, N.; Thompson, R.; Matsko, A. B.; Maleki, L.
2003-01-01
This paper compares methods of active stabilization of an optoelectronic microwave oscillator (OEO) based on insertion of a source of optical group delay into an OEO loop. The performance of an OEO stabilized with either a high- optical cavity or an atomic cell is analyzed. We show that the elements play a role of narrow-band microwave filters improving an OEO stability.
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection
Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation
NASA Astrophysics Data System (ADS)
Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.
2017-10-01
A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.
High-Power Microwave Transmission and Mode Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Ronald J.
2015-08-14
This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design formore » high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.« less
NASA Astrophysics Data System (ADS)
Shenfeld, Ofer; Belotserkovsky, Edward; Goldwasser, Benad; Zur, Albert; Katzir, Abraham
1993-02-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields, such as the treatment of malignancies, urinary retention, and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a nonuniform way by the microwave radiation. Conventional temperature sensors used today are inaccurate in the presence of microwave radiation and require contact with the heated tissue. Fiber optic radiometry makes it possible to measure temperatures accurately in the presence of microwave radiation and does not require contact with the tissue. Accurate temperature measurements of tissues heated by microwave was obtained using a silver halide optic radiometer, enabling control of the heating process in other regions of the tissue samples. Temperature mappings of the heated tissues were performed and the nonuniform temperature distributions in these tissues was demonstrated.
NASA Tech Briefs, November 2008
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Digital Phase Meter for a Laser Heterodyne Interferometer; Vision System Measures Motions of Robot and External Objects; Advanced Precipitation Radar Antenna to Measure Rainfall From Space; Wide-Band Radar for Measuring Thickness of Sea Ice; Vertical Isolation for Photodiodes in CMOS Imagers; Wide-Band Microwave Receivers Using Photonic Processing; L-Band Transmit/Receive Module for Phase-Stable Array Antennas; Microwave Power Combiner/Switch Utilizing a Faraday Rotator; Compact Low-Loss Planar Magic-T; Using Pipelined XNOR Logic to Reduce SEU Risks in State Machines; Quasi-Optical Transmission Line for 94-GHz Radar; Next Generation Flight Controller Trainer System; Converting from DDOR SASF to APF; Converting from CVF to AAF; Documenting AUTOGEN and APGEN Model Files; Sequence History Update Tool; Extraction and Analysis of Display Data; MRO DKF Post-Processing Tool; Rig Diagnostic Tools; MRO Sequence Checking Tool; Science Activity Planner for the MER Mission; UAVSAR Flight-Planning System; Templates for Deposition of Microscopic Pointed Structures; Adjustable Membrane Mirrors Incorporating G-Elastomers; Hall-Effect Thruster Utilizing Bismuth as Propellant; High-Temperature Crystal-Growth Cartridge Tubes Made by VPS; Quench Crucibles Reinforced with Metal; Deep-Sea Hydrothermal-Vent Sampler; Mars Rocket Propulsion System; Two-Stage Passive Vibration Isolator; Improved Thermal Design of a Compression Mold; Enhanced Pseudo-Waypoint Guidance for Spacecraft Maneuvers; Altimetry Using GPS-Reflection/Occultation Interferometry; Thermally Driven Josephson Effect; Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer; Gold Nanoparticle Labels Amplify Ellipsometric Signals; Phase Matching of Diverse Modes in a WGM Resonator; WGM Resonators for Terahertz-to-Optical Frequency Conversion; Determining Concentration of Nanoparticles from Ellipsometry; Microwave-to-Optical Conversion in WGM Resonators; Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser; Low-Resolution Raman-Spectroscopy Combustion Thermometry; Temperature Sensors Based on WGM Optical Resonators; Varying the Divergence of Multiple Parallel Laser Beams; Efficient Algorithm for Rectangular Spiral Search; Algorithm-Based Fault Tolerance Integrated with Replication; Targeting and Localization for Mars Rover Operations; Terrain-Adaptive Navigation Architecture; Self-Adjusting Hash Tables for Embedded Flight Applications; Schema for Spacecraft-Command Dictionary; Combined GMSK Communications and PN Ranging; System-Level Integration of Mass Memory; Network-Attached Solid-State Recorder Architecture; Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme; An Efficient Reachability Analysis Algorithm.
Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry.
Hua, Liwei; Song, Yang; Cheng, Baokai; Zhu, Wenge; Zhang, Qi; Xiao, Hai
2017-12-11
This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µε using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.
Received optical power calculations for optical communications link performance analysis
NASA Technical Reports Server (NTRS)
Marshall, W. K.; Burk, B. D.
1986-01-01
The factors affecting optical communication link performance differ substantially from those at microwave frequencies, due to the drastically differing technologies, modulation formats, and effects of quantum noise in optical communications. In addition detailed design control table calculations for optical systems are less well developed than corresponding microwave system techniques, reflecting the relatively less mature state of development of optical communications. Described below are detailed calculations of received optical signal and background power in optical communication systems, with emphasis on analytic models for accurately predicting transmitter and receiver system losses.
Compact Directional Microwave Antenna for Localized Heating
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Lin, Gregory Y.; Chu, Andrew W.; Dobbins, Justin A.; Arndt, G. Dickey; Ngo, Phong
2008-01-01
A directional, catheter-sized cylindrical antenna has been developed for localized delivery of microwave radiation for heating (and thus killing) diseased tissue without excessively heating nearby healthy tissue. By "localized" is meant that the antenna radiates much more in a selected azimuthal direction than in the opposite radial direction, so that it heats tissue much more on one side than it does on the opposite side. This antenna can be inserted using either a catheter or a syringe. A 2.4-mm prototype was tested, although smaller antennas are possible. Prior compact, cylindrical antennas designed for therapeutic localized hyperthermia do not exhibit such directionality; that is, they radiate in approximately axisymmetric patterns. Prior directional antennas designed for the same purpose have been, variously, (1) too large to fit within catheters or (2) too large, after deployment from catheters, to fit within the confines of most human organs. In contrast, the present antenna offers a high degree of directionality and is compact enough to be useable as a catheter in some applications.
NASA Astrophysics Data System (ADS)
Aguayo-Rodríguez, Gustavo; Zaldívar-Huerta, Ignacio E.; Rodríguez-Asomoza, Jorge; García-Juárez, Alejandro; Alonso-Rubio, Paul
2010-01-01
The generation, distribution and processing of microwave signals in the optical domain is a topic of research due to many advantages such as low loss, light weight, broadband width, and immunity to electromagnetic interference. In this sense, a novel all-optical microwave photonic filter scheme is proposed and experimentally demonstrated in the frequency range of 0.01-15.0 GHz. A microwave signal generated by optical mixing drives the microwave photonic filter. Basically, photonic filter is composed by a multimode laser diode, an integrated Mach- Zehnder intensity modulator, and 28.3-Km of single-mode standard fiber. Frequency response of the microwave photonic filter depends of the emission spectral characteristics of the multimode laser diode, the physical length of the single-mode standard fiber, and the chromatic dispersion factor associated to this type of fiber. Frequency response of the photonic filter is composed of a low-pass band centered at zero frequency, and several band-pass lobes located periodically on the microwave frequency range. Experimental results are compared by means of numerical simulations in Matlab exhibiting a small deviation in the frequency range of 0.01-5.0 GHz. However, this deviation is more evident when higher frequencies are reached. In this paper, we evaluate the causes of this deviation in the range of 5.0-15.0 GHz analyzing the parameters involved in the frequency response. This analysis permits to improve the performance of the photonic microwave filter to higher frequencies.
Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris
2012-11-19
We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.
Wu, Tsu-Hsiu; Wu, Jui-pin; Chiu, Yi-Jen
2010-02-15
We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89 ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4 GHz of frequency ranges from 0.1 GHz to 8 GHz for -10 dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.
Feng, Hanlin; Ge, Jia; Xiao, Shilin; Fok, Mable P
2014-05-19
In this paper, we present a novel Rayleigh backscattering (RB) noise mitigation scheme based on central carrier suppression for 10 Gb/s loop-back wavelength division multiplexing passive optical network (WDM-PON). Microwave modulated multi-subcarrier optical signal is used as downstream seeding light, while cascaded semiconductor optical amplifier (SOA) are used in the optical network unit (ONU) for suppressing the central carrier of the multi-subcarrier upstream signal. With central carrier suppression, interference generated by carrier RB noise at low frequency region is eliminated successfully. Transmission performance over 45 km single mode fiber (SMF) is studied experimentally, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) can be reduced to 15 dB with central carrier suppression ratio (CCSR) of 21 dB. Receiver sensitivity is further improved by 6 dB with the use of microwave photonic filter (MPF) for suppressing residual upstream microwave signal and residual carrier RB at high frequency region.
Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2017-04-01
The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).
Remote measurement of microwave distribution based on optical detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Zhong; Ding, Wenzheng; Yang, Sihua
2016-01-04
In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, themore » microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.« less
Infrared fiber optic temperature monitoring of biological tissues heated in a microwave oven
NASA Astrophysics Data System (ADS)
Belotserkovsky, Edward; Ashkenasy, Y.; Shenfeld, Ofer; Drizlikh, S.; Zur, Albert; Katzir, Abraham
1993-05-01
The heating of tissue by microwave radiation has attained a place of importance in various medical fields such as the treatment of malignancies, urinary retention and hypothermia. Accurate temperature measurements in these treated tissues is important for treatment planning and for the control of the heating process. It is also important to be able to measure spacial temperature distribution in the tissues because they are heated in a non uniform way by the microwave radiation. Fiber optic radiometry makes possible accurate temperature measurement in the presence of microwave radiation and does not require contact with the tissue. Using a IR silver halide fiber optic radiometric temperature sensor we obtained accurate temperature measurements of tissues heated by microwave, enabling us to control the heating process in all regions of the tissue. We also performed temperature mapping of the heated tissues and demonstrated the non-uniform temperature distributions in them.
Vasylkiv, Oleg; Demirskyi, Dmytro; Sakka, Yoshio; Ragulya, Andrey; Borodianska, Hanna
2012-06-01
Two-stage densification process of nanosized 3 mol% yttria-stabilized zirconia (3Y-SZ) polycrystalline compacts during consolidation via microwave and spark-plasma sintering have been observed. The values of activation energies obtained for microwave and spark-plasma sintering 260-275 kJ x mol(-1) are quite similar to that of conventional sintering of zirconia, suggesting that densification during initial stage is controlled by the grain-boundary diffusion mechanism. The sintering behavior during microwave sintering was significantly affected by preliminary pressing conditions, as the surface diffusion mechanism (230 kJ x mol(-1)) is active in case of cold-isostatic pressing procedure was applied.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1989-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.
1990-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)
2012-07-10
load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies
ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia
2015-11-01
The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persistsmore » on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.« less
A Microwave Driven Ion Source for Continuous-Flow AMS (Abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, J.; Schneider, R.J.; Reden, K.F. von
2005-03-15
A microwave-driven, gas-fed ion source originally developed as a high-current positive ion injector for a Tandem accelerator at Chalk River has been the subject of a three-year development program at the Woods Hole Oceanographic Institution NOSAMS facility. Off-line tests have demonstrated positive carbon currents of 1 mA and negative carbon currents of 80 {mu}A from CO2 gas feed. This source and a magnesium charge-exchange canal were coupled to the recombinator of the NOSAMS Tandetron for on-line tests, with the source fed with reference gasses and a combustion device.The promising results obtained have prompted the redesign of the microwave source formore » use as an on-line, continuous-flow injector for a new AMS facility under construction at NOSAMS. The new design is optimized for best transmission of the extracted positive-ion beam through the charge-exchange canal and for reliable operation at 40 kV extraction voltage. Other goals of the re-design include improved lifetime of the microwave window and the elimination of dead volumes in the plasma generator that increase sample hold-up time.This talk will include a summary of results obtained to date at NOSAMS with the Chalk River source and a detailed description of the new design.« less
Microwave-optical two-photon excitation of Rydberg states
NASA Astrophysics Data System (ADS)
Tate, D. A.; Gallagher, T. F.
2018-03-01
We report efficient microwave-optical two photon excitation of Rb Rydberg atoms in a magneto-optical trap. This approach allows the excitation of normally inaccessible states and provides a path toward excitation of high-angular-momentum states. The efficiency stems from the elimination of the Doppler width, the use of a narrow-band pulsed laser, and the enormous electric-dipole matrix element connecting the intermediate and final states of the transition. The excitation is efficient in spite of the low optical and microwave powers, of order 1 kW and 1 mW, respectively. This is an application of the large dipole coupling strengths between Rydberg states to achieve two-photon excitation of Rydberg atoms.
A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications
NASA Astrophysics Data System (ADS)
Zhang, Feng; Liu, Xiaojun; Fang, Guangyou
2014-03-01
A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.
Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems
NASA Astrophysics Data System (ADS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.
2011-06-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
The Atacama Cosmology Telescope: The Receiver and Instrumentation
NASA Technical Reports Server (NTRS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.;
2010-01-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
Saleh, Khaldoun; Millo, Jacques; Marechal, Baptiste; Dubois, Benoît; Bakir, Ahmed; Didier, Alexandre; Lacroûte, Clément; Kersalé, Yann
2018-01-31
Optical frequency division of an ultrastable laser to the microwave frequency range by an optical frequency comb has allowed the generation of microwave signals with unprecedently high spectral purity and stability. However, the generated microwave signal will suffer from a very low power level if no external optical frequency comb repetition rate multiplication device is used. This paper reports theoretical and experimental studies on the beneficial use of the Vernier effect together with the spectral selective filtering in a double directional coupler add-drop optical fibre ring resonator to increase the comb repetition rate and generate high power microwaves. The studies are focused on two selective filtering aspects: the high rejection of undesirable optical modes of the frequency comb and the transmission of the desirable modes with the lowest possible loss. Moreover, the conservation of the frequency comb stability and linewidth at the resonator output is particularly considered. Accordingly, a fibre ring resonator is designed, fabricated, and characterized, and a technique to stabilize the resonator's resonance comb is proposed. A significant power gain is achieved for the photonically generated beat note at 10 GHz. Routes to highly improve the performances of such proof-of-concept device are also discussed.
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-01-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761
NASA Astrophysics Data System (ADS)
Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.
2016-02-01
Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.
Photonic measurement of microwave frequency based on phase modulation.
Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun
2009-04-27
A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.
Zhu, Ning Hua; Zhang, Hong Guang; Man, Jiang Wei; Zhu, Hong Liang; Ke, Jian Hong; Liu, Yu; Wang, Xin; Yuan, Hai Qing; Xie, Liang; Wang, Wei
2009-11-23
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source.
Kerr optical frequency combs: theory, applications and perspectives
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.
2016-06-01
The optical frequency comb technology is one of the most important breakthrough in photonics in recent years. This concept has revolutionized the science of ultra-stable lightwave and microwave signal generation. These combs were originally generated using ultrafast mode-locked lasers, but in the past decade, a simple and elegant alternativewas proposed,which consisted in pumping an ultra-high-Q optical resonator with Kerr nonlinearity using a continuous-wave laser. When optimal conditions are met, the intracavity pump photons are redistributed via four-wave mixing to the neighboring cavity modes, thereby creating the so-called Kerr optical frequency comb. Beyond being energy-efficient, conceptually simple, and structurally robust, Kerr comb generators are very compact devices (millimetric down to micrometric size) which can be integrated on a chip. They are, therefore, considered as very promising candidates to replace femtosecond mode-locked lasers for the generation of broadband and coherent optical frequency combs in the spectral domain, or equivalently, narrow optical pulses in the temporal domain. These combs are, moreover, expected to provide breakthroughs in many technological areas, such as integrated photonics, metrology, optical telecommunications, and aerospace engineering. The purpose of this review article is to present a comprehensive survey of the topic of Kerr optical frequency combs.We provide an overview of the main theoretical and experimental results that have been obtained so far. We also highlight the potential of Kerr combs for current or prospective applications, and discuss as well some of the open challenges that are to be met at the fundamental and applied level.
High organic loading influences the physical characteristics of aerobic sludge granules.
Moy, B Y-P; Tay, J-H; Toh, S-K; Liu, Y; Tay, S T-L
2002-01-01
The effect of high organic loading rate (OLR) on the physical characteristics of aerobic granules was studied. Two column-type sequential aerobic sludge blanket reactors were fed with either glucose or acetate as the main carbon source, and the OLR was gradually raised from 6 to 9, 12 and 15 kg chemical oxygen demand (COD) m(-3) d(-1). Glucose-fed granules could sustain the maximum OLR tested. At a low OLR, these granules exhibited a loose fluffy morphology dominated by filamentous bacteria. At higher OLRs, these granules became irregularly shaped, with folds, crevices and depressions. In contrast, acetate-fed granules had a compact spherical morphology at OLRs of 6 and 9 kg COD m(-3) d(-1), with better settling and strength characteristics than glucose-fed granules at similar OLRs. However, acetate-fed granules could not sustain high OLRs and disintegrated when the OLR reached 9 kg COD m(-3) d(-1). The compact regular microstructure of the acetate-fed granules appeared to limit mass transfer of nutrients at an OLR of 9 kg COD m(-3) d(-1). The looser filamentous microstructure of the glucose-fed granules and the subsequent irregular morphology delayed the onset of diffusion limitation and allowed significantly higher OLRs to be attained. SIGNIFICNACE AND IMPACT OF THE STUDY: High organic loading rates are possible with aerobic granules. This research would be helpful in the development of aerobic granule-based systems for high-strength wastewaters.
Alternatives for Military Space Radar
2007-01-01
transmitted microwaves to produce images of the Earth’s surface (somewhat akin to photographs produced by optical imaging).2 By providing their own...microwaves for illumination (rather than sunlight, as in an optical imaging system). By providing their own illu- mination, radars can produce...carry a variety of payloads, including electro- optical , infrared, and SAR imagers; a film camera; and signals- intelligence equipment. The aircraft’s
Miniature Magnet for Electron Spin Resonance Experiments
ERIC Educational Resources Information Center
Rupp, L. W.; And Others
1976-01-01
Describes commercially available permanent magnets that have been incorporated in a compact and inexpensive structure providing both field sweep and modulation suitable for electron spin resonance at microwave frequencies. (MLH)
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2010-03-15
In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.
Parametric Phase-Sensitive Detector Using Two-cell SQUID
2010-08-01
an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed
Optical detectors for GaAs MMIC integration: Technology assessment
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.
1989-01-01
Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.
Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
NASA Technical Reports Server (NTRS)
Logan, Ronald T. (Inventor)
1997-01-01
The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.
Microwave fiber optics delay line
NASA Astrophysics Data System (ADS)
Slayman, C.; Yen, H. W.
1980-01-01
A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-01-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10−15/1 s and 2.2 × 10−18/10000 s. PMID:24336459
Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang
2007-08-01
The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.
NASA Astrophysics Data System (ADS)
Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.
2013-12-01
Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.
Compact DFB laser modules with integrated isolator at 935 nm
NASA Astrophysics Data System (ADS)
Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.
2018-02-01
New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.; Yun, G. S.; Nam, Y.
2010-10-15
Recently, two-dimensional microwave imaging diagnostics such as the electron cyclotron emission imaging (ECEI) system and microwave imaging reflectometry (MIR) have been developed to study magnetohydrodynamics instabilities and turbulence in magnetically confined plasmas. These imaging systems utilize large optics to collect passive emission or reflected radiation. The design of this optics can be classified into two different types: reflective or refractive optical systems. For instance, an ECEI/MIR system on the TEXTOR tokamak [Park et al., Rev. Sci. Instrum. 75, 3787 (2004)] employed the reflective optics which consisted of two large mirrors, while the TEXTOR ECEI upgrade [B. Tobias et al., Rev.more » Sci. Instrum. 80, 093502 (2009)] and systems on DIII-D, ASDEX-U, and KSTAR adopted refractive systems. Each system has advantages and disadvantages in the standing wave problem and optical aberrations. In this paper, a comparative study between the two optical systems has been performed in order to design a MIR system for KSTAR.« less
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.
Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael
2016-12-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission
Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael
2017-01-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144
Higher Education And Economic Growth. Chicago Fed Letter. Number 222a
ERIC Educational Resources Information Center
Mattoon, Richard H.
2006-01-01
The future of higher education and its relationship to economic growth were the focus of a one-day conference at the Chicago Fed on November 2, 2005. Cosponsored by the bank, the Committee on Institutional Cooperation, and the Midwestern Higher Education Compact, the event brought together over 100 academic, business, and government leaders.…
NASA Astrophysics Data System (ADS)
Correa-Mena, Ana Gabriela; Zaldívar-Huerta, Ignacio E.; Abril García, Jose Humberto; García-Juárez, Alejandro; Vera-Marquina, Alicia
2016-10-01
A practical application of a bidirectional microwave photonic filter (MPF) to transmit simultaneous analog TV signals coded on microwave carriers is experimentally demonstrated. The frequency response of the bidirectional MPF is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.55 μm associated to the free-spectral range of the optical source, the chromatic dispersion parameter of the optical fiber, as well as the length of the optical link. The filtered microwave bandpass window generated around 2 GHz is used as electrical carrier in order to simultaneously transmit TV signals of 67.25 and 61.25 MHz in both directions. The obtained signal-to-noise ratios for the transmitted signals of 67.25 and 61.25 MHz are 37.62 and 44.77 dB, respectively.
Effect of energetic electrons on combustion of premixed burner flame
NASA Astrophysics Data System (ADS)
Sasaki, Koichi
2011-10-01
In many studies of plasma-assisted combustion, authors superpose discharges onto flames to control combustion reactions. This work is motivated by more fundamental point of view. The standpoint of this work is that flames themselves are already plasmas. We irradiated microwave power onto premixed burner flame with the intention of heating electrons in it. The microwave power was limited below the threshold for a discharge. We obtained the enhancement of burning velocity by the irradiation of the microwave power, which was understood by the shortening of the flame length. At the same time, we observed the increases in the optical emission intensities of OH and CH radicals. Despite the increases in the optical emission intensities, the optical emission spectra of OH and CH were not affected by the microwave irradiation, indicating that the enhancement of the burning velocity was not attributed to the increase in the gas temperature. On the other hand, we observed significant increase in the optical emission intensity of the second positive system of molecular nitrogen, which is a clear evidence for electron heating in the premixed burner flame. Therefore, it is considered that the enhancement of the burning velocity is obtained by nonequilibrium combustion chemistry which is driven by energetic electrons. By irradiating pulsed microwave power, we examined the time constants for the increases and decreases in the optical emission intensities of N2, OH, CH, and continuum radiation.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
Microwave analog fiber-optic link for use in the deep space network
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1990-01-01
A novel fiber-optic system with dynamic range of up to 150 dB-Hz for transmission of microwave analog signals is described. The design, analysis, and laboratory evaluations of this system are reported, and potential applications in the NASA/JPL Deep Space Network are discussed.
Aircraft and satellite passive microwave observations of the Bering Sea ice cover during MIZEX West
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T., Jr.
1986-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year ice types.
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Gloersen, P.; Wilheit, T. T.; Calhoon, C.
1984-01-01
Passive microwave measurements of the Bering Sea were made with the NASA CV-990 airborne laboratory during February. Microwave data were obtained with imaging and dual-polarized, fixed-beam radiometers in a range of frequencies from 10 to 183 GHz. The high resolution imagery at 92 GHz provides a particularly good description of the marginal ice zone delineating regions of open water, ice compactness, and ice-edge structure. Analysis of the fixed-beam data shows that spectral differences increase with a decrease in ice thickness. Polarization at 18 and 37 GHz distinguishes among new, young, and first-year sea ice types.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332
A monolithic integrated photonic microwave filter
NASA Astrophysics Data System (ADS)
Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José
2017-02-01
Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
NASA Astrophysics Data System (ADS)
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-09
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M.
Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA datamore » allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.« less
Liu, Weilin; Yao, Jianping
2014-02-15
A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.
Multi-Band Miniaturized Patch Antennas for a Compact, Shielded Microwave Breast Imaging Array.
Aguilar, Suzette M; Al-Joumayly, Mudar A; Burfeindt, Matthew J; Behdad, Nader; Hagness, Susan C
2013-12-18
We present a comprehensive study of a class of multi-band miniaturized patch antennas designed for use in a 3D enclosed sensor array for microwave breast imaging. Miniaturization and multi-band operation are achieved by loading the antenna with non-radiating slots at strategic locations along the patch. This results in symmetric radiation patterns and similar radiation characteristics at all frequencies of operation. Prototypes were fabricated and tested in a biocompatible immersion medium. Excellent agreement was obtained between simulations and measurements. The trade-off between miniaturization and radiation efficiency within this class of patch antennas is explored via a numerical analysis of the effects of the location and number of slots, as well as the thickness and permittivity of the dielectric substrate, on the resonant frequencies and gain. Additionally, we compare 3D quantitative microwave breast imaging performance achieved with two different enclosed arrays of slot-loaded miniaturized patch antennas. Simulated array measurements were obtained for a 3D anatomically realistic numerical breast phantom. The reconstructed breast images generated from miniaturized patch array data suggest that, for the realistic noise power levels assumed in this study, the variations in gain observed across this class of multi-band patch antennas do not significantly impact the overall image quality. We conclude that these miniaturized antennas are promising candidates as compact array elements for shielded, multi-frequency microwave breast imaging systems.
A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration
NASA Astrophysics Data System (ADS)
Chang, Matthew P.
This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics
NASA Astrophysics Data System (ADS)
Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.
Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Frequency-stabilization of mode-locked laser-based photonic microwave oscillator
NASA Technical Reports Server (NTRS)
Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute
2005-01-01
In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.
Spacecraft Applications of Compact Optical and Mass Spectrometers
NASA Technical Reports Server (NTRS)
Davinic, N. M.; Nagel, D. J.
1995-01-01
Optical spectrometers, and mass spectrometers to a lesser extent, have a long and rich history of use aboard spacecraft. Space mission applications include deep space science spacecraft, earth orbiting satellites, atmospheric probes, and surface landers, rovers, and penetrators. The large size of capable instruments limited their use to large, expensive spacecraft. Because of the novel application of micro-fabrication technologies, compact optical and mass spectrometers are now available. The new compact devices are especially attractive for spacecraft because of their small mass and volume, as well as their low power consumption. Dispersive optical multi-channel analyzers which cover the 0.4-1.1 micrometer wavelength are now commercially available in packages as small as 3 x 6 x 18 mm exclusive of drive and recording electronics. Mass spectrometers as small as 3 x 3 mm, again without electronics, are under development. A variety of compact optical and mass spectrometers are reviewed in this paper. A number of past space applications are described, along with some upcoming opportunities that are likely candidate missions to fly this new class of compact spectrometers.
NASA Technical Reports Server (NTRS)
Kunath, R. R.; Bhasin, K. B.
1986-01-01
The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.
Compact CPW-fed spiral-patch monopole antenna with tuneable frequency for multiband applications
NASA Astrophysics Data System (ADS)
Beigi, P.; Nourinia, J.; Zehforoosh, Y.
2018-04-01
A frequency reconfigurable monopole antenna with coplanar waveguide-fed with four switchable for multiband application is reported. The monopole antenna includes square-spiral patch and two L-shaped elements. The number of frequency resonances are increased by adding square spiral. In the reported antenna, two PIN diodes are used to achieve the multiband operation. PIN diodes embedded on the spiral patch can control the frequency resonance when they are forward-biased or in those off-state. The final designed antenna, with compact size of 20 × 20 ×1 mm3, has been fabricated on an inexpensive FR4 substrate. All experimental and simulation results are acceptable suggesting that the reported antenna is a good candidate for multiband applications.
NASA Astrophysics Data System (ADS)
Baumgärtner, S.; Juhl, S.; Opalevs, D.; Sahm, A.; Hofmann, J.; Leisching, P.; Paschke, K.
2018-02-01
We present a novel compact laser device based on a semiconductor master-oscillator power-amplifier (MOPA) emitting at 772 nm, suitable for quantum optic and spectroscopy. The optical performance of the laser device is characterized. For miniaturized lasers the thermal management is challenging, we therefore perform thermal simulations and measurements. The first demonstrator is emitting more than 3 W optical power with a linewidth below 2lMHz. Using this MOPA design also compact devices for quantum optics (e.g. rubidium atomic clock) and seed lasers for frequency conversion can be realized [1].
NASA Astrophysics Data System (ADS)
Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.
2011-03-01
In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.
Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J
2005-01-01
We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.
Superconducting Qubit Optical Transducer (SQOT)
2015-08-05
2 2.2 Qubit- Photon Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 System...and a high Q will make this challenging. 3 2.2 QUBIT- PHOTON ENTANGLEMENT The parametric interaction enables interconversion between the microwave and...to observe entanglement between a qubit and optical photon and similar to experiments demonstrated solely in the microwave domain [4]: 1. Start with
Optomechanical frequency combs
NASA Astrophysics Data System (ADS)
Miri, Mohammad-Ali; D’Aguanno, Giuseppe; Alù, Andrea
2018-04-01
We study the formation of frequency combs in a single-mode optomechanical cavity. The comb is composed of equidistant spectral lines centered at the pump laser frequency and located at different harmonics of the mechanical resonator. We investigate the classical nonlinear dynamics of such system and find analytically the onset of parametric instability resulting in the breakdown of a stationary continuous wave intracavity field into a periodic train of pulses, which in the Fourier domain gives rise to a broadband frequency comb. Different dynamical regimes, including a stationary state, frequency comb generation and chaos, and their dependence on the system parameters, are studied both analytically and numerically. Interestingly, the comb generation is found to be more robust in the poor cavity limit, where optical loss is equal or larger than the mechanical resonance frequency. Our results show that optomechanical resonators open exciting opportunities for microwave photonics as compact and robust sources of frequency combs with megahertz line spacing.
Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator
NASA Astrophysics Data System (ADS)
Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.
2017-07-01
A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.
High-power microwave generation using optically activated semiconductor switches
NASA Astrophysics Data System (ADS)
Nunnally, William C.
1990-12-01
The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.
Wide-band analog frequency modulation of optic signals using indirect techniques
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.
1991-01-01
The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.
Towards a 3D modelling of the microwave photo-induced load in CPW technology
NASA Astrophysics Data System (ADS)
Gary, Rene; Arnould, Jean-Daniel; Vilcot, Anne
2005-09-01
The optical control study works on both the optical and the microwave behaviours of the plasma photo-induced in the semiconductor enlightened by a laser beam. The presented study is based on the necessity to be able to foresee the microwave response of CPW microwave devices versus different optical powers and different kinds of optical fibers, single-mode or multimode. The optical part has been achieved analytically by solving the diffusion equation of photo-induced carriers using the Hankel transform in 3-Dimensions. The added value of this technique is its precision and fastness. For the electromagnetic part we have chosen to use CST Microwave Studio software, which solves numerically Maxwell's equations with a Finite Integration Technique (FIT). For this aim we have had to model the photo-induced load using the locally changed conductivity directly depending of the excess carriers distribution. In the final paper, the first part will deal with the analytical computation of the photo-induced excess carrier in silicon substrate using the Hankel transform under permanent enlightening. Then the explanation of the model will be based on the need of a 3-Dimension model that may be described in an electromagnetic software. Finally simulation results of simple CPW devices as stub will be compared to measurements. In conclusion, we will show that the model is suitable for designing more complex devices and that it can be simplified in case of low precision needs.
Detection of radio-frequency modulated optical signals by two and three terminal microwave devices
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Simons, R. N.; Wojtczuk, S.
1987-01-01
An interdigitated photoconductor (two terminal device) on GaAlAs/GaAs heterostructure was fabricated and tested by an electro-optical sampling technique. Further, the photoresponse of GaAlAs/GaAs HEMT (three terminal device) was obtained by illuminating the device with an optical signal modulated up to 8 GHz. Gain-bandwidth product, response time, and noise properties of photoconductor and HEMT devices were obtained. Monolithic integration of these photodetectors with GaAs microwave devices for optically controlled phased array antenna applications is discussed.
Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang
2018-06-01
This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.
NASA Astrophysics Data System (ADS)
López-Caniego, Marcos
2015-08-01
The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment is observing the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range of 10-40 GHz. This experiment will provide valuable information about the polarization properties of synchrotron and anomalous microwave emission at these frequencies. The maps obtained with the multi-frequency instrument (10-20 GHz), in combination with data from other experiments like Planck and the VLA, will be used to clean the diffuse and compact foreground emission at 30 and 40 GHz, the cosmological channels. After three years of effective observations we expect to reach the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05. At the moment we have completed the Wide Survey with the multi-frequency instrument, covering 20.000 square degrees of the Northern hemisphere. In addition, we have deep integrations of our main calibrators Taurus A, Cassiopea A, Jupiter and of the Perseus molecular complex region, where we have measured the spectrum of the anomalous microwave emission. We also have observed several regions of interest for our science program where we plan to study the compact and diffuse polarized emission.
Treatment options for low-level radiologically contaminated ORNL filtercake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hom-Ti; Bostick, W.D.
1996-04-01
Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less
Phase locking of a 2.7 THz quantum cascade laser to a microwave reference.
Khosropanah, P; Baryshev, A; Zhang, W; Jellema, W; Hovenier, J N; Gao, J R; Klapwijk, T M; Paveliev, D G; Williams, B S; Kumar, S; Hu, Q; Reno, J L; Klein, B; Hesler, J L
2009-10-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x12) from a microwave synthesizer at approximately 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference
NASA Technical Reports Server (NTRS)
Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.;
2009-01-01
We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
NASA Astrophysics Data System (ADS)
Aga, Roberto Sabas, Jr.
In this dissertation, a novel dual-channel near-field scanning microwave and optical microprobe (NSMM/NSOM) was developed for simultaneous mapping of microwave and optical properties of a sample at microscopic scales. This microprobe is composed of an open-end coaxial resonator with its center conductor being replaced by a stainless steel tube terminated by a titanium/silver coated fiber optic with a tapered tip. The optical fiber serves as the channel for NSOM, while its metal coating is the channel for NSMM. Using this dual-channel NSMM/NSOM probe, a spatial resolution of ˜5 mum, that is comparable to the best reported for single-channel NSMM, has been achieved on metallic samples. This resolution is mainly limited by the sensitivity of the NSMM channel and may be further improved when the sensitivity of NSMM is enhanced. Characterization of the microwave properties of the highest-Tc Hg-based superconductors has been carried out using a traditional resonant cavity technique, as well as a novel single-channel NSMM and the dual-channel NSMM/NSOM. Using the traditional technique, the microwave surface resistance (Rs) and power handling capability (Pc) of HgBa 2CaCu2O6 (Hg-1212 with Tc ˜ 125 K) films have been measured for the first time, and the results are superior to the best achieved on other superconductors. For example, a comparable R s ˜ 0.3 mO (10 GHz) can be obtained on Hg-1212 at close to 120 K as opposed to the same Rs for YBa2Cu3O 7 (the most popular high-Tc superconductor with Tc ˜ 92 K) at around 77K. This can be attributed to the large difference in the Tcs between the two materials and has demonstrated the potential of Hg-1212 for microwave applications. A comparison of the microwave properties of Hg-1212, Tl-2212 and YBCO films at reduced temperature scale suggested further room for improvement of Hg-1212 performance. Using NSMM, the localized microwave properties, such as Tcs, sheet resistance and power handling capability have been investigated and nonuniformity, revealed. Attempts to correlate the observed nonuniformity of microwave properties with the microstructures of the sample have been made using the dual-channel NSMM/NSOM probe and interesting results, obtained. (Abstract shortened by UMI.)
Multiband rectenna for microwave applications
NASA Astrophysics Data System (ADS)
Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François
2017-02-01
This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"
Radial electron-beam-breakup transit-time oscillator
Kwan, Thomas J. T.; Mostrom, Michael A.
1998-01-01
A radial electron-beam-breakup transit-time oscillator (RBTO) provides a compact high power microwave generator. The RBTO includes a coaxial vacuum transmission line having an outer conductor and an inner conductor. The inner conductor defines an annular cavity with dimensions effective to support an electromagnetic field in a TEM.sub.00m mode. A radial field emission cathode is formed on the outer conductor for providing an electron beam directed toward the annular cavity electrode. Microwave energy is then extracted from the annular cavity electrode.
Lifshitz, A; Skinner, G B; Wood, D R
1978-09-01
An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.
Design of a fiber-optic transmitter for microwave analog transmission with high phase stability
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Primas, L. E.; Maleki, L.
1990-01-01
The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package.
Performances of a Compact, High-Power WB Source with Circular Polarization
NASA Astrophysics Data System (ADS)
Delmote, P.; Pinguet, S.; Bieth, F.
This paper presents the design and the performances of an embedded high-power microwave (HPM) wideband source, developed and built at the French-German Research Institute of Saint-Louis. The system was intended for dual use, homeland security, and military applications. It is powered by a 400 kV compact Marx generator with specificities in coaxial design and low energy. The slow monopolar signal from the Marx is sharpened using a pulse-forming stage, made of a switching module pressurized with nitrogen, followed by a monopulse-to-monocycle converter. The duration and rise times of this signal could be adjusted by varying the pressure and space between electrodes. Repetitive operations were performed up to 100 Hz during 10 s without a gas flow. Two kinds of antennas can be connected to the source. The first one is a TEM horn, with an optional dielectric lens, that radiates a vertically polarized UWB short pulse. The second one is a nine-turn helix, working in Kraus monopolar axial mode and radiating a circularly polarized wideband signal along the main axis. A dedicated conical reflector increases its directivity and bandwidth. The whole source is designed to be embedded inside an aluminum trailer, powered by batteries and remote controlled through an optical fiber.
A compact microwave patch applicator for hyperthermia treatment of cancer.
Chakaravarthi, Geetha; Arunachalam, Kavitha
2014-01-01
Design and development of a compact microstrip C-type patch applicator for hyperthermia treatment of cancer is presented. The patch antenna is optimized for resonance at 434 MHz, return loss (S11) better than -15dB and co-polarized electric field in tissue. Effect of water bolus thickness on power delivery is studied for improved power coupling. Numerical simulations for antenna design optimization carried out using EM simulation software, Ansys HFSS(®), USA were experimentally verified. The effective field coverage for the optimized patch antenna and experimental results indicate that the compact antenna resonates at ISM frequency 434 MHz with better than -15 dB power coupling.
Dielectric prisms would improve performance of quasi-optical microwave components
NASA Technical Reports Server (NTRS)
Carson, J. W.
1967-01-01
Properties of the Brewster angle and internal reflection in a dielectric prism are proposed as the basis of a new type of element for use in oversize waveguide in quasi-optical microwave components. Waveguide loss is reduced and precision broadband attenuators, phase shifters, and directional couplers can be constructed on the basis of the properties.
Design of Broadband High Dynamic-Range Fiber Optic Links
NASA Astrophysics Data System (ADS)
Monsurrò, P.; Tommasino, P.; Trifiletti, A.; Vannucci, A.
2018-04-01
An analytic design-oriented model of microwave optical links has been developed. The core of the model is the non-linear and noise model of a Mach-Zehnder LiNbO3 interferometer. Both a 100 MHz-20 GHz link and a linearized microwave link, comprising an auxiliary modulator, have been designed and prototyped by using the model.
Recent Progresses of Microwave Marine Remote Sensing
NASA Astrophysics Data System (ADS)
Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui
2016-08-01
It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.
Compact multiwavelength transmitter module for multimode fiber optic ribbon cable
Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.
2002-01-01
A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.
Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)
2001-01-01
In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).
Compact LED based LCOS optical engine for mobile projection
NASA Astrophysics Data System (ADS)
Zhang, Wenzi; Li, Xiaoyan; Liu, Qinxiao; Yu, Feihong
2009-11-01
With the development of high power LED (light emitting diode) technology and color filter LCOS (liquid crystal on silicon) technology, the research on LED based micro optical engine for mobile projection has been a hot topic recently. In this paper one compact LED powered LCOS optical engine design is presented, which is intended to be embedded in cell phone, digital camera, and so on. Compared to DLP (digital light processor) and traditional color sequential LCOS technology, the color filter based LCOS panel is chosen for the compact optical engine, this is because only white LED is needed. To further decrease the size of the optical engine, only one specifically designed plastic free form lens is applied in the illumination part of the optical engine. This free form lens is designed so that it plays the roles of both condenser and integrator, by which the output light of LED is condensed and redistributed, and light illumination of high efficiency, high uniformity and small incident angle on LCOS is acquired. Besides PBS (polarization beam splitter), LCOS, and projection lens, the compact optical engine contains only this piece of free form plastic lens, which can be produced by plastic injection molding. Finally a white LED powered LCOS optical engine with a compact size of less than 6.6 cc can be acquired. With the ray tracing simulation result, the light efficiency analysis shows that the output flux is over 8.5 ANSI lumens and the ANSI uniformity of over 80%.
Water-based metamaterial absorbers for optical transparency and broadband microwave absorption
NASA Astrophysics Data System (ADS)
Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo
2018-04-01
Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.
Parity-time–symmetric optoelectronic oscillator
2018-01-01
An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325
Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.
Waldmann, Ole; Ludewigt, Bernhard
2011-11-01
A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics
FIBER AND INTEGRATED OPTICS: Compact fiber-optic compressor of ultrashort pulses
NASA Astrophysics Data System (ADS)
Nikitin, S. P.; Onishchukov, G. I.; Fomichev, A. A.
1992-02-01
A theoretical design of a universal compact fiber-optic compressor based on a monochromator with a spherical mirror in the plane of its exit slit was considered. Ultrashort pulses emitted by an actively mode-locked YAG:Nd3+ laser, whose spectrum was broadened in a fiber-optic waveguide, were compressed experimentally to 2.7 ns. A universal compact compressor was developed: it produced 4-ns pulses with an average radiation power of about 1 W. The dimensions of this compressor were several times smaller than those of a traditional scheme using a diffraction grating to compress pulses having an initial duration of about 100 ns.
An ultra-stable iodine-based frequency reference for space applications
NASA Astrophysics Data System (ADS)
Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim
2012-07-01
Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology, which was developed in a cooperation of HTWG Konstanz and Astrium Friedrichshafen. This setup ensures a higher long-term frequency stability due to enhanced pointing stability. Also, it takes into account space mission related criteria such as compactness, robustness, MAIVT and environmental influences (shock, vibration and thermal tests). The assembly-integration technology was already successfully environmentally tested and demonstrated in a previous setup of a compact fiber-coupled heterodyne interferometer, which serves as a demonstrator for the optical readout of the LISA gravitational reference sensor. We present first measurements of the EBB setup and a first design of an iodine frequency standard on engineering model (EM) level. The EM-setup is based on the EBB experience, but features smaller dimensions by using a multipass iodine cell and less optical components. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number 50 QT 1102 is highly appreciated.
Lithium Niobate Whispering Gallery Resonators: Applications and Fundamental Studies
NASA Astrophysics Data System (ADS)
Maleki, L.; Matsko, A. B.
Optical whispering gallery modes (WGMs) are closed circulating electromagnetic waves undergoing total internal reflection inside an axio-symmetric body of a transparent dielectric that forms a resonator. Radiative losses are negligible in these modes if the radius of the resonator exceeds several tens of wavelengths, and surface scattering losses can be made small with surface conditioning techniques. Thus, the quality factor (Q) in crystalline WGM resonators is limited by material losses that are, nevertheless, extremely small in optical materials. WGM resonators made of LiNbO3 have been successfully used in optics and microwave photonics. The resonators are characterized by narrow bandwidth, in the hundred kilohertz to gigahertz range. A proper choice of highly transparent and/or nonlinear resonator material, like lithium niobate, allows for realization of a number of high performance devices: tunable and multi-pole filters, resonant electro-optic modulators, photonic microwave receivers, opto-electronic microwave oscillators, and parametric frequency converters, among others.
Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)
2011-01-01
Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.
Swann, William C; Baumann, Esther; Giorgetta, Fabrizio R; Newbury, Nathan R
2011-11-21
Low phase-noise microwave generation has previously been demonstrated using self-referenced frequency combs to divide down a low noise optical reference. We demonstrate an approach based on a fs Er-fiber laser that avoids the complexity of self-referenced stabilization of the offset frequency. Instead, the repetition rate of the femtosecond Er-fiber laser is phase locked to two cavity-stabilized cw fiber lasers that span 3.74 THz by use of an intracavity electro-optic modulator with over 2 MHz feedback bandwidth. The fs fiber laser effectively divides the 3.74 THz difference signal to produce microwave signals at harmonics of the repetition rate. Through comparison of two identical dividers, we measure a residual phase noise on a 1.5 GHz carrier of -120 dBc/Hz at 1 Hz offset. © 2011 Optical Society of America
Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun
2017-01-23
In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.
Development of a Multi-Point Microwave Interferometry (MPMI) Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.; Jilek, Brook Anton
2015-09-01
A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of themore » MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.« less
NASA Astrophysics Data System (ADS)
Hu, Jianqiang; Liu, Ahdi; Zhou, Chu; Zhang, Xiaohui; Wang, Mingyuan; Zhang, Jin; Feng, Xi; Li, Hong; Xie, Jinlin; Liu, Wandong; Yu, Changxuan
2017-08-01
A new integrated technique for fast and accurate measurement of the quasi-optics, especially for the microwave/millimeter wave diagnostic systems of fusion plasma, has been developed. Using the LabVIEW-based comprehensive scanning system, we can realize not only automatic but also fast and accurate measurement, which will help to eliminate the effects of temperature drift and standing wave/multi-reflection. With the Matlab-based asymmetric two-dimensional Gaussian fitting method, all the desired parameters of the microwave beam can be obtained. This technique can be used in the design and testing of microwave diagnostic systems such as reflectometers and the electron cyclotron emission imaging diagnostic systems of the Experimental Advanced Superconducting Tokamak.
Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique
NASA Astrophysics Data System (ADS)
Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.
2018-03-01
Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.
Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production.
Beneroso, D; Bermúdez, J M; Montes-Morán, M A; Arenillas, A; Menéndez, J A
2016-10-01
Herein a new process is proposed to produce a syngas-rich gas fraction (>80vol% H2+CO) from biowaste based on microwave heating within two differentiated steps in order to avoid tars production. The first step consists of the microwave pyrolysis of biowaste induced by a char-based susceptor at 400-800°C; tars, char and syngas-rich gas fractions being produced. The tars are then fed into the second step where a portion of the char from the first step is used as a bed material in a 0.3:1wt% ratio. This bed is heated up by microwaves up to 800°C, allowing thermal cracking of tars and additional syngas (>90vol% H2+CO) being then produced. This new concept arises as an alternative technology to the gasification of biowastes for producing syngas with no need for catalysts or gasifying reagents to minimise tars production. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sol Galligani, Victoria; Wang, Die; Alvarez Imaz, Milagros; Salio, Paola; Prigent, Catherine
2017-10-01
In the present study, three meteorological events of extreme deep moist convection, characteristic of south-eastern South America, are considered to conduct a systematic evaluation of the microphysical parameterizations available in the Weather Research and Forecasting (WRF) model by undertaking a direct comparison between satellite-based simulated and observed microwave radiances. A research radiative transfer model, the Atmospheric Radiative Transfer Simulator (ARTS), is coupled with the WRF model under three different microphysical parameterizations (WSM6, WDM6 and Thompson schemes). Microwave radiometry has shown a promising ability in the characterization of frozen hydrometeors. At high microwave frequencies, however, frozen hydrometeors significantly scatter radiation, and the relationship between radiation and hydrometeor populations becomes very complex. The main difficulty in microwave remote sensing of frozen hydrometeor characterization is correctly characterizing this scattering signal due to the complex and variable nature of the size, composition and shape of frozen hydrometeors. The present study further aims at improving the understanding of frozen hydrometeor optical properties characteristic of deep moist convection events in south-eastern South America. In the present study, bulk optical properties are computed by integrating the single-scattering properties of the Liu(2008) discrete dipole approximation (DDA) single-scattering database across the particle size distributions parameterized by the different WRF schemes in a consistent manner, introducing the equal mass approach. The equal mass approach consists of describing the optical properties of the WRF snow and graupel hydrometeors with the optical properties of habits in the DDA database whose dimensions might be different (D
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
Feasibility study of microwave modulation DIAL system for global CO II monitoring
NASA Astrophysics Data System (ADS)
Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi
2006-12-01
A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.
Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray
2016-04-01
A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fiber Sensor Systems Based on Fiber Laser and Microwave Photonic Technologies
Fu, Hongyan; Chen, Daru; Cai, Zhiping
2012-01-01
Fiber-optic sensors, especially fiber Bragg grating (FBG) sensors are very attractive due to their numerous advantages over traditional sensors, such as light weight, high sensitivity, cost-effectiveness, immunity to electromagnetic interference, ease of multiplexing and so on. Therefore, fiber-optic sensors have been intensively studied during the last several decades. Nowadays, with the development of novel fiber technology, more and more newly invented fiber technologies bring better and superior performance to fiber-optic sensing networks. In this paper, the applications of some advanced photonic technologies including fiber lasers and microwave photonic technologies for fiber sensing applications are reviewed. FBG interrogations based on several kinds of fiber lasers, especially the novel Fourier domain mode locking fiber laser, have been introduced; for the application of microwave photonic technology, examples of microwave photonic filtering utilized as a FBG sensing interrogator and microwave signal generation acting as a transversal loading sensor have been given. Both theoretical analysis and experimental demonstrations have been carried out. The comparison of these advanced photonic technologies for the applications of fiber sensing is carried out and important issues related to the applications have been addressed and the suitable and potential application examples have also been discussed in this paper. PMID:22778591
A note on deep space optical communication link parameters
NASA Technical Reports Server (NTRS)
Dolinar, S. J.; Yuen, J. H.
1982-01-01
Topical communication in the context of a deep space communication link. Communication link analysis at the optical frequencies differs significantly from that at microwave frequencies such as the traditional S and X-bands used in deep space applications, due to the different technology of transmitter, antenna, modulators, and receivers. In addition, the important role of quantum noise in limiting system performance is quite different than that of thermal noise. The optical link design is put in a design control table format similar to a microwave telecom link design. Key considerations unique to the optical link are discussed.
KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations
NASA Astrophysics Data System (ADS)
Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave
2012-09-01
The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.
Tunable, Room Temperature THZ Emitters Based on Nonlinear Photonics
NASA Astrophysics Data System (ADS)
Sinha, Raju
The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. The increasing interest in the development of ultra-compact, tunable room temperature Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of different mechanisms of THz generation in the past decade due to its various potential applications such as biomedical diagnosis, security screening, chemical identification, life sciences and very high speed wireless communication. Despite the tremendous research and development efforts, all the available state-of-the-art THz emitters suffer from either being large, complex and costly, or operating at low temperatures, lacking tunability, having a very short spectral range and a low output power. Hence, the major objective of this research was to develop simple, inexpensive, compact, room temperature THz sources with wide-range tunability. We investigated THz radiation in a hybrid optical and THz micro-ring resonators system. For the first time, we were able to satisfy the DFG phase matching condition for the above-mentioned THz range in one single device geometry by employing a modal phase matching technique and using two separately designed resonators capable of oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we created a hot-spot in the nanogap between the dimer arms with a very large intensity enhancement of 4.1x105 at optical resonant wavelength. Then, we investigated DFG operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp toroidal response at THz frequency, then fabricated and experimentally demonstrated an efficient polarization dependent plasmonic toroid switch operating at THz frequency. In summary, we have successfully designed, analytically and numerically investigated novel THz emitters with the advantages of wide range tunability, compactness, room temperature operation, fast modulation and the possibility for monolithic integration, which are the most sought after properties in the new generation THz sources.
Chip-Scale Architectures for Precise Optical Frequency Synthesis
NASA Astrophysics Data System (ADS)
Yang, Jinghui
Scientists and engineers have investigated various types of stable and accurate optical synthesizers, where mode-locked laser based optical frequency comb synthesizers have been widely investigated. These frequency combs bridge the frequencies from optical domain to microwave domain with orders of magnitude difference, providing a metrological tool for various platforms. The demand for highly robust, scalable, compact and cost-effective femtosecond-laser synthesizers, however, are of great importance for applications in air- or space-borne platforms, where low cost and rugged packaging are particularly required. This has been afforded in the past several years due to breakthroughs in chip-scale nanofabrication, bringing advances in optical frequency combs down to semiconductor chips. These platforms, with significantly enhanced light-matter interaction, provide a fertile sandbox for research rich in nonlinear dynamics, and offer a reliable route towards low-phase noise photonic oscillators, broadband optical frequency synthesizers, miniaturized optical clockwork, and coherent terabit communications. The dissertation explores various types of optical frequency comb synthesizers based on nonlinear microresonators. Firstly, the fundamental mechanism of mode-locking in a high-quality factor microresonator is examined, supported by ultrafast optical characterizations, analytical closed-form solutions and numerical modeling. In the evolution of these frequency microcombs, the key nonlinear dynamical effect governing the comb state coherence is rigorously analyzed. Secondly, a prototype of chip-scale optical frequency synthesizer is demonstrated, with the laser frequency comb stabilized down to instrument-limited 50-mHz RF frequency inaccuracies and 10-16 fractional frequency inaccuracies, near the fundamental limits. Thirdly, a globally stable Turing pattern is achieved and characterized in these nonlinear resonators with high-efficiency conversion, subsequently generating coherent high-power terahertz radiation via plasmonic photomixers. Finally, a new universal modality of frequency combs is discussed, including satellite states, dynamical tunability, and high efficiency conversion towards direct chip-scale optical frequency synthesis at the precision metrology frontiers.
NASA Astrophysics Data System (ADS)
Steber, Amanda; Pate, Brooks
2014-06-01
Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.
Tunable microwave signal generator with an optically-injected 1310 nm QD-DFB laser.
Hurtado, Antonio; Mee, Jesse; Nami, Mohsen; Henning, Ian D; Adams, Michael J; Lester, Luke F
2013-05-06
Tunable microwave signal generation with frequencies ranging from below 1 GHz to values over 40 GHz is demonstrated experimentally with a 1310 nm Quantum Dot (QD) Distributed-Feedback (DFB) laser. Microwave signal generation is achieved using the period 1 dynamics induced in the QD DFB under optical injection. Continuous tuning in the positive detuning frequency range of the quantum dot's unique stability map is demonstrated. The simplicity of the experimental configuration offers promise for novel uses of these nanostructure lasers in Radio-over-Fiber (RoF) applications and future mobile networks.
Ultra-thin metasurface microwave flat lens for broadband applications
Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; ...
2017-05-31
In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less
Ultra-thin metasurface microwave flat lens for broadband applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio
In this paper, we demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionalitymore » <4.5° and confirming high-quality beam collimation along the propagation direction. Finally, the demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.« less
Ultra-thin metasurface microwave flat lens for broadband applications
Azad, Abul K.; Efimov, Anatoly V.; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J.
2017-01-01
We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications. PMID:29104299
Ultra-thin metasurface microwave flat lens for broadband applications.
Azad, Abul K; Efimov, Anatoly V; Ghosh, Shuprio; Singleton, John; Taylor, Antoinette J; Chen, Hou-Tong
2017-05-29
We demonstrate a metasurface-based ultrathin flat lens operating at microwave frequencies. A series of subwavelength metallic split-ring resonators, which are sandwiched between two cross-polarized metallic gratings, are defined to obtain a radially symmetric parabolic phase distribution, covering relative phase differences ranging from 0 to 2.5π radians to create a lens. The tri-layer lens exhibits focusing/collimating of broadband microwaves from 7.0 to 10.0 GHz, with a gain enhancement of 17 dBi at a central wavelength 9.0 GHz while fed by a rectangular horn antenna. The measured focal length agrees reasonably well with design, achieving a 3 dB directionality <4.5° and confirming high-quality beam collimation along the propagation direction. The demonstrated metasurface flat lens enables light-weight, low-cost, and easily deployable flat transceivers for microwave communication, detection, and imaging applications.
High-Sensitivity Microwave Optics.
ERIC Educational Resources Information Center
Nunn, W. M., Jr.
1981-01-01
Describes a 3.33-cm wavelength (9 GHz) microwave system that achieves a high overall signal sensitivity and a well-collimated beam with moderate-size equipment. The system has been used to develop microwave versions of the Michelson interferometer, Bragg reflector, Brewster's law and total internal reflection, and Young's interference experiment.…
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1990-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation, and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
Optical and microwave detection using Bi-Sr-Ca-Cu-O thin films
NASA Technical Reports Server (NTRS)
Grabow, B. E.; Sova, R. M.; Boone, B. G.; Moorjani, K.; Kim, B. F.; Bohandy, J.; Adrian, F.; Green, W. J.
1991-01-01
Recent progress at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in the development of optical and microwave detectors using high temperature superconducting thin films is described. Several objectives of this work have been accomplished, including: deposition of Bi-Sr-Ca-Cu-O thin films by laser abation processing (LAP); development of thin film patterning techniques, including in situ masking, wet chemical etching, and laser patterning; measurements of bolometric and non-bolometric signatures in patterned Bi-Sr-Ca-Cu-O films using optical and microwave sources, respectively; analysis and design of an optimized bolometer through computer simulation; and investigation of its use in a Fourier transform spectrometer. The focus here is primarily on results from the measurement of the bolometric and non-bolometric response.
Compact instrument for fluorescence image-guided surgery
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash
2010-03-01
Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.
Phase-locking of a 2.7-THz Quantum Cascade Laser to a Microwave Reference
NASA Astrophysics Data System (ADS)
Baryshev, A. M.; Khosropanah, P.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; William, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.
2009-04-01
We demonstrate phase-locking of a 2.7-THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier-chain (x2x3x2) from a microwave synthesizer at 15 GHz. Both laser and reference radiations are coupled into a hot electron bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. Spectral analysis of the beat signal (see fig. 1) confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.
High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986
NASA Astrophysics Data System (ADS)
Ramer, O. Glenn; Sierak, Paul
Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.
Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Lei; Tittel, Frank K.; Li, Chunguang
2016-02-25
Two compact TDLAS sensor systems based on different structural optical cores were developed. The two optical cores combine two recent developments, gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPGC) with the goal to create compact TDLAS based sensors for the mid-IR gas detection with high detection sensitivity and low power consumption. The sensors achieved minimum detection limits of ~5 ppbv and ~8 ppbv, respectively, for CH 4 and C 2H 6 concentration measurements with a 3.7-W power consumption.
Optical Manipulation with Plasmonic Beam Shaping Antenna Structures
Jun, Young Chul; Brener, Igal
2012-01-01
Near-field optical trapping of objects using plasmonic antenna structures has recently attracted great attention. However, metal nanostructures also provide a compact platform for general wavefront engineering of intermediate and far-field beams. Here, we analyze optical forces generated by plasmonic beam shaping antenna structures and show that they can be used for general optical manipulation such as guiding of a dielectric particle along a linear or curved trajectory. This removes the need for bulky diffractive optical components and facilitates the integration of optical force manipulation into a highly functional, compact system.
NASA Astrophysics Data System (ADS)
Iturbide-Sanchez, Flavio
This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the implementation of a dense network of radiometers designed to perform measurements of the 3-D water vapor field, with the potential to improve weather forecasting, particularly the location and timing of the initiation of intense convective activity responsible for potentially damaging winds, rain, hail and lightning.
Cable delay compensator for microwave signal distribution over optical fibers
NASA Astrophysics Data System (ADS)
Primas, Lori E.
1990-12-01
The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.
Design of pulsed guiding magnetic field for high power microwave generators.
Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H
2014-09-01
In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.
Kumar, Narender; Rodrigues, G; Lakshmy, P S; Baskaran, R; Mathur, Y; Ahuja, R; Kanjilal, D
2014-02-01
A compact microwave ion source has been designed and developed for operation at a frequency of 2.45 GHz. The axial magnetic field is based on two permanent magnet rings, operating in the "off-resonance" mode and is tunable by moving the permanent magnets. In order to understand the electron energy distribution function, x-ray bremsstrahlung has been measured in the axial direction. Simulation studies on the x-ray bremsstrahlung have been carried out to compare with the experimental results. The effect of the axial magnetic field with respect to the microwave launching position and the position of the extraction electrode on the x-ray bremsstrahlung have been studied.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2014-04-29
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
RF/optical shared aperture for high availability wideband communication RF/FSO links
Ruggiero, Anthony J; Pao, Hsueh-yuan; Sargis, Paul
2015-03-24
An RF/Optical shared aperture is capable of transmitting and receiving optical signals and RF signals simultaneously. This technology enables compact wide bandwidth communications systems with 100% availability in clear air turbulence, rain and fog. The functions of an optical telescope and an RF reflector antenna are combined into a single compact package by installing an RF feed at either of the focal points of a modified Gregorian telescope.
NASA Astrophysics Data System (ADS)
Choi, D. H.; An, Y. H.; Chung, K. J.; Hwang, Y. S.
2012-01-01
A 94 GHz heterodyne interferometer system was designed to measure the plasma density of VEST (Versatile Experiment Spherical Torus), which was recently built at Seoul National University. Two 94 GHz Gunn oscillators with a frequency difference of 40 MHz were used in the microwave electronics part of a heterodyne interferometer system. A compact beam focusing system utilizing a pair of plano-convex lenses and a concave mirror was designed to maximize the effective beam reception and spatial resolution. Beam path analysis based on Gaussian optics was used in the design of the beam focusing system. The design of the beam focusing system and the beam path analysis were verified with a couple of experiments that were done within an experimental framework that considered the real dimensions of a vacuum vessel. Optimum distances between the optical components and the beam radii along the beam path obtained from the experiments were in good agreement with the beam path analysis using the Gaussian optics. Both experimentation and numerical calculations confirmed that the designed beam focusing system maximized the spatial resolution of the measurement; moreover, the beam waist was located at the center of the plasma to generate a phase shift more effectively in plasmas. The interferometer system presented in this paper is expected to be used in the measurements of line integrated plasma densities during the start-up phase of VEST.
Microwave-radiation-induced molecular structural rearrangement of hen egg-white lysozyme
NASA Astrophysics Data System (ADS)
Singh, Anang K.; Burada, P. S.; Bhattacharya, Susmita; Bag, Sudipta; Bhattacharya, Amitabha; Dasgupta, Swagata; Roy, Anushree
2018-05-01
We have investigated the nonthermal effect of 10 GHz/22 dBm microwave radiation on hen egg-white lysozyme (HEWL) over different irradiation times, ranging from 2 min to 1 h. To ensure a control over the radiation parameters, a pair of microwave rectangular waveguides is used to irradiate the samples. Optical spectroscopic measurements, which include UV-visible absorption spectroscopy, Raman spectroscopy, and far UV CD spectroscopy, reveal the exposure of the buried tryptophan (Trp) residues of the native molecule between 15 and 30 min of radiation. The higher duration of the perturbation leads to a compact structure of the protein and Trp residues are buried again. Interestingly, we do not find any change in the secondary structure of the protein even for 1 h duration of radiation. The relaxation dynamics of the irradiated molecules also has been discussed. We have shown that the molecules relax to their native configuration in 7-8 h after the radiation field is turned off. The structural rearrangement over the above timescale has further been probed by a model calculation, based on a modified Langevin equation. Our coarse-grained simulation approach utilizes the mean of atomic positions and net atomic charge of each amino acid of native HEWL to mimic the initial conformation of the molecule. The modified positions of the residues are then calculated for the given force fields. The simulation results reveal the nonmonotonous change in overall size of the molecule, as observed experimentally. The radiation parameters used in our experiments are very similar to those of some of the electronic devices we often come across. Thus, we believe that the results of our studies on a simple protein structure may help us in understanding the effect of radiation on complex biological systems as well.
Optical-microwave interactions in semiconductor devices
NASA Astrophysics Data System (ADS)
Figueroa, L.; Slayman, C.; Yen, H. W.
1980-02-01
GaAs FETs with built-in optical waveguides are being developed. The purpose is to allow optical signals to be coupled into the active region of the devices efficiently. These FETs will be useful for optical mixing, optical injection locking, and optical detection purposes.
Radio-over-fiber using an optical antenna based on Rydberg states of atoms
NASA Astrophysics Data System (ADS)
Deb, A. B.; Kjærgaard, N.
2018-05-01
We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
Herrero, M Antonia; Kremsner, Jennifer M; Kappe, C Oliver
2008-01-04
The concept of nonthermal microwave effects has received considerable attention in recent years and is the subject of intense debate in the scientific community. Nonthermal microwave effects have been postulated to result from a direct stabilizing interaction of the electric field with specific (polar) molecules in the reaction medium that is not related to a macroscopic temperature effect. In order to probe the existence of nonthermal microwave effects, four synthetic transformations (Diels-Alder cycloaddition, alkylation of triphenylphosphine and 1,2,4-triazole, direct amide bond formation) were reevaluated under both microwave dielectric heating and conventional thermal heating. In all four cases, previous studies have claimed the existence of nonthermal microwave effects in these reactions. Experimentally, significant differences in conversion and/or product distribution comparing the conventionally and microwave-heated experiments performed at the same measured reaction temperature were found. The current reevaluation of these reactions was performed in a dedicated reactor setup that allowed accurate internal reaction temperature measurements using a multiple fiber-optic probe system. Using this technology, the importance of efficient stirring and internal temperature measurement in microwave-heated reactions was made evident. Inefficient agitation leads to temperature gradients within the reaction mixture due to field inhomogeneities in the microwave cavity. Using external infrared temperature sensors in some cases results in significant inaccuracies in the temperature measurement. Applying the fiber-optic probe temperature monitoring device, a critical reevaluation of all four reactions has provided no evidence for the existence of nonthermal microwave effects. Ensuring efficient agitation of the reaction mixture via magnetic stirring, no significant differences in terms of conversion and selectivity between experiments performed under microwave or oil bath conditions at the same internally measured reaction temperatures were experienced. The observed effects were purely thermal and not related to the microwave field.
Photonic microwave signals with zeptosecond-level absolute timing noise
NASA Astrophysics Data System (ADS)
Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann
2017-01-01
Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.
Al-Armaghany, Allann; Tong, Kenneth; Highton, David; Leung, Terence S
2016-01-01
We have previously developed a hybrid microwave-optical system to monitor microvascular changes in response to thermal provocation in muscle. The hybrid probe is capable of inducing deep heat from the skin surface using mild microwaves (1-3 W) and raises the tissue temperature by a few degrees Celsius. This causes vasodilation and the subsequent increase in blood volume is detected by the hybrid probe using near infrared spectroscopy. The hybrid probe is also equipped with a skin cooling system which lowers the skin temperature while allowing microwaves to warm up deeper tissues. The hybrid system can be used to assess the condition of the vasculature in response to thermal stimulation. In this validation study, thermal imaging has been used to assess the temperature distribution on the surface of phantoms and human calf, following microwave warming. The results show that the hybrid system is capable of changing the skin temperature with a combination of microwave warming and skin cooling. It can also detect thermal responses in terms of changes of oxy/deoxy-hemoglobin concentrations.
Mora, José; Ortigosa-Blanch, Arturo; Pastor, Daniel; Capmany, José
2006-08-21
We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2x1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.
Cost-effective optical switch matrix for microwave phased-array
NASA Technical Reports Server (NTRS)
Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.
1991-01-01
An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.
Microwave Photonics Systems Based on Whispering-gallery-mode Resonators
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.
2013-01-01
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358
Microwave photonics systems based on whispering-gallery-mode resonators.
Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K
2013-08-05
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
Opto-electronic microwave oscillator
NASA Astrophysics Data System (ADS)
Yao, X. Steve; Maleki, Lute
1996-12-01
Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.
NASA Astrophysics Data System (ADS)
Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong
2017-10-01
In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Guo, Ling-Xia; Xiong, Hao; Wu, Ying
2018-02-01
We investigate the high-order-sideband generation (HSG) in a hybrid cavity electro-photomechanical system in which an optical cavity is driven by two optical fields (a monochromatic pump field and a nanosecond Gaussian probe pulse with huge numbers of wave cycles), and at the same time a microwave cavity is driven by a monochromatic ac voltage bias. We show that even if the input powers of two driven optical fields are comparatively low the HSG spectra can be induced and enhanced, and the sideband plateau is extended remarkably with the power of the ac voltage bias increasing. It is also shown that the driven ac voltage bias has profound effects on the carrier-envelope-phase-dependent effects of the HSG in the hybrid cavity electro-photomechanical system. Our research may provide an effective way to control the HSG of optical fields by using microwave fields in cavity optomechanics systems.
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
NASA Astrophysics Data System (ADS)
Fischer, M.; Sperlich, A.; Kraus, H.; Ohshima, T.; Astakhov, G. V.; Dyakonov, V.
2018-05-01
We investigate the pump efficiency of silicon-vacancy-related spins in silicon carbide. For a crystal inserted into a microwave cavity with a resonance frequency of 9.4 GHz, the spin population inversion factor of 75 with the saturation optical pump power of about 350 mW is achieved at room temperature. At cryogenic temperature, the pump efficiency drastically increases, owing to an exceptionally long spin-lattice relaxation time exceeding one minute. Based on the experimental results, we find realistic conditions under which a silicon carbide maser can operate in continuous-wave mode and serve as a quantum microwave amplifier.
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PMmore » suppression ratio with potential improvement via DC offset adjustment.« less
Optical distribution of local oscillators in future telecommunication satellite payloads
NASA Astrophysics Data System (ADS)
Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques
2017-11-01
The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.
NASA Astrophysics Data System (ADS)
Pu, Tao; Wang, Wei wei
2018-01-01
In order to apply optical injection effect in Microwave Photonics system, The red-shift effect of the cavity mode of the DFB semiconductor laser under single-frequency optical injection is studied experimentally, and the red-shift curve of the cavity mode is measured. The wavelength-selective amplification property of the DFB semiconductor laser under multi-frequency optical injection is also investigated, and the gain curves for the injected signals in different injection ratios are measured in the experiment. A novel and simple structure to implement a single-passband MPF with wideband tunability based on the wavelength-selective amplification of a DFB semiconductor laser under optical injection is proposed and experimentally demonstrated. MPFs with center frequency tuned from 13 to 41 GHz are realized in the experiment. A wideband and frequency-tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. By optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency makes the loop oscillate without the necessary of the electrical filter. An experiment is performed; microwave signals with frequency tuned from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers.
NASA Astrophysics Data System (ADS)
Javidi, Bahram
The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.
A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation.
Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul
2016-10-13
The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.
A New Compact Double-Negative Miniaturized Metamaterial for Wideband Operation
Hasan, Md. Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Sikder Sunbeam; Islam, Mohammad Tariqul
2016-01-01
The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size. PMID:28773951
Ge, Jia; Feng, Hanlin; Scott, Guy; Fok, Mable P
2015-01-01
A high-speed tunable microwave photonic notch filter with ultrahigh rejection ratio is presented, which is achieved by semiconductor optical amplifier (SOA)-based single-sideband modulation and optical spectral filtering with a phase modulator-incorporated Lyot (PM-Lyot) filter. By varying the birefringence of the phase modulator through electro-optic effect, electrically tuning of the microwave photonic notch filter is experimentally achieved at tens of gigahertz speed. The use of SOA-polarizer based single-sideband modulation scheme provides good sideband suppression over a wide frequency range, resulting in an ultrahigh rejection ratio of the microwave photonic notch filter. Stable filter spectrum with bandstop rejection ratio over 60 dB is observed over a frequency tuning range from 1.8 to 10 GHz. Compare with standard interferometric notch filter, narrower bandwidth and sharper notch profile are achieved with the unique PM-Lyot filter, resulting in better filter selectivity. Moreover, bandwidth tuning is also achieved through polarization adjustment inside the PM-Lyot filter, that the 10-dB filter bandwidth is tuned from 0.81 to 1.85 GHz.
Microwave characteristics of GaAs MMIC integratable optical detectors
NASA Technical Reports Server (NTRS)
Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.
1989-01-01
Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.
Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers
2017-03-20
the linewidth in two ways: (1) increasing the photon lifetime due to effective cavity length enhancement, and (2) providing negative optical...structures. Some devices are also labeled. Figure 1. Microscope image of the photonic microwave generator comprising of two tunable lasers, a coupler...Integrated Photodiodes on Silicon,” IEEE JQE, vol.51, no.11, pp.1-6, Nov. 2015 Figure 9. (left) Optical spectra of two lasers comprising a photonic
Rice Crop Monitoring Using Microwave and Optical Remotely Sensed Image Data
NASA Astrophysics Data System (ADS)
Suga, Y.; Konishi, T.; Takeuchi, S.; Kitano, Y.; Ito, S.
Hiroshima Institute of Technology HIT is operating the direct down-links of microwave and optical satellite data in Japan This study focuses on the validation for rice crop monitoring using microwave and optical remotely sensed image data acquired by satellites referring to ground truth data such as height of crop ratio of crop vegetation cover and leaf area index in the test sites of Japan ENVISAT-1 ASAR data has a capability to capture regularly and to monitor during the rice growing cycle by alternating cross polarization mode images However ASAR data is influenced by several parameters such as landcover structure direction and alignment of rice crop fields in the test sites In this study the validation was carried out combined with microwave and optical satellite image data and ground truth data regarding rice crop fields to investigate the above parameters Multi-temporal multi-direction descending and ascending and multi-angle ASAR alternating cross polarization mode images were used to investigate rice crop growing cycle LANDSAT data were used to detect landcover structure direction and alignment of rice crop fields corresponding to the backscatter of ASAR As the result of this study it was indicated that rice crop growth can be precisely monitored using multiple remotely sensed data and ground truth data considering with spatial spectral temporal and radiometric resolutions
NASA Astrophysics Data System (ADS)
Matos, Wladiana O.; Menezes, Eveline A.; Gonzalez, Mário H.; Costa, Letícia M.; Trevizan, Lilian C.; Nogueira, Ana Rita A.
2009-06-01
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) micro-vessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 µL. The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe, Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2 4-1 fractional factorial design: 650 W microwave power, 7 min digestion time, 50 µL nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials.
Wave-optics modeling of the optical-transport line for passive optical stochastic cooling
NASA Astrophysics Data System (ADS)
Andorf, M. B.; Lebedev, V. A.; Piot, P.; Ruan, J.
2018-03-01
Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream "pickup" undulator to the downstream "kicker" undulator. In this paper, we present simulation results using wave-optics calculation carried out with the SYNCHROTRON RADIATION WORKSHOP (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrable Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Herren, K.; Hayden, M.; McDonald, K.; Sims, J. A.; Semmel, C. L.
1996-01-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
Investigation Into Radiation-Induced Compaction of Zerodur (trademark)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, D.L.; Herren, K.; Hayden, M.
1996-03-01
Zerodur is a low coefficient of thermal expansion glass-ceramic material. This property makes Zerodur an excellent material for high precision optical substrates. Functioning as a high precision optical substrate, a material must be dimensionally stable in the system operating environment. Published data indicate that Zerodur is dimensionally unstable when exposed to large doses of ionizing radiation. The dimensional instability is discussed as an increase in Zerodur density. This increase in density is described as a compaction. Experimental data showing proton-induced compaction of Zerodur is presented. The dependence of compaction on proton dose was determined to be a power law relationship.
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
Software-defined microwave photonic filter with high reconfigurable resolution
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-01-01
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability. PMID:27759062
Software-defined microwave photonic filter with high reconfigurable resolution.
Wei, Wei; Yi, Lilin; Jaouën, Yves; Hu, Weisheng
2016-10-19
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we present a polarization-insensitive single-passband arbitrary-shaped MPF with ~GHz bandwidth based on stimulated Brillouin scattering (SBS) in optical fibre. For the first time the filter shape, bandwidth and central frequency can all be precisely defined by software with ~MHz resolution. The unprecedented multi-dimensional filter flexibility offers new possibilities to process microwave signals directly in optical domain with high precision thus enhancing the MPF functionality. Nanosecond pulse shaping by implementing precisely defined filters is demonstrated to prove the filter superiority and practicability.
Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng
2015-07-13
We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.
Microwave phase conjugation using artificial nonlinear microwave surfaces
NASA Astrophysics Data System (ADS)
Chang, Yian
1997-09-01
A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.
Frequency locking of compact laser-diode modules at 633 nm
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin
2018-02-01
This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Note: Compact and light displacement sensor for a precision measurement system in large motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Heon, E-mail: shlee@andong.ac.kr
We developed a compact and light displacement sensor applicable to systems that require wide range motions of its sensing device. The proposed sensor utilized the optical pickup unit of the optical disk drive, which has been used applied to atomic force microscopy (AFM) because of its compactness and lightness as well as its high performance. We modified the structure of optical pickup unit and made the compact sensor driver attachable to a probe head of AFM to make large rotation. The feasibilities of the developed sensor for a general probe-moving measurement device and for probe-rotating AFM were verified. Moreover, amore » simple and precise measurement of alignment between centers of rotator and probe tip in probe-rotation AFM was experimentally demonstrated using the developed sensor.« less
Development of Planar Optics for an Optical Tracking Sensor
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro
1998-10-01
An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.
Epstein, Ariel; Wong, Joseph P. S.; Eleftheriades, George V.
2016-01-01
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators. PMID:26790605
Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V
2016-01-21
One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications
NASA Technical Reports Server (NTRS)
Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth
1994-01-01
Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.
Laser-Ablated Ba(0.50)Sr(0.50)TiO3/LaAlO3 Films Analyzed Statistically for Microwave Applications
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.
2003-01-01
Scanning phased-array antennas represent a highly desirable solution for futuristic near-Earth and deep space communication scenarios requiring vibration-free, rapid beam steering and enhanced reliability. The current state-of-practice in scanning phased arrays is represented by gallium arsenide (GaAs) monolithic microwave integrated circuit (MMIC) technology or ferrite phase shifters. Cost and weight are significant impediments to space applications. Moreover, conventional manifold-fed arrays suffer from beam-forming loss that places considerable burden on MMIC amplifiers. The inefficiency can result in severe thermal management problems.
Compact MEMS-based adaptive optics: optical coherence tomography for clinical use
NASA Astrophysics Data System (ADS)
Chen, Diana C.; Olivier, Scot S.; Jones, Steven M.; Zawadzki, Robert J.; Evans, Julia W.; Choi, Stacey S.; Werner, John S.
2008-02-01
We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography (OCT) system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of limitations on current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in previous AO-OCT instruments. In this instrument, we incorporate an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminates the tedious process of using trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.
NASA Astrophysics Data System (ADS)
Nakayama, Tomoko; Takayama, Yoshihisa; Fujikawa, Chiemi; Watanabe, Eriko; Kodate, Kashiko
2014-09-01
In recent years, there has been considerable interest in satellite-ground laser communication due to an increase in the quantity of data exchanged between satellites and the ground. However, improving the quality of this data communication is necessary as laser communication is vulnerable to air fluctuation. We first verify the spatial and temporal averaging effects using light beam intensity images acquired from middle-range transmission experiments between two ground positions and the superposition of these images using simulations. Based on these results, we propose a compact and lightweight optical duplicate system as a multi-beam generation device with which it is easy to apply the spatial averaging effect. Although an optical duplicate system is already used for optical correlation operations, we present optimum design solutions, design a compact optical duplicate system for satellite-ground laser communications, and demonstrate the efficacy of this system using simulations.
NASA Astrophysics Data System (ADS)
Sreekala, P. S.; Honey, John; Aanandan, C. K.
2018-05-01
In this communication, the broadband artificial dielectric plasma behavior of Camphor Sulphonic acid doped Polyaniline (PANI-CSA) film at microwave frequencies is experimentally verified. The fabricated PANI-CSA films have been experimentally characterized by rectangular wave guide measurements for a broad range of frequencies within the X band and the effective material parameters, skin depth and conductivity have been extracted from the scattering parameters. Since most of the artificial materials available today are set up by consolidating two structured materials which independently demonstrates negative permittivity and negative permeability, this open another strategy for creation of compact single negative materials for microwave applications. The proposed doping can shift the double positive material parameter of the sample to single negative in nature.
Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.
1993-01-01
A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.
Clark, M.C.; Coleman, P.D.; Marder, B.M.
1993-08-10
A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.
Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics
NASA Astrophysics Data System (ADS)
İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen
2018-02-01
In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.
Electric field measurement in microwave discharge ion thruster with electro-optic probe.
Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi
2012-12-01
In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.
Lee, Dong-Joon; Kang, No-Weon; Choi, Jun-Ho; Kim, Junyeon; Whitaker, John F.
2011-01-01
In this paper we review recent design methodologies for fully dielectric electro-optic sensors that have applications in non-destructive evaluation (NDE) of devices and materials that radiate, guide, or otherwise may be impacted by microwave fields. In many practical NDE situations, fiber-coupled-sensor configurations are preferred due to their advantages over free-space bulk sensors in terms of optical alignment, spatial resolution, and especially, a low degree of field invasiveness. We propose and review five distinct types of fiber-coupled electro-optic sensor probes. The design guidelines for each probe type and their performances in absolute electric-field measurements are compared and summarized. PMID:22346604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James
2016-05-23
Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.
Opto-electronic oscillator and its applications
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute
1997-04-01
We review the properties of a new class of microwave oscillators called opto-electronic oscillators (OEO). We present theoretical and experimental results of a multi-loop technique for single mode selection. We then describe a new development called coupled OEO (COEO) in which the electrical oscillation is directly coupled with the optical oscillation, producing an OEO that generates stable optical pulses and single mode microwave oscillation simultaneously. Finally we discuss various applications of OEO.
NASA Astrophysics Data System (ADS)
Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.
1984-08-01
High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.
Monitoring Wetlands Area Using Microwave, Optical And In-Situ Data
NASA Astrophysics Data System (ADS)
Dabrowska, Katarzyna; Zielinska, Maria Budzynska
2011-01-01
The study of Wetlands has been continue within the PECS Project: “Study and implement remote sensing techniques for the assessment of carbon balances for different biomasses and soil moistures within various ecosystems”. The research has been conducted in Biebrza valley, one of the largest wetland in Europe, since 2003. Recently, to existing data base of wetlands monitoring Carbon flux measurements using the Chamber Method and Eddy Correlation Method have been included. The study aims at monitoring and mapping various soil-vegetation variables and the assessment of the level of carbon balance using optical and microwave satellite data along with ground truth observations. Optical images have been used for classification of wetlands vegetation and calculation of LAI and biomass. For the assessment of water balance, energy budget approach has been applied. Microwave images have been used for the assessment of soil moisture and biomass.
NASA Technical Reports Server (NTRS)
Longbothum, R. L.
1975-01-01
Stratospheric and mesospheric water vapor measurements were taken using the microwave lines at 22 GHz (22.235 GHz) and 183 GHz (183.31 GHz). The resonant cross sections for both the 22 GHz and the 183 GHz lines were used to model the optical depth of atmospheric water vapor. The range of optical depths seen by a microwave radiometer through the earth's limb was determined from radiative transfer theory. Radiometer sensitivity, derived from signal theory, was compared with calculated optical depths to determine the maximum height to which water vapor can be measured using the following methods: passive emission, passive absorption, and active absorption. It was concluded that measurements using the 22 GHz line are limited to about 50 km whereas the 183 GHz line enables measurements up to and above 100 km for water vapor mixing ratios as low as 0.1 ppm under optimum conditions.
Zhang, Shuangyou; Wu, Jiutao; Leng, Jianxiao; Lai, Shunnan; Zhao, Jianye
2014-11-15
In this Letter, we demonstrate a fully stabilized Er:fiber frequency comb by using a fiber-based, high-precision optical-microwave phase detector. To achieve high-precision and long-term phase locking of the repetition rate to a microwave reference, frequency control techniques (tuning pump power and cavity length) are combined together as its feedback. Since the pump power has been used for stabilization of the repetition rate, we introduce a pair of intracavity prisms as a regulator for carrier-envelope offset frequency, thereby phase locking one mode of the comb to the rubidium saturated absorption transition line. The stabilized comb performs the same high stability as the reference for the repetition rate and provides a residual frequency instability of 3.6×10(-13) for each comb mode. The demonstrated stabilization scheme could provide a high-precision comb for optical communication, direct frequency comb spectroscopy.
WGM Resonators for Terahertz-to-Optical Frequency Conversion
NASA Technical Reports Server (NTRS)
Strekalov,Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Nu, Nan
2008-01-01
Progress has been made toward solving some practical problems in the implementation of terahertz-to-optical frequency converters utilizing whispering-gallery-mode (WGM) resonators. Such frequency converters are expected to be essential parts of non-cryogenic terahertz- radiation receivers that are, variously, under development or contemplated for a variety of applications in airborne and spaceborne instrumentation for astronomical and military uses. In most respects, the basic principles of terahertz-to-optical frequency conversion in WGM resonators are the same as those of microwave (sub-terahertz)-to-optical frequency conversion in WGM resonators, various aspects of which were discussed in the three preceeding articles. To recapitulate: In a receiver following this approach, a preamplified incoming microwave signal (in the present case, a terahertz signal) is up-converted to an optical signal by a technique that exploits the nonlinearity of the electromagnetic response of a whispering-gallery-mode (WGM) resonator made of LiNbO3 or another suitable electro-optical material. Upconversion takes place by three-wave mixing in the resonator. To ensure the required interaction among the optical and terahertz signals, the WGM resonator must be designed and fabricated to function as an electro-optical modulator while simultaneously exhibiting (1) resonance at the required microwave and optical operating frequencies and (2) phase matching among the microwave and optical signals circulating in the resonator. Downstream of the WGM resonator, the up-converted signal is processed photonically by use of a tunable optical filter or local oscillator and is then detected. The practical problems addressed in the present development effort are the following: Satisfaction of the optical and terahertz resonance-frequency requirement is a straightforward matter, inasmuch as the optical and terahertz spectra can be measured. However, satisfaction of the phase-matching requirement is more difficult. The approach followed in the present development is to perform computer simulations of the microwave and optical signals circulating in the resonator to test for phase matching. To enable excitation of the terahertz WGM resonator mode, it is also necessary to ensure phase matching between that mode and the incoming terahertz radiation. In the present development, the incoming signal is coupled into the WGM resonator via a tapered waveguide in the form of a fused silica rod. The phase-matching requirement is satisfied at one point along the taper; the rod is positioned with this point in proximity to the WGM resonator. To maximize the conversion efficiency, it is necessary to maximize the spatial overlap among the terahertz and optical modes in the WGM resonator. In the absence of a special design effort to address this issue, there would be little such overlap because, as a consequence of a large difference between wavelengths, the optical and terahertz modes would be concentrated at different depths from the rim of a WGM resonator. In the present development, overlap is ensured by constructing the WGM resonator as a ring (see figure) so thin that the optical and terahertz modes are effectively forced to overlap.
Optically coupled methods for microwave impedance microscopy
NASA Astrophysics Data System (ADS)
Johnston, Scott R.; Ma, Eric Yue; Shen, Zhi-Xun
2018-04-01
Scanning Microwave Impedance Microscopy (MIM) measurement of photoconductivity with 50 nm resolution is demonstrated using a modulated optical source. The use of a modulated source allows for the measurement of photoconductivity in a single scan without a reference region on the sample, as well as removing most topographical artifacts and enhancing signal to noise as compared with unmodulated measurement. A broadband light source with a tunable monochrometer is then used to measure energy resolved photoconductivity with the same methodology. Finally, a pulsed optical source is used to measure local photo-carrier lifetimes via MIM, using the same 50 nm resolution tip.
Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators
NASA Astrophysics Data System (ADS)
Peterson, R. W.
The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.
Real-time millimeter-wave imaging radiometer for avionic synthetic vision
NASA Astrophysics Data System (ADS)
Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.
1994-07-01
ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.
NASA Technical Reports Server (NTRS)
Gaier, T.; Kangaslahti, P.; Lawrence, C. R.; Leitch, E. M.; Wollack, E. J.
2012-01-01
The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ( approx 1 deg.) . Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 micro Ks(exp 1/2)) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 micro Ks(exp 1/2) at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01 (QUIET Collaboration 2012) The two arrays together cover multipoles in the range l approximately equals 25-975 . These are the largest HEMT-ba.sed arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument,
The Compact and Inexpensive "Arrowhead" Setup for Holographic Interferometry
ERIC Educational Resources Information Center
Ladera, Celso L.; Donoso, Guillermo
2011-01-01
Hologram recording and holographic interferometry are intrinsically sensitive to phase changes, and therefore both are easily perturbed by minuscule optical path perturbations. It is therefore very convenient to bank on holographic setups with a reduced number of optical components. Here we present a compact off-axis holographic setup that…
Compact low-cost detection electronics for optical coherence imaging
Akcay, A. C.; Lee, K. S.; Furenlid, L. R.; Costa, M. A.; Rolland, J. P.
2015-01-01
A compact and low-cost detection electronics scheme for optical coherence imaging is demonstrated. The performance of the designed electronics is analyzed in comparison to a commercial lock-in amplifier of equal bandwidth. Images of a fresh-onion sample are presented for each detection configuration. PMID:26617422
Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan
2015-11-16
Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less
Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate
Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750
Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.
Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A
2014-01-01
This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.
Compact earth stations, hubs for energy industry expanding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimabukuro, T.
1992-02-01
That paper reports that advances in gallium arsenide (GaAs) technology, monolithic microwave integrated circuits (MMIC) and large scale integrated (VLSF) circuits, have contributed to the mass production of very reliable small aperture terminals (VSATs). Less publicized, but equally important to multinational energy organizations, are recent developments in compact earth station design and solid-state hubs for VSAT networks made possible by the new technology. Many applications are suited for the energy industry that involve compact earth station terminals and hubs. The first group of applications describes the use of GTE's ACES earth station for the Zaire Gulf Oil Co. in Zairemore » and for AMOCO in Trinidad. The second group of applications describes the compact hub for VSAT networks, which could potentially have a number of data communication uses in the energy industry, such as, IBM/SNA, X.25, or supervisory control an data acquisition (SCADA) applications.« less
Development of New Electro-Optic and Acousto-Optic Materials.
1983-11-01
Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.
NASA Astrophysics Data System (ADS)
Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.
2017-07-01
Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also demonstrated.
NASA Astrophysics Data System (ADS)
Han, Jaeeun; Kim, Jung-ho; Park, Sang-duck; Yoon, Moohyun; Park, Soo Yong; Choi, Do Won; Shin, Jin Woo; So, Joon Ho
2009-11-01
A coaxial-type water load was used to measure the voltage output from a Marx generator for a high power microwave source. This output had a rise time of 20 ns, a pulse duration of a few hundred ns, and an amplitude up to 500 kV. The design of the coaxial water load showed that it is an ideal resistive divider and can also accurately measure a short pulse. Experiments were performed to test the performance of the Marx generator with the calibrated coaxial water load.
Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders
NASA Astrophysics Data System (ADS)
Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.
2017-02-01
Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.
High-Q microwave photonic filter with a tuned modulator.
Capmany, J; Mora, J; Ortega, B; Pastor, D
2005-09-01
We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.
Compact and efficient blue laser sheet for measurement
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wu, Bin; Wang, Yanwei; Yan, Boxia
2017-10-01
Compact and efficient blue laser sheet has important applications in the field of measurement, with laser diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact and efficient CW 473nm blue laser sheet composed of dual path liner blue laser is realized. At an incident pump power of 12.4W, up to 1.4W output power of the compound blue laser is achieved, the optical-to-optical conversion efficiency is as high as 11.3%.
NASA Astrophysics Data System (ADS)
Ortiz, D.; Casas, Francisco J.; Ruiz-Lombera, R.; Mirapeix, J.
2017-04-01
In this paper, a microwave interferometer prototype with a near-infra-red optical correlator is proposed as a solution to get a large-format interferometer with hundreds of receivers for radio astronomy applications. A 10 Gbits/s Lithium Niobate modulator has been tested as part of an electro-optic correlator up-conversion stage that will be integrated in the interferometer prototype. Its internal circuitry consists of a single-drive modulator biased by a SubMiniature version A (SMA) connector allowing to up-convert microwave signals with bandwidths up to 12.5 GHz to the near infrared band. In order to characterize it, a 12 GHz tone and a bias voltage were applied to the SMA input using a polarization tee. Two different experimental techniques to stabilize the modulator operation point in its minimum optical carrier output power are described. The best achieved results showed a rather stable spectrum in amplitude and wavelength at the output of the modulator with an optical carrier level 23 dB lower than the signal of interest. On the other hand, preliminary measurements were made to analyze the correlation stage, using 4f and 6f optical configurations to characterize both the antenna/fiber array configuration and the corresponding point spread function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aikin, R. W.; Bock, J. J.
2015-06-20
bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array sharemore » a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.« less
Range detection using entangled optical photons
NASA Astrophysics Data System (ADS)
Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco
2015-05-01
Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.
Bingham, Stephen J; Wolverson, Daniel; Thomson, Andrew J
2008-12-01
The simultaneous excitation of paramagnetic molecules with optical (laser) and microwave radiation in the presence of a magnetic field can cause an amplitude, or phase, modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and ESR transitions. The phenomenon can be viewed as a coherent Raman effect or, in most cases, as a microwave frequency modulation of the magnetic circular dichroism by the precessing magnetization. By allowing the optical and magnetic properties of a transition metal ion centre to be correlated, it becomes possible to deconvolute the overlapping optical or ESR spectra of multiple centres in a protein or of multiple chemical forms of a particular centre. The same correlation capability also allows the relative orientation of the magnetic and optical anisotropies of each species to be measured, even when the species cannot be obtained in a crystalline form. Such measurements provide constraints on electronic structure calculations. The capabilities of the method are illustrated by data from the dimeric mixed-valence Cu(A) centre of nitrous oxide reductase (N(2)OR) from Paracoccus pantotrophus.
Poling of Microwave Electro-Optic Devices
NASA Technical Reports Server (NTRS)
Singer, Kenneth D.
1997-01-01
The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.
Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng
2016-08-15
A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained.
Intermode Breather Solitons in Optical Microresonators
NASA Astrophysics Data System (ADS)
Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.
2017-10-01
Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
Assessing the relationship between microwave vegetation optical depth and gross primary production
NASA Astrophysics Data System (ADS)
Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Liu, Yi Y.; Miralles, Diego G.; Parinussa, Robert; van der Schalie, Robin; Vreugdenhil, Mariette; Schwalm, Christopher R.; Tramontana, Gianluca; Camps-Valls, Gustau; Dorigo, Wouter A.
2018-03-01
At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the relationship between VOD and GPP. VOD data were taken from different frequencies (L-, C-, and X-band) and from both active and passive microwave sensors, including the Advanced Scatterometer (ASCAT), the Soil Moisture Ocean Salinity (SMOS) mission, the Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E) and a merged VOD data set from various passive microwave sensors. VOD data were compared against FLUXCOM GPP and Solar-Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring Experiment-2 (GOME-2). FLUXCOM GPP estimates are based on the upscaling of flux tower GPP observations using optical satellite data, while SIF observations present a measure of photosynthetic activity and are often used as a proxy for GPP. For relating VOD to GPP, three variables were analyzed: original VOD time series, temporal changes in VOD (ΔVOD), and positive changes in VOD (ΔVOD≥0). Results show widespread positive correlations between VOD and GPP with some negative correlations mainly occurring in dry and wet regions for active and passive VOD, respectively. Correlations between VOD and GPP were similar or higher than between VOD and SIF. When comparing the three variables for relating VOD to GPP, correlations with GPP were higher for the original VOD time series than for ΔVOD or ΔVOD≥0 in case of sparsely to moderately vegetated areas and evergreen forests, while the opposite was true for deciduous forests. Results suggest that original VOD time series should be used jointly with changes in VOD for the estimation of GPP across biomes, which may further benefit from combining active and passive VOD data.
Get Ready for Generation Next.
ERIC Educational Resources Information Center
Wellner, Alison
1999-01-01
"Generation Next" are the 68 million people born between 1977 and 1994. They are the first generation that has grown up with such technologies as computers, the Internet, compact disks, and microwaves and they have more education than previous generations. They will have an effect on trainers and training methods in the workplace. (JOW)
Range-Gated Metrology: An Ultra-Compact Sensor for Dimensional Stabilization
NASA Technical Reports Server (NTRS)
Lay, Oliver P.; Dubovitsky, Serge; Shaddock, Daniel A.; Ware, Brent; Woodruff, Christopher S.
2008-01-01
Point-to-point laser metrology systems can be used to stabilize large structures at the nanometer levels required for precision optical systems. Existing sensors are large and intrusive, however, with optical heads that consist of several optical elements and require multiple optical fiber connections. The use of point-to-point laser metrology has therefore been limited to applications where only a few gauges are needed and there is sufficient space to accommodate them. Range-Gated Metrology is a signal processing technique that preserves nanometer-level or better performance while enabling: (1) a greatly simplified optical head - a single fiber optic collimator - that can be made very compact, and (2) a single optical fiber connection that is readily multiplexed. This combination of features means that it will be straightforward and cost-effective to embed tens or hundreds of compact metrology gauges to stabilize a large structure. In this paper we describe the concept behind Range-Gated Metrology, demonstrate the performance in a laboratory environment, and give examples of how such a sensor system might be deployed.
All solid-state high power microwave source with high repetition frequency.
Bragg, J-W B; Sullivan, W W; Mauch, D; Neuber, A A; Dickens, J C
2013-05-01
An all solid-state, megawatt-class high power microwave system featuring a silicon carbide (SiC) photoconductive semiconductor switch (PCSS) and a ferrimagnetic-based, coaxial nonlinear transmission line (NLTL) is presented. A 1.62 cm(2), 50 kV 4H-SiC PCSS is hard-switched to produce electrical pulses with 7 ns full width-half max (FWHM) pulse widths at 2 ns risetimes in single shot and burst-mode operation. The PCSS resistance drops to sub-ohm when illuminated with approximately 3 mJ of laser energy at 355 nm (tripled Nd:YAG) in a single pulse. Utilizing a fiber optic based optical delivery system, a laser pulse train of four 7 ns (FWHM) signals was generated at 65 MHz repetition frequency. The resulting electrical pulse train from the PCSS closely follows the optical input and is utilized to feed the NLTL generating microwave pulses with a base microwave-frequency of about 2.1 GHz at 65 MHz pulse repetition frequency (prf). Under typical experimental conditions, the NLTL produces sharpened output risetimes of 120 ps and microwave oscillations at 2-4 GHz that are generated due to damped gyromagnetic precession of the ferrimagnetic material's axially pre-biased magnetic moments. The complete system is discussed in detail with its output matched into 50 Ω, and results covering MHz-prf in burst-mode operation as well as frequency agility in single shot operation are discussed.
Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md
2016-12-23
In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm 2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.
NASA Astrophysics Data System (ADS)
Rahman, Ashiqur; Islam, Mohammad Tariqul; Singh, Mandeep Jit; Kibria, Salehin; Akhtaruzzaman, Md.
2016-12-01
In this paper, we report a compact and ultra-wide band antenna on a flexible substrate using the 5-(4-(perfluorohexyl)phenyl)thiophene-2-carbaldehyde compound for microwave imaging. In contrast to other microwave based imaging systems, such as an array of 16 antennas, we proposed a bi-static radar based imaging system consisting of two omnidirectional antennas, which reduces complexity and the overall dimension. The proposed compact antennas are 20 × 14 mm2 and designed for operating at frequencies from 4 to 6 GHz. To allow for implantation into a bra, the electromagnetic performances of the antennas must be considered in bending conditions. In comparison with the recently reported flexible antennas, we demonstrated both electromagnetic performance and imaging reconstruction for bending conditions. For the proof of concept, the electromagnetic performances both at flat and bending conditions have been verified using a homogeneous multilayer model of the human breast phantom. Our results demonstrate that the antenna, even at bending conditions, exhibits an excellent omni-directional radiation pattern with an average efficiency above 70% and average gain above 1 dBi, within the operational frequency band. The comprehensive aim of the realized antenna is to design a biodegradable and wearable antenna-based bra for early breast cancer detection in the future.
Compact Color Schlieren Optical System
NASA Technical Reports Server (NTRS)
Buchele, Donald R.; Griffin, Devon W.
1996-01-01
Compact, rugged optical system developed for use in rainbow schlieren deflectometry. Features unobscured telescope with focal-length/aperture-width ratio of 30. Made of carefully selected but relatively inexpensive parts. All of lenses stock items. By-product of design is optical system with loose tolerances on interlens spacing. One of resulting advantages, insensitivity to errors in fabrication of optomechanical mounts. Another advantage is ability to compensate for some of unit-to-unit variations inherent in stock lenses.
NASA Astrophysics Data System (ADS)
Schieber, J.
2004-03-01
Study of modern microbial mats produced by iron precipitating microbes. Aging and compaction experiments to evaluate fossilization potential and likelihood to recognize these deposits in the rock record.
NASA Astrophysics Data System (ADS)
Guo, Li M.; Shu, T.; Li, Zhi Q.; Ju, Jin C.
2017-12-01
The compactness and miniaturization of high-power-microwave (HPM) systems are drawing more and more attention. Based on this demand, HPM generators without a guiding magnetic field are being developed. This paper presents an X-band Cherenkov type HPM oscillator without the guiding magnetic field. By particle-in-cell codes, this oscillator achieves an efficiency of 40% in simulation. When the diode voltage and current are 620 kV and 9.0 kA, respectively, a TEM mode microwave is generated with a power of 2.2 GW and a frequency of 9.1 GHz. In this oscillator, electrons are modulated in both longitudinal and radial directions, and the radial modulation has a significant effect on the energy conversion efficiency. As analyzed in this paper, the different radial modulation effects depend on the phase matching differences of the microwave and electrons. The modified scheme of simulations achieves a structure with an efficient longitudinal beam-wave interaction and optimized radial modulation.
Vibrations used to talk to quantum circuits
NASA Astrophysics Data System (ADS)
Cho, Adrian
2018-03-01
The budding discipline of quantum acoustics could shake up embryonic quantum computers. Such machines run by flipping quantum bits, or qubits, that can be set not only to zero or one, but, bizarrely, to zero and one at the same time. The most advanced qubits are circuits made of superconducting metal, and to control or read out a qubit, researchers make it interact with a microwave resonator—typically a strip of metal on the qubit chip or a finger-size cavity surrounding it—which rings with microwave photons like an organ pipe rings with sound. But some physicists see advantages to replacing the microwave resonator with a mechanical one that rings with quantized vibrations, or phonons. A well-designed acoustic resonator could ring longer than a microwave one does and could be far smaller, enabling researchers to produce more compact technologies. But first scientists must gain quantum control over vibrations. And several groups are on the cusp of doing that, as they reported at a recent meeting.
Compact electrostatic beam optics for multi-element focused ion beams: simulation and experiments.
Mathew, Jose V; Bhattacharjee, Sudeep
2011-01-01
Electrostatic beam optics for a multi-element focused ion beam (MEFIB) system comprising of a microwave multicusp plasma (ion) source is designed with the help of two widely known and commercially available beam simulation codes: AXCEL-INP and SIMION. The input parameters to the simulations are obtained from experiments carried out in the system. A single and a double Einzel lens system (ELS) with and without beam limiting apertures (S) have been investigated. For a 1 mm beam at the plasma electrode aperture, the rms emittance of the focused ion beam is found to reduce from ∼0.9 mm mrad for single ELS to ∼0.5 mm mrad for a double ELS, when S of 0.5 mm aperture size is employed. The emittance can be further improved to ∼0.1 mm mrad by maintaining S at ground potential, leading to reduction in beam spot size (∼10 μm). The double ELS design is optimized for different electrode geometrical parameters with tolerances of ±1 mm in electrode thickness, electrode aperture, inter electrode distance, and ±1° in electrode angle, providing a robust design. Experimental results obtained with the double ELS for the focused beam current and spot size, agree reasonably well with the simulations.
Bor, E; Turduev, M; Kurt, H
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Frequency division multiplexed radio-over-fiber transmission using an optically injected laser diode
NASA Astrophysics Data System (ADS)
Chan, Sze-Chun
2008-04-01
Nonlinear dynamics of semiconductor lasers have recently attracted much attention in the area of microwave photonics. By invoking the nonlinear dynamics of an optically injected laser diode, high-speed microwave oscillation can be generated using the period-one oscillation state. The oscillation is harnessed for application as a photonic microwave source in radio-over-fiber (RoF) systems. It is advantageous over conventional direct current modulation because it alleviates the modulation bandwidth limitation and naturally generates single sideband signals. The method is thus applicable to wireless communication systems even when the subcarrier frequency increases to 60 GHz. Because RoF is usually incorporated with standard wireless schemes that involve frequency division multiplexing (FDM), we investigate the performance of the optical injection system under simultaneous current injection of multiple data streams. Frequency mixings and competition for locking among subcarriers result in intermodulation distortion (IMD). The relative weightings of different channels should be optimized to ensure acceptable signal qualities. The results illustrate the feasibility of applying the optical injection system for FDM RoF transmission at high subcarrier frequencies.
NASA Astrophysics Data System (ADS)
Sláma, Libor; Dobeš, Josef; Boštík, Tomáš; Vejražka, František
2018-03-01
An analysis of the L-probe fed patch antenna with an extraordinary parasitic patch is described. The element of the antenna is fed by the L-probe partially implemented in PCB. An excellent impedance matching is obtained (< ‑26 dB in the design frequency band 4.4–5 GHz). The radiation characteristics are also very good (gain > 10 dBi). For the numerical analyses, the Full Wave—CST Microwave Studio software was used in both frequency and time domains, and a very good agreement between the Time Domain Solver (TDS) and Frequency Domain Solver (FDS) was obtained. Real antenna samples have been created and measured as well as eight-element antenna arrays designed by the Dolph-Chebyshev method.
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic
2009-10-01
We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.
Modeling the Compact Disc Read System in Lab
ERIC Educational Resources Information Center
Hinaus, Brad; Veum, Mick
2009-01-01
One of the great, engaging aspects of physics is its application to everyday technology. The compact disc player is an example of one such technology that applies fundamental principles from optics in order to efficiently store and quickly retrieve information. We have created a lab in which students use simple optical components to assemble a…
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
47 CFR 64.1401 - Expanded interconnection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... own equipment needed to terminate basic transmission facilities, including optical terminating... such equipment to connect interconnectors' fiber optic systems or microwave radio transmission..., including optical terminating equipment and multiplexers, to be located within or upon the local exchange...
Wave-Optics Modeling of the Optical-Transport Line for Passive Optical Stochastic Cooling
Andorf, M. B.; Lebedev, V. A.; Piot, P.; ...
2018-03-01
Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less
The hybrid photonic planar integrated receiver with a polymer optical waveguide
NASA Astrophysics Data System (ADS)
Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav
2008-11-01
This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.
Broadband noise limit in the photodetection of ultralow jitter optical pulses.
Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C
2014-11-14
Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.
Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect
NASA Astrophysics Data System (ADS)
Li, Chang-Hao; Li, Peng-Bo
2018-05-01
We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.
Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule
NASA Astrophysics Data System (ADS)
Antón, M. A.; Maede-Razavi, S.; Carreño, F.; Thanopulos, I.; Paspalakis, E.
2017-12-01
A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a microwave field that couples to the permanent dipole's moment is presented. We focus to a situation where the angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular complex with high nonlinear optical response although they can also occur in other quantum systems with broken inversion symmetry.
Microwave heating of aqueous samples on a micro-optical-electro-mechanical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald
2016-04-12
Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less
Microwave heating of aqueous samples on a micro-optical-electro-mechanical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald
Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less
Far field focusing for a microwave patch antenna with composite substrate
NASA Astrophysics Data System (ADS)
Wan, Jian; Rybin, Oleg; Shulga, Sergey
2018-03-01
Modeling for a compact microwave antenna structure on base of a miniaturized rectangular patch antenna with composite substrate and magnetic superstrates is made in this study by using FDTD simulations. The resonant frequency of the antenna structure is supposed to be 15 GHz. The design of the antenna with composite substrate and without superstrate is made up by using the microwave miniaturization concept for rectangular patch antennas created by first author of this study. The optimal distance between the superstrate and antenna surface is found by using Fabry-Perot cavity theory as maximum values of power directivity and efficiency of the antenna is achieved. The comparative analysis with regard to some far and near field parameters of the above antenna structures and the antenna with dielectric substrate having same value of the relative permittivity is performed.
Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C
2006-04-07
The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.
NASA Astrophysics Data System (ADS)
Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.
1991-11-01
High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.
Active optics for next generation space telescopes
NASA Astrophysics Data System (ADS)
Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.
2017-09-01
High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.
Nonlinear optical behavior of two tetrathiafulvalene derivatives in the picosecond regime
NASA Astrophysics Data System (ADS)
Marcovicz, Crislaine; Ferreira, Rudson C.; Santos, Arthur B. S.; Reyna, Albert S.; de Araújo, Cid B.; Malvestiti, Ivani; Falcão, Eduardo H. L.
2018-06-01
We report the microwave-assisted synthesis of two symmetrical tetrathiafulvalene (TTF) derivatives via trialkyl phosphite-promoted coupling of a DMIT precursor. The microwave irradiation led to an increase in the reaction yield and significantly reduced the reaction time, affording the 2,3,6,7-tetrakis(2‧-methylacetatethio)tetrathiafulvalene (4) in 74% isolated yield. Hydrolysis of 4 yielded the tetraacid 5 in excellent yield. The nonlinear optical properties of both TTF compounds at 532 nm were studied by using the Z-scan technique in the picosecond regime exhibiting large third-order refractive index and saturated nonlinear absorption with promising applications in optical limiting devices.
Optical isolation based on space-time engineered asymmetric photonic band gaps
NASA Astrophysics Data System (ADS)
Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe
2017-10-01
Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.
Liang, Di; Fiorentino, Marco; Okumura, Tadashi; Chang, Hsu-Hao; Spencer, Daryl T; Kuo, Ying-Hao; Fang, Alexander W; Dai, Daoxin; Beausoleil, Raymond G; Bowers, John E
2009-10-26
We demonstrate an electrically-pumped hybrid silicon microring laser fabricated by a self-aligned process. The compact structure (D = 50 microm) and small electrical and optical losses result in lasing threshold as low as 5.4 mA and up to 65 degrees C operation temperature in continuous-wave (cw) mode. The spectrum is single mode with large extinction ratio and small linewidth observed. Application as on-chip optical interconnects is discussed from a system perspective.
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
A model for microwave emission from vegetation-covered fields
NASA Technical Reports Server (NTRS)
Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.
1982-01-01
The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.
Compact MEMS-based Adaptive Optics Optical Coherence Tomography for Clinical Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D; Olivier, S; Jones, S
2008-02-04
We describe a compact MEMS-based adaptive optics (AO) optical coherence tomography system with improved AO performance and ease of clinical use. A typical AO system consists of a Shack-Hartmann wavefront sensor and a deformable mirror that measures and corrects the ocular and system aberrations. Because of the limitation on the current deformable mirror technologies, the amount of real-time ocular-aberration compensation is restricted and small in the previous AO-OCT instruments. In this instrument, we proposed to add an optical apparatus to correct the spectacle aberrations of the patients such as myopia, hyperopia and astigmatism. This eliminated the tedious process of themore » trial lenses in clinical imaging. Different amount of spectacle aberration compensation was achieved by motorized stages and automated with the AO computer for ease of clinical use. In addition, the compact AO-OCT was optimized to have minimum system aberrations to reduce AO registration errors and improve AO performance.« less
de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E
2013-02-01
We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.
Compact, Robust Chips Integrate Optical Functions
NASA Technical Reports Server (NTRS)
2010-01-01
Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.
Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation
NASA Astrophysics Data System (ADS)
George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.
2017-10-01
We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.
Tsunashima, Satoshi; Nakajima, Fumito; Nasu, Yusuke; Kasahara, Ryoichi; Nakanishi, Yasuhiko; Saida, Takashi; Yamada, Takashi; Sano, Kimikazu; Hashimoto, Toshikazu; Fukuyama, Hiroyuki; Nosaka, Hideaki; Murata, Koichi
2012-11-19
We demonstrate a compact and variable-optical-attenuator (VOA) integrated coherent receiver with a silica-based planar lightwave circuit (PLC). To realize the compact receiver, we integrate a VOA in a single PLC chip with polarization beam splitters and optical 90-degree hybrids, and employ a stable optoelectronic coupling system consisting of micro lens arrays and photodiode (PD) subcarriers with high-speed right-angled signal lines. We integrate a VOA and a coherent receiver in a 27x40x6 mm package, and successfully demodulate a 128-Gbit/s polarization division multiplexed (PDM) quadrature phase shift keying (QPSK) signal with a VOA-assisted wide dynamic range of more than 30 dB.
Compact time- and space-integrating SAR processor: design and development status
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.
1994-06-01
Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.
NASA Astrophysics Data System (ADS)
Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf
2018-05-01
Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.
Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter
NASA Technical Reports Server (NTRS)
Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.
2008-01-01
A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.
Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.
2008-01-01
A compact instrument called the MWR (microwave radiometer) is under development at JPL for Juno, the next NASA new frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. as part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.
Distributed optical signal processing for microwave photonics subsystems.
Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert
2016-03-07
We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.
Volumetric Near-Field Microwave Plasma Generation
NASA Technical Reports Server (NTRS)
Exton, R. J.; Balla, R. Jeffrey; Herring, G. C.; Popovic, S.; Vuskovic, L.
2003-01-01
A periodic series of microwave-induced plasmoids is generated using the outgoing wave from a microwave horn and the reflected wave from a nearby on-axis concave reflector. The plasmoids are spaced at half-wavelength separations according to a standing-wave pattern. The plasmoids are enhanced by an effective focusing in the near field of the horn (Fresnel region) as a result of a diffractive narrowing. Optical imaging, electron density, and rotational temperature measurements characterize the near field plasma region. Volumetric microwave discharges may have application to combustion ignition in scramjet engines.
QUARTERLY PROGRESS REPORT NO. 83,
Topics included are: microwave spectroscopy; radio astronomy; solid-state microwave electronics; optical and infrared spectroscopy; physical electronics and surface physics; physical acoustics; plasma physics; gaseous electronics; plasmas and controlled nuclear fusion ; energy conversion research; statistical communication theory; linguistics; cognitive information processing; communications biophysics; neurophysiology; computation research.
The formation of compact groups of galaxies. I: Optical properties
NASA Technical Reports Server (NTRS)
Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo
1994-01-01
The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.
Measured microwave scattering cross sections of three meteorite specimens
NASA Technical Reports Server (NTRS)
Hughes, W. E.
1972-01-01
Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.
Microwave response of an HEMT photoconductor
NASA Technical Reports Server (NTRS)
Claspy, P. C.; Bhasin, K. B.
1988-01-01
Interdigitated photodetectors of various geometries have been fabricated on GaAlAs/GaAs heterostructure material. Optical response characteristics of these devices have been examined at both dc and microwave frequencies. The microwave response, at frequencies to 8 GHz, was studied by illuminating the devices with the output of an internally modulated GaAlAs diode laser. Results of these measurements are presented and compared with that of GaAs photoconductors.
Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan
2017-04-01
We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.
Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng
2011-06-20
A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.
NASA Astrophysics Data System (ADS)
Gomez-Diaz, Juan Sebastian
This PhD. dissertation presents a multidisciplinary work, which involves the development of different novel formulations applied to the accurate and efficient analysis of a wide variety of new structures, devices, and phenomena at themicrowave frequency region. The objectives of the present work can be divided into three main research lines: (1) The first research line is devoted to the Green's function analysis of multilayered enclosures with convex arbitrarily-shaped cross section. For this purpose, three accurate spatial-domain formulations are developed at the Green's functions level. These techniques are then efficiently incorporated into a mixed-potential integral equation framework, which allows the fast and accurate analysis of multilayered printed circuits in shielded enclosures. The study of multilayered shielded circuits has lead to the development of the novel hybridwaveguide-microstrip filter technology, which is light, compact, low-loss and presents important advantages for the space industry. (2) The second research line is related to the impulse-regime study ofmetamaterial-based composite right/left-handed (CRLH) structures and the subsequent theoretical and practical demonstration of several novel optically-inspired phenomena and applications at microwaves, in both, the guided and the radiative region. This study allows the development of new devices for ultra wide band and high data-rate communications systems. Besides, this research line also deals with the simple and accurate characterization of CRLH leaky-wave antennas using transmission line theory. (3) The third and last research line presents a novel CRLH parallel-plate waveguide leaky-wave antenna structure, and a rigorous iterative modal-based technique for its fast and complete characterization, including a systematic calculation of the antenna physical dimensions. It is important to point out that all the theoretical developments and novel structures presented in thiswork have been numerically confirmed, by the use of both, home-made software and commercial full-wave simulations, and experimentally verified, by the use of measurements from fabricated prototypes.
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop
NASA Astrophysics Data System (ADS)
Gao, Yongsheng; Wen, Aijun; Li, Ningning; Wu, Xiaohui; Zhang, Huixing
2015-09-01
A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach-Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.
Diffractive optical element in materials testing
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik
1998-09-01
The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.
NASA Technical Reports Server (NTRS)
Goverdhanam, Kavita; Simons, Rainee N.; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)
2001-01-01
In this paper, novel low loss, wide-band coplanar stripline technology for RF/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semiconductor devices and microelectromechanical systems (MEMS).
Photonic integrated circuit as a picosecond pulse timing discriminator.
Lowery, Arthur James; Zhuang, Leimeng
2016-04-18
We report the first experimental demonstration of a compact on-chip optical pulse timing discriminator that is able to provide an output voltage proportional to the relative timing of two 60-ps input pulses on separate paths. The output voltage is intrinsically low-pass-filtered, so the discriminator forms an interface between high-speed optics and low-speed electronics. Potential applications include timing synchronization of multiple pulse trains as a precursor for optical time-division multiplexing, and compact rangefinders with millimeter dimensions.
Cluster richness-mass calibration with cosmic microwave background lensing
NASA Astrophysics Data System (ADS)
Geach, James E.; Peacock, John A.
2017-11-01
Identifying galaxy clusters through overdensities of galaxies in photometric surveys is the oldest1,2 and arguably the most economical and mass-sensitive detection method3,4, compared with X-ray5-7 and Sunyaev-Zel'dovich effect8 surveys that detect the hot intracluster medium. However, a perennial problem has been the mapping of optical `richness' measurements onto total cluster mass3,9-12. Emitted at a conformal distance of 14 gigaparsecs, the cosmic microwave background acts as a backlight to all intervening mass in the Universe, and therefore has been gravitationally lensed13-15. Experiments such as the Atacama Cosmology Telescope16, South Pole Telescope17-19 and the Planck20 satellite have now detected gravitational lensing of the cosmic microwave background and produced large-area maps of the foreground deflecting structures. Here we present a calibration of cluster optical richness at the 10% level by measuring the average cosmic microwave background lensing measured by Planck towards the positions of large numbers of optically selected clusters, detecting the deflection of photons by structures of total mass of order 1014 M⊙. Although mainly aimed at the study of larger-scale structures, the Planck estimate of the cosmic microwave background lensing field can be used to recover a nearly unbiased lensing signal for stacked clusters on arcminute scales15,21. This approach offers a clean measure of total cluster masses over most of cosmic history, largely independent of baryon physics.
A flexible telecom satellite repeater based on microwave photonic technologies
NASA Astrophysics Data System (ADS)
Sotom, Michel; Benazet, Benoît; Maignan, Michel
2017-11-01
Future telecom satellite based on geo-stationary Earth orbit (GEO) will require advanced payloads in Kaband so as to receive, route and re-transmit hundreds of microwave channels over multiple antenna beams. We report on the proof-of-concept demonstration of a analogue repeater making use of microwave photonic technologies for supporting broadband, transparent, and flexible cross-connectivity. It has microwave input and output sections, and features a photonic core for LO distribution, frequency down-conversion, and cross-connection of RF channels. With benefits such as transparency to RF frequency, infinite RF isolation, mass and volume savings, such a microwave photonic cross-connect would compare favourably with microwave implementations, and based on optical MEMS switches could grow up to large port counts.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Torque Sensor Based on Tunnel-Diode Oscillator; Shaft-Angle Sensor Based on Tunnel-Diode Oscillator; Ground Facility for Vicarious Calibration of Skyborne Sensors; Optical Pressure-Temperature Sensor for a Combustion Chamber; Impact-Locator Sensor Panels; Low-Loss Waveguides for Terahertz Frequencies; MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices; Low-Temperature Supercapacitors; Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers; Compact, Single-Stage MMIC InP HEMT Amplifier; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Improved Sand-Compaction Method for Lost-Foam Metal Casting; Improved Probe for Evaluating Compaction of Mold Sand; Polymer-Based Composite Catholytes for Li Thin-Film Cells; Using ALD To Bond CNTs to Substrates and Matrices; Alternating-Composition Layered Ceramic Barrier Coatings; Variable-Structure Control of a Model Glider Airplane; Axial Halbach Magnetic Bearings; Compact, Non-Pneumatic Rock-Powder Samplers; Biochips Containing Arrays of Carbon-Nanotube Electrodes; Nb(x)Ti(1-x)N Superconducting-Nanowire Single-Photon Detectors; Neon as a Buffer Gas for a Mercury-Ion Clock; Miniature Incandescent Lamps as Fiber-Optic Light Sources; Bidirectional Pressure-Regulator System; and Prism Window for Optical Alignment. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays Range-Gated Metrology with Compact Optical Head Lossless, Multi-Spectral Data Compressor for Improved Compression for Pushbroom-Typetruments.
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.
2011-01-01
This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.
Danylov, A A; Light, A R; Waldman, J; Erickson, N
2015-12-10
Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.
NASA Astrophysics Data System (ADS)
Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.
2017-12-01
The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.
A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range
NASA Astrophysics Data System (ADS)
Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.
2017-05-01
We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.
CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics
NASA Astrophysics Data System (ADS)
Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.
2018-05-01
This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.
Directional amplifier in an optomechanical system with optical gain
NASA Astrophysics Data System (ADS)
Jiang, Cheng; Song, L. N.; Li, Yong
2018-05-01
Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andorf, M. B.; Lebedev, V. A.; Piot, P.
Optical stochastic cooling (OSC) is expected to enable fast cooling of dense particle beams. Transition from microwave to optical frequencies enables an achievement of stochastic cooling rates which are orders of magnitude higher than ones achievable with the classical microwave based stochastic cooling systems. A subsystemcritical to the OSC scheme is the focusing optics used to image radiation from the upstream “pickup” undulator to the downstream “kicker” undulator. In this paper, we present simulation results using wave-optics calculation carried out with the Synchrotron Radiation Workshop (SRW). Our simulations are performed in support to a proof-of-principle experiment planned at the Integrablemore » Optics Test Accelerator (IOTA) at Fermilab. The calculations provide an estimate of the energy kick received by a 100-MeV electron as it propagates in the kicker undulator and interacts with the electromagnetic pulse it radiated at an earlier time while traveling through the pickup undulator.« less
Fiber-optic control and thermometry of single-cell thermosensation logic.
Fedotov, I V; Safronov, N A; Ermakova, Yu G; Matlashov, M E; Sidorov-Biryukov, D A; Fedotov, A B; Belousov, V V; Zheltikov, A M
2015-11-13
Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels. This probe integrates a fiber-optic tract for the delivery of laser light with a two-wire microwave transmission line. A diamond microcrystal fixed on the fiber tip is heated by laser radiation transmitted through the fiber, providing a local heating of a cell culture, enabling a well-controlled TRP-assisted thermal activation of cells. Online local temperature measurements are performed by using the temperature-dependent frequency shift of optically detected magnetic resonance, induced by coupling the microwave field, delivered by the microwave transmission line, to nitrogen--vacancy centers in the diamond microcrystal. Activation of TRP channels is verified by using genetically encoded fluorescence indicators, visualizing an increase in the calcium flow through activated TRP channels.
Optical Injection Locking of a VCSEL in an OEO
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Yu, Nan; Maleki, Lute
2009-01-01
Optical injection locking has been demonstrated to be effective as a means of stabilizing the wavelength of light emitted by a vertical-cavity surface- emitting laser (VCSEL) that is an active element in the frequency-control loop of an opto-electronic oscillator (OEO) designed to implement an atomic clock based on an electromagnetically- induced-transparency resonance. This particular optical-injection- locking scheme is expected to enable the development of small, low-power, high-stability atomic clocks that would be suitable for use in applications involving precise navigation and/or communication. In one essential aspect of operation of an OEO of the type described above, a microwave modulation signal is coupled into the VCSEL. Heretofore, it has been well known that the wavelength of light emitted by a VCSEL depends on its temperature and drive current, necessitating thorough stabilization of these operational parameters. Recently, it was discovered that the wavelength also depends on the microwave power coupled into the VCSEL. Inasmuch as the microwave power circulating in the frequency-control loop is a dynamic frequency-control variable (and, hence, cannot be stabilized), there arises a need for another means of stabilizing the wavelength. The present optical-injection-locking scheme satisfies the need for a means to stabilize the wavelength against microwave- power fluctuations. It is also expected to afford stabilization against temperature and current fluctuations. In an experiment performed to demonstrate this scheme, wavelength locking was observed when about 200 W of the output power of a commercial tunable diode laser was injected into a commercial VCSEL, designed to operate in the wavelength range of 795+/-3 nm, that was generating about 200 microW of optical power. (The use of relatively high injection power levels is a usual practice in injection locking of VCSELs.)
Microwave-to-optical frequency conversion with a Rydberg atom coupled to a coplanar waveguide
NASA Astrophysics Data System (ADS)
Gard, Bryan; Jacobs, Kurt; McDermott, Robert; Saffman, Mark
2017-04-01
A primary candidate for converting quantum information from microwave to optical frequencies is the use of Rydberg states of a single atom trapped near a surface. The fact that the Rydberg states possess both large electric dipole moments and microwave transition frequencies allows them to interact with superconducting mesoscopic circuits. By considering a concrete example, that of a Cesium atom, and using numerical search methods to optimize the control protocols, we determine the fidelities and transmission rates that could be achievable with such a device. We show that while protocols that exploit the adiabatic STIRAP mechanism provide the best raw transfer fidelities, the fastest communication speeds can be obtained by using heralding, which allows one to remove the adiabatic constraint. Support from Oak Ridge Associated Universities.
All-optical, ultra-wideband microwave I/Q mixer and image-reject frequency down-converter.
Gao, Yongsheng; Wen, Aijun; Chen, Wei; Li, Xiaoyan
2017-03-15
An all-optical and ultra-wideband microwave in-phase/quadrature (I/Q) mixer, based on a dual-parallel Mach-Zehnder modulator and a wavelength division multiplexer, is proposed. Due to the simultaneous frequency down-conversion and 360-deg tunable phase shifting in the optical domain, the proposed I/Q mixer has the advantages of high conversion gain and excellent quadrature phase balance (<±1.3 deg) with a wide operating frequency from 10 to 40 GHz. Assisted by an analog or digital intermediate-frequency quadrature coupler, an image-reject frequency down-converter is then implemented, with an image rejection exceeding 50 dB over the working band.
VizieR Online Data Catalog: Planck Catalog of Compact Sources Release 1 (Planck, 2013)
NASA Astrophysics Data System (ADS)
Planck Collaboration
2013-03-01
Planck is a European Space Agency (ESA) mission, with significant contributions from the U.S. National Aeronautics and Space Agency (NASA). It is the third generation of space-based cosmic microwave background experiments, after the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP). Planck was launched on 14 May 2009 on an Ariane 5 rocket from Kourou, French Guiana. Following a cruise to the Earth-Sun L2 Lagrange point, cooling and in orbit checkout, Planck initiated the First Light Survey on 13 August 2009. Since then, Planck has been continuously measuring the intensity of the sky over a range of frequencies from 30 to 857GHz (wavelengths of 1cm to 350μm) with spatial resolutions ranging from about 33' to 5' respectively. The Low Frequency Instrument (LFI) on Planck provides temperature and polarization information using radiometers which operate between 30 and 70GHz. The High Frequency Instrument (HFI) uses pairs of polarization-sensitive bolometers at each of four frequencies between 100 and 353GHz but does not measure polarization information in the two upper HFI bands at 545 and 857GHz. The lowest frequencies overlap with WMAP, and the highest frequencies extend far into the submillimeter in order to improve separation between Galactic foregrounds and the cosmic microwave background (CMB). By extending to wavelengths longer than those at which the Infrared Astronomical Satellite (IRAS) operated, Planck is providing an unprecedented window into dust emission at far-infrared and submillimeter wavelengths. The PCCS (Planck Catalog of Compact Sources) is the list of sources detected in the first 15 months of Planck "nominal" mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The PCCS covers the frequency range 30-857 GHz with higher sensitivity (it is 90% complete at 180mJy in the best channel) and better angular resolution than previous all-sky surveys in the microwave band. By construction its reliability is >80% and more than 65% of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. (12 data files).
Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn
NASA Astrophysics Data System (ADS)
Cai, Yang; Zhang, Yingsong; Qian, Zuping
2017-12-01
A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.
Direct-Coupled Plasma-Assisted Combustion Using a Microwave Waveguide Torch
2011-12-01
enhance combustion by coupling an atmospheric plasma dis- charge to a premixed methane/air flame. The absorbed microwave power ranges from 60 to 150 W...The plasma system allows for complete access of the plasma- enhanced flame for laser and optical diagnostics 0093-3813/$26.00 © 2011 IEEE Report...microwave waveguide is used to initiate and enhance combustion by coupling an atmospheric plasma discharge to a premixed methane/air flame. The
Mobile glasses-free 3D using compact waveguide hologram
NASA Astrophysics Data System (ADS)
Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.
2013-02-01
The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.
NASA Astrophysics Data System (ADS)
Gregory, Don A.; Kirsch, James C.
1989-02-01
In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.
Innovative optronics for the new PUMA tank
NASA Astrophysics Data System (ADS)
Fritze, J.; Münzberg, M.; Schlemmer, H.
2010-04-01
The new PUMA tank is equipped with a fully stabilized 360° periscope. The thermal imager in the periscope is identical to the imager in the gunner sight. All optronic images of the cameras can be fed on every electronic display within the tank. The thermal imagers operate with a long wave 384x288 MCT starring focal plane array. The high quantum efficiency of MCT provides low NETD values at short integration times. The thermal imager has an image resolution of 768x576 pixels by means of a micro scanner. The MCT detector operates at high temperatures above 75K with high stability in noise and correctibility and offers high reliability (MTTF) values for the complete camera in a very compact design. The paper discusses the principle and functionality of the optronic combination of direct view optical channel, thermal imager and visible camera and discusses in detail the performances of the subcomponents with respect to demands for new tank applications.
An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.
Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung
2009-01-01
Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.
A Blade Tip Timing Method Based on a Microwave Sensor
Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie
2017-01-01
Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy. PMID:28492469
A Blade Tip Timing Method Based on a Microwave Sensor.
Zhang, Jilong; Duan, Fajie; Niu, Guangyue; Jiang, Jiajia; Li, Jie
2017-05-11
Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.
Quantum non-demolition detection of an itinerant microwave photon
NASA Astrophysics Data System (ADS)
Kono, S.; Koshino, K.; Tabuchi, Y.; Noguchi, A.; Nakamura, Y.
2018-06-01
Photon detectors are an elementary tool to measure electromagnetic waves at the quantum limit1,2 and are heavily demanded in the emerging quantum technologies such as communication3, sensing4 and computing5. Of particular interest is a quantum non-demolition (QND)-type detector, which projects an electromagnetic wave onto the photon-number basis6-10. This is in stark contrast to conventional photon detectors2 that absorb a photon to trigger a `click'. The long-sought QND detection of a flying photon was recently demonstrated in the optical domain using a single atom in a cavity11,12. However, the counterpart for microwaves has been elusive despite the recent progress in microwave quantum optics using superconducting circuits13-19. Here, we implement a deterministic entangling gate between a superconducting qubit and an itinerant microwave photon reflected by a cavity containing the qubit. Using the entanglement and the high-fidelity qubit readout, we demonstrate a QND detection of a single photon with the quantum efficiency of 0.84 and the photon survival probability of 0.87. Our scheme can serve as a building block for quantum networks connecting distant qubit modules as well as a microwave-photon-counting device for multiple-photon signals.
Compact and low-cost THz QTDS system.
Probst, Thorsten; Rehn, Arno; Koch, Martin
2015-08-24
We present a terahertz quasi time domain spectroscopy (QTDS) system setup which is improved regarding cost and compactness. The diode laser is mounted directly onto the optical delay line, making the optical setup more compact. The system is operated using a Raspberry Pi and an additional sound card. This combination replaces the desktop/laptop computer, the lock-in-amplifier, the stage controller and the signal generator. We examined not only a commercially available stepper motor driven delay line, but also the repurposed internal mechanics from a DVD drive. We characterize the performance of the new system concept.
Compact flexible multifrequency splitter based on plasmonic graded metallic grating arc waveguide.
Han, Chao; Wang, Zhaohong; Chu, Yangyang; Zhao, Xiaodan; Zhang, Xuanru
2018-04-15
A compact flexible multifrequency splitter based on an arc waveguide constructed of plasmonic metallic grating structures with graded-height T-grooves is proposed and studied. The dispersion curves and cutoff frequencies of the plasmonic grating waveguides with different T-groove metallic grating heights are different. The guided spoof surface plasmonic polariton waves at different frequencies can be localized at dissimilar angles along the graded grating arc waveguide. The output flexibility at an arbitrary groove for different frequencies is realized by introducing an additional symmetrical T-groove structure as an output. The compact four-, seven-, and eight-output frequency splitters demonstrate its flexible multifrequency separation capability at different output angle locations, while the dimensional size of the frequency splitters is not increased. Measurement results at the microwave frequency display excellent agreement with numerical simulation results.