Science.gov

Sample records for compact pmn-pt modulator

  1. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-01

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices. PMID:24634978

  2. Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics.

    PubMed

    Wei, Danzhu; Xu, Tian; Yuan, Li; Tian, Shu; Fang, Jinghuai; Jin, Yonglong; Wang, Chaonan; Ma, Xinxiang; Shi, Jianzhen

    2016-04-01

    A three-layer planar waveguide structure comprising a perovskite (1-x)Pb(Mg1/3Nb2/3Nb2/3)O3-xPbTiO3 (PMN-PT) ceramic sandwiched by two silver films is designed and called PMPW. Using the high sensitivity of ultrahigh-order modes, theoretical analysis is performed to calculate the effective refractive index (ERI) of the PMPW. A detailed analysis of the Raman spectrum of PMN-PT at 795  cm-1 is performed. A comparison of the numerical analysis and experimental results reveals that the nonlinear change in ERI plays a primary role in the Raman signal variation. Analysis of the Raman spectrum of a sample deposited on PMPW confirms that it is effective for modulating Raman signals. PMID:27139681

  3. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  4. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  5. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  6. Misfit strain phase diagrams of epitaxial PMN-PT films

    NASA Astrophysics Data System (ADS)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A.; Alpay, S. P.

    2015-02-01

    Misfit strain-temperature phase diagrams of three compositions of (001) pseudocubic (1 - x).Pb (Mgl/3Nb2/3)O3 - x.PbTiO3 (PMN-PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN-PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN-PT compared to barium strontium titanate and lead zirconate titanate films.

  7. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure

    PubMed Central

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-01-01

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications. PMID:27417902

  8. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-07-01

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications.

  9. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure.

    PubMed

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-01-01

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications. PMID:27417902

  10. Microscopic evidence of strain-mediated magnetoelectric coupling in Co/Pt multilayers/PMN-PT(011) heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wang, Wenbo; Wu, Weida; Zheng, Xiaoli; Cai, Jianwang; Zhao, Yonggang; Liu, Ming

    A promising way to control magnetization(M) via an electric field(E-field) is using magnetoelectric(ME) effect in FM/FE heterostructures. We use magnetic(electric) force microscopy(M(e)FM) to study the strain-mediated E-field modulation of M in (Co/Pt)n with perpendicular magnetic anisotropy(PMA) or in-plane anisotropy on PMN-PT(011) substrates. MFM were performed on (Co/Pt)n with an DC E-field applied to PMN-PT. In MeFM, we superimpose an AC modulation on a DC one and utilize lock-in technique to detect weak ME effect. For (Co/Pt)n with PMA, MFM images show stripe domains with no obvious changes at varied DC E-fields. However, MeFM shows interesting structures and the image contrast reverses sign at opposite strain slopes of the PMN-PT substrate. For sample with in-plane anisotropy, both MFM and MeFM images show dipole-like domains. Interestingly, the MeFM image contrast reverses sign at opposite strain slopes of the substrate. The sign reversal of MeFM contrast indicates that features revealed by MeFM are intrinsic local ME effect. Our MeFM data are consistent with the ferromagnetic resonance results showing that strain-induced anisotropy change will cause part of M switching to the in-plane direction. Possible scenarios will be discussed.

  11. Intrinsically tunable bulk acoustic wave resonators based on sol-gel grown PMN-PT films

    NASA Astrophysics Data System (ADS)

    Vorobiev, A.; Spreitzer, M.; Veber, A.; Suvorov, D.; Gevorgian, S.

    2014-08-01

    Intrinsically tunable bulk acoustic wave resonators, based on sol-gel 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PMN-PT) thin films, with high effective electromechanical coupling coefficient of 13% and tunability of the series resonance frequency up to 4.0% are fabricated and characterized. The enhanced electroacoustic properties of the PMN-PT resonators are attributed to the mechanism of polarization rotation occurring in the region of the morphotropic phase boundary. Electroacoustic performance of the PMN-PT resonators is analyzed using the theory of dc field-induced piezoelectric effect in ferroelectrics. Extrinsic acoustic loss in the PMN-PT resonators is analyzed using the model of the wave scattering at reflections from rough interfaces. Mechanical Q-factor of the resonators is up to 70 at 4.1 GHz and limited mainly by losses in the PMN-PT film.

  12. Electric-field modulation of photoinduced effect in phase-separated Pr0.65 (Ca0.75Sr0.25)0.35MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Li, W.; Dong, X. L.; Wang, S. H.; Jin, K. X.

    2016-08-01

    In this letter, we report the photoinduced effect modulated by different electric fields in the Pr0.65 (Ca0.75Sr0.25)0.35MnO3/0.7PbMg1/3Nb2/3O3-0.3PbTiO3 heterostructure. The film exhibits a decrease in the resistance up to five orders of magnitude by enhancing applied electric fields, combined with an electric-field-induced insulator-to-metal transition. More interestingly, a reversible bistability arises in the photoinduced change in resistance at T < 80 K as the voltages are increased. The results can be attributed to the phase separation in manganites, which provides a prototype of photoelectric conversion for electric-field modulation of all-oxide heterostructures.

  13. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods.

    PubMed

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-12-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V. PMID:26831687

  14. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-02-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V.

  15. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-01-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories. PMID:25909177

  16. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  17. Energy scavenging based on a single-crystal PMN-PT nanobelt

    PubMed Central

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-01-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs. PMID:26928788

  18. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  19. Energy scavenging based on a single-crystal PMN-PT nanobelt

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  20. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.

    PubMed

    Wang, Wei; Zhao, Xiangyong; Or, Siu Wing; Leung, Chung Ming; Zhang, Yaoyao; Jiao, Jie; Luo, Haosu

    2012-09-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystal was investigated for potential application in ultrasonic linear array. Orientation and temperature dependences of height extensional electromechanical coupling coefficient k'(33) for PIN-PMN-PT single crystal were studied. It was found that the [001] poled PIN-PMN-PT diced along the [100] direction would achieve a maximum k'(33) (~87%) and the service temperature was up to 110 °C. Ultrasonic linear arrays using PIN-PMN-PT single crystal and PZT ceramic were fabricated and compared. The bandwidth at -6 dB, two-way insertion loss and pulse length of the PIN-PMN-PT array were 98.6%, -45.1 dB, and 0.28 μs, respectively, which were about 25% broader, 3.7dB higher, and 0.08 μs shorter than those of the PZT array. The experimental results agreed well with the theoretical simulation. These superior performances were attributable to the excellent piezoelectric properties of PIN-PMN-PT single crystal. PMID:23020406

  1. Energy scavenging based on a single-crystal PMN-PT nanobelt.

    PubMed

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-01-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs. PMID:26928788

  2. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.

    PubMed

    Wang, Wei; Zhao, Xiangyong; Or, Siu Wing; Leung, Chung Ming; Zhang, Yaoyao; Jiao, Jie; Luo, Haosu

    2012-09-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystal was investigated for potential application in ultrasonic linear array. Orientation and temperature dependences of height extensional electromechanical coupling coefficient k'(33) for PIN-PMN-PT single crystal were studied. It was found that the [001] poled PIN-PMN-PT diced along the [100] direction would achieve a maximum k'(33) (~87%) and the service temperature was up to 110 °C. Ultrasonic linear arrays using PIN-PMN-PT single crystal and PZT ceramic were fabricated and compared. The bandwidth at -6 dB, two-way insertion loss and pulse length of the PIN-PMN-PT array were 98.6%, -45.1 dB, and 0.28 μs, respectively, which were about 25% broader, 3.7dB higher, and 0.08 μs shorter than those of the PZT array. The experimental results agreed well with the theoretical simulation. These superior performances were attributable to the excellent piezoelectric properties of PIN-PMN-PT single crystal.

  3. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    PubMed

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications.

  4. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    PubMed

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications. PMID:23634729

  5. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    PubMed

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  6. Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films.

    PubMed

    Wu, Zhenping; Zhang, Yang; Bai, Gongxun; Tang, Weihua; Gao, Ju; Hao, Jianhua

    2014-11-17

    Thin films of Yb3+/Er3+ co-doped BaTiO3 (BTO:Yb/Er) have been epitaxially grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrates. Biaxial strain can be effectively controlled by applying electric field on PMN-PT substrate. A reversible, in situ and dynamic modification of upconversion photoluminescence in BTO:Yb/Er film was observed via converse piezoelectric effect. Detailed analysis and in situ X-ray diffraction indicate that such modulations are possibly due to the change in the lattice deformation of the thin films. This result suggests an alternative method to rationally tune the upconversion emissions via strain engineering. PMID:25402140

  7. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials.

  8. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials. PMID:22714448

  9. Characterization of PMN-PT piezoelectric single crystal and PMN-PT 1-3 composite at elevated temperatures by electrical impedance resonance analysis.

    PubMed

    Wu, Zhengbin; Xi, Kui

    2014-07-01

    In this paper, lead magnesium niobate-lead titanate (PMN-PT) piezoelectric single crystal and its 1-3 composite counterpart were characterized and analyzed under different stable temperatures using both a Simulated Annealing (SA) optimization algorithm and the commercial software PRAP (Piezoelectric Resonance Analysis Program). Electrical impedance resonance characteristics of the two material samples over the range 25-125 °C were measured. The correlation between experimental data and numerical fits derived from both SA and PRAP is considered. Calculation of the determination coefficient (R1(2)) between numerically fitted and measured results is above 95% for both methods. Furthermore, variations in the number of data values used for the fit introduced no more than 3.1% uncertainty on the calculated material parameters. It is found that the complex material parameters of PMN-PT composite are more dependent on temperature than the single crystal. The phase transition of the PMN-PT, which is close to 90 °C, has an effect on the high temperature material characteristics of both piezoelectric materials. These calculated complex material parameters can be used for the design of ultrasonic transducers for elevated temperature applications. PMID:24495996

  10. Characterization of PMN-PT piezoelectric single crystal and PMN-PT 1-3 composite at elevated temperatures by electrical impedance resonance analysis.

    PubMed

    Wu, Zhengbin; Xi, Kui

    2014-07-01

    In this paper, lead magnesium niobate-lead titanate (PMN-PT) piezoelectric single crystal and its 1-3 composite counterpart were characterized and analyzed under different stable temperatures using both a Simulated Annealing (SA) optimization algorithm and the commercial software PRAP (Piezoelectric Resonance Analysis Program). Electrical impedance resonance characteristics of the two material samples over the range 25-125 °C were measured. The correlation between experimental data and numerical fits derived from both SA and PRAP is considered. Calculation of the determination coefficient (R1(2)) between numerically fitted and measured results is above 95% for both methods. Furthermore, variations in the number of data values used for the fit introduced no more than 3.1% uncertainty on the calculated material parameters. It is found that the complex material parameters of PMN-PT composite are more dependent on temperature than the single crystal. The phase transition of the PMN-PT, which is close to 90 °C, has an effect on the high temperature material characteristics of both piezoelectric materials. These calculated complex material parameters can be used for the design of ultrasonic transducers for elevated temperature applications.

  11. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering

    PubMed Central

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-01-01

    We report the tunable near-infrared luminescence of Ni2+ doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni2+ ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources. PMID:25030046

  12. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering

    NASA Astrophysics Data System (ADS)

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-07-01

    We report the tunable near-infrared luminescence of Ni2+ doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni2+ ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources.

  13. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering.

    PubMed

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-01-01

    We report the tunable near-infrared luminescence of Ni(2+) doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni(2+) ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources. PMID:25030046

  14. Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates

    NASA Astrophysics Data System (ADS)

    Tkach, Alexander; Kehlberger, Andreas; Büttner, Felix; Jakob, Gerhard; Eisebitt, Stefan; Kläui, Mathias

    2015-02-01

    This study reports the magnetotransport and magnetic properties of 20 nm-thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The longitudinal magnetoresistance (MR) of the Ni films on (011) PMN-PT, measured at room temperature in the magnetic field range of -0.3 T < μ0H < 0.3 T, is found to depend on the crystallographic direction and polarization state of piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by factor of 20 for the current along [100] of PMN-PT and slightly increases for the [ 01 1 ¯ ] current direction. Simultaneously, a strong increase (decrease) in the field value, where the MR saturates, is observed for the [ 01 1 ¯ ] ([100]) current direction. The anisotropic magnetoresistance is also strongly affected by the remanent strain induced by the electric field pulses applied to the PMN-PT in the non-linear regime revealing a large (132 mT) magnetic anisotropy field. Applying a critical electric field of 2.4 kV/cm, the anisotropy field value changes back to the original value, opening a path to voltage-tuned magnetic field sensor or storage devices. This strain mediated voltage control of the MR and its dependence on the crystallographic direction is correlated with the results of magnetization reversal measurements.

  15. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  16. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  17. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, K. Y.; Zhao, W.; Zeng, H. R.; Yu, H. Z.; Ruan, W.; Xu, K. Q.; Li, G. R.

    2015-05-01

    Piezoresponse force microscopy (PFM) was employed to investigate ferroelectric domain structures and their dynamic behavior of lead magnesium niobate-lead titanate [Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)] transparent ceramics under an tip-bias-induced electric field. A remarkable effect of fluctuation of PT content on the domain configurations and domain dynamic response in PMN-PT transparent ferroelectric ceramics were found by PFM. Comparing with PMN-10%PT and PMN-20%PT, the reversed polarization of macrodomain area in PMN-35%PT and PMN-25%PT exhibits a relatively higher response behavior and better polarization retention performance under the PFM tip-bias-induced electric field, which correspond to their unique macroscopic electro-optic properties.

  18. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.

    PubMed

    Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho; Oh, SeKwon; Park, Kwi-Il; Byun, Myunghwan; Park, Hyelim; Ahn, Gun; Jeong, Chang Kyu; No, Kwangsoo; Kwon, HyukSang; Lee, Sang-Goo; Joung, Boyoung; Lee, Keon Jae

    2014-07-23

    A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source. PMID:24740465

  19. High-power characterization of a microcutter actuated by PMN-PT piezocrystals.

    PubMed

    Kuang, Yang; Sadiq, Muhammad; Cochran, Sandy; Huang, Zhihong

    2015-11-01

    An ultrasonic microcutter is an alternative approach to conventional ultrasonic instruments actuated by sandwich piezoelectric transducers for surgery. This paper reports high-power behavior of a microcutter actuated by the piezocrystal lead magnesium niobate-lead titanate (PMN-PT), defining its practical performance and the feasibility of PMNPT actuation for surgical applications. The microcutter was driven at resonance with constant current amplitudes, either unloaded or loaded by poultry breast tissue, until its behavior achieved a steady state. During this driving process, its electric impedance, resonant frequency, and vibration velocity, along with the temperature increase of the PMN-PT, were recorded in real time. The microcutter produced a maximum vibration velocity >2.8 m/s with an excitation current of 0.11 A(rms). The mechanical loss increased significantly with current amplitude, resulting in a maximum temperature increase approaching 50°C around the interface between the PMN-PT and the blade, where they were bonded together with epoxy. Because of the low phase-transition temperature of PMN-PT, this temperature rise prevented the microcutter from working at higher current amplitudes. Along with the high vibration velocity, it also caused a frequency shift downward by 3 kHz at the same current amplitude. During tests with poultry breast tissue, radiation reactance increased the resonant frequency and the radiation resistance increased the loss of the microcutter. However, the loss did not further increase the temperature of the piezoelectric material. The maximum force and the overall work required to penetrate the microcutter into poultry breast tissue were reduced by 47.1 ± 8% and 53.5 ± 6%, respectively, when the microcutter was actuated at a current of 0.07 A(rms).

  20. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.

    PubMed

    Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho; Oh, SeKwon; Park, Kwi-Il; Byun, Myunghwan; Park, Hyelim; Ahn, Gun; Jeong, Chang Kyu; No, Kwangsoo; Kwon, HyukSang; Lee, Sang-Goo; Joung, Boyoung; Lee, Keon Jae

    2014-07-23

    A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source.

  1. High-power characterization of a microcutter actuated by PMN-PT piezocrystals.

    PubMed

    Kuang, Yang; Sadiq, Muhammad; Cochran, Sandy; Huang, Zhihong

    2015-11-01

    An ultrasonic microcutter is an alternative approach to conventional ultrasonic instruments actuated by sandwich piezoelectric transducers for surgery. This paper reports high-power behavior of a microcutter actuated by the piezocrystal lead magnesium niobate-lead titanate (PMN-PT), defining its practical performance and the feasibility of PMNPT actuation for surgical applications. The microcutter was driven at resonance with constant current amplitudes, either unloaded or loaded by poultry breast tissue, until its behavior achieved a steady state. During this driving process, its electric impedance, resonant frequency, and vibration velocity, along with the temperature increase of the PMN-PT, were recorded in real time. The microcutter produced a maximum vibration velocity >2.8 m/s with an excitation current of 0.11 A(rms). The mechanical loss increased significantly with current amplitude, resulting in a maximum temperature increase approaching 50°C around the interface between the PMN-PT and the blade, where they were bonded together with epoxy. Because of the low phase-transition temperature of PMN-PT, this temperature rise prevented the microcutter from working at higher current amplitudes. Along with the high vibration velocity, it also caused a frequency shift downward by 3 kHz at the same current amplitude. During tests with poultry breast tissue, radiation reactance increased the resonant frequency and the radiation resistance increased the loss of the microcutter. However, the loss did not further increase the temperature of the piezoelectric material. The maximum force and the overall work required to penetrate the microcutter into poultry breast tissue were reduced by 47.1 ± 8% and 53.5 ± 6%, respectively, when the microcutter was actuated at a current of 0.07 A(rms). PMID:26559625

  2. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  3. PMN-PT single-crystal high-frequency kerfless phased array.

    PubMed

    Chen, Ruimin; Cabrera-Munoz, Nestor E; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K Kirk

    2014-06-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at -6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application.

  4. PMN-PT single-crystal high-frequency kerfless phased array.

    PubMed

    Chen, Ruimin; Cabrera-Munoz, Nestor E; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K Kirk

    2014-06-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at -6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  5. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT-(1 - x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  6. Fine grains ceramics of PIN-PT, PIN-PMN-PT and PMN-PT systems: drift of the dielectric constant under high electric field.

    PubMed

    Pham-Thi, M; Augier, C; Dammak, H; Gaucher, P

    2006-12-22

    Lead-based ferroelectric ceramics with (1-x)Pb(B1 B2)O3-xPbTiO3 formula have emerged as a group of promising materials for various applications like ultrasonic sonars or medical imaging transducers. (1-x)PMN-xPT, (1-x)PIN-xPT and ternary solutions xPIN-yPMN-zPT ceramics are synthesised using the solid state reaction method. Our objective is to achieve higher structural transition temperatures than those of PMN-PT ceramics with as good dielectric, piezoelectric and electromechanical properties. Ceramics capacitance and loss tangent are measured when the ac field of measurement increases up to E=500 V/mm. Behaviours of these materials under ac field are related to their coercive field and Curie temperature.

  7. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  8. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  9. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-08-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or `Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  10. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

    PubMed Central

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A.; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M.; Brown, Gail J.; Sun, Nian X.

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  11. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  12. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

    PubMed

    Wu, S Z; Miao, J; Xu, X G; Yan, W; Reeve, R; Zhang, X H; Jiang, Y

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  13. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  14. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    PubMed Central

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  15. Influence of the polarization anisotropy on the electrocaloric effect in epitaxial PMN-PT thin films

    NASA Astrophysics Data System (ADS)

    Mietschke, M.; Chekhonin, P.; Molin, C.; Gebhardt, S.; Fähler, S.; Nielsch, K.; Schultz, L.; Hühne, R.

    2016-09-01

    Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) compounds, which are typically used for high performance actuator applications due to their outstanding piezoelectric properties, show, in addition, a pronounced electrocaloric (EC) effect. The study of epitaxial films is a useful tool to analyze the correlation between the microstructure and EC properties in order to optimize the performance of these materials. Therefore, the 0.9PMN-0.1PT films were grown by a pulsed laser deposition on (001) as well as (111) oriented SrTiO3 single crystalline substrates using a La0.7Sr0.3CoO3 buffer as the bottom electrode and additional Au top electrodes. The structural properties determined by a high resolution X-ray and electron microscopy techniques indicated an undisturbed epitaxial growth. The anisotropy of the ferroelectric domain structure was investigated by a vertical and lateral piezoresponse force microscopy showing clear differences between the two orientations. A significant reduction of the thermal hysteresis was observed in the T-dependent polarization measurements for (111) oriented PMN-PT films, whereas the indirectly determined EC properties yield a maximum ΔT of around 15 K at 40 °C for a field of about 400 kV/cm for both film orientations.

  16. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  17. Magnetoelectric properties of epitaxial Fe3O4 thin films on (011) PMN-PT piezosubstrates

    NASA Astrophysics Data System (ADS)

    Tkach, Alexander; Baghaie Yazdi, Mehrdad; Foerster, Michael; Büttner, Felix; Vafaee, Mehran; Fries, Maximilian; Kläui, Mathias

    2015-01-01

    We determine the magnetic and magnetotransport properties of 33 nm thick Fe3O4 films epitaxially deposited by rf-magnetron sputtering on unpoled (011) [PbMg1/3Nb2/3O3] 0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, strongly depend on the in-plane crystallographic direction of the epitaxial (011) Fe3O4 film and strain. When the magnetic field is applied along [100], the magnetization loops are slanted and the sign of the longitudinal MR changes from positive to negative around the Verwey transition at 125 K on cooling. Along the [01 1 ¯] direction, the loops are square shaped and the MR is negative above the switching field across the whole temperature range, just increasing in absolute value when cooling from 300 K to 150 K. The value of the MR is found to be strongly affected by poling the PMN-PT substrate, decreasing in the [100] direction and slightly increasing in the [01 1 ¯] direction upon poling, which results in a strained film.

  18. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  19. Design and Characterization of an Ultrasonic Surgical Tool Using d31 PMN-PT Plate

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Sadiq, M.; Cochran, S.; Huang, Z.

    An ultrasonic surgical tool for tissue incision and dissection has been designed and characterized. The surgical tool is based on a simple geometry to which PMN-PT d31 plates are bonded directly. The performance of the surgical tool has been defined numerically with the Abaqus finite element analysis (FEA) package and practically with laser vibrometer and impedance spectroscopy. The results show the ability of FEA to accurately predict the behaviors of an ultrasonic device as numerical and practical analysis were found to be in a good agreement. The design of the tool presented has the ability to generate displacement amplitude high enough to carry out soft tissue incision with relatively low driving voltage.

  20. Giant isothermal entropy change In (111)-oriented PMN-PT thin film

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2014-11-01

    An isothermal entropy change of 240 nm (111)-oriented PMN-PT 65/35 film near the ferroelectric Curie temperature, relative cooling power (RCP) and change of heat capacity have been investigated. The extracted data characterized giant isothermal entropy change of more than 16 J/kg K in electric field shift ΔE of 455 kV cm-1, which is nearly twice than that found for PbZr0.95Ti0.05O3 thin film at 492 kV cm-1 near the Curie point. Furthermore, the RCP ≈ 700 J/kg and change of heat capacity ≈ 233 J/kg K in electric field shift ΔE of 747 kV cm-1.

  1. Mechanical and thermal transitions in morphotropic PZN-pT and PMN-PT single crystals and their implication for sound projectors.

    PubMed

    Amin, Ahmed; McLaughlin, Elizabeth; Robinson, Harold; Ewart, Lynn

    2007-06-01

    Isothermal compression experiments on multidomain [001] oriented and poled ferroelectric rhombohedral PZN-0.07PT and PMN-0.30PT single crystals revealed elastic instabilities corresponding to zero field ferroelectric-ferroelectric phase transition under mechanical compression. The application of an appropriate dc bias field doubled the stability range of the ferroelectric rhombohedral state under uniaxial compression for both crystals and maintained a linear elastic response. Young's modulus as derived from the quasistatic, zero field stress-strain linear response agreed well with that derived from small signal resonance for the ferroelectric rhombohedral FR state of both PZN-PT and PMN-PT. Elastic compliances s(E)33 as determined from high temperature resonance revealed a monotonically decreasing Young's modulus as a function of temperature in the ferroelectric rhombohedral state with a sudden stiffening near the ferroelectric rhombohedral (FR)-ferroelectric tetragonal (FT) transition. The reversible ferroelectric-ferroelectric transition of morphotropic PZN-PT and PMN-PT single crystals as accessed by mechanical compression is discussed in terms of strain calculations from Devonshire's theory, domain unfolding, and morphotropic phase boundary shift with mechanical stress. The mechanically-induced and thermally-induced ferroelectric-ferroelectric transition trajectories are discussed in terms of the Devonshire theory. Implications of these observations for sound projectors are discussed. A single crystal tonpilz projector fabricated into a 16-element array and a segmented cylinder transducer demonstrated the outstanding capabilities of single crystals to achieve compact, broadband, and high-source level projectors when compared to conventional lead zirconate-titanate PZT8 projectors. PMID:17571807

  2. Mechanical and thermal transitions in morphotropic PZN-pT and PMN-PT single crystals and their implication for sound projectors.

    PubMed

    Amin, Ahmed; McLaughlin, Elizabeth; Robinson, Harold; Ewart, Lynn

    2007-06-01

    Isothermal compression experiments on multidomain [001] oriented and poled ferroelectric rhombohedral PZN-0.07PT and PMN-0.30PT single crystals revealed elastic instabilities corresponding to zero field ferroelectric-ferroelectric phase transition under mechanical compression. The application of an appropriate dc bias field doubled the stability range of the ferroelectric rhombohedral state under uniaxial compression for both crystals and maintained a linear elastic response. Young's modulus as derived from the quasistatic, zero field stress-strain linear response agreed well with that derived from small signal resonance for the ferroelectric rhombohedral FR state of both PZN-PT and PMN-PT. Elastic compliances s(E)33 as determined from high temperature resonance revealed a monotonically decreasing Young's modulus as a function of temperature in the ferroelectric rhombohedral state with a sudden stiffening near the ferroelectric rhombohedral (FR)-ferroelectric tetragonal (FT) transition. The reversible ferroelectric-ferroelectric transition of morphotropic PZN-PT and PMN-PT single crystals as accessed by mechanical compression is discussed in terms of strain calculations from Devonshire's theory, domain unfolding, and morphotropic phase boundary shift with mechanical stress. The mechanically-induced and thermally-induced ferroelectric-ferroelectric transition trajectories are discussed in terms of the Devonshire theory. Implications of these observations for sound projectors are discussed. A single crystal tonpilz projector fabricated into a 16-element array and a segmented cylinder transducer demonstrated the outstanding capabilities of single crystals to achieve compact, broadband, and high-source level projectors when compared to conventional lead zirconate-titanate PZT8 projectors.

  3. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast. PMID:25914443

  4. Implementation of a PMN-PT piezocrystal-based focused array with geodesic faceted structure.

    PubMed

    Qiu, Zhen; Qiu, Yongqiang; Demore, Christine E M; Cochran, Sandy

    2016-07-01

    The higher performance of relaxor-based piezocrystals compared with piezoceramics is now well established, notably including improved gain-bandwidth product, and these materials have been adopted widely for biomedical ultrasound imaging. However, their use in other applications, for example as a source of focused ultrasound for targeted drug delivery, is hindered in several ways. One of the issues, which we consider here, is in shaping the material into the spherical geometries used widely in focused ultrasound. Unlike isotropic unpoled piezoceramics that can be shaped into a monolithic bowl then poled through the thickness, the anisotropic structure of piezocrystals make it impossible to machine the bulk crystalline material into a bowl without sacrificing performance. Instead, we report a novel faceted array, inspired by the geodesic dome structure in architecture, which utilizes flat piezocrystal material and maximizes fill factor. Aided by 3D printing, a prototype with f#≈ 1.2, containing 96 individually addressable elements was manufactured using 1-3 connectivity PMN-PT piezocrystal-epoxy composite. The fabrication process is presented and the array was connected to a 32-channel controller to shape and steer the beam for preliminary performance demonstration. At an operating frequency of 1MHz, a focusing gain around 30 was achieved and the side lobe intensities were all at levels below -12dB compared to main beam. We conclude that, by taking advantage of contemporary fabrication techniques and driving instrumentation, the geodesic array configuration is suitable for focused ultrasound devices made with piezocrystal.

  5. PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.

    2014-05-01

    The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.

  6. Elastic, dielectric and piezoelectric characterization of single domain PIN-PMN-PT: Mn crystals.

    PubMed

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2012-12-15

    Mn modified 0.26Pb(In(1/2)Nb(1/2))O(3)-0.42Pb(Mg(1/3)Nb(2/3))O(3)-0.32PbTiO(3) (PIN-PMN-PT:Mn) single crystals with orthorhombic perovskite crystal structure were polarized along [011] direction, resulting in the single domain state "1O." The complete set of material constants was determined using the combined resonance and ultrasonic methods. The thickness shear piezoelectric coefficient d(15) and electromechanical coupling factor k(15) were found to be on the order of 3100 pC/N and 94%, respectively, much higher than longitudinal d(33) ∼ 270 pC/N and k(33) ∼ 70%. Using the single domain data, the rotated value of d(33)* along [001] direction was found to be 1230 pC/N, in agreement with the experimentally determined d(33) value of 1370 pC/N, conferring extrinsic contributions being about 10%, which was also confirmed using the Rayleigh analysis. In addition, the mechanical quality factors Q(m) were evaluated for different "1O" vibration modes, where the longitudinal Q(m) was found to be ∼1200, much higher than the value for "4O" crystals, ∼300. PMID:23341689

  7. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  8. In situ hard x-ray photoemission spectroscopy of barrier-height control at metal/PMN-PT interfaces

    NASA Astrophysics Data System (ADS)

    Kröger, E.; Petraru, A.; Quer, A.; Soni, R.; Kalläne, M.; Pertsev, N. A.; Kohlstedt, H.; Rossnagel, K.

    2016-06-01

    Metal-ferroelectric interfaces form the basis of novel electronic devices. A key effect determining the device functionality is the bias-dependent change of the electronic energy-level alignment at the interface. Here, hard x-ray photoelectron spectroscopy (HAXPES) is used to determine the energy-level alignment at two metal-ferroelectric interfaces—Au versus SrRuO3 on the relaxor ferroelectric Pb (Mg1 /3Nb2 /3 )0.72Ti0.28O3 (PMN-PT)—directly in situ as a function of electrical bias. The bias-dependent average shifts of the PMN-PT core levels are found to have two dominant contributions on the 0.1 -1-eV energy scale: one depending on the metal electrode and the remanent electric polarization and the other correlated with electric-field-induced strain. Element-specific deviations from the average shifts are smaller than 0.1 eV and appear to be related to predicted dynamical charge variations in PMN-PT. In addition, the efficiency of ferroelectric polarization switching is shown to be reduced near the coercive field under x-ray irradiation. The results establish HAXPES as a tool for the in operando investigation of metal-ferroelectric interfaces and suggest electric-field-induced modifications of the polarization distribution as a novel way to control the barrier height at such interfaces.

  9. Microwave tunability in a GaAs-based multiferroic heterostructure: MnAl/GaAs/Co2PMN-PT

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Gao, J.; Lou, J.; Liu, M.; Yoon, S. D.; Geiler, A. L.; Nedoroscik, M.; Heiman, D.; Sun, N. X.; Vittoria, C.; Harris, V. G.

    2009-04-01

    A strong magnetoelectric (ME) interaction is presented in a magnetostrictive-semiconductor-piezoelectric heterostructure that consists of the Huesler alloy, Co2MnAl, GaAs, and lead magnesium niobate-lead titanate (PMN-PT). The laminated Co2MnAl/GaAs/PMN-PT structure, having a thickness of 19 nm/180 μm/500 μm, demonstrates a ferromagnetic resonance (FMR) field shift of 28 Oe with an external electric field of 200 V across the PMN-PT substrate. This corresponds to a resonance frequency shift of ˜125 MHz at X-band. It yields a large ME coupling (7 Oe cm/kV) and microwave tunability (˜32 MHz/kV cm-1), compared to other trilayer multiferroic composite structures. In addition, static magnetization measurement indicates a reduction in the remanence magnetization while applying the electric field, which corroborates the ME interactions mediated by the translation of magnetoelastic forces in this structure. This work explores the potential of multiferroic heterostrucuture transducers for use in FMR microwave devices tuned by electric fields.

  10. Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a

  11. Effect of Elevated Pressure on the Heat Transfer and Power Requirements During Bridgman Growth of PMN-PT Crystals

    NASA Technical Reports Server (NTRS)

    Bune, Andris; Ostrogorsky, Aleksandar; Marin, Carlos; Nicoara, Irina; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Performance of the furnace during Bridgman growth of the lead magnesium niobate-lead titanate crystal (PMN-PT) is analyzed. PMN-PT is electrostrictive ceramic that has near ideal strain-voltage function. Furthermore piezoelectric (2000 to 2300 pC/N) and coupling (92 to 95%) constants are exceptionally good. Due to these properties PMN-PT has wide range of applications - from sonars to transducers in a high precision optical systems. In this research first attempt to crystallize PMN-PT in a Mellen type vertical Bridgman furnace was not successful, as melting temperature of precursor materials was not achieved. At this point choice was between building a new more powerful facility or finding ways to enhance performance of the existing furnace. Besides adjusting power supply to the individual heating elements, redesigning ampoule holding cartridge and improving furnace insulation one more radical improvement was proposed. The entire furnace was placed into the high pressure chamber. Further experiments confirmed that temperature inside the furnace was increased sufficiently to melt precursor materials to obtain PMN-PT. Numerical modeling is undertaken to find limitations of this technique and to predict temperature distribution inside the ampoule. It is of interest also to account for main factors contributing to a higher temperatures achieved in the furnace under the higher pressure (up to 10 atm.). Numerical model of the furnace is based on general purpose finite - element code FIDAP and on previous efforts to model Bridgman type furnace with multiply heaters. In order to account for all heat transfer mechanism involved - conduction, convection and radiation - different parts of the furnace are modeled in accordance with expected dominant mode of heat transfer - conduction in the solid parts, conduction and radiation in the ampoule, gas convection and conduction in the furnace openings complemented with wall-to-wall radiation. Because of these complicating factors

  12. Implementation of a PMN-PT piezocrystal-based focused array with geodesic faceted structure.

    PubMed

    Qiu, Zhen; Qiu, Yongqiang; Demore, Christine E M; Cochran, Sandy

    2016-07-01

    The higher performance of relaxor-based piezocrystals compared with piezoceramics is now well established, notably including improved gain-bandwidth product, and these materials have been adopted widely for biomedical ultrasound imaging. However, their use in other applications, for example as a source of focused ultrasound for targeted drug delivery, is hindered in several ways. One of the issues, which we consider here, is in shaping the material into the spherical geometries used widely in focused ultrasound. Unlike isotropic unpoled piezoceramics that can be shaped into a monolithic bowl then poled through the thickness, the anisotropic structure of piezocrystals make it impossible to machine the bulk crystalline material into a bowl without sacrificing performance. Instead, we report a novel faceted array, inspired by the geodesic dome structure in architecture, which utilizes flat piezocrystal material and maximizes fill factor. Aided by 3D printing, a prototype with f#≈ 1.2, containing 96 individually addressable elements was manufactured using 1-3 connectivity PMN-PT piezocrystal-epoxy composite. The fabrication process is presented and the array was connected to a 32-channel controller to shape and steer the beam for preliminary performance demonstration. At an operating frequency of 1MHz, a focusing gain around 30 was achieved and the side lobe intensities were all at levels below -12dB compared to main beam. We conclude that, by taking advantage of contemporary fabrication techniques and driving instrumentation, the geodesic array configuration is suitable for focused ultrasound devices made with piezocrystal. PMID:27104921

  13. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  14. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  15. Microwave Magnetoelectric Effects in Single Crystal YIG/PMN-PT Bilayers

    NASA Astrophysics Data System (ADS)

    Shastry, S.; Srinivasan, G.; Mantese, J. V.

    2004-03-01

    Layered magnetostrictive/piezoelectric structures are multifunctional due to mechanical force mediated electromagnetic coupling. This study is concerned with microwave magnetoelectric (ME) interactions in layered ferrite-piezoelectric oxides. Ferromagnetic resonance (FMR) is a powerful tool for such studies. An electric field E applied to the composite produces a mechanical deformation in PZT that in turn is coupled to the ferrite, resulting in a shift in the resonance field. Information on the nature of high frequency ME coupling could therefore be obtained from data on field shift vs E. Since the measurement accuracy depends very much on the FMR line width, bilayers consisting of single crystal or epitaxial low-loss ferrites are ideal for the investigations. Studies were performed at 9.4 GHz on bilayers consisting of (100), (110) or (111) epitaxial yttrium iron garnet (YIG) films (1-130 micron) and (100) lead magnesium niobate-lead titanate (PMN-PT). The samples were positioned outside a hole at the bottom or side of a TE102-reflection type cavity. Resonance absorption vs bias magnetic field H were obtained as a function of E = 0-8 kV/cm for both in-plane and out-of-plane H. Important results are as follows. (i) The ME coupling is stronger for H perpendicular to the bilayer than for in-plane H. (ii) The coupling strength is maximum for E and H along <111> in YIG. (iii) The ME constant varies from a maximum of 6 Oe cm/kV for bilayers with 4 micron YIG to a minimum of 3 Oe cm/kV for 110 micron YIG. (iv) The variation of resonance field shift with the volume ratio for the two phases is in agreement with theory [1,2]. 1. M. I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001). 2. M. I. Bichurin, V. M. Petrov, Yu. V. Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002). This work was supported by a grant from the National Science Foundation (DMR-0322254)

  16. Silver Doped 0.9PMN-PT-0.1PZT Composite Films for very High Frequency Ultrasonic Transducer Applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+ 2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 µC/cm(2) at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29% (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications. PMID:23814408

  17. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  18. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    PubMed

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors. PMID:23192819

  19. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  20. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-12-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO3) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10-9 m/V, about 45 times larger than for LiNbO3) but it decreased rapidly below 75 K; at 1.3 K, d15 was only about 8% of its room temperature value.

  1. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  2. In situ detection of Bacillus anthracis spores using fully submersible, self-exciting, self-sensing PMN-PT/Sn piezoelectric microcantilevers.

    PubMed

    McGovern, John-Paul; Shih, Wan Y; Shih, Wei-Heng

    2007-08-01

    In this study, we have demonstrated in situ, all-electrical detection of Bacillus anthracis (BA) spores using lead magnesium niobate-lead titanate/tin (PMN-PT/Sn) piezoelectric microcantilever sensors (PEMS) fabricated from PMN-PT freestanding films and electrically insulated with methyltrimethoxysilane (MTMS) coatings on the tin surface. Antibody specific to BA spore surface antigen was immobilized on the platinum electrode of the PMN-PT layer. In phosphate-buffered saline (PBS) solution, the PMN-PT/Sn PEMS exhibited quality (Q) values ranging from 50 to 75. The detection was carried out in a closed-loop flow cell with a liquid volume of 0.8 ml and a flow rate of 1 ml min(-1). It was shown that one sensor, "PEMS-A" (500 microm long, 800 microm wide, with a 22 microm thick PMN-PT layer, a 20 microm thick tin layer and a 1 +/- 0.5 x 10(-12) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2100 +/- 200, 1100 +/- 100 and 700 +/- 100 Hz at concentrations of 20,000, 2000, and 200 spores ml(-1) or 16,000, 1600, and 160 total spores, respectively. Additionally, "PEMS-B" (350 microm long, 800 microm wide, with an 8 microm thick PMN-PT layer, a 6 microm thick tin layer and a 2 +/- 1 x 10(-13) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2400 +/- 200, 1500 +/- 200, 500 +/- 150 and 200 +/- 100 Hz at concentrations of 20,000, 2000, 100, and 45 spores ml(-1) or 16,000, 1600, 80, and 36 total spores, respectively.

  3. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    PubMed Central

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  4. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure.

    PubMed

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X; Yang, Xi; Liu, Ming

    2016-02-05

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also "store" the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  5. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-02-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  6. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure.

    PubMed

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also "store" the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  7. Direct crystallization of perovskite phase in PMN-PT thin films prepared by polyvinylpyrrolidone modified sol-gel processing and their properties

    SciTech Connect

    Du, Z.H.; Zhang, T.S.; Zhu, M.M.; Ma, J.

    2009-07-15

    A modified sol-gel processing has been developed by using polyvinylpyrrolidone (PVP) as modifier and lead nitrate as lead source to synthesize (1-x)Pb(Mg{sub 1/3},Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3} (PMN-PT) thin films with x=0.23-0.43. With PVP additions, perovskite phase could directly crystallize from amorphous films at the temperature as low as 430 deg. C via bypassing the metastable phase-pyrochlore and crystallinity was significantly enhanced. The PVP addictives have been optimized with molecular weight <630 K and the ratio of PVP monomer/PMN-PT at 0.25-1.0. XPS analysis indicates that the chemical states of the elements in the well-crystallized PMN-PT films are close to the literature data for the PMN-PT single crystals and the films possess highly desired electrical and optical properties. - Graphical abstract: A polyvinylpyrrolidone modified sol-gel processing was developed to synthesize pure-perovskite Pb(Mg{sub 1/3},Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} films via bypassing pyrochlore phase.

  8. In-plane anisotropic effect of magnetoelectric coupled PMN-PT/FePt multiferroic heterostructure: Static and microwave properties

    NASA Astrophysics Data System (ADS)

    Vargas, Jose M.; Gómez, Javier

    2014-10-01

    The effects of the electric and magnetic field variation on multiferroic heterostructure were studied in this work. Thin films of polycrystalline Fe50Pt50 (FePt) were grown by dc-sputtering on top of the commercial slabs of lead magnesium niobate-lead titanate (PMN-PT). The sample was a (011)-cut single crystal and had one side polished. In this condition, the PMN-PT/FePt operates in the L-T (longitudinal magnetized-transverse polarized) mode. A FePt thin film of 20 nm was used in this study to avoid the characteristic broad microwave absorption line associated with these films above thicknesses of 40 nm. For the in-plane easy magnetization axis (01-1), a microwave magnetoelectric (ME) coupling of 28 Oe cm kV -1 was estimated, whereas a value of 42 Oe cm kV -1 was obtained through the hard magnetization axis (100). Insight into the effects of the in-plane strain anisotropy on the ME coupling is obtained from the dc-magnetization loops. It was observed that the trend was opposite along the easy and hard magnetic directions. In particular, along the easy-magnetic axis (01-1), a square and narrow loop with a factor of Mr/MS of 0.96 was measured at 10 kV/cm. Along the hard-magnetic axis, a factor of 0.16 at 10 kV/cm was obtained. Using electric tuning via microwave absorption at X-band (9.78 GHz), we observe completely different trends along the easy and hard magnetic directions; Multiple absorption lines along the latter axis compared to a single and narrower absorption line along the former. In spite of its intrinsic complexity, we propose a model which gives good agreement both for static and microwave properties. These observations are of fundamental interest for future ME microwave components, such as filters, phase-shifters, and resonators.

  9. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  10. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films

    NASA Astrophysics Data System (ADS)

    Garg, T.; Kulkarni, A. R.; Venkataramani, N.

    2016-08-01

    The magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films prepared on a glass substrate using RF magnetron sputtering has been investigated in this work. PMN-PT thin films (i.e. PMN-PT/LCMO/Pt/Ti/glass) deposited on glass were used as a substrate for deposition of ZnFe2O4 thin films. ZnFe2O4 thin films were annealed ex situ at different temperatures. Structural, magnetic, ferroelectric, dielectric and magneto-dielectric studies were carried out on these multiferroic bilayer thin films. Structural studies revealed the presence of each layer in its respective single phase. Magnetic and ferroelectric studies revealed the ferromagnetic and ferroelectric behaviors of these bilayers. To quantify the magnetoelectric coupling, the dielectric constant of the bilayer was measured at room temperature as a function of frequency with and without the applied magnetic field. The magneto-dielectric response MD(%) was calculated by finding the relative change in dielectric constant at 1 kHz as a percentage. The observed MD response was correlated with magnetization of the ferrite layer. An MD response of 2.60% was found for a bilayer film annealed at 350 °C. At this particular annealing temperature, the ZnFe2O4 layer also has the highest saturation magnetization of 1900 G.

  11. Compact nanomechanical plasmonic phase modulators

    SciTech Connect

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  12. A compact nanosecond pulse modulator

    NASA Astrophysics Data System (ADS)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  13. [111]-oriented PIN-PMN-PT crystals with ultrahigh dielectric permittivity and high frequency constant for high-frequency transducer applications

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Shujun; Luo, Jun; Geng, Xuecang; Xu, Zhuo; Shrout, Thomas R.

    2016-08-01

    The electromechanical properties of [111]-oriented tetragonal Pb(In1/2Nb1/2O3)-Pb(Mg1/3Nb2/3O3)-PbTiO3 (PIN-PMN-PT) crystals were investigated for potential high frequency ultrasonic transducers. The domain-engineered tetragonal crystals exhibit an ultrahigh free dielectric permittivity ɛ33T > 10 000 with a moderate electromechanical coupling factor k33 ˜ 0.79, leading to a high clamped dielectric permittivity ɛ33S of 2800, significantly higher than those of the rhombohedral relaxor-PT crystals and high-K (dielectric permittivity) piezoelectric ceramics. Of particular significance is that the [111]-oriented tetragonal crystals were found to possess high elastic stiffness, with frequency constant N33 of ˜2400 Hz m, allowing relatively easy fabrication of high-frequency transducers. In addition, no scaling effect of piezoelectric and dielectric properties was observed down to thickness of 0.1 mm, corresponding to an operational frequency of ˜24 MHz. These advantages of [111]-oriented tetragonal PIN-PMN-PT crystals will benefit high-frequency ultrasonic array transducers, allowing for high sensitivity, broad bandwidth, and reduced noise/crosstalk.

  14. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    DOE PAGES

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; Dorr, Kathrin; Kortus, Jens

    2016-01-27

    In this study, BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poisson number for BiFeO3 one can determine the volume changemore » induced by strain, and therefore the Gr neisen parameters for specific phonon modes.« less

  15. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    NASA Astrophysics Data System (ADS)

    Himcinschi, Cameliu; Guo, Er-Jia; Talkenberger, Andreas; Dörr, Kathrin; Kortus, Jens

    2016-01-01

    BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO3, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  16. Double-modulation CPT cesium compact clock

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Mejri, Sinda; Tricot, Francois; Abdel Hafiz, Moustafa; Boudot, Rodolphe; de Clercq, Emeric; Guérandel, Stéphane

    2016-06-01

    Double-modulation coherent population trapping (CPT) is based on a synchronous modulation of Raman phase and laser polarization, which allows the atomic population to accumulate in a common dark state. The high contrast signal obtained on the clock transition with a relative compact and robust laser system is interesting as basis of a high performance microwave clock. Here we study the parameters of a double-modulation CPT Cs clock working in cw mode. The optimal polarization modulation frequency and cell temperature for maximum contrast of clock transition are investigated. The parameters of the detection are also studied. With the optimal parameters, we observe a CPT signal with contrast of 10% and linewidth of 492 Hz, which is well suited for implementing a cw atomic clock.

  17. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  18. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  19. Apparatus for the compact cooling of modules

    SciTech Connect

    Iyengar, Madhusudan K.; Parida, Pritish R.

    2015-07-07

    An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.

  20. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate. PMID:26373868

  1. Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011).

    PubMed

    Liu, Ming; Hoffman, Jason; Wang, Jing; Zhang, Jinxing; Nelson-Cheeseman, Brittany; Bhattacharya, Anand

    2013-01-01

    A central goal of electronics based on correlated materials or 'Mottronics' is the ability to switch between distinct collective states with a control voltage. Small changes in structure and charge density near a transition can tip the balance between competing phases, leading to dramatic changes in electronic and magnetic properties. In this work, we demonstrate that an electric field induced two-step ferroelastic switching pathway in (011) oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates can be used to tune the Verwey metal-insulator transition in epitaxial Fe3O4 films in a stable and reversible manner. We also observe robust non-volatile resistance switching in Fe3O4 up to room temperature, driven by ferroelastic strain. These results provides a framework for realizing non-volatile and reversible tuning of order parameters coupled to lattice-strain in epitaxial oxide heterostructures over a broad range of temperatures, with potential device applications. PMID:23703150

  2. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a ‘non-volatile’ converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in ‘non-volatility’. In isolated nanomagnets, the magnetization rotates by \\lt 90^\\circ upon application of the electric field, but in a dipole-coupled pair consisting of one ‘hard’ and one ‘soft’ nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet’s magnetization rotates by \\gt 90^\\circ upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  3. Fabrication of a PMN-PT Single Crystal-Based Transcranial Doppler Transducer and the Power Regulation of Its Detection System

    PubMed Central

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The −6 dB bandwidth of the transducer is 68.4% and the sensitivity is −17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  4. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-12-19

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries.

  5. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  6. Design of compact Marx module with square pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  7. Design of compact Marx module with square pulse output.

    PubMed

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m(3) and 140 GW/m(3), respectively. PMID:27475580

  8. Compact models for carrier-injection silicon microring modulators.

    PubMed

    Wu, Rui; Chen, Chin-Hui; Fedeli, Jean-Marc; Fournier, Maryse; Cheng, Kwang-Ting; Beausoleil, Raymond G

    2015-06-15

    We propose compact DC and small-signal models for carrier-injection microring modulators that accurately describe the DC characteristics (resonance wavelength, quality factor, and extinction ratio) and the high frequency performance. The proposed theoretical models provide physical insights of the carrier-injection microring modulators with a variety of designs. The DC and small-signal models are implemented in Verilog-A for SPICE-compatible simulations.

  9. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    PubMed

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions. PMID:23233209

  10. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  11. A compact LED-based module for DNA capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Hurth, C.; Lenigk, R.; Zenhausern, F.

    2008-11-01

    A setup consisting of a bifurcated optical fiber made from high-transmission fused-silica cores with relatively high numerical apertures (NA=0.22), high-power cyan light-emitting diodes (LEDs) and Peltier cooling elements controlled by a proportional-integrative-derivative (PID) module is introduced to replace bulky, power- consuming lasers conventionally used in laser induced fluorescence (LIF) microchip capillary electrophoresis (μCE). The output fiber beam size, divergence, power distribution and power stability over time are documented. A modified epifluorescence microscope arrangement is used in conjunction with a compact fixed spectrometer aligned with a cooled charge-coupled device (CCD) camera for added sensitivity. Fluorescent dyes such as fluorescein, 6-carboxyfluorescein (6-FAM) and rhodamine B can be detected in cyclic olefin copolymer (COC) and glass microchannels at submicromolar levels. A single-stranded DNA oligonucleotide (10-mer) labeled with 6-FAM is also detected with reasonable signal-to-noise ratio when electrophoretically migrated at 100 V/cm. The compact LED excitation system presented herein will allow using capillary electrophoresis for DNA detection in compact mobile devices.

  12. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  13. High speed turning of compacted graphite iron using controlled modulation

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  14. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-12-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained.

  15. A Compact Dual-Crystal Modulated Birefringence-Measurement System for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.; Das, Kamal K.; Anna, Shelley L.; McKinley, Gareth H.

    1999-01-01

    A compact modulated birefringence-measurement system has been developed for use in microgravity fluid physics applications with non-Newtonian fluids such as polymer solutions. This instrument uses a dual-crystal transverse electro-optical modulator capable of modulation frequencies in excess of 100 MHz. The two crystals are modulated 180 deg. out of phase from each other, The theoretical framework governing the development of this instrument using the Mueller-Stokes polarization matrices is discussed. Several ground-based experiments are performed to compare this system with the theoretical results. Results from this transverse electro-optical modulator-based birefringence-measurement system agree well with the theory. The instrument is also very stable and robust, making it suitable for the extreme acceleration environment to be encountered in a NASA Black Brandt sounding rocket.

  16. A comparison of pressure compaction and diametral compression tests for determining granule strengths

    NASA Astrophysics Data System (ADS)

    Glass, S. J.; Newton, C.

    Lightning strikes can cause structural damage, ignite flammable materials, and produce circuit malfunctions in missiles, aircraft, and ground systems. Lightning arrestor connectors (LAC's) are used to divert harmful lightning energy away from these systems by providing less destructive breakdown paths. Ceramic granules in the size range of 150-200 micrometers are used in LAC's to provide physical and electrical separation of contacts (pins) from the surrounding metal web, and to control the voltage breakdown level. Pressure compaction (P-C) tests were used to characterize the strength of ceramic granules. When compaction data are plotted as relative density of the compact versus the compaction pressure two linear regions are generally observed. The intersection of these regions, which is known as the 'breakpoint,' has been used as a semi-quantitative measure of granule strength. Comparisons were made between the P-C breakpoint and strengths of 150-200 micrometers diameter ZnO, TiO2 (rutile), and lead magnesium niobate-lead titanate (PMN-PT) granules, where the strengths were determined by diametral compression (D-C) tests. At high compaction pressures the compliance of the die itself is significant and was accounted for in the analyses. Tests were conducted at different compaction rates, and with different aspect ratio compacts. High aspect ratios and loading rates decrease the slope of the second linear portion of the compaction curve and produce higher apparent P-C breakpoints. Comparison of the P-C breakpoint to the average D-C strength indicates that the D-C strength is approximately fifty percent higher for PMN-PT granules. To eliminate the uncertainty in results due to irregular granules sizes and shapes, comparisons were made for uniform size (210 micrometers) glass spheres. In this case the average D-C strength coincided with a second breakpoint in the P-C data, which occurred after compaction by a mechanism of bridge formation and collapse had ceased.

  17. Modulation of a chirp gravitational wave from a compact binary due to gravitational lensing

    SciTech Connect

    Yamamoto, Kazuhiro

    2005-05-15

    A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10{sup -5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.

  18. Modulation of persistent photoconductivity by electric-field-controlled strain in thin films of La0.39Pr0.24Ca0.37MnO3

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Jiang, Y. C.; Wu, Z. P.; Gao, J.

    2013-02-01

    Thin films of La0.39Pr0.24Ca0.37MnO3 (LPCMO) were epitaxially grown on 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 (PMN-PT) substrates. These LPCMO films exhibited low-temperature persistent photoconductivity (PPC) when illuminated by a visible light of 532 nm. Not only the resistance but also PPC were modulated by electric fields across PMN-PT. Detailed analysis and in situ x-ray diffraction indicate that such modulations were mainly due to the change of lattice deformation by applied electric fields via converse piezoelectric effect. It was also found that light and strain influence the phase competition in different ways.

  19. A compact frequency domain fluorometer with a directly modulated deuterium light source

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Hua, Y.; Mitchell, A. K.; Murray, J. G.; Boardman, A. D.

    1996-01-01

    A phase fluorometer based on a low-cost and versatile high-frequency modulated light source and a fast gain-modulated photomultiplier is described. The apparatus is particularly well-suited to high-sensitivity frequency-domain fluorescence measurements requiring ultraviolet excitation. The system is very compact since it features a directly modulated light source, a miniature photomultiplier tube, and an rf synthesizer on a PC board. Equipped with a suitable fiber optic probe sensor, the device has potential as a portable unit for a wide range of remote sensing applications. The lamp can be modulated at frequencies up to 120 MHz and the phase fluorometer has been tested at up to 70 MHz with a range of fluorescent lifetime standards containing quinine sulfate quenched with sodium chloride.

  20. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  1. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel

    2015-02-01

    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has <99% reflectance at 1535nm wavelength and can achieve mechanical angle slew rates of over 500 rad/sec when switching the Er/Yb:Glass lasing cavity from pumping to lasing state. The design targeted higher efficiency, smaller size, and lower cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  2. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  3. First operational experience from a compact, highly energy efficient Data Center Module

    NASA Astrophysics Data System (ADS)

    Acín, V.; Cruz, R.; Delfino, M.; Martínez, F.; Rodríguez, M.; Tallada, P.

    2011-12-01

    PIC, the Port d'Informació Científica in Barcelona, Spain has provisioned a compact, highly efficient Data Centre Module in order to expand its CPU servers at a minimal energy cost. The design aims are to build an enclosure of 30 square meters or less and equip it with commodity data centre components (for example, standard gas expansion air conditioners) which can host 80 KW of CPU servers with a PUE less than 1.7 (to be compared with PIC's legacy computer room with an estimated PUE of 2.3). Forcing the use of commodity components has lead to an interesting design, where for example a raised floor is used more as an air duct rather than to install cables, resulting in an "air conditioner which computes". The module is instrumented with many thermometers whose data will be used to compare to computer room simulation programs. Also, each electrical circuit has an electric meter, yielding detailed data on power consumption. The paper will present the first experience from operating the module. Although the module has a slightly different geometry from a "container", the results can be directly applied to them.

  4. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    SciTech Connect

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-08-25

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  5. A phase-modulated laser system of ultra-low phase noise for compact atom interferometers

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Se; Kim, Jaewan; Lee, Sang-Bum; Park, Sang Eon; Kwon, Taek Yong

    2015-07-01

    A compact and robust laser system is essential for mobile atom interferometers. Phase modulation can provide the two necessary phase-coherent frequencies without sophisticated phase-locking between two different lasers. However, the additional laser frequencies generated can perturb the atom interferometer. In this article, we report on a novel method to produce a single high-power laser beam composed of two phase-coherent sidebands without the perturbing carrier mode. Light from a diode laser is phase-modulated by using a fiber-coupled electro-optic modulator driven at 3.4 GHz and passes through a Fabry-Perot cavity with a 6.8 GHz free spectral range. The cavity filters the carrier mode to leave the two first-order sidebands for the two-photon Raman transition between the two hyperfine ground states of 87Rb. The laser beam is then fed to a single tapered amplifier, and the two sidebands are both amplified without mode competition. The phase noise is lower than that of a state-of-the-art optically phase-locked external-cavity diode laser (-135 dBrad2/Hz at 10 kHz) at frequencies above 10 Hz. This technique can be used in all-fiber-based laser systems for future mobile atom interferometers.

  6. Compact 100Gb/s DP-QPSK integrated receiver module employing three-dimensional assembly technology.

    PubMed

    Tanobe, H; Kurata, Y; Nakanishi, Y; Fukuyama, H; Itoh, M; Yoshida, E

    2014-03-10

    We demonstrate a compact 100 Gbit/s DP-QPSK receiver module that is only 18 mm (W) x 16 mm (D) x 2.8 mm (H). The module size is reduced by using a ball grid array (BGA) package with three-dimensional assembly technology and by applying a heterogeneous integrated PLC. Error-free DP-QPSK signal demodulation is successfully demonstrated.

  7. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    PubMed Central

    Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans

    2012-01-01

    Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801

  8. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  9. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  10. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  11. Nanodomain structures with hierarchical inhomogeneities in PMN-PT.

    PubMed

    Kurushima, Kosuke; Kobayashi, Keisuke; Mori, Shigeo

    2012-09-01

    The nanometric domain configuration of (1 - x) Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO(3) [(1 - x)PMN-xPT] single crystals in the monoclinic phase around a morphotropic phase boundary (MPB) has been examined thoroughly by means of transmission electron microscopy (TEM). Domain structures with hierarchically inhomogeneous configuration were found in the monoclinic phase near the MPB region around x ~ 0.32, which are characterized as nanoscaled lamella-type domain structures with ~10 nm width inside macroscopic-sized banded domains with 100 to 200 nm width. To elucidate formation processes of the domain structures with hierarchically inhomogeneous configuration, an in situ TEM observation of changes of the domain structures in the temperature window between 298K and 500K was carried out. It is revealed that these nanoscaled lamella-type domain structures with ~10 nm width appear inside the banded domains as a result of the tetragonal structure and are inherent to the monoclinic phase. PMID:23007758

  12. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection.

    PubMed

    Han, Sang-Pil; Kim, Namje; Ko, Hyunsung; Ryu, Han-Cheol; Park, Jeong-Woo; Yoon, Young-Jong; Shin, Jun-Hwan; Lee, Dong Hun; Park, Sang-Ho; Moon, Seok-Hwan; Choi, Sung-Wook; Chun, Hyang Sook; Park, Kyung Hyun

    2012-07-30

    We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample. PMID:23038394

  13. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  14. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  15. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  16. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    NASA Astrophysics Data System (ADS)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  17. FERRITE-FREE, OIL-SWITCHED, FOUR-STAGE, HIGH-GRADIENT MODULE FOR COMPACT PULSED POWER APPLICATIONS

    SciTech Connect

    Rhodes, M A; Watson, J; Sanders, D; Sampayan, S; Caporaso, G

    2007-06-15

    We describe the design and present initial experimental results of a novel, high-gradient, compact pulsed power module. Our application focus is linear accelerators but our technology is easily applicable to a wide range of pulse-power applications. Our design incorporates and combines for the first time a number of our recently developed, enabling technologies including: a novel, bipolar pulse-forming line allowing module stacking without ferrites, very compact and fast oil filled switches, novel high-dielectric constant insulator/energy storage material, and a novel method for reducing edge enhancements in the pulse forming structure. The combination of these technologies enables us to design a very compact stackable module that will deliver high-gradient (5-10 MV/m) voltage at 5-10kA to arbitrary loads. Our prototype is comprised of four stages. Each stage is designed to operate at 300kV producing 1.2-MV into 120 Ohms. The pulse length is 25-ns and the pulse-shape is rectangular. We present initial experimental results up to 75 kV per stage with the switches operating in self-break mode.

  18. Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors.

    PubMed

    Yu, Ping; Ji, Yadong; Neumann, Norbert; Lee, Sang-Goo; Luo, Hasou; Es-Souni, Mohammed

    2012-09-01

    The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate-lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m(2)K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 · 10(9) cm·Hz(1/2)/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors. PMID:23007771

  19. Compact acousto-optic modulator operatingin the purely Raman - Nath diffraction regime as a phase modulator in FM spectroscopy

    SciTech Connect

    Baryshev, Vyacheslav N; Epikhin, V M

    2010-08-03

    We report fabrication of a new acousto-optic modulator (AOM-RN) operating purely in the Raman - Nath diffraction regime. This device can be used as an external phase modulator in frequency-modulation (FM) optical heterodyne spectroscopy for fast and broadband frequency control of diode lasers. The AOM-RN design is significantly simplified, and its dimensions are minimised due to a decrease (by almost an order of magnitude in comparison with the existing AOMs) in the acousto-optic interaction length and the absence of impedance matching circuit. The FM spectroscopy based on AOM-RN makes it possible to analyse both absorption and dispersion properties of optical resonances under study; this possibility is shown by the example of saturated-absorption resonances in cesium vapour. The possibility of detecting coherent population trapping resonances using FM spectroscopy with AOM-RN as an external phase modulator is experimentally demonstrated.

  20. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  1. Test Results of a Compact Conventional Modulator for Two-Klystron Operation

    SciTech Connect

    Gold, S

    2004-05-04

    Modulator technology has not advanced greatly over the last 30 years. Today, with the advent of the High Voltage, High Power IGBT there are several approaches for a solid state ON/OFF switched modulator. Klystron and accelerator technology is forcing voltages and peak powers higher such as the demand for 500 kV and 500 amperes peak to power two X-Band klystrons. Conventional technology (line-type modulators) were never overly concerned about rise time and efficiency. A few years ago, the klystron department at Stanford Linear Accelerator Center (SLAC) undertook an investigation into what could be done in a conventional modulator at 500 kV. We have reported on test bed measurements and shown both conceptual and hardware pictures during design and construction. We have now completed the modulator tank.

  2. A compact 64-pixel CsI(T1)/Si PIN photodiode imaging module with IC readout

    SciTech Connect

    Gruber, Gregory J.; Choong, Woon-Seng; Moses, William W.; Derenzo, Stephen E.; Holland, Stephen E.; Pedrali-Noy, Marzio; Krieger, Brad; Mandelli, Emanuele; Meddeler, Gerrit; Wang, Nadine W.

    2001-08-09

    We characterize the performance of a complete 64-pixel compact gamma camera imaging module consisting of optically isolated 3 mm 3 mm 5 mm CsI(Tl) crystals coupled to a custom array of low-noise Si PIN photodiodes read out by a custom IC. At 50 V bias the custom 64-pixel photodiode arrays demonstrate an average leakage current of 28 pA per 3 mm 3 mm pixel, a 98.5 percent yield of pixels with <100 pA leakage, and a quantum efficiency of about 80 percent for 540 nm CsI(Tl) scintillation photons. The custom 64-channel readout IC uses low-noise preamplifiers, shaper amplifiers, and a winner-take-all (WTA) multiplexer. The IC demonstrates maximum gain of 120 mV / 1000 e-, the ability to select the largest input signal in less than 150 ns, and low electronic noise at 8 ms peaking time ranging from 25 e- rms (unloaded) to an estimated 180 e- rms (photodiode load of 3 pF, 50 pA). At room temperature a complete 64-pixel detector module employing a custom photodiode array and readout IC demonstrates an average energy resolution of 23.4 percent fwhm and an intrinsic spatial resolution of 3.3 mm fwhm for the 140 keV emissions of 99mTc. Construction of an array of such imaging modules is straightforward, hence this technology shows strong potential for numerous compact gamma camera applications, including scintimammography.

  3. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained.

  4. Compact transmission system using single-sideband modulation of light for quantum cryptography.

    PubMed

    Duraffourg, L; Merolla, J M; Goedgebuer, J P; Mazurenko, Y; Rhodes, W T

    2001-09-15

    We report a new transmission that can be used for quantum key distribution. The system uses single-sideband-modulated light in an implementation of the BB84 quantum cryptography protocol. The system is formed by two integrated unbalanced Mach-Zehnder interferometers and is based on interference between phase-modulated sidebands in the spectral domain. Experiments show that high interference visibility can be obtained. PMID:18049627

  5. A compact, high-density gamma-detection module for Time-of-Flight measurements in PET applications

    NASA Astrophysics Data System (ADS)

    Sacco, I.; Dohle, R.; Fischer, P.; Piemonte, C.; Ritzert, M.

    2016-07-01

    We present a very compact γ-detection module primarily designed for PET applications. On a total area of about 30 × 30mm2, 144 SiPM photodetectors coupled to scintillator crystals are read out individually with fast timing ASICs. The core of the module is a LTCC ceramic substrate with internal water channels for efficient and stable liquid cooling. The top side of the LTCC is covered by 12×12 SiPMs in a regular pitch of 2.5 mm. The SiPMs are designed in the RGB-HD technology from FBK with a single cell size of 25 × 25 μm2, very low dark-count rate and stable performance over a wide temperature range from 0 to 20 °C. The readout of the SiPMs is done with 4 specialized PETA5 ASICs flip-chip mounted to the bottom side of the substrate. Each chip has 36 readout channels (available in single or differential ended configuration) with self-triggered hit detection, a very low noise discriminator, signal amplitude integration and digitization, a TDC with 50 ps binwidth, neighbor logic and fast veto mechanisms. The full height of the assembly, including the connector to the main readout board, is less than 1 cm. In a 1:1 coupling configuration with 10 mm high LYSO scintillator arrays for detection of 511 keV gammas, the module has already reached 205 ps CRT time resolution (FWHM in coincidence between channels on two different modules), sufficient for ToF operation in PET. The module design, details on chip operation and latest results with LYSO arrays are described.

  6. Low power compact hybrid plasmonic double microring electro-optical modulator

    NASA Astrophysics Data System (ADS)

    Zaki, Aya O.; Fouad, Nourhan H.; Zografopoulos, Dimitrios C.; Beccherelli, Romeo; Swillam, Mohamed A.

    2016-02-01

    In this work, we present an electro-optical modulator based on electromagnetically induced transparency (EIT). Our modulator employs a conductor-gap-silicon (CGS) microring resonator on each side of the input waveguide in a pushpull configuration utilizing an embedded electro-optical polymer (EOP). CGS waveguides support hybrid plasmonic modes offering a sound trade-off between mode confinement and propagation loss. The modulator is designed and analyzed using 3D finite difference time domain (FDTD) simulations. To have a high quality resonator, the rings are designed to have moderate waveguide propagation losses and a sub-micron radius of R = 805 nm. With an exact capacitance of just 1.06 fF per single microring resonator and applied voltage of 2 V, the exact energy consumption is estimated to be 4.24 fJ/bit. To the best of our knowledge, this figure represents 40% less power consumption in comparison with different modulators structures. The ultra-small capacitance of the proposed modulator and the instantaneous response of the used polymer make our design suitable for high bit rate applications. At the wavelength of -1550 nm-, the insertion loss is 0.34 dB and the extinction ratio is 10.23 dB.

  7. A Compact Disk Type Plasma Propulsion System with Modulated Magnetic Field for Nanoscale Space Vehicles

    SciTech Connect

    Fukuda, Takeshi; Ueda, Satoshi; Ohnishi, Yukihiro; Inomoto, Michiaki

    2008-12-31

    A compact 5 mm disk type plasma thruster simply composed of only a set of antenna windings and bias field coil which produces significant thrust of 0.74 mN with rotating magnetic field has been proposed and successfully developed for future applications to low altitude nanosatellites. The key technology issue is that the rotating speed is set above the ion plasma frequency but far below the electron plasma frequency, in order to produce the electron drag current and axial electric field as a consequence of the interaction with the bias field. The formation of axial electric field was confirmed and the produced plasma density was >6x10{sup 18} m{sup -3}, whereas the power consumption is 500 W in the inductively coupled mode of operation. The anticipated thrust density and specific thrust could potentially be extended to 7.64 Nm{sup -2} and 850 s, respectively, which is comparable to conventional Hall effect thrusters.

  8. Generation of second harmonic light with a wavelength of 560 nm in a compact module

    NASA Astrophysics Data System (ADS)

    Hofmann, Julian; Sahm, Alexander; John, Wilfred; Bugge, Frank; Paschke, Katrin

    2016-09-01

    We demonstrate a continuous wave 133 mW laser module at 560.5 nm on a 50 mm·10 mm optical bench. The setup consists of a 1121 nm distributed Bragg reflector ridge waveguide laser and a MgO:LiNbO3 quasi-phase matched ridge waveguide crystal, which are coupled by a grin lens, as well as two cylindrical lenses for beam collimation behind the crystal. A novel approach to ensure phase matching is used. The laser and the crystal are stabilized by the same heat sink and only the wavelength of the laser is tuned by heating the distributed Bragg reflector section of the laser. This reduces the influence of temperature variations on the module's performance enabling operation with output power variations < 10 % over a temperature range of 20 K. The size and robustness against temperature variations of this setup make it an interesting candidate for future biomedical applications.

  9. FM characteristics and compact modules for coherent semiconductor lasers coupled to an external cavity

    SciTech Connect

    Shin, C.H.; Teshima, M.; Ohtsu, M. ); Imai, T.; Yoshida, J.; Nishide, K. )

    1990-03-01

    FM responses of a semiconductor laser optically coupled off-axis to a confocal Fabry--Perot cavity were measured. It is reported that this cavity acted as a frequency discriminator and as a phase comparator for slow and fast frequency fluctuations, respectively. The crossover between them was determined by a half linewidth of the cavity. Based on these investigations, we made two kinds of coherent semiconductor laser modules. External FP cavities were made by using an optical fiber and a hemispherical micro-lens, respectively. Linewidths of these lasers were less than 25 kHz.

  10. Modulated gamma-ray emission from compact millisecond pulsar binary systems

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2014-01-01

    Context. A significant number of the millisecond pulsars (MSPs) have been discovered within binary systems. Tens of these MSPs emit γ-rays that are modulated with the pulsar period since this emission is produced in the inner pulsar magnetosphere. In several such binary systems, the masses of the companion stars have been derived allowing two classes of objects to be distinguished, which are called the black widow and the redback binaries. Pulsars in these binary systems are expected to produce winds that create conditions for acceleration of electrons, when colliding with stellar winds. These electrons should interact with the anisotropic radiation from the companion stars producing γ-ray emission modulated with the orbital period of the binary system, similar to what is observed in the massive TeV γ-ray binary systems. Aims: We consider the interaction of a MSP wind with a very inhomogeneous stellar wind from the companion star within binary systems of the black widow and redback types. Our aim is to determine the features of γ-ray emission produced in the collision region of the winds from a few typical MSP binary systems. Methods: It is expected that the pulsar wind should mix efficiently with the inhomogeneous stellar wind. The mixed winds move outside the binary with relatively low velocity. Electrons accelerated in such mixed, turbulent winds can interact with the magnetic field and strong radiation from the companion star, producing not only synchrotron radiation but also γ-rays in the inverse Compton process, fluxes of which are expected to be modulated on the periods of the binary systems. Applying numerical methods, we calculated the GeV-TeV gamma-ray spectra and the light curves expected from some MSP binary systems. Results: Gamma-ray emission, produced within the binary systems, is compared with the sensitivities of the present and future gamma-ray telescopes. It is concluded that energetic MSP binary systems create a new class of TeV

  11. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  12. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-10-14

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  13. Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC

    2010-06-07

    SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

  14. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    PubMed Central

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  15. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.

    PubMed

    Farr, J B; Maughan, R L; Yudelev, M; Blosser, E; Brandon, J; Horste, T; Forman, J D

    2006-09-01

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30 x 30 cm2. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 degrees and 60 degrees automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area. PMID:17022226

  16. A miniaturized compact open-loop RFOG with demodulation signal compensation technique to suppress intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Mao, Jianmin; Li, Qiang; Jin, Zhonghe

    2016-01-01

    A miniaturized compact open-loop resonator fiber optic gyro (RFOG) prototype with main body size of about 10.4 cm×10.4 cm×5.2 cm is reported, and a demodulation signal compensation technique is proposed, aiming to suppress the drift arising from accompanying intensity modulation induced by semiconductor laser diode (LD). The scheme of how to establish this miniaturized RFOG prototype is specifically stated. The linear relationship between the first-harmonic and second-harmonic demodulated signals respectively for the two counter propagating beams in the resonator is verified by theory and experiment, and based on this relationship, the demodulation signal compensation technique by monitoring the second-harmonic demodulated signal is described in detail. With this compensation technique, the gyro output stability under 1°/s rotation rate is effectively improved from 0.12°/s to 0.03°/s, and especially, an about 0.36°/s peak-to-peak fluctuation due to tuning current reset is significantly suppressed. A long term bias stability of about 4.5°/h in 1 h for such a small-sized RFOG prototype is demonstrated, which is of the same magnitude as that of currently reported large-sized RFOG systems utilizing LD as the laser source as well.

  17. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    PubMed

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  18. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  19. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  20. Traveling wave electrode design for ultra compact carrier-injection HBT-based electroabsorption modulator in a 130nm BiCMOS process

    NASA Astrophysics Data System (ADS)

    Fu, Enjin; Joyner Koomson, Valencia; Wu, Pengfei; Huang, Z. Rena

    2014-03-01

    Silicon photonic system, integrating photonic and electronic signal processing circuits in low-cost silicon CMOS processes, is a rapidly evolving area of research. The silicon electroabsorption modulator (EAM) is a key photonic device for emerging high capacity telecommunication networks to meet ever growing computing demands. To replace traditional large footprint Mach-Zehnder Interferometer (MZI) type modulators several small footprint modulators are being researched. Carrier-injection modulators can provide large free carrier density change, high modulation efficiency, and compact footprint. The large optical bandwidth and ultra-fast transit times of 130nm HBT devices make the carrierinjection HBT-based EAM (HBT-EAM) a good candidate for ultra-high-speed optical networks. This paper presents the design and 3D full-wave simulation results of a traveling wave electrode (TWE) structure to increase the modulation speed of a carrier-injection HBT-EAM device. A monolithic TWE design for an 180um ultra compact carrier-injection-based HBT-EAM implemented in a commercial 130nm SiGe BiCMOS process is discussed. The modulator is electrically modeled at the desired bias voltage and included in a 3D full-wave simulation using CST software. The simulation shows the TWE has a S11 lower than -15.31dB and a S21 better than -0.96dB covering a bandwidth from DC-60GHz. The electrical wave phase velocity is designed close to the optical wave phase velocity for optimal modulation speed. The 3D TWE design conforms to the design rules of the BiCMOS process. Simulation results show an overall increase in modulator data rate from 10Gbps to 60Gbps using the TWE structure.

  1. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Young Sun; Jang, Jae-Hyung

    2016-02-01

    A low-cost packaging method utilizing a fully passive optical alignment and surface-mounting method is demonstrated for pluggable compact and slim multichannel optical interconnection modules using a VCSEL/PIN-PD chip array. The modules are based on a nonplanar bent right-angle electrical signal path on a silicon platform and direct-butt-optical coupling without a bulky and expensive microlens array. The measured optical direct-butt-coupling efficiencies of each channel without any bulky optics are as high as 33% and 95% for the transmitter and receiver, respectively. Excellent lateral optical alignment tolerance of larger than 60 μm for both the transmitter and receiver module significantly reduces the manufacturing and material costs as well as the packaging time. The clear eye diagrams, extinction ratios higher than 8 dB at 10.3 Gbps for the transmitter module, and receiver sensitivity of better than -13.1 dBm at 10.3 Gbps and a bit error rate of 10-12 for all channels are demonstrated. Considering that the optical output power of the transmitter is greater than 0 dBm, the module has a sufficient power margin of about 13 dB for 10.3 Gbps operations for all channels.

  2. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Wang, Zhenxing; Abolfath-Beygi, Maryam; He, Congli; Li, Xiang; Wong, Kin L.; Nordeen, Paul; Wu, Hao; Carman, Gregory P.; Han, Xiufeng; Alhomoudi, Ibrahim A.; Amiri, Pedram Khalili; Wang, Kang L.

    2015-02-01

    We demonstrate strain-induced modulation of perpendicular magnetic anisotropy (PMA) in (001)-oriented [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT) substrate/Ta/CoFeB/MgO/Ta structures using ferromagnetic resonance (FMR). An in-plane biaxial strain is produced by applying voltage between the two surfaces of the PMN-PT substrate, and is transferred to the ferromagnetic CoFeB layer, which results in tuning of the PMA of the CoFeB layer. The strain-induced change in PMA is quantitatively extracted from the experimental FMR spectra. It is shown that both first and second-order anisotropy terms are affected by the electric field, and that they have opposite voltage dependencies. A very large value of the voltage-induced perpendicular magnetic anisotropy modulation of ˜7000 fJ/V.m is obtained through this strain-mediated coupling. Using this FMR technique, the magnetostriction coefficient λ is extracted for the ultrathin 1.1 nm Co20Fe60B20 layer, and is found to be 3.7 × 10-5, which is approximately 4 times larger than the previously reported values for CoFeB films thicker than 5 nm. In addition, the effect of strain on the effective damping constant (αeff) is also studied and no obvious modulation of the αeff is observed. The results are relevant to the development of CoFeB-MgO magnetic tunnel junctions for memory applications.

  3. Compact Ku-Band T/R Module for High-Resolution Radar Imaging of Cold Land Processes

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Yueh, Simon H.; Krimskiy, Vladimir A.; Rahmat-Samii, Yahya

    2010-01-01

    Global measurement of terrestrial snow cover is critical to two of the NASA Earth Science focus areas: (1) climate variability and change and (2) water and energy cycle. For radar backscatter measurements, Ku-band frequencies, scattered mainly within the volume of the snowpack, are most suitable for the SWE (snow-water equivalent) measurements. To isolate the complex effects of different snowpack (density and snowgrain size), and underlying soil properties and to distinctly determine SWE, the space-based synthetic aperture radar (SAR) system will require a dual-frequency (13.4 and 17.2 GHz) and dual polarization approach. A transmit/receive (T/R) module was developed operating at Ku-band frequencies to enable the use of active electronic scanning phased-array antenna for wide-swath, high-resolution SAR imaging of terrestrial snow cover. The T/R module has an integrated calibrator, which compensates for all environmental- and time-related changes, and results in very stable power and amplitude characteristics. The module was designed to operate over the full frequency range of 13 to 18 GHz, although only the two frequencies, 13.4 GHz and 17.2 GHz, will be used in this SAR radar application. Each channel of the transmit module produces > 4 W (35 dbm) over the operating bandwidth of 20 MHz. The stability requirements of <0.1 dB receive gain accuracy and <0.1 dB transmit power accuracy over a wide temperature range are achieved using a self-correction scheme, which does real-time amplitude calibration so that the module characteristics are continually corrected. All the calibration circuits are within the T/R module. The timing and calibration sequence is stored in a control FPGA (field-programmable gate array) while an internal 128K 8bit high-speed RAM (random access memory) stores all the calibration values. The module was designed using advanced components and packaging techniques to achieve integration of the electronics in a 2 x6.5x1-in. (5x17x2.5-cm) package. The

  4. Fiber Bragg grating sensing system using a TO-can-based compact optical module for wavelength demodulation

    NASA Astrophysics Data System (ADS)

    Song, Hong Joo; Lee, Jun Ho; Roh, Cheong Hyun; Hahn, Cheol-Koo; Choi, Young Bok; Kim, Jeong Soo; Park, Jung Ho

    2015-12-01

    A combined scheme using the light source of a reflective semiconductor optical amplifier (RSOA) and an optical signal processing unit (OSPU) based on the compact TO-can package is fabricated and characterized for a fiber Bragg grating (FBG) sensing system. Due to the optical feedback behavior from the FBG sensor, the RSOA is self-injection locked and lasing occurs at the Bragg wavelength. Using the wavelength-dependent filter method, all of the components in the OSPU are compactly integrated on the TO-can package with a height of 17.6 mm and diameter of 6.0 mm. The wavelength demodulating output signals are based on the optical power difference, depending only on the wavelengths without the effect of input optical power variations. The sensitivity of the output signal to temperature shows 0.026 dB/°C. The entire FBG sensing system has an excellent linear response to temperatures controlled with an accuracy of ±0.3°C.

  5. Coupling of a high-power tapered diode laser beam into a single-mode-fiber within a compact module

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, D.; Sahm, A.; Carstens, C.; Urban, G.; Pulka, M.; Eppich, B.; Scholz, F.; Paschke, K.

    2015-03-01

    In this work, coupling of radiation generated by a distributed Bragg reflector (DBR) tapered diode laser around 1064 nm into a single-mode-fiber (SMF) within a butterfly module with a footprint < 10 cm2 is demonstrated. The module comprises temperature stabilizing components, a brightness maintaining micro optical assembly mounted with submicrometer precision and a standard FC/APC output connector. The aim of the introduced concept is to improve the beam quality and to eliminate the current dependent beam astigmatism, characteristic for tapered diode lasers and amplifiers, and, thus, provide an efficient, multi-Watt laser light source characterized by a narrow-band spectrum and a stigmatic, nearly Gaussian laser beam independent of the operating point. A maximum power ex SMF of 2.5 W at a coupling efficiency of 57 % is reached in the presented butterfly module.

  6. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  7. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    SciTech Connect

    Schleicher, B. Niemann, R.; Schultz, L.; Fähler, S.; Diestel, A.; Hühne, R.

    2015-08-07

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  8. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    PubMed

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications. PMID:22944074

  9. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    NASA Astrophysics Data System (ADS)

    Schleicher, B.; Niemann, R.; Diestel, A.; Hühne, R.; Schultz, L.; Fähler, S.

    2015-08-01

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  10. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  11. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  12. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  13. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  14. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  15. Compact 35μm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA mini-bars

    NASA Astrophysics Data System (ADS)

    Witte, U.; Traub, M.; Di Meo, A.; Hamann, M.; Rubel, D.; Hengesbach, S.; Hoffmann, D.

    2016-03-01

    We present a compact, modular and cross talk free approach for dense wavelength division multiplexing of high power diode lasers based on ultra-steep dielectric filters. The mini bars consist of 5 narrow stripe broad area emitters with a beam parameter product in the range of 2 mm mrad and a wavelength spacing of 2.5 nm between 2 adjacent emitters. Experimental results for fiber coupling (35 μm core diameter, NA < 0.2) of internally and externally stabilized diode lasers are presented. Optical losses are analyzed and alternative optical designs to overcome the current limitations of the setup are discussed.

  16. Bidirectional optical subassembly-shaped 20-Gbit/s compact single-mode four-channel wavelength-division multiplexing optical modules for optical multimedia interfaces

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Yu, Hong-Yeon; Park, Hyoung-Jun; Kang, Hyun Seo; Jang, Jae-Hyung

    2016-06-01

    Low-cost single-mode four-channel optical transmitter and receiver modules using the wavelength-division multiplexing (WDM) method have been developed for long-reach fiber optic applications. The single-mode four-channel WDM optical transmitter and receiver modules consist of two dual-wavelength optical transmitter and receiver submodules, respectively. The integration of two channels in a glass-sealed transistor outline-can package is an effective way to reduce cost and size and to extend the number of channels. The clear eye diagrams with more than about 6 dB of the extinction ratio and the minimum receiver sensitivity of lower than -16 dBm at a bit error rate of 10-12 have been obtained for the transmitter and receiver modules, respectively, at 5 Gbps/channel. The 4K ultrahigh definition contents have been transmitted over a 1-km-long single-mode fiber using a pair of proposed four-channel transmitter optical subassembly and receiver optical subassembly.

  17. Magnetic microscopy and simulation of strain-mediated control of magnetization in PMN-PT/Ni nanostructures

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Chavez, Andres C.; Pierce, Daniel T.; Unguris, John; Sun, Wei-Yang; Liang, Cheng-Yen; Carman, Gregory P.

    2016-10-01

    Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric [Pb(Mg1/3Nb2/3)O3]0.68[PbTiO3]0.32 substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling. We evaluate two types of simulations of ferromagnetic nanostructures on strained ferroelectric substrates: conventional micromagnetic simulations including a simple uniaxial strain, and coupled micromagnetic-elastodynamic simulations. Both simulations qualitatively capture the response of the magnetization changes produced by the applied strain, with the coupled solution providing more accurate representation.

  18. Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Moon, S. E.; Lee, S.-K.; Lee, Y.-G.; Kim, K. M.; Yang, Y.-S.; Yang, W. S.; Kim, J.

    2012-01-01

    In this paper, we present the calculations and the results for vibration-energy-scavenging performances based on a piezoelectric single-crystal beam. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of a novel cantilever structure device, we calculated the output performances and compared them with the measured results. A device based on a bimorph cantilever structure with a proof mass was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of piezoelectric single crystal was measured. The results showed that several tens of AC volts and a few milliwatts power were achieved under a 0.1 g rms vibration condition. Also using this device and a commercial power management circuit, we performed Li-ion battery charging experiment.

  19. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  20. Ceramic powder compaction

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Mahoney, F.M.

    1995-12-31

    With the objective of developing a predictive model for ceramic powder compaction we have investigated methods for characterizing density gradients in ceramic powder compacts, reviewed and compared existing compaction models, conducted compaction experiments on a spray dried alumina powder, and conducted mechanical tests and compaction experiments on model granular materials. Die filling and particle packing, and the behavior of individual granules play an important role in determining compaction behavior and should be incorporated into realistic compaction models. These results support the use of discrete element modeling techniques and statistical mechanics principals to develop a comprehensive model for compaction, something that should be achievable with computers with parallel processing capabilities.

  1. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Emori, Satoru; Peng, Bin; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Liu, Ming; Sun, Nian

    2016-01-01

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  2. Piezoelectric single crystal and magnetostrictive Metglas composites: Linear and nonlinear magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Finkel, P.; Li, Jiefang; Viehland, D.

    2014-04-01

    Both the linear (αV) and nonlinear (αV,n) magnetoelectric coefficients were systemically studied in laminated composites of Metglas and [001]-orientated piezoelectric single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) and Mn-doped PMN-PT. The coefficients were close in value in both cases at quasistatic mode (i.e., 3.8 V/Oe relative to 3.5 V/Oe) and were enhanced by factors of ×18 (Metglas/PMN-PT) and ×32 (Metglas/Mn-doped PMN-PT) at the electromechanical resonance (EMR). The use of Mn-doped PMN-PT crystals results in a higher gain factor due to a larger mechanical quality factor (i.e., 20.9 relative to 40.6). Accordingly, both types of laminates had similar values of αV,n when modulated at 1 kHz, but Mn-doped PMN-PT ones had a higher value when modulated at the EMR.

  3. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. PMID:27475854

  4. Reversible DNA compaction.

    PubMed

    González-Pérez, Alfredo

    2014-01-01

    In this review we summarize and discuss the different methods we can use to achieve reversible DNA compaction in vitro. Reversible DNA compaction is a natural process that occurs in living cells and viruses. As a result these process long sequences of DNA can be concentrated in a small volume (compacted) to be decompacted only when the information carried by the DNA is needed. In the current work we review the main artificial compacting agents looking at their suitability for decompaction. The different approaches used for decompaction are strongly influenced by the nature of the compacting agent that determines the mechanism of compaction. We focus our discussion on two main artificial compacting agents: multivalent cations and cationic surfactants that are the best known compacting agents. The reversibility of the process can be achieved by adding chemicals like divalent cations, alcohols, anionic surfactants, cyclodextrins or by changing the chemical nature of the compacting agents via pH modifications, light induced conformation changes or by redox-reactions. We stress the relevance of electrostatic interactions and self-assembly as a main approach in order to tune up the DNA conformation in order to create an on-off switch allowing a transition between coil and compact states. The recent advances to control DNA conformation in vitro, by means of molecular self-assembly, result in a better understanding of the fundamental aspects involved in the DNA behavior in vivo and serve of invaluable inspiration for the development of potential biomedical applications. PMID:24444152

  5. Mechanics of tissue compaction.

    PubMed

    Turlier, Hervé; Maître, Jean-Léon

    2015-12-01

    During embryonic development, tissues deform by a succession and combination of morphogenetic processes. Tissue compaction is the morphogenetic process by which a tissue adopts a tighter structure. Recent studies characterized the respective roles of cells' adhesive and contractile properties in tissue compaction. In this review, we formalize the mechanical and molecular principles of tissue compaction and we analyze through the prism of this framework several morphogenetic events: the compaction of the early mouse embryo, the formation of the fly retina, the segmentation of somites and the separation of germ layers during gastrulation.

  6. Compact Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  7. Compaction properties of isomalt.

    PubMed

    Bolhuis, Gerad K; Engelhart, Jeffrey J P; Eissens, Anko C

    2009-08-01

    Although other polyols have been described extensively as filler-binders in direct compaction of tablets, the polyol isomalt is rather unknown as pharmaceutical excipient, in spite of its description in all the main pharmacopoeias. In this paper the compaction properties of different types of ispomalt were studied. The types used were the standard product sieved isomalt, milled isomalt and two types of agglomerated isomalt with a different ratio between 6-O-alpha-d-glucopyranosyl-d-sorbitol (GPS) and 1-O-alpha-d-glucopyranosyl-d-mannitol dihydrate (GPM). Powder flow properties, specific surface area and densities of the different types were investigated. Compactibility was investigated by compression of the tablets on a compaction simulator, simulating the compression on high-speed tabletting machines. Lubricant sensitivity was measured by compressing unlubricated tablets and tablets lubricated with 1% magnesium stearate on an instrumented hydraulic press. Sieved isomalt had excellent flow properties but the compactibility was found to be poor whereas the lubricant sensitivity was high. Milling resulted in both a strong increase in compactibility as an effect of the higher surface area for bonding and a decrease in lubricant sensitivity as an effect of the higher surface area to be coated with magnesium stearate. However, the flow properties of milled isomalt were too bad for use as filler-binder in direct compaction. Just as could be expected, agglomeration of milled isomalt by fluid bed agglomeration improved flowability. The good compaction properties and the low lubricant sensitivity were maintained. This effect is caused by an early fragmentation of the agglomerated material during the compaction process, producing clean, lubricant-free particles and a high surface for bonding. The different GPS/GPM ratios of the agglomerated isomalt types studied had no significant effect on the compaction properties. PMID:19327398

  8. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  9. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  10. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  11. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  12. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  13. Compact turbidity meter

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  14. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  15. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  16. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  17. Compact ultradense matter impactors.

    PubMed

    Rafelski, Johann; Labun, Lance; Birrell, Jeremiah

    2013-03-15

    We study interactions of meteorlike compact ultradense objects (CUDO), having nuclear or greater density, with Earth and other rocky bodies in the Solar System as a possible source of information about novel forms of matter. We study the energy loss in CUDO puncture of the body and discuss differences between regular matter and CUDO impacts.

  18. Firefighting module development

    NASA Astrophysics Data System (ADS)

    Burns, R. A.

    1981-10-01

    The firefighting module is a lightweight, compact, self contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency water pumping applications. Units were fabricated and tested. A production type unit is undergoing an inservice evaluation and demonstration program at the port of St Louis. The primary purpose is to promote enhanced harbor fire protection at inland and coastal ports. The module and its development are described.

  19. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  20. Optical radiation emissions from compact fluorescent lamps.

    PubMed

    Khazova, M; O'Hagan, J B

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.

  1. Coast Guard Firefighting Module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA and the U.S. Coast Guard are jointly developing a lightweight, helicopter-transportable, completely self-contained firefighting module for combating shipboard and dockside fires. The project draws upon NASA technology in high-capacity rocket engine pumps, lightweight materials and compact packaging.

  2. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  3. Compact stereo endoscopic camera using microprism arrays.

    PubMed

    Yang, Sung-Pyo; Kim, Jae-Jun; Jang, Kyung-Won; Song, Weon-Kook; Jeong, Ki-Hun

    2016-03-15

    This work reports a microprism array (MPA) based compact stereo endoscopic camera with a single image sensor. The MPAs were monolithically fabricated by using two-step photolithography and geometry-guided resist reflow to form an appropriate prism angle for stereo image pair formation. The fabricated MPAs were transferred onto a glass substrate with a UV curable resin replica by using polydimethylsiloxane (PDMS) replica molding and then successfully integrated in front of a single camera module. The stereo endoscopic camera with MPA splits an image into two stereo images and successfully demonstrates the binocular disparities between the stereo image pairs for objects with different distances. This stereo endoscopic camera can serve as a compact and 3D imaging platform for medical, industrial, or military uses.

  4. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  5. Compact torsatron reactors

    SciTech Connect

    Lyon, J.F.; Carreras, B.A.; Lynch, V.E.; Tolliver, J.S.; Sviatoslavsky, I.N.

    1988-05-01

    Low-aspect-ratio torsatron configurations could lead to compact stellarator reactors with R/sub 0/ = 8--11m, roughly one-half to one-third the size of more conventional stellarator reactor designs. Minimum-size torsatron reactors are found using various assumptions. Their size is relatively insensitive to the choice of the conductor parameters and depends mostly on geometrical constraints. The smallest size is obtained by eliminating the tritium breeding blanket under the helical winding on the inboard side and by reducing the radial depth of the superconducting coil. Engineering design issues and reactor performance are examined for three examples to illustrate the feasibility of this approach for compact reactors and for a medium-size (R/sub 0/ approx. = 4 m,/bar a/ /approx lt/ 1 m) copper-coil ignition experiment. 26 refs., 11 figs., 7 tabs.

  6. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  7. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  8. Electric control of magnetism and magnetocaloric effects in LaFe11.4Si1.6H1.5 using ferroelectric PMN-PT

    NASA Astrophysics Data System (ADS)

    Wang, Chuancong; Hu, Yong; Wang, Dunhui; Cao, Qingqi; Shao, Yanyan; Liu, Jian; Zhang, Hu; Du, Youwei

    2016-10-01

    The alloy with first-order magnetic phase transition has an advantage to exhibit large magnetoelectric effect in strain-mediated multiferroic composites, since the strain can drive its phase transition and consequently lead to a large magnetic change. In the present paper, we investigate the electric field manipulation of magnetic and magnetocaloric properties in LaFe11.4Si1.6H1.5/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate. By applying an electric field on the ferroelectric substrate, the relative change of magnetization has a peak value of  -8% around the Curie temperature, showing a large converse magnetoelectric effect. As for the magnetocaloric performance, the peak temperature of magnetic entropy change (ΔS M) has a shift of 3 K to low temperature and the maximal value of ΔS M keeps almost unchanged under an electric field of 8 kV cm-1. Moreover, the thermal and magnetic hysteresis can be reduced as well with the application of the electric field.

  9. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  10. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  11. Advanced Construction of Compact Containment BWR

    SciTech Connect

    Takahashi, M.; Maruyama, T.; Mori, H.; Hoshino, K.; Hijioka, Y.; Heki, H.; Nakamaru, M.; Hoshi, T.

    2006-07-01

    fabricate and perform pressure-test at the factory and transport to the construction-site as a module. Basing on CCR design concept of simplification and compact, reactor building layout design has been carried out. Layout design has been performed taking into account module construction, reduced system and components and compact PCV. As a result, CCR's reactor building, specific volume to power output value is almost equal to ABWR one. Module fabrication and construction method is promising technology from the points of construction duration shortening and construction cost reduction. Electrical equipment are piled up to multi-layer and connected and tested at the factory and transported to the construction-site in one module. Other equipment rooms and areas are also built into the various pre-fabricated module types in CCR construction. The construction of the CCR by the large module is planned to achieve only 24-month construction period from bedrock inspection to commercial operation. The CCR has possibilities of attaining both economical and safe small reactor by simplified system and compact PCV technologies with advanced construction. (authors)

  12. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  13. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  14. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  15. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  16. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  17. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  18. Compact LINAC for deuterons

    SciTech Connect

    Kurennoy, S S; O' Hara, J F; Rybarcyk, L J

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  19. A compact SADM family

    NASA Astrophysics Data System (ADS)

    Barbet, Vincent; Le Quintrec, Cyrille; Jeandot, Xavier; Chaix, Alain; Grain, Eric; Roux, Jerome

    2005-07-01

    Alcatel Space has developed a new SADM family driven by cost, modularity, mass and performances. The modularity concept is based on separating the rotation drive function from the electrical transfer function. The drive actuator has been designed for various applications where pointing and reliability is needed. It can be associated with high dissipative rotary devices (SA collectors, RF joints..). The design goal was to minimize the number of parts in order to reach the most simple and compact mechanism. Mass reduction was achieved by reducing as much as possible the load path between the Solar Array interface and the spacecraft interface. Following these guidelines, the drive actuator was developed and qualified on ATV SADM (part od Alcatel Space Solar Array Drive Sub System for ATV). Further more a high power integrated collector was qualified inside the SADM for Geo-stationary telecom satellite (SPACEBUS platforms). Fine thermal and mechanical modeling was necessary to predict SADM behaviors for the numerous thermal environments over the missions (steady and transient cases). These modeling were well correlated through mechanical and thermal balances qualification tests. The challenging approach of thermal dissipation in a compact design leads to a family of 3 SADM capabilities form 2kW up to 15kW per SADM weighing less than 4.5 kg each.

  20. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  1. Compaction of Titanium Powders

    NASA Astrophysics Data System (ADS)

    Gerdemann, Stephen J.; Jablonski, Paul D.

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  2. Two compact preamps cover 38-GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Osbrink, N. K.; Fake, S. R.; Rosenberg, J. C.

    1985-09-01

    The design and performance characteristics of two compact preamplifiers that provide complete coverage of the 2-18 and 18-40 GHz frequency bands are examined. The 2-18-GHz prototype amplifier consists of four stages of thin-film hybrid microwave integrated circuit (MIC) amplification modules each of which incorporates a single GaAs distributed microwave integrated circuit (MMIC). The amplifier weights about 2 ounces and measures 1.75 x 1.15 x 0.67 inches. The 18-40-GHz amplifier consists of five thin-film MIC balanced gain stages and a MIC voltage regulator module with a throughline. The amplifier displays worst-case noise figures of 11.6 dB at the low frequency end of the band and less than 8 dB over much of the band.

  3. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Fenglong; Dong, Chunhui; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-02-01

    We report non-volatile electric-field control of magnetism modulation in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Fe layer on a PMN-PT substrate using a molecular beam epitaxy technique. The remnant magnetization with a different electric field shows a non-symmetric loop-like shape, which demonstrates a change of interfacial chemistry and a large magnetoelectric coupling in Fe/PMN-PT at room temperature to realize low loss multistate memory under an electric field. Fitting with the angular-dependence of the in-plane magnetization reveals that the magnetoelectric effect is dominated by the direct electric-field effect rather than the strain effect at the interface. The magnetoelectric effect and the induced surface anisotropy are found to be dependent on the Fe film thickness and are linear with respect to the applied electric field.

  4. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface.

    PubMed

    Zhang, Chao; Wang, Fenglong; Dong, Chunhui; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-03-01

    We report non-volatile electric-field control of magnetism modulation in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Fe layer on a PMN-PT substrate using a molecular beam epitaxy technique. The remnant magnetization with a different electric field shows a non-symmetric loop-like shape, which demonstrates a change of interfacial chemistry and a large magnetoelectric coupling in Fe/PMN-PT at room temperature to realize low loss multistate memory under an electric field. Fitting with the angular-dependence of the in-plane magnetization reveals that the magnetoelectric effect is dominated by the direct electric-field effect rather than the strain effect at the interface. The magnetoelectric effect and the induced surface anisotropy are found to be dependent on the Fe film thickness and are linear with respect to the applied electric field.

  5. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  6. Elliptic complexes over C∗-algebras of compact operators

    NASA Astrophysics Data System (ADS)

    Krýsl, Svatopluk

    2016-03-01

    For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

  7. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  8. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  9. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  11. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  12. Multipurpose Compact Spectrometric Unit

    NASA Astrophysics Data System (ADS)

    Bočarov, Viktor; Čermák, Pavel; Mamedov, Fadahat; Štekl, Ivan

    2009-11-01

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  13. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  14. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  15. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  16. Compact reactor design automation

    NASA Technical Reports Server (NTRS)

    Nassersharif, Bahram; Gaeta, Michael J.

    1991-01-01

    A conceptual compact reactor design automation experiment was performed using the real-time expert system G2. The purpose of this experiment was to investigate the utility of an expert system in design; in particular, reactor design. The experiment consisted of the automation and integration of two design phases: reactor neutronic design and fuel pin design. The utility of this approach is shown using simple examples of formulating rules to ensure design parameter consistency between the two design phases. The ability of G2 to communicate with external programs even across networks provides the system with the capability of supplementing the knowledge processing features with conventional canned programs with possible applications for realistic iterative design tools.

  17. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  18. Compaction-based VLSI layout

    SciTech Connect

    Xiong, Xiao-Ming.

    1989-01-01

    Generally speaking, a compaction based VLSI layout system consists of two major parts: (1) a symbolic editor which maintains explicit connectivity and structural information about the circuit; (2) a compactor which translates the high level description of a circuit to the detailed layout needed for fabrication and tries to make as compact a layout as Possible without violating any design rules. Instead of developing a complete compaction based VLSI layout system, this thesis presents some theoretical concepts and several new compaction techniques, such as scan line based approach, which can either cooperate with a symbolic editor to form a layout system or work as a post-process step to improve the results obtained by an existing layout system. Also, some compaction related problems are solved and proposed. Based on the special property of channel routing, the author presents a geometric method for channel compaction. For a given channel routing topology, the minimum channel height is always achieved with the incorporation of sliding contacts and automatically inserting necessary jogs. The geometric compaction approach is then generalized and applied to compact the entire VLSI chip at the building-block level. With a systematic way of automatic jog insertion, he proves that under the given layout topology and design rules, the lower bound of one dimensional compaction with automatic jog insertion is achieved by the geometric compaction algorithm. A new simultaneous two-dimensional compaction algorithm is developed primarily for placement refinement of building-block layout. The algorithm is based on a set of defined graph operations on a mixed adjacency graph for a given placement. The mixed-adjacency graph can be updated efficiently if the placement is represented by tiles in the geometric domain.

  19. Compost improves compacted urban soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  20. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  1. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  2. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  3. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  4. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  5. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  6. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  7. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  8. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  9. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  10. Compact Grism Spectrometer

    NASA Astrophysics Data System (ADS)

    Teare, S. W.

    2003-05-01

    Many observatories and instrument builders are retrofitting visible and near-infrared spectrometers into their existing imaging cameras. Camera designs that reimage the focal plane and have the optical filters located in a pseudo collimated beam are ideal candidates for the addition of a spectrometer. One device commonly used as the dispersing element for such spectrometers is a grism. The traditional grism is constructed from a prism that has had a diffraction grating applied on one surface. The objective of such a design is to use the prism wedge angle to select the desired "in-line" or "zero-deviation" wavelength that passes through on axis. The grating on the surface of the prism provides much of the dispersion for the spectrometer. A grism can also be used in a "constant-dispersion" design which provides an almost linear spatial scale across the spectrum. In this paper we provide an overview of the development of a grism spectrometer for use in a near infrared camera and demonstrate that a compact grism spectrometer can be developed on a very modest budget that can be afforded at almost any facility. The grism design was prototyped using visible light and then a final device was constructed which provides partial coverage in the near infrared I, J, H and K astronomical bands using the appropriate band pass filter for order sorting. The near infrared grism presented here provides a spectral resolution of about 650 and velocity resolution of about 450 km/s. The design of this grism relied on a computer code called Xspect, developed by the author, to determine the various critical parameters of the grism. This work was supported by a small equipment grant from NASA and administered by the AAS.

  11. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  12. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  13. A Compact Beam Measurement Setup

    NASA Astrophysics Data System (ADS)

    Graf, Urs U.

    2016-08-01

    We present the design of a compact measurement device to determine the position of a beam in a radio optical setup. The unit is used to align the Terahertz optics of the GREAT instrument on the airborne astronomical observatory SOFIA.

  14. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  15. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  16. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  17. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  18. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2013-09-01

    Infrared sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection has become application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive infrared (IR) sensors, the Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage and 2-stage cold-head architectures with an inventive set of warm-end mechanisms into a single mechanical module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (<20% improvement) and exported vibration performance (<=25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  19. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  20. Compact Solar Combisystem for an Apartment Building

    NASA Astrophysics Data System (ADS)

    Bolonina, Alona; Rochas, Claudio; Kibure, Inese; Rosa, Marika; Blumberga, Dagnija

    2010-01-01

    The Riga Technical University Institute of Energy Systems and Environment, in cooperation with three Latvian companies, is implementing the project "Compact solar and pellet module" financed by the European Union. Within the framework of this project a combisystem will be installed in the Grandeg Ltd modular pellet boiler house. The solar combisystem will provide domestic hot water and space heating load for an apartment building in Sigulda. Due to the limited amount of space in the modular boiler house, optimal decisions should be made on the technical parameters of the system, including the volume of the heat storage tank and the surface area of solar collectors. Every alternative has both advantages and disadvantages. Economic factors of various alternatives are analyzed.

  1. Directional Oscillations, Concentrations, and Compensated Compactness via Microlocal Compactness Forms

    NASA Astrophysics Data System (ADS)

    Rindler, Filip

    2015-01-01

    This work introduces microlocal compactness forms (MCFs) as a new tool to study oscillations and concentrations in L p -bounded sequences of functions. Decisively, MCFs retain information about the location, value distribution, and direction of oscillations and concentrations, thus extending at the same time the theories of (generalized) Young measures and H-measures. In L p -spaces oscillations and concentrations precisely discriminate between weak and strong compactness, and thus MCFs allow one to quantify the difference in compactness. The definition of MCFs involves a Fourier variable, whereby differential constraints on the functions in the sequence can also be investigated easily—a distinct advantage over Young measure theory. Furthermore, pointwise restrictions are reflected in the MCF as well, paving the way for applications to Tartar's framework of compensated compactness; consequently, we establish a new weak-to-strong compactness theorem in a "geometric" way. After developing several aspects of the abstract theory, we consider three applications; for lamination microstructures, the hierarchy of oscillations is reflected in the MCF. The directional information retained in an MCF is harnessed in the relaxation theory for anisotropic integral functionals. Finally, we indicate how the theory pertains to the study of propagation of singularities in certain systems of PDEs. The proofs combine measure theory, Young measures, and harmonic analysis.

  2. Silicon technology compatible photonic molecules for compact optical signal processing

    SciTech Connect

    Barea, Luis A. M. Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  3. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  4. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  5. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  6. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  7. Compact orthogonal NMR field sensor

    SciTech Connect

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  8. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  9. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  10. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  11. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  12. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Compact Circuit Preprocesses Accelerometer Output

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1993-01-01

    Compact electronic circuit transfers dc power to, and preprocesses ac output of, accelerometer and associated preamplifier. Incorporated into accelerometer case during initial fabrication or retrofit onto commercial accelerometer. Made of commercial integrated circuits and other conventional components; made smaller by use of micrologic and surface-mount technology.

  14. Generalized high order compact methods.

    SciTech Connect

    Spotz, William F.; Kominiarczuk, Jakub

    2010-09-01

    The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.

  15. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  16. Mesoscale Simulations of Power Compaction

    SciTech Connect

    Lomov, I; Fujino, D; Antoun, T; Liu, B

    2009-08-06

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show reshock states above the single-shock Hugoniot line also observed in experiments. They found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations.

  17. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  18. Properties of dynamically compacted WIPP salt

    SciTech Connect

    Brodsky, N.S.; Hansen, F.D.; Pfeifle, T.W.

    1996-07-01

    Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.

  19. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    PubMed

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  20. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  1. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  2. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly compact. 51.582 Section 51.582 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  3. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly... 7 Agriculture 2 2010-01-01 2010-01-01 false Compact. 51.572 Section 51.572 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  4. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are fairly... 7 Agriculture 2 2011-01-01 2011-01-01 false Compact. 51.572 Section 51.572 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  5. 7 CFR 51.582 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Celery Definitions § 51.582 Fairly compact. Fairly compact means that the branches on the... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly compact. 51.582 Section 51.582 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  6. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  7. Compact torus studies: Final report

    SciTech Connect

    Morse, E.C.

    1987-06-01

    The compact torus (CT) device has been proposed for use in some applications which are of interest in Laboratory programs in the areas of pulsed power and inertial confinement fusion. These applications involve compression and acceleration of CT plasmas. The RACE (Ring Accelerator Experiment) experimental program at Livermore has been initiated to study these applications. The work reported here involves studies of plasma physics and other aspects of these compact torus applications. The studies conducted identify specific problem areas associated with the CT device and examine these areas in some detail. This report contains studies of three particular problem areas of the CT applications. These three areas are: the general nonlinear properties of the CT as a magnetohydrodynamic (MHD) equilibrium, particle simulation of the compression of the CT, with a focus on the non-MHD effects, and nonlinear RF interaction problems in the CT.

  8. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  9. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  10. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  11. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  12. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  13. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  14. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact). Thus far,...

  15. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and... purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council (Council) created by the National Crime Prevention and Privacy Compact Act of 1998 (Compact)....

  16. Compaction Waves in Granular HMX

    SciTech Connect

    E. Kober; R. Menikoff

    1999-01-01

    Piston driven compaction waves in granular HMX are simulated with a two-dimensional continuum mechanics code in which individual grains are resolved. The constitutive properties of the grains are modeled with a hydrostatic pressure and a simple elastic-plastic model for the shear stress. Parameters are chosen to correspond to inert HMX. For a tightly packed random grain distribution (with initial porosity of 19%) we varied the piston velocity to obtain weak partly compacted waves and stronger fully compacted waves. The average stress and wave speed are compatible with the porous Hugoniot locus for uni- axial strain. However, the heterogeneities give rise to stress concentrations, which lead to localized plastic flow. For weak waves, plastic deformation is the dominant dissipative mechanism and leads to dispersed waves that spread out in time. In addition to dispersion, the granular heterogeneities give rise to subgrain spatial variation in the thermodynamic variables. The peaks in the temperature fluctuations, known as hot spots, are in the range such that they are the critical factor for initiation sensitivity.

  17. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  18. Cantor network, control algorithm, two-dimensional compact structure and its optical implementation

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Liren; Yin, Yaozu

    1995-12-01

    A compact integrating module technique for packaging a optical multistage Cantor network with a polarization multiplex technique is suggested. The modules have a unique configuration, which is the solid-state combination of a polarization rotator, double birefringent slabs, and a 2 \\times 2 switch array. The design and the fabrication of an eight-channel optical nonblocking Cantor network are demonstrated, and a fast-setup control algorithm is developed. The network systems are easy to assemble and insensitive to environment disturbance.

  19. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.

    PubMed

    Farber, Leon; Hapgood, Karen P; Michaels, James N; Fu, Xi-Young; Meyer, Robert; Johnson, Mary-Ann; Li, Feng

    2008-01-01

    A model that describes the relationship between roller-compaction conditions and tablet strength is proposed. The model assumes that compaction is cumulative during roller compaction and subsequent granule compaction, and compact strength (ribbon and tablet) is generated irreversibly as if strength is controlled by plastic deformation of primary particles only. Roller-compaction is treated as a compaction step where the macroscopic ribbon strength is subsequently destroyed in milling. This loss in strength is irreversible and tablets compressed from the resulting granulation are weaker than those compressed by direct compression at the same compression force. Roller-compacted ribbons were produced at a range of roll forces for three formulations and subsequently milled and compacted into tablets. Once the total compaction history is taken in account, the compaction behavior of the uncompacted blends and the roller-compacted granules ultimately follow a single master compaction curve--a unified compaction curve (UCC). The model successfully described the compaction behavior of DC grade starch and formulations of lactose monohydrate with 50% or more microcrystalline cellulose, and may be more generally applicable to systems containing significant proportions of any plastically deforming material, including MCC and starch. PMID:17689211

  20. A Compact and Robust Method for Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Sparks, William

    2013-04-01

    A compact and robust method for spectropolarimetry is described which lends itself, in principle, to application in the field and in space. With space-based spectropolarimetry in the Solar System, exploration and characterization opportunities are greatly enhanced. Spectropolarimetry offers diagnostics for dust (cometary, zodiacal, rings), surfaces (rocky, regolith, icy), aerosols (clouds, dust storms) and high energy plasma emission processes. Beyond the Solar System, space-based telescopic spectropolarimetry has important contributions to make in the search for extrasolar planets, their characterization and the presence of life. There are astrobiological applications for full Stokes polarimetry stemming from the chiral interaction of light with living organisms. The instrumental approach requires no moving parts and encodes the polarimetric information onto a single data frame, hence it is immune to time dependencies, free of fragile modulating components, has the potential for high sensitivity and offers a wide wavelength range with full Stokes spectropolarimetry. We are laying the groundwork for understanding the design and usefulness of space-based exoplanet spectropolarimetry through development of a Moon-based Earth observing instrument concept CLOVE (Camera for Lunar Observations of the Variable Earth), within NASA's Lunar Science Institute. The polarimetric method could also be implemented in LOUPE (Lunar Observatory for Unresolved Polarimetry of Earth), which is being developed in the Netherlands. Both of these concepts aim to use the Earth as a benchmark for interpreting future observations of extrasolar Earth-like planets.

  1. A compact polymer optical fibre ultrasound detector

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-03-01

    Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.

  2. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  3. Development of a compact, light weight magnetic bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford; Dirusso, Eliseo; Brown, Gerald V.

    1990-01-01

    A compact, lightweight radial-load bearing has been devised with permanent magnet bias and actively controlled radial loading. The novel design uses permanent magnets to generate a coaxial magnetic field that energizes two radial air gaps. Two electromechanical stators modulate the airgap field in order to impart stability and control. Attention is given to the implementation of this design in an application involving operation at ambient and cryogenic temperatures at loads of up to 500 lbs. Stiffnesses of up to 17,500 N/mm have been obtained.

  4. Plasma optical modulators for intense lasers.

    PubMed

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D A; Mori, W B; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 10(16) W cm(-2) to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  5. Plasma optical modulators for intense lasers

    NASA Astrophysics Data System (ADS)

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-06-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm-2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations.

  6. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  7. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  8. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  9. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  10. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  11. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  12. Simplified compact containment BWR plant

    SciTech Connect

    Heki, H.; Nakamaru, M.; Tsutagawa, M.; Hiraiwa, K.; Arai, K.; Hida, T.

    2004-07-01

    The reactor concept considered in this paper has a small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Compact Containment Boiling Water Reactor (CCR), which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to both energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's small power output of 300 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, internal upper entry control rod drives (CRDs) with ring-type dryers and simplified ECCS system with high pressure containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The internal upper entry CRDs reduce the height of the reactor vessel (RPV) and consequently reduce the height of the primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration below the top of the core, passive cooling system by isolation condenser (IC), passive auto catalytic recombiner and in-vessel retention (IVR) capability. The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. The recombiner decreases hydrogen concentration in the PCV in the case of a severe accident. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. The feasibility of CCR safety system has been confirmed by LOCA

  13. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  14. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  15. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  16. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  17. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  18. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  19. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  20. Compact submanifolds supporting singular interactions

    SciTech Connect

    Kaynak, Burak Tevfik Teoman Turgut, O.

    2013-12-15

    A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound-state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent is also beneficial to study various properties. In the present work, we address these issues for compact surfaces embedded in a class of ambient manifolds. We discover that there is an exact bound state solution written in terms of the heat kernel of the ambient manifold for a range of coupling strengths. Moreover, we develop techniques to estimate bounds on the ground state energy when several surfaces, each of which admits a bound state solution, coexist. -- Highlights: •Schrödinger operator with singular interactions supported on compact submanifolds. •Exact bound-state solution in terms of the heat kernel of the ambient manifold. •Generalization of the variational approach to a collection of submanifolds. •Existence of a lower bound for a unique ground state energy.

  1. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  2. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  3. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  4. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  5. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  6. Rapid Sintering of Nano-Diamond Compacts

    SciTech Connect

    Osipov, A.; Nauyoks, S; Zerda, T; Zaporozhets, O

    2009-01-01

    Diamond compacts were sintered from nano-size diamond crystals at high pressure, 8 GPa, and temperature above 1500 degrees C for very short times ranging from 5 to 11 s. Structure and mechanical properties of the compacts have been characterized. Although we have not completely avoided graphitization of diamonds, the amount of graphite produced was low, less than 2%, and despite relatively high porosity, the compacts were characterized by high hardness, bulk and Young moduli.

  7. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  8. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  9. Module Configuration

    DOEpatents

    Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.

    2002-06-04

    A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.

  10. Remote maintenance concepts for the Compact Ignition Tokamak

    SciTech Connect

    Davis, F.C.; Hager, E.R.

    1988-01-01

    Because deuterium-tritium fuel will be used in the Compact Ignition Tokamak (CIT), remote handling technology is needed to carry out some maintenance operations on the machine. In keeping with the compact, low-cost nature of CIT, remote maintenance is provided only for systems with the highest probability of failure. Remote operations include removing, repairing (if feasible), and replacing such components as thermal protection tiles on the first wall, radio-frequency (rf) heating modules, and diagnostic modules. For maintenance inside the vacuum vessel, major pieces of equipment under development include an articulated boom manipulator with servomanipulators, an inspection manipulator, and special tooling. For maintenance outside the cryostat, remote equipment includes a bridge-mounted manipulator system, equipment for decontamination and hot cell activities, and for handling and packaging solid radioactive waste. The conceptual design phase of the CIT project is nearing completion; research and development activities in support of the project include demonstrations of remote maintenance operations on full-size partial mock-ups. 9 figs.

  11. A compact versatile femtosecond spectrometer

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Johnson, E.; Schellenberg, P.; Parson, W.; Windeler, R.

    2002-12-01

    A compact apparatus for femtosecond pump-probe experiments is described. The apparatus is based on a cavity-dumped titanium:sapphire laser. Probe pulses are generated by focusing weak (˜1 nJ) pulses into a microstructure fiber that produces broadband continuum pulses with high efficiency. With the pump pulses compressed and probe pulses uncompressed, the rise time of the pump-probe signals is <100 fs. The 830 nm pump pulses are also frequency doubled to generate light for excitation at 415 nm. The versatility of the spectrometer is demonstrated by exciting molecules at either 830 or 415 nm, and probing at wavelengths ranging from 500 to 950 nm. Some results on the green fluorescent protein are presented.

  12. A Compact Wakefield Measurement Facility

    NASA Astrophysics Data System (ADS)

    Power, J. G.; Gai, W.

    2015-10-01

    The conceptual design of a compact, photoinjector-based, facility for high precision measurements of wakefields is presented. This work is motivated by the need for a thorough understanding of beam induced wakefield effects for any future linear collider. We propose to use a high brightness photoinjector to generate (approximately) a 2 nC, 2 mm-mrad drive beam at 20 MeV to excite wakefields and a second photoinjector to generate a 5 MeV, variably delayed, trailing witness beam to probe both the longitudinal and transverse wakefields in the structure under test. Initial estimates show that we can detect a minimum measurable dipole transverse wake function of 0.1 V/pC/m/mm and a minimum measurable monopole longitudinal wake function of 2.5 V/pC/m. Simulations results for the high brightness photoinjector, calculations of the facility's wakefield measurement resolution, and the facility layout are presented.

  13. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  14. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  15. Compact hybrid particulate collector (COHPAC)

    SciTech Connect

    Chang, R.

    1992-10-27

    This patent describes a method for retrofit filtering of particulates in a flue gas from a combustion source having an existing conventional electrostatic precipitator connected thereto and a smoke stack connected to the precipitator. It comprises: removing at least one discharge electrode and collecting electrode from within the housing of the electrostatic precipitator; attaching a tubesheet within the housing; supporting a compact baghouse filter within the separate filter section by the tubesheet; whereby the remaining discharge electrodes and corresponding collecting electrodes in the electrostatis precipitator serve to remove a majority of particulates form the flue gas and impart a residual charge on remaining particulates discharged to the separate filter section, and the remaining particulates are collected by the baghouse filter before the residual electric charge substantially dissipates.

  16. Compact Quantum Cascade Laser Transmitter

    SciTech Connect

    Anheier, Norman C.; Hatchell, Brian K.; Gervais, Kevin L.; Wojcik, Michael D.; Krishnaswami, Kannan; Bernacki, Bruce E.

    2009-04-01

    ): In this paper we present design considerations, thermal and optical modeling results, and device performance for a ruggedized, compact laser transmitter that utilizes a room temperature quantum cascade (QC) laser source. The QC laser transmitter is intended for portable mid-infrared (3-12 µm) spectroscopy applications, where the atmospheric transmission window is relatively free of water vapor interference and where the molecular rotational vibration absorption features can be used to detect and uniquely identify chemical compounds of interest. Initial QC laser-based sensor development efforts were constrained by the complications of cryogenic operation. However, improvements in both QC laser designs and fabrication processes have provided room-temperature devices that now enable significant miniaturization and integration potential for national security, environmental monitoring, atmospheric science, and industrial safety applications.

  17. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  18. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  19. Ductile compaction in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian; Vasseur, Jeremie; Lavallée, Yan; Scheu, Bettina; Dingwell, Donald

    2014-05-01

    Silicic magmas typically outgas through connected pore and crack networks with a high gas permeability without the need for decoupled movement of pores in the melt. It is the efficiency with which this process can occur which governs the pressure in the pore network. However, such a connected coupled network is generally mechanically unstable and will relax until volume equilibrium when the pores become smaller and isolated. Consequently, gas permeability can be reduced during densification. Cycles of outgassing events recorded in gas monitoring data show that permeable flow of volatiles is often transient, which is interpreted to reflect magma densification and the closing of pore-networks. Understanding the timescale over which this densification process occurs is critical to refining conduit models that seek to predict the pressure evolution in a pore-network leading to eruptions. We conduct uniaxial compaction experiments to parameterize non-linear creep and relaxation processes that occur in magmas with total pore fractions 0.2-0.85. We analyze our results by applying both viscous sintering and viscoelastic deformation theory to test the applicability of currently accepted models to flow dynamics in the uppermost conduit involving highly porous magmas. We show that purely ductile compaction can occur rapidly and that pore networks can close over timescales analogous to the inter-eruptive periods observed during classic cyclic eruptions such as those at Soufriere Hills volcano, Montserrat, in 1997. At upper-conduit axial stresses (0.1-5 MPa) and magmatic temperatures (830-900 oC), we show that magmas can evolve to porosities analogous to dome lavas erupted at the same volcano. Such dramatic densification events over relatively short timescales and in the absence of brittle deformation show that permeable flow will be inhibited at upper conduit levels. We therefore propose that outgassing is a key feature at many silicic volcanoes and should be incorporated into

  20. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  1. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  2. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  3. Active combustion flow modulation valve

    DOEpatents

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  4. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  5. Strength of field compacted clayey embankments

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Lovell, C. W.

    1982-02-01

    The shearing behavior of a plastic Indiana clay (St. Croix) was studied for both laboratory and field compaction. This interim report deals with the field compacted phase. The strength tests were performed by unconsolidated undrained (UU) and saturated consolidated undrained (CIU) triaxials. These were run at various confining pressures to approximate the end of construction and long term conditions at several embankment depths.

  6. The non-compact Weyl equation

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia; Ioannidou, Theodora

    2011-04-01

    A non-compact version of the Weyl equation is proposed, based on the infinite dimensional spin zero representation of the mathfrak{s}{mathfrak{l}_2} algebra. Solutions of the aforementioned equation are obtained in terms of the Kummer functions. In this context, we discuss the ADHMN approach in order to construct the corresponding non-compact BPS monopoles.

  7. Compact thermoelectric converter systems technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.

  8. Skew chicane based betatron eigenmode exchange module

    DOEpatents

    Douglas, David

    2010-12-28

    A skewed chicane eigenmode exchange module (SCEEM) that combines in a single beamline segment the separate functionalities of a skew quad eigenmode exchange module and a magnetic chicane. This module allows the exchange of independent betatron eigenmodes, alters electron beam orbit geometry, and provides longitudinal parameter control with dispersion management in a single beamline segment with stable betatron behavior. It thus reduces the spatial requirements for multiple beam dynamic functions, reduces required component counts and thus reduces costs, and allows the use of more compact accelerator configurations than prior art design methods.

  9. The 5000 GPM firefighting module evaluation test

    NASA Astrophysics Data System (ADS)

    Burns, Ralph A.

    1986-11-01

    The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.

  10. The 5000 GPM firefighting module evaluation test

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1986-01-01

    The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.

  11. Holographic storage system based on digital holography for recording a phase data page in a compact optical setup

    NASA Astrophysics Data System (ADS)

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-03-01

    A holographic storage system based on digital holography is proposed for recording and retrieving a phase data page in a compact and simple optical setup. In the proposed recording system, complex amplitude distribution can be modulated using a single phase-only spatial light modulator. The complex amplitude distribution of a retrieved phase data page is detected with the Fourier fringe analysis. The use of digital holographic techniques enables realizing a compact and simple holographic recording system, which is independent of misalignment problem in conventional holographic storage systems. The capability of the proposed recording system is numerically and experimentally evaluated.

  12. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  13. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  14. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  15. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  16. Compact Nanowire Sensors Probe Microdroplets.

    PubMed

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector. PMID:27417510

  17. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  18. A compaction front in North Sea chalk

    NASA Astrophysics Data System (ADS)

    Japsen, P.; Dysthe, D. K.; Hartz, E. H.; Jamtveit, B.

    2012-04-01

    North Sea chalk from 18 wells shows a pronounced porosity drop, from ˜20% to less than 10% over a compaction front of less than 300 m. The position of the compaction frontis independent of stratigraphic position, temperature, and actual depth, but closely tied to an effective stress of ˜17 MPa. These observations require a strongly nonlinear rheology with a marked increase in compaction rate at a specific effective stress. Grain-scale observations demonstrate that the compaction front coincides with marked grain coarsening and recrystallization of fossils and fossil fragments. We propose that this nonlinear rheology is caused by stress-driven failure of the larger pores and the associated generation of reactive surface area by subcritical crack propagation away from these pores. Before the onset of this instability, compaction by pressure solution is slowed down by the inhibitory effect of organic compounds associated with the fossils. Although the compaction mechanism is mainly by pressure solution, the rheological response to burial may still be dominantly plastic and controlled by the (fracturing controlled) rate of exposure of reactive surface area. The nonlinear compaction of chalk has significant implications for the evolution of petroleum systems in the central North Sea, both with respect to sea-floor subsidence above hydrocarbon-producing chalk reservoirs and for the formation of low-porosity pressure seals within the chalk.

  19. A compaction front in North Sea chalk

    NASA Astrophysics Data System (ADS)

    Japsen, P.; Dysthe, D. K.; Hartz, E. H.; Stipp, S. L. S.; Yarushina, V. M.; Jamtveit, B.

    2011-11-01

    North Sea chalk from 18 wells shows a pronounced porosity drop, from ˜20% to less than 10% over a compaction front of less than 300 m. The position of the compaction front is independent of stratigraphic position, temperature, and actual depth, but closely tied to an effective stress (load stress minus fluid pressure) of ˜17 MPa. These observations require a strongly nonlinear rheology with a marked increase in compaction rate at a specific effective stress. Grain-scale observations demonstrate that the compaction front coincides with marked grain coarsening and recrystallization of fossils and fossil fragments. We propose that this nonlinear rheology is caused by stress-driven failure of the larger pores and the associated generation of reactive surface area by subcritical crack propagation away from these pores. Before the onset of this instability, compaction by pressure solution is slowed down by the inhibitory effect of organic compounds associated with the fossils. Although the compaction mechanism is mainly by pressure solution, the rheological response to burial may still be dominantly plastic and controlled by the (fracturing controlled) rate of exposure of reactive surface area. The nonlinear compaction of chalk has significant implications for the evolution of petroleum systems in the central North Sea, both with respect to sea-floor subsidence above hydrocarbon-producing chalk reservoirs and for the formation of low-porosity pressure seals within the chalk.

  20. Thermodynamic analysis of compact formation; compaction, unloading, and ejection. I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction.

    PubMed

    DeCrosta, M T; Schwartz, J B; Wigent, R J; Marshall, K

    2000-03-30

    The aim of this investigation was to determine and evaluate the thermodynamic properties, i.e. heat, work, and internal energy change, of the compaction process by developing a 'Compaction Calorimeter'. Compaction of common excipients and acetaminophen was performed by a double-ended, constant-strain tableting waveform utilizing an instrumented 'Compaction Simulator.' A constant-strain waveform provides a specific quantity of applied compaction work. A calorimeter, built around the dies, used a metal oxide thermistor to measure the temperature of the system. A resolution of 0.0001 degrees C with a sampling time of 5 s was used to monitor the temperature. An aluminum die within a plastic insulating die, in conjunction with fiberglass punches, comprised the calorimeter. Mechanical (work) and thermal (heat) calibrations of the elastic punch deformation were performed. An energy correction method was outlined to account for system heat effects and mechanical work of the punches. Compaction simulator transducers measured upper and lower punch forces and displacements. Measurements of the effective heat capacity of the samples were performed utilizing an electrical resistance heater. Specific heat capacities of the samples were determined by differential scanning calorimetry. The calibration techniques were utilized to determine heat, work, and the change in internal energies of powder compaction. Future publications will address the thermodynamic evaluation of the tablet sub-processes of unloading and ejection. PMID:10722955

  1. The classification of 2 -compact groups

    NASA Astrophysics Data System (ADS)

    Andersen, Kasper K. S.; Grodal, Jesper

    2009-04-01

    We prove that any connected 2 -compact group is classified by its 2 -adic root datum, and in particular the exotic 2 -compact group operatorname{DI}(4) , constructed by Dwyer-Wilkerson, is the only simple 2 -compact group not arising as the 2 -completion of a compact connected Lie group. Combined with our earlier work with Mo/ller and Viruel for p odd, this establishes the full classification of p -compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p -compact groups and root data over the p -adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Mo/ller-Viruel methods by incorporating the theory of root data over the p -adic integers, as developed by Dwyer-Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.

  2. Compaction of North-sea chalk

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Dániel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2014-05-01

    The Ekofisk field is the largest petroleum field in the Norwegian North Sea territory where oil is produced from chalk formations. Early stage of oil production caused considerable changes in pore fluid pressure which led to a reservoir compaction. Pore collapse mechanism caused by the dramatic increase of effective stress, which in turn was caused by the pressure reduction by hydrocarbon depletion, was early identified as a principal reason for the reservoir compaction (Sulak et al. 1991). There have been several attempts to model this compaction. They performed with variable success on predicting the Ekofisk subsidence. However, the most of these models are based on empirical relations and do not investigate in detail the phenomena involved in the compaction. In sake of predicting the Ekofisk subsidence while using only independently measurable variables we used a chalk compaction model valid on geological time-scales (Japsen et al. 2011) assuming plastic pore-collapse mechanism at a threshold effective stress level. We identified the phenomena involved in the pore collapse. By putting them in a sequential order we created a simple statistical analytical model. We also investigated the time-dependence of the phenomena involved and by assuming that one of the phenomena is rate-limiting we could make estimations of the compaction rate at smaller length-scales. By carefully investigating the nature of pressure propagation we could upscale our model to reservoir scale. We found that the predicted compaction rates are close enough to the measured rates. We believe that we could further increase accuracy by refining our model. Sulak, R. M., Thomas, L. K., Boade R. R. (1991) 3D reservoir simulation of Ekofisk compaction drive. Journal of Petroleum Technology, 43(10):1272-1278, 1991. Japsen, P., Dysthe, D. K., Hartz, E. H., Stipp, S. L. S., Yarushina, V. M., Jamtveit. (2011) A compaction front in North Sea chalk. Journal of Geophysical Research: Solid Earth (1978

  3. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  4. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  5. Compacting a Kentucky coal for quality logs

    SciTech Connect

    Lin, Y.; Li, Z.; Mao, S.

    1999-07-01

    A Kentucky coal was found more difficult to be compacted into large size strong logs. Study showed that compaction parameters affecting the strength of compacted coal logs could be categorized into three groups. The first group is coal inherent properties such as elasticity and coefficient of friction, the second group is machine properties such as mold geometry, and the third group is the coal mixture preparation parameters such as particle size distribution. Theoretical analysis showed that an appropriate backpressure can reduce surface cracks occurring during ejection. This has been confirmed by the experiments conducted.

  6. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO₃/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO3/0.7Pb(Mg(1/3)Nb(2/3))O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems. PMID:25399635

  7. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    PubMed Central

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems. PMID:25399635

  8. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  9. High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array.

    PubMed

    Hayashi, Nobuhiko; Inoue, Daijiro; Matsumoto, Mitsuhiro; Matsushita, Akio; Higuchi, Hiroshi; Aya, Youichirou; Nakagawa, Tohru

    2015-06-01

    We propose a thin and compact concentrator photovoltaic (CPV) module, about 20 mm thick, one tenth thinner than those of conventional CPVs that are widely deployed for mega-solar systems, to broaden CPV application scenarios. We achieved an energy conversion efficiency of 37.1% at a module temperature of 25 °C under sunlight irradiation optimized for our module. Our CPV module has a lens array consisting of 10 mm-square unit lenses and micro solar cells that are directly attached to the lens array, to reduce the focal length of the concentrator and to reduce optical losses due to reflection. The optical loss of the lens in our module is about 9.0%, which is lower than that of conventional CPV modules with secondary optics. This low optical loss enables our CPV module to achieve a high energy conversion efficiency.

  10. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Bałachowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  11. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  12. Diagnostics for the National Compact Stellarator Experiment

    SciTech Connect

    B.C. Stratton; D. Johnson; R. Feder; E. Fredrickson; H. Neilson; H. Takahashi; M. Zarnstorf; M. Cole; P. Goranson; E. Lazarus; B. Nelson

    2003-09-16

    The status of planning of the National Compact Stellarator Experiment (NCSX) diagnostics is presented, with the emphasis on resolution of diagnostics access issues and on diagnostics required for the early phases of operation.

  13. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures.

    PubMed

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C W

    2015-12-23

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  14. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C. W.

    2015-12-01

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  15. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures.

    PubMed

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C W

    2015-12-23

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops. PMID:26613293

  16. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  17. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  18. Living with the Elekta Compact: Limitations and ways around them.

    PubMed

    Goswami, Jyotirup; Mallik, Suman; Adhikary, Arnab; Das, Suresh; Pal, Bipasha

    2015-01-01

    Elekta AB, Sweden has recently propagated the Elekta Compact--a low-cost, small-footprint, single energy (6MV), linear accelerator, in India. The absence of electron beams and the inability to seamlessly deliver inverse planned intensity modulated radiotherapy (IMRT) segments, mean that some out-of-the-box thinking is mandatory for the full range of required treatments in different clinical settings, but is ultimately very rewarding. Our department started off in July 2011, with the Elekta Compact, equipped with MLCi2 and a camera-based electron portal imaging device. For head-neck cancers, we have successfully utilized a 3D conformal class-solution of eight-to-nine oblique beams, with multiple segments, to deliver an adequate dose to the posterior neck, respecting spinal cord tolerance. Parotid gland sparing is possible in selected node-negative hypopharyngeal/laryngeal cancers. For prostate cancers, we have developed a forward-planned IMRT protocol to routinely deliver 76-80 Gy to the prostate, with margins, while conforming to the same rectal dose-volume constraints as in inverse IMRT. Response and tolerance have been excellent so far. In head-neck cancers, the majority (71%) of patients was locally advanced; however, complete response was achieved in 75% of the cases. Grade 3 acute toxicities were seen in only 7% of the cases and compliance overall was excellent, with no patients requiring a gap in treatment. We achieved biochemical control in 100% of the prostate cancer patients; no patients had grade 3 acute toxicities, and with a median follow-up of 12 months, have yet to see any late rectal bleeding. Although engineered for simplicity and versatility, the Compact requires some innovative thinking by clinicians/physicists to optimize the full range of its possibilities. However, upgrades like inverse IMRT delivery, which are in the pipeline, are urgently needed for it to be viable, especially in a single-accelerator department. PMID:26148623

  19. Compaction of Ductile and Fragile Grains

    NASA Astrophysics Data System (ADS)

    Creissac, S.; Pouliquen, O.; Dalloz-Dubrujeaud, B.

    2009-06-01

    The compaction of powders into tablets is widely used in several industries (cosmetics, food, pharmaceutics…). In all these industries, the composition of the initial powder is complex, and the behaviour under compaction is not well known, also the mechanical behaviour of the tablets. The aim of this paper is to understand the behaviour (pressure vs density) of a simplified media made of fragile and ductile powders, varying the relative ratio of each powder. Some compaction experiments were carried out with glass beads (fragile) and Polyethylen Glycol powder (ductile). We observe two typical behaviours, depending on the relative volumic fraction of each component. A transition is pointed out, observing the evolution of the slope of the curve pressure/density. This transition is explained by geometrical considerations during compaction. A model is proposed, based on the assumption that the studied media can be compare to a diphasic material with a continuous phase (the ductile powder) and a discrete phase (the fragile powder). The result of this model is compare to the experimental results of compaction, and give a good prediction of the behaviour of the different mixing, knowing the behaviour of the ductile and the fragile phase separately. These results were also interpreted in terms of Heckel parameter which characterizes the ability of the powder to deform plastically under compaction. Some mechanical tests were also performed to compare the mechanical resitance of the obtained tablets.

  20. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  1. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  2. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  3. Stylolite compaction and stress models

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.

    2009-04-01

    Stylolites are rough dissolution seams that develop during pressure solution in the Earth's crust. Especially in limestone quarries they exhibit a spectacular roughness with spikes and large columns. They are visible as dark lines of residual clays and other non-dissolvable components in the white limestone. The roughening phenomena seems to be universal since stylolites can also be found in quarzites, mylonites and all kinds of rocks that undergo pressure solution. The genesis of stylolites is not well understood even though they have been used to estimate compaction and to determine the direction of the main compressive stress. We have developed a numerical model to study the dynamic development of the roughness and its dependence on stress. Based on the model we present estimates of finite strain and depth of burial. The numerical stylolites are studied in two ways: the temporal evolution of the roughness on one hand and the fractal characteristics of the roughness on the other hand. In addition we vary the noise in the model and illustrate the importance of the grain size on the roughening process. Surface energies are dominant for small wavelengths and the initial stylolite growth is non-linear and as slow as a diffusive process. However, once a critical wavelength is reached the elastic regime becomes dominant and the growth is still non-linear but not as strong as in the surface energy dominated case. The growth of the roughness speeds up and teeth structures develop. Depending on the system size the growth will reach a third regime where saturation is reached and the roughness stays constant. We will present a scaling law based on these findings that can be used to estimate finite strain from natural stylolites. The roughness of the stylolite itself is self-affine with two different roughness exponents. The switch from one exponent to the other is dependent on stress. We show how stylolites can thus be used as palaeo-stress-gauges. A variation of the

  4. Compact time- and space-integrating SAR processor: performance analysis

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.

    1995-06-01

    Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.

  5. Compact atomic clocks and stabilised laser for space applications

    NASA Astrophysics Data System (ADS)

    Mileti, Gaetano; Affolderbach, Christoph; Matthey-de-l'Endroit, Renaud

    2016-07-01

    We present our developments towards next generation compact vapour-cell based atomic frequency standards using a tunable laser diode instead of a traditional discharge lamp. The realisation of two types of Rubidium clocks addressing specific applications is in progress: high performance frequency standards for demanding applications such as satellite navigation, and chip-scale atomic clocks, allowing further miniaturisation of the system. The stabilised laser source constitutes the main technological novelty of these new standards, allowing a more efficient preparation and interrogation of the atoms and hence an improvement of the clock performances. However, before this key component may be employed in a commercial and ultimately in a space-qualified instrument, further studies are necessary to demonstrate their suitability, in particular concerning their reliability and long-term operation. The talk will present our preliminary investigations on this subject. The stabilised laser diode technology developed for our atomic clocks has several other applications on ground and in space. We will conclude our talk by illustrating this for the example of a recently completed ESA project on a 1.6 microns wavelength reference for a future space-borne Lidar. This source is based on a Rubidium vapour cell providing the necessary stability and accuracy, while a second harmonic generator and a compact optical comb generated from an electro-optic modulator allow to transfer these properties from the Rubidium wavelength (780nm) to the desired spectral range.

  6. Applications of ultra-compact accelerator technologies for homeland security

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y. J.; Falabella, S.; Guethlein, G.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Nunnally, W.; Paul, A. C.; Poole, B.; Rhodes, M.; Sanders, D.; Selenes, K.; Shaklee, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2007-08-01

    We report on a technology development to address explosive detector system throughout with increased detection probability. The system we proposed and are studying consists of a pixelized X-ray based pre-screener and a pulsed neutron source quantitative post verifier. Both technologies are derived from our compact accelerator development program for the Department of Energy Radiography Mission that enables gradients > 10 MV/m. For the pixelized X-ray source panel technology, we have performed initial integration and testing. For the accelerator, we are presently integrating and testing cell modules. For the verifier, we performed MCNP calculations that show good detectability of military and multi-part liquid threat systems. We detail the progress of our overall effort, including research and modeling to date, recent high voltage test results and concept integration.

  7. Maintenance concept development for the Compact Ignition Tokamak

    SciTech Connect

    Macdonald, D.

    1988-01-01

    The Compact Ignition Tokamak (CIT), located at the Princeton Plasma Physics Laboratory, will be the next major experimental machine in the US Fusion Program. Its use of deuterium-tritium (D-T) fuel requires the use of remote handling technology to carry out maintenance operations on the machine. These operations consist of removing and repairing such components as diagnostic equipment modules by using remotely operated maintenance equipment. The major equipment being developed for maintenance external to the vacuum vessel includes both bridge-mounted and floor-mounted manipulator systems. Additionally, decontamination (decon) equipment, hot cell repair facilities, and equipment for handling and packaging solid radioactive waste (rad-waste) are being developed. Recent design activities have focused on establishing maintenance system interfaces with the facility design, developing manipulator system requirements, and using mock-ups to support the tokamak configuration design. 3 refs., 8 figs.

  8. Innovative fiber-laser architecture-based compact wind lidar

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Tracy, Allen; Vetorino, Steve; Higgins, Richard; Sibell, Russ

    2016-03-01

    This paper describes an innovative, compact and eyesafe coherent lidar system developed for use in wind and wake vortex sensing applications. This advanced lidar system is field ruggedized with reduced size, weight, and power consumption (SWaP) configured based on an all-fiber and modular architecture. The all-fiber architecture is developed using a fiber seed laser that is coupled to uniquely configured fiber amplifier modules and associated photonic elements including an integrated 3D scanner. The scanner provides user programmable continuous 360 degree azimuth and 180 degree elevation scan angles. The system architecture eliminates free-space beam alignment issues and allows plug and play operation using graphical user interface software modules. Besides its all fiber architecture, the lidar system also provides pulsewidth agility to aid in improving range resolution. Operating at 1.54 microns and with a PRF of up to 20 KHz, the wind lidar is air cooled with overall dimensions of 30" x 46" x 60" and is designed as a Class 1 system. This lidar is capable of measuring wind velocities greater than 120 +/- 0.2 m/s over ranges greater than 10 km and with a range resolution of less than 15 m. This compact and modular system is anticipated to provide mobility, reliability, and ease of field deployment for wind and wake vortex measurements. The current lidar architecture is amenable for trace gas sensing and as such it is being evolved for airborne and space based platforms. In this paper, the key features of wind lidar instrumentation and its functionality are discussed followed by results of recent wind forecast measurements on a wind farm.

  9. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance.

  10. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    PubMed Central

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-01-01

    Abstract. A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance. PMID:26358823

  11. Compact, low-noise, all-solid-state laser system for stimulated Raman scattering microscopy.

    PubMed

    Steinle, Tobias; Kumar, Vikas; Steinmann, Andy; Marangoni, Marco; Cerullo, Giulio; Giessen, Harald

    2015-02-15

    We present a highly stable and compact laser source for stimulated Raman scattering (SRS) microscopy. cw-seeding of an optical parametric amplifier pumped by a bulk femtosecond Yb-oscillator and self-phase modulation in a tapered fiber allow for broad tunability without any optical or electronic synchronization. The source features noise levels of the Stokes beam close to the shot-noise limit at MHz modulation frequencies. We demonstrate the superior performance of our system by SRS imaging of micrometer-sized polymer beads. PMID:25680158

  12. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures.

  13. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. PMID:20176096

  14. Compact and smart laser diode systems for cancer treatment

    NASA Astrophysics Data System (ADS)

    Svirin, Viatcheslav N.; Sokolov, Victor V.; Solovieva, Tatiana I.

    2003-04-01

    To win the cancer is one of the most important mankind task to be decided in III Millenium. New technology of treatment is to recognize and kill cancer cells with the laser light not by surgery operation, but by soft painless therapy. Even though from the beginning of the 80s of the last century this technology, so-called photodynamic therapy (PDT) has received acceptance in America, Europe and Asia it is still considered in the medical circles to be a new method with the little-known approaches of cancer treatment. Recently the next step was done, and the unique method of PDT combined with laser-induced thermotherapy (LITT) was developed. Compact and smart diode laser apparatus "Modul-GF" for its realization was designed. In this report the concept of this method, experimental materials on clinical trials and ways of optimization of technical decisions and software of apparatus "Modul-GF", including the autotuning of laser power dependently on tissue temperature measured with thermosensors are discussed. The special instruments such as fiber cables and special sensors are described to permit application of "Modul-GF" for the treatment of the tumors of the different localizations, both surface and deeply located with using of the endoscopy method. The examples of the oncological and nononcological pathologies" treatment by the developed method and apparatus in urology, gynecology, gastroenterology, dermatology, cosmetology, bronchology, pulmonology are observed. The results of clinical approval the developed combination of PDT&LITT realized with "Modul-GF" leads to essentially increasing of the treatment effectiveness.

  15. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  16. Modeling of planetesimal compaction by hot pressing

    NASA Astrophysics Data System (ADS)

    Neumann, W.; Breuer, D.; Spohn, T.

    2014-07-01

    Compaction of initially porous material prior to melting is an important process that has influenced the interior structure and the thermal evolution of planetesimals in their early history. On one hand, compaction decreases the porosity resulting in a reduction of the radius. On the other hand, the loss of porosity results in an increase of the thermal conductivity of the material and, thus, in a more efficient cooling. Porosity loss by hot pressing is the most efficient process of compaction in planetesimals and can be described by creep flow, which depends on temperature and stress. Hot pressing has been repeatedly modeled using a simplified approach, for which the porosity is gradually reduced in some fixed temperature interval between ~650 K and 700 K [see e.g. 1--3]. This approach neglects the dependence of compaction on stress. In the present study [see 4], we compare this ''parametrized'' method with a self-consistent calculation of porosity loss via a ''creep-related'' approach. We use our thermal evolution model from previous studies [5] to model compaction of an initially porous ordinary chondritic body and consider four basic packings of spherical dust grains (simple cubic, orthorhombic, rhombohedral, and body-centered cubic). Depending on the grain packing, we calculate the effective stress and the associated porosity change via the thermally activated creep flow. For comparison, compaction is also modeled by simply reducing the initial porosity linearly to zero between 650 and 700 K. Since we are interested in thermal metamorphism and not melting, we only consider bodies that experience a maximum temperature below the solidus temperature of the metal phase. For the creep related approach, the temperature interval in which compaction takes place depends strongly on the size of the planetesimal and is not fixed as assumed in the parametrized approach. Depending on the radius, the initial grain size, the activation energy, the initial porosity, and the

  17. Mixing and compaction temperatures for Superpave mixes

    NASA Astrophysics Data System (ADS)

    Yildirim, Yetkin

    According to Superpave mixture design, gyratory specimens are mixed and compacted at equiviscous binder temperatures corresponding to viscosities of 0.17 and 0.28 Pa.s. respectively. These were the values previously used in the Marshal mix design method to determine optimal mixing and compaction temperatures. In order to estimate the appropriate mixing and compaction temperatures for Superpave mixture design, a temperature-viscosity relationship for the binder needs to be developed (ASTM D 2493, Calculation of Mixing and Compaction Temperatures). The current approach is simple and provides reasonable temperatures for unmodified binders. However, some modified binders have exhibited unreasonably high temperatures for mixing and compaction using this technique. These high temperatures can result in construction problems, damage of asphalt, and production of fumes. Heating asphalt binder to very high temperatures during construction oxidizes the binder and separates the polymer from asphalt binder. It is known that polymer modified asphalt binders have many benefits to the roads, such as; increasing rutting resistance, enhancing low temperature cracking resistance, improving traction, better adhesion and cohesion, elevating tensile strength which are directly related to the service life of the pavement. Therefore, oxidation and separation of the polymer from the asphalt binder results in reduction of the service life. ASTM D 2493 was established for unmodified asphalt binders which are Newtonian fluids at high temperatures. For these materials, viscosity does not depend on shear rate. However, most of the modified asphalt binders exhibit a phenomenon known as pseudoplasticity, where viscosity does depend on shear rate. Thus, at the high shear rates occurring during mixing and compaction, it is not necessary to go to very high temperatures. This research was undertaken to determine the shear rate during compaction such that the effect of this parameter could be

  18. DNA compaction by azobenzene-containing surfactant

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Morozova, Elena; Lysyakova, Ludmila; Kasyanenko, Nina; Santer, Svetlana

    2011-08-01

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  19. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  20. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  1. Dynamic magnetic compaction of porous materials

    SciTech Connect

    1998-10-29

    IAP Research began development of the Dynamic Magnetic Compaction (DMC) process three years before the CRADA was established. IAP Research had experimentally demonstrated the feasibility of the process, and conducted a basic market survey. IAP identified and opened discussions with industrial partners and established the basic commercial cost structure. The purpose of this CRADA project was to predict and verify optimum pressure vs. time history for the compaction of porous copper and tungsten. LLNL modeled the rapid compaction of powdered material from an initial density of about 30% theoretical maximum to more than 90% theoretical maximum. The compaction simulations were benchmarked against existing data and new data was acquired by IAP Research. The modeling was used to perform parameter studies on the pressure loading time history, initial porosity and temperature. LLNL ran simulations using codes CALE or NITO and compared the simulations with published compaction data and equation of state (EOS) data. This project did not involve the development or modification of software code. CALE and NITO were existing software programs at LLNL. No modification of these programs occurred within the scope of the CRADA effort.

  2. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  3. Thermionic modules

    DOEpatents

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2002-06-18

    Modules of assembled microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures manufactured using MEMS manufacturing techniques including chemical vapor deposition. The MTCs incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices and modules can be fabricated at modest costs.

  4. Laser emission in periodically modulated polymer films

    NASA Astrophysics Data System (ADS)

    Rocha, Licinio; Dumarcher, Vincent; Denis, Christine; Raimond, Paul; Fiorini, Céline; Nunzi, Jean-Michel

    2001-03-01

    We report on the realization of a compact distributed feedback laser using luminescent polymer films where the optical feedback is provided by Bragg diffraction on an index grating. Permanent modulation of the polymer refractive index is achieved using an original technique for photoinduced patterning of surface relief grating, using laser-controlled mass-transport in azoaromatic polymers. We describe the fabrication of such surface gratings and show the laser emission properties resulting from a transversal one-photon pumping of the sinusoidally modulated polymer films upcovered with a luminescent-dye-doped film. Control of the laser wavelength by the grating pitch is evidenced.

  5. DETECTOR FOR MODULATED AND UNMODULATED SIGNALS

    DOEpatents

    Patterson, H.H.; Webber, G.H.

    1959-08-25

    An r-f signal-detecting device is described, which is embodied in a compact coaxial circuit principally comprising a detecting crystal diode and a modulating crystal diode connected in parallel. Incoming modulated r-f signals are demodulated by the detecting crystal diode to furnish an audio input to an audio amplifier. The detecting diode will not, however, produce an audio signal from an unmodulated r-f signal. In order that unmodulated signals may be detected, such incoming signals have a locally produced audio signal superimposed on them at the modulating crystal diode and then the"induced or artificially modulated" signal is reflected toward the detecting diode which in the process of demodulation produces an audio signal for the audio amplifier.

  6. Effect of ferroelectric polarization switching on the electronic transport properties of La0.8Ca0.2MnO3 film

    NASA Astrophysics Data System (ADS)

    Xie, Qiyun; Zhai, Zhangyin; Wu, Xiaoshan; Gao, Ju

    2014-10-01

    La0.8Ca0.2MnO3 thin film grown on 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) substrate has shown very interesting transport properties, which is modulated by the ferroelectric polarization switching in the substrate. The ferroelectric poling reduces the in-plane strain by about 0.135% with the applied piezovoltage of 500 V to PMN-PT substrate. The resistance is lowered and the metal-insulator transition temperature (Tp) is increased due to the reduced in-plane strain. Moreover, it is shown that the ferroelectric field effect competes strongly with the strain effect especially when the temperature is lowered below Tp in our film.

  7. Capability enhancement in compact digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Asundi, Anand

    2015-03-01

    A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.

  8. Compaction and Sintering of Mo Powders

    SciTech Connect

    Nunn, Stephen D; Kiggans, Jim; Bryan, Chris

    2013-01-01

    To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

  9. Lacunary Fourier Series for Compact Quantum Groups

    NASA Astrophysics Data System (ADS)

    Wang, Simeng

    2016-05-01

    This paper is devoted to the study of Sidon sets, {Λ(p)} -sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, {Λ(p)} -sets and lacunarities for L p -Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of {Λ(p)} -sets for orthogonal systems in noncommutative L p -spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.

  10. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  11. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  12. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  13. Hall MHD Equilibrium of Accelerated Compact Toroids

    NASA Astrophysics Data System (ADS)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  14. Compact CT/SPECT Small-Animal Imaging System

    PubMed Central

    Kastis, George A.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.; Barber, H. Bradford; Barrett, Harrison H.

    2015-01-01

    We have developed a dual-modality CT/SPECT imaging system for small-animal imaging applications. The X-ray system comprises a commercially available micro-focus X-ray tube and a CCD-based X-ray camera. X-ray transmission measurements are performed based on cone-beam geometry. Individual projections are acquired by rotating the animal about a vertical axis in front of the CCD detector. A high-resolution CT image is obtained after reconstruction using an ordered subsets-expectation maximization (OS-EM) reconstruction algorithm. The SPECT system utilizes a compact semiconductor camera module previously developed in our group. The module is mounted perpendicular to the X-ray tube/CCD combination. It consists of a 64×64 pixellated CdZnTe detector and a parallel-hole tungsten collimator. The field of view is 1 square inch. Planar projections for SPECT reconstruction are obtained by rotating the animal in front of the detector. Gamma-ray and X-ray images are presented of phantoms and mice. Procedures for merging the anatomical and functional images are discussed. PMID:26538684

  15. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  16. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  17. Portable compact cold atoms clock topology

    NASA Astrophysics Data System (ADS)

    Pechoneri, R. D.; Müller, S. T.; Bueno, C.; Bagnato, V. S.; Magalhães, D. V.

    2016-07-01

    The compact frequency standard under development at USP Sao Carlos is a cold atoms system that works with a distributed hardware system principle and temporal configuration of the interrogation method of the atomic sample, in which the different operation steps happen in one place: inside the microwave cavity. This type of operation allows us to design a standard much more compact than a conventional one, where different interactions occur in the same region of the apparatus. In this sense, it is necessary to redefine all the instrumentation associated with the experiment. This work gives an overview of the topology we are adopting for the new system.

  18. Microstructure of explosively compacted aluminum nitride ceramic

    SciTech Connect

    Gourdin, W.H.; Echer, C.J.; Cline, C.F.; Tanner, L.E.

    1981-05-01

    Observations are reported of the microstructure of aluminum nitride (A1N) ceramic produced by explosive consolidation of the powder. Similarities between the grain structure of the compact and the starting powders are striking. Grain growth does not occur during densification and the 0.1 ..mu.. particle size of the powder is retained, although considerable deformation is introduced into individual grains. Of particular interest is an intergranular phase which appears throughout the compact. Observations in the transmission electron microscope indicate that this phase is amorphous.The influence of this glassy intergranular phase on bonding is discussed. 5 figures.

  19. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  20. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  1. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles

  2. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  3. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  4. Construction of weighted upwind compact scheme

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjie

    Enormous endeavor has been devoted in spatial high order high resolution schemes in more than twenty five years previously, like total variation diminishing (TVD), essentially non-oscillatory scheme, weighted essentially non-oscillatory scheme for finite difference, and Discontinuous Galerkin methods for finite element and the finite volume. In this dissertation, a high order finite difference Weighted Upwind Compact Scheme has been constructed by dissipation and dispersion analysis. Secondly, a new method to construct global weights has been tested. Thirdly, a methodology to compromise dissipation and dispersion in constructing Weighted Upwind Compact Scheme has been derived. Finally, several numerical test cases have been shown.

  5. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  6. A graphene-based broadband optical modulator

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yin, Xiaobo; Ulin-Avila, Erick; Geng, Baisong; Zentgraf, Thomas; Ju, Long; Wang, Feng; Zhang, Xiang

    2011-06-01

    Integrated optical modulators with high modulation speed, small footprint and large optical bandwidth are poised to be the enabling devices for on-chip optical interconnects. Semiconductor modulators have therefore been heavily researched over the past few years. However, the device footprint of silicon-based modulators is of the order of millimetres, owing to its weak electro-optical properties. Germanium and compound semiconductors, on the other hand, face the major challenge of integration with existing silicon electronics and photonics platforms. Integrating silicon modulators with high-quality-factor optical resonators increases the modulation strength, but these devices suffer from intrinsic narrow bandwidth and require sophisticated optical design; they also have stringent fabrication requirements and limited temperature tolerances. Finding a complementary metal-oxide-semiconductor (CMOS)-compatible material with adequate modulation speed and strength has therefore become a task of not only scientific interest, but also industrial importance. Here we experimentally demonstrate a broadband, high-speed, waveguide-integrated electroabsorption modulator based on monolayer graphene. By electrically tuning the Fermi level of the graphene sheet, we demonstrate modulation of the guided light at frequencies over 1GHz, together with a broad operation spectrum that ranges from 1.35 to 1.6µm under ambient conditions. The high modulation efficiency of graphene results in an active device area of merely 25µm2, which is among the smallest to date. This graphene-based optical modulation mechanism, with combined advantages of compact footprint, low operation voltage and ultrafast modulation speed across a broad range of wavelengths, can enable novel architectures for on-chip optical communications.

  7. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  8. Mechanical compaction in Bleurswiller sandstone: effective pressure law and compaction localization

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Reuschlé, Thierry; Ji, Yuntao; Wong, Teng-fong

    2016-04-01

    We performed a systematic investigation of mechanical compaction and strain localization in Bleurswiller sandstone of 24% porosity. 70 conventional triaxial compression experiments were performed at confining pressures up to 200 MPa and pore pressures ranging from 5 to 100 MPa. Our new data show that the effective pressure principle can be applied in both the brittle faulting and cataclastic flow regimes, with an effective pressure coefficient close to but somewhat less than 1. Under relatively high confinement, the samples typically fail by development of compaction bands. X-ray computed tomography (CT) was used to resolve preexisting porosity clusters, as well as the initiation and propagation of the compaction bands in deformed samples. Synthesis of the CT and microstructural data indicates that there is no casual relation between collapse of the porosity clusters in Bleurswiller sandstone and nucleation of the compaction bands. Instead, the collapsed porosity clusters may represent barriers for the propagation of compaction localization, rendering the compaction bands to propagate along relatively tortuous paths so as to avoid the porosity clusters. The diffuse and tortuous geometry of compaction bands results in permeability reduction that is significantly lower than that associated with compaction band formation in other porous sandstones. Our data confirm that Bleurswiller sandstone stands out as the only porous sandstone associated with a compactive cap that is linear, and our CT and microstructural observation show that it is intimately related to collapse of the porosity clusters. We demonstrate that the anomalous linear caps and their slopes are in agreement with a micromechanical model based on the collapse of a spherical pore embedded in an elastic-plastic matrix that obeys the Coulomb failure criterion.

  9. Infrared light gated MoS₂ field effect transistor.

    PubMed

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light.

  10. Infrared light gated MoS₂ field effect transistor.

    PubMed

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light. PMID:26698982

  11. Compact propane fuel processor for auxiliary power unit application

    NASA Astrophysics Data System (ADS)

    Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.

    With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.

  12. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly compact. 51.608 Section 51.608 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  13. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly compact. 51.608 Section 51.608 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF...

  14. A compact transportable Josephson voltage standard

    SciTech Connect

    Hamilton, C.A.; Burroughs, C.J.; Kupferman, S.L.

    1996-06-01

    The development of a compact, portable 10 V Josephson calibration system is described. Its accuracy is the same as typical laboratory systems and its weight and volume are reduced by more than a factor of three. The new system will replace travelling voltage standards used within several NASA and DOE standards laboratories.

  15. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  16. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-08-02

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  17. Rotation and gravitational compaction in asteroids

    NASA Astrophysics Data System (ADS)

    Halling, R.

    A theoretical model of gravitational compaction during the formation of asteroids is developed on the basis of the planetesimal-accretion theory of Alfven and Arrhenius (1976) and applied to the observational data of Dermott and Murray (1982) on nonfamily main-belt C, S, and M asteroids of diameter 50 km or greater (assumed to be primordial objects). Three phases of accretion are defined: initial accretion of porous material at constant density until a critical radius and central pressure (of the order of 1 MPa) are attained, breakdown and compaction proceeding outward and resulting in a reduction of asteroid radius, and continued accretion with an increase in the volume friction in the compact state. A spin-frequency/diameter relation is derived by fitting this model to the data and found to give porous-state densities between 0.75 and 1.60 g/cu cm, compact-state densities 2.20-4.50 g/cu cm, critical radii 55-101 km, and postbreakdown radii 53-90 km.

  18. Compact range for variable-zone measurements

    DOEpatents

    Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.

    1988-01-01

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.

  19. Compact range for variable-zone measurements

    DOEpatents

    Burnside, W.D.; Rudduck, R.C.; Yu, J.S.

    1987-02-27

    A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.

  20. Compact Translating-Head Magnetic Memories

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1992-01-01

    Stationary magnetic media stores information at densities up to 6.5 Gb/cm(Sup 2). High-density memory devices combine features of advanced rotating-disk magnetic recording and playback systems with compact two-axis high-acceleration linear actuators. New devices weigh less, occupy less space, and consume less power than disk and tape recorders.

  1. COMPACT DISCLOSURE: Realizing CD-ROM's Potential.

    ERIC Educational Resources Information Center

    Halperin, Michael; Pagell, Ruth A.

    1986-01-01

    The advantages and disadvantages of the compact disk version of the DISCLOSURE database are compared to the print version and other online formats. Currentness of information, searching methods, users' perceptions taken from a student survey, price, availability, response time, and browsabiity are considered. Sample menus and screen displays are…

  2. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  3. Analytic vortex solutions on compact hyperbolic surfaces

    NASA Astrophysics Data System (ADS)

    Maldonado, Rafael; Manton, Nicholas S.

    2015-06-01

    We construct, for the first time, abelian Higgs vortices on certain compact surfaces of constant negative curvature. Such surfaces are represented by a tessellation of the hyperbolic plane by regular polygons. The Higgs field is given implicitly in terms of Schwarz triangle functions and analytic solutions are available for certain highly symmetric configurations.

  4. Pathway to a compact SASE FEL device

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.

    2015-10-01

    Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.

  5. Compact, Lightweight Servo-Controllable Brakes

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.; Townsend, William; Guertin, Jeffrey; Matsuoka, Yoky

    2010-01-01

    Compact, lightweight servo-controllable brakes capable of high torques are being developed for incorporation into robot joints. A brake of this type is based partly on the capstan effect of tension elements. In a brake of the type under development, a controllable intermediate state of torque is reached through on/off switching at a high frequency.

  6. MTI compact electronic meter testing program

    SciTech Connect

    O`Rourke, E.L.

    1995-12-31

    MTI has completed an extensive test program to ensure a new compact electronic gas meter meets all specifications and standards customarily employed by the U.S. gas industry. Thirty (30) test plans were developed to cover all American National Standards Institute (ANSI) performance requirements. (1) The prototype meters have met or exceeded the ANSI B109.1 standards. (2) The prototype meters have demonstrated the feasibility of GRI`s decision to seek a compact meter for early market entry. (3) Several leading U.S. utilities have participated in sponsoring the project and have expressed keen interest in field testing the compact meter. (4) American Meter Company (AMC), the predominant U.S. meter manufacturer, has participated in the sponsorship and testing of the compact meter and has formed a joint venture with Select Corporation to bring the meter to the U.S. and world-wide marketplace. (5) The meter generates the necessary electronic output for either telephonic or radio based automatic meter reading (AMR). The pre-production meters for the North American market are being fabricated currently by AMC. Following their completion, an extensive field test program will take place. Three hundred units will be installed at ten to fifteen utilities and tested for a period of up to one year.

  7. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  8. Soil compaction across the old rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating soil compaction levels across the Old Rotation, the world’s oldest continuous cotton (Gossypium hirsutum L.) experiment, has not been conducted since the experiment transitioned to conservation tillage and high residue cover crops with and without irrigation. Our objective was to charact...

  9. Holographic Compact Disk Read-Only Memories

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi

    1996-01-01

    Compact disk read-only memories (CD-ROMs) of proposed type store digital data in volume holograms instead of in surface differentially reflective elements. Holographic CD-ROM consist largely of parts similar to those used in conventional CD-ROMs. However, achieves 10 or more times data-storage capacity and throughput by use of wavelength-multiplexing/volume-hologram scheme.

  10. Compact microwave cavity for hydrogen atomic clock

    NASA Technical Reports Server (NTRS)

    Zhang, Dejun; Zhang, Yan; Fu, Yigen; Zhang, Yanjun

    1992-01-01

    A summary is presented that introduces the compact microwave cavity used in the hydrogen atomic clock. Special emphasis is placed on derivation of theoretical calculating equations of main parameters of the microwave cavity. A brief description is given of several methods for discriminating the oscillating modes. Experimental data and respective calculated values are also presented.

  11. Compaction and Wear Concerns on Sports Fields.

    ERIC Educational Resources Information Center

    Gillan, John

    1999-01-01

    Describes relatively simple measures athletic-facility managers can use to alleviate the turf destruction and compaction of athletic fields including seed and soil amendments and modifications on team practice. Ways of enhancing surface traction and lessen surface hardness are explored. (GR)

  12. Kinematics of luminous blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran; Amram, Philippe; Boulesteix, Jaques; Bergvall, Nils; Masegosa, Josefa; Márquez, Isabel

    We present results from a Fabry-Perot study of the Hα velocity fields and morphologies of a sample of luminous blue compact galaxies. We estimate masses from photometry and kinematics and show that many of these BCGs are not rotationally supported. Mergers or strong interactions appear to be the triggering mechanism of the extreme starbursts seen in these galaxies.

  13. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1984-01-01

    Firefly II pump module is NASA's Marshall Space Flight Center's commercial offshoot of a NASA/US Coast Guard program involving development of a lightweight, helicopter-transportable firefighting module for a quick response in combating shipboard or harbor fires. Operable on land or water, the Amphib One is equipped with 3 water cannons. When all 3 are operating, unit pumps more than 3,000 gallons a minute. Newly developed model used by U.S. Coast Guard can pump 5,000 gallons per minute. It was designed for applications such as firefighting onboard ship fires, emergency dockside water pumping, dewatering ships in danger of sinking, flood control, and emergency water supply at remote locations.

  14. Investigation of HMA compactability using GPR technique

    NASA Astrophysics Data System (ADS)

    Plati, Christina; Georgiou, Panos; Loizos, Andreas

    2014-05-01

    In-situ field density is often regarded as one of the most important controls used to ensure that an asphalt pavement being placed is of high quality. The achieved density results from the effectiveness of the applied compaction mode on the Hot Mix Asphalt (HMA) layer. It is worthwhile mentioning that the proper compaction of HMA increases pavement fatigue life, decreases the amount of permanent deformation or rutting, reduces the amount of oxidation or aging, decreases moisture damage or stripping, increases strength and internal stability, and may decrease slightly the amount of low-temperature cracking that may occur in the mix. Conventionally, the HMA density in the field is assessed by direct destructive methods, including through the cutting of samples or drilling cores. These methods are characterized by a high accuracy, although they are intrusive and time consuming. In addition, they provide local information, i.e. information only for the exact test location. To overcome these limitations, the use of non-intrusive techniques is often recommended. The Ground Penetrating Radar (GPR) technique is an example of a non-intrusive technique that has been increasingly used for pavement investigations over the years. GPR technology is practical and application-oriented with the overall design concept, as well as the hardware, usually dependent on the target type and the material composing the target and its surroundings. As the sophistication of operating practices increases, the technology matures and GPR becomes an intelligent sensor system. The intelligent sensing deals with the expanded range of GPR applications in pavements such as determining layer thickness, detecting subsurface distresses, estimating moisture content, detecting voids and others. In addition, the practice of using GPR to predict in-situ field density of compacted asphalt mixture material is still under development and research; however the related research findings seem to be promising

  15. Thermoelectric module

    DOEpatents

    Kortier, William E.; Mueller, John J.; Eggers, Philip E.

    1980-07-08

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  16. Linear modulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study of frequency division multiplexing (FDM) systems was made for the purpose of determining the system performance that can be obtained with available state of the art components. System performance was evaluated on the basis of past experience, system analysis, and component evaluation. The system study was specifically directed to the area of FDM systems using subcarrier channel frequencies from 4 kHz to 200 kHz and channel information bandwidths of dc to 1, 2, 4, 8, and 16 kHz. The evaluation also assumes that the demodulation will be from a tape recorder which produces frequency modulation of + or - 1% on the signal due to the tape recorder wow and flutter. For the modulation system it is assumed that the pilot and carrier channel frequencies are stable to within + or - .005% and that the FM on the channel carriers is negligible. The modulator system was evaluated for the temperature range of -20 degree to +85 degree while the demodulator system was evaluated for operation at room temperature.

  17. Development of compact cold-atom sensors for inertial navigation

    NASA Astrophysics Data System (ADS)

    Battelier, B.; Barrett, B.; Fouché, L.; Chichet, L.; Antoni-Micollier, L.; Porte, H.; Napolitano, F.; Lautier, J.; Landragin, A.; Bouyer, P.

    2016-04-01

    Inertial sensors based on cold atom interferometry exhibit many interesting features for applications related to inertial navigation, particularly in terms of sensitivity and long-term stability. However, at present the typical atom interferometer is still very much an experiment—consisting of a bulky, static apparatus with a limited dynamic range and high sensitivity to environmental effects. To be compliant with mobile applications further development is needed. In this work, we present a compact and mobile experiment, which we recently used to achieve the first inertial measurements with an atomic accelerometer onboard an aircraft. By integrating classical inertial sensors into our apparatus, we are able to operate the atomic sensor well beyond its standard operating range, corresponding to half of an interference fringe. We report atom-based acceleration measurements along both the horizontal and vertical axes of the aircraft with one-shot sensitivities of 2.3 × 10-4 g over a range of ˜ 0.1 g. The same technology can be used to develop cold-atom gyroscopes, which could surpass the best optical gyroscopes in terms of long-term sensitivity. Our apparatus was also designed to study multi-axis atom interferometry with the goal of realizing a full inertial measurement unit comprised of the three axes of acceleration and rotation. Finally, we present a compact and tunable laser system, which constitutes an essential part of any cold-atom-based sensor. The architecture of the laser is based on phase modulating a single fiber-optic laser diode, and can be tuned over a range of 1 GHz in less than 200 μs.

  18. Development of compact cold-atom sensors for inertial navigation

    NASA Astrophysics Data System (ADS)

    Battelier, B.; Barrett, B.; Fouché, L.; Chichet, L.; Antoni-Micollier, L.; Porte, H.; Napolitano, F.; Lautier, J.; Landragin, A.; Bouyer, P.

    2016-04-01

    Inertial sensors based on cold atom interferometry exhibit many interesting features for applications related to inertial navigation, particularly in terms of sensitivity and long-term stability. However, at present the typical atom interferometer is still very much an experiment—consisting of a bulky, static apparatus with a limited dynamic range and high sensitivity to environmental effects. To be compliant with mobile applications further development is needed. In this work, we present a compact and mobile experiment, which we recently used to achieve the first inertial measurements with an atomic accelerometer onboard an aircraft. By integrating classical inertial sensors into our apparatus, we are able to operate the atomic sensor well beyond its standard operating range, corresponding to half of an interference fringe. We report atom-based acceleration measurements along both the horizontal and vertical axes of the aircraft with one-shot sensitivities of 2.3 × 10-4 g over a range of ˜ 0.1 g. The same technology can be used to develop cold-atom gyroscopes, which could surpass the best optical gyroscopes in terms of long-term sensitivity. Our apparatus was also designed to study multi-axis atom interferometry with the goal of realizing a full inertial measurement unit comprised of the three axes of acceleration and rotation. Finally, we present a compact and tunable laser system, which constitutes an essential part of any cold-atom-based sensor. The architecture of the laser is based on phase modulating a single fiber-optic laser diode, and can be tuned over a range of 1 GHz in less than 200 μs.

  19. A Compact Linac for Proton Therapy Based on a Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y -; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2007-10-29

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  20. Photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2013-08-27

    A photovoltaic (PV) module including a PV device and a frame, The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  1. Photovoltaic module and module arrays

    DOEpatents

    Botkin, Jonathan; Graves, Simon; Lenox, Carl J. S.; Culligan, Matthew; Danning, Matt

    2012-07-17

    A photovoltaic (PV) module including a PV device and a frame. The PV device has a PV laminate defining a perimeter and a major plane. The frame is assembled to and encases the laminate perimeter, and includes leading, trailing, and side frame members, and an arm that forms a support face opposite the laminate. The support face is adapted for placement against a horizontal installation surface, to support and orient the laminate in a non-parallel or tilted arrangement. Upon final assembly, the laminate and the frame combine to define a unitary structure. The frame can orient the laminate at an angle in the range of 3.degree.-7.degree. from horizontal, and can be entirely formed of a polymeric material. Optionally, the arm incorporates integral feature(s) that facilitate interconnection with corresponding features of a second, identically formed PV module.

  2. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Z. Q.; Heron, J. T.; Clarkson, J. D.; Hong, J.; Ko, C.; Biegalski, M. D.; Aschauer, U.; Hsu, S. L.; Nowakowski, M. E.; Wu, J.; Christen, H. M.; Salahuddin, S.; Bokor, J. B.; Spaldin, N. A.; Schlom, D. G.; Ramesh, R.

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ‘giant’ electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  3. Large resistivity modulation in mixed-phase metallic systems.

    PubMed

    Lee, Yeonbae; Liu, Z Q; Heron, J T; Clarkson, J D; Hong, J; Ko, C; Biegalski, M D; Aschauer, U; Hsu, S L; Nowakowski, M E; Wu, J; Christen, H M; Salahuddin, S; Bokor, J B; Spaldin, N A; Schlom, D G; Ramesh, R

    2015-01-01

    In numerous systems, giant physical responses have been discovered when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. Here we have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation. PMID:25564764

  4. Mathematical relation predicts achievable densities of compacted particles

    NASA Technical Reports Server (NTRS)

    Ayer, J. E.; Soppet, F. E.

    1967-01-01

    Series of mathematical relationships predicts compact densities of spherical shapes in a cylinder as a function of particle dimension, and compact density of angular shapes as a function of particle shape and absolute size.

  5. Dissolution and compaction instabilities in geomaterials

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  6. Improved compaction of dried tannery wastewater sludge.

    PubMed

    Della Zassa, M; Zerlottin, M; Refosco, D; Santomaso, A C; Canu, P

    2015-12-01

    We quantitatively studied the advantages of improving the compaction of a powder waste by several techniques, including its pelletization. The goal is increasing the mass storage capacity in a given storage volume, and reducing the permeability of air and moisture, that may trigger exothermic spontaneous reactions in organic waste, particularly as powders. The study is based on dried sludges from a wastewater treatment, mainly from tanneries, but the indications are valid and useful for any waste in the form of powder, suitable to pelletization. Measurements of bulk density have been carried out at the industrial and laboratory scale, using different packing procedures, amenable to industrial processes. Waste as powder, pellets and their mixtures have been considered. The bulk density of waste as powder increases from 0.64 t/m(3) (simply poured) to 0.74 t/m(3) (tapped) and finally to 0.82 t/m(3) by a suitable, yet simple, packing procedure that we called dispersion filling, with a net gain of 28% in the compaction by simply modifying the collection procedure. Pelletization increases compaction by definition, but the packing of pellets is relatively coarse. Some increase in bulk density of pellets can be achieved by tapping; vibration and dispersion filling are not efficient with pellets. Mixtures of powder and pellets is the optimal packing policy. The best compaction result was achieved by controlled vibration of a 30/70 wt% mixture of powders and pellets, leading to a final bulk density of 1t/m(3), i.e. an improvement of compaction by more than 54% with respect to simply poured powders, but also larger than 35% compared to just pellets. That means increasing the mass storage capacity by a factor of 1.56. Interestingly, vibration can be the most or the least effective procedure to improve compaction of mixtures, depending on characteristics of vibration. The optimal packing (30/70 wt% powders/pellets) proved to effectively mitigate the onset of smouldering

  7. Design study status of compact containment BWR

    SciTech Connect

    Heki, H.; Nakamaru, M.; Kuroki, M.; Kojima, Y.; Arai, K.; Tahara, M.; Hoshi, T.

    2006-07-01

    The reactor concept considered in this paper has a relatively mid/small power output, a compact containment and a simplified BWR configuration with comprehensive safety features. The Japan Atomic Power Company has been taking initiative in developing the concept of the Compact Containment Boiling Water Reactor (CCR). The CCR., which is being developed with matured BWR technologies together with innovative systems/components, is expected to prove attractive in the world energy markets due to its flexibility in regard to energy demands and site conditions, its high potential for reducing investment risk and its safety features facilitating public acceptance. The flexibility is achieved by CCR's relatively mid/small power output of 400 MWe class and capability of long operating cycle (refueling intervals). CCR is expected to be attractive from view point of investment due to its simplification/innovation in design such as natural circulation core cooling with the bottom located short core, upper entry control rod drives (CRDs) and simplified safety system with high pressure resistible containment concept. The natural circulation core eliminates recirculation pumps and the maintenance of such pumps. The upper entry CRDs enable a simplified safety system followed by in-vessel retention (IVR) capability with the compact primary containment vessel (PCV). The safety features mainly consist of large water inventory above the core without large penetration of RPV below the top of the core height, passive cooling system by isolation condenser (IC). The large inventory increases the system response time in the case of design-base accidents, including loss of coolant accidents. The IC suppresses PCV pressure by steam condensation without any AC power. Cooling the molten core inside the RPV if the core should be damaged by loss of core coolability could attain the IVR. Further core design study has been carried out taking into account compact reactor size and reduction of fuel

  8. Dynamic compaction of boron carbide by a shock wave

    NASA Astrophysics Data System (ADS)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  9. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure.

    PubMed

    Zhang, Sen; Zhao, Yonggang; Xiao, Xia; Wu, Yizheng; Rizwan, Syed; Yang, Lifeng; Li, Peisen; Wang, Jiawei; Zhu, Meihong; Zhang, Huiyun; Jin, Xiaofeng; Han, Xiufeng

    2014-01-01

    We report a giant electric-field control of magnetization (M) as well as magnetic anisotropy in a Co40Fe40B20(CoFeB)/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) structure at room temperature, in which a maximum relative magnetization change (ΔM/M) up to 83% with a 90° rotation of the easy axis under electric fields were observed by different magnetic measurement systems with in-situ electric fields. The mechanism for this giant magnetoelectric (ME) coupling can be understood as the combination of the ultra-high value of anisotropic in-plane piezoelectric coefficients of (011)-cut PMN-PT due to ferroelectric polarization reorientation and the perfect soft ferromagnetism without magnetocrystalline anisotropy of CoFeB film. Besides the giant electric-field control of magnetization and magnetic anisotropy, this work has also demonstrated the feasibility of reversible and deterministic magnetization reversal controlled by pulsed electric fields with the assistance of a weak magnetic field, which is important for realizing strain-mediated magnetoelectric random access memories. PMID:24430913

  10. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Compact. 420.23 Section 420.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Compact. (a) Section 15.1(b) of the Delaware River Basin Compact provides that “no provision of section 3... pumps, water lines and appurtenances installed and operable, determined according to sound...

  11. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Compact. 420.23 Section 420.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.23 Exempt uses under the Compact. (a) Section 15.1(b) of the Delaware River Basin Compact provides that “no provision of section...

  12. Raman scattering study on relaxor ferroelectric Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Kojima, Seiji; Ko, Jae-Hyeon

    2014-10-01

    The vibrational property of relaxor ferroelectric Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals was investigated by using Raman scattering. The angular dependences of two Raman bands, one located at ˜50 cm-1 and the other at ˜560 cm-1, were investigated in the paraelectric phase where no Raman bands are allowed in the average symmetry. The angular variation of the Raman intensity of the strong low-frequency mode at ˜50 cm-1 was compatible with the F 2 g mode of symmetry, indicating that this mode could be attributed to the 1:1 chemical order at the B-site in PIN-PMN-PT. The high-frequency Raman mode at ˜560 cm-1 exhibited an intensity modulation consistent with the rhombohedral R3 m symmetry, suggesting that this mode was related to polar nanoregions. The intensity ratio of the depolarized to the polarized component of this high-frequency mode showed an abrupt change when PIN-PMN-PT underwent a structural phase transition into the rhombohedral phase.

  13. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface.

    PubMed

    Zhang, Chao; Wang, Fenglong; Dong, Chunhui; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-03-01

    We report non-volatile electric-field control of magnetism modulation in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Fe layer on a PMN-PT substrate using a molecular beam epitaxy technique. The remnant magnetization with a different electric field shows a non-symmetric loop-like shape, which demonstrates a change of interfacial chemistry and a large magnetoelectric coupling in Fe/PMN-PT at room temperature to realize low loss multistate memory under an electric field. Fitting with the angular-dependence of the in-plane magnetization reveals that the magnetoelectric effect is dominated by the direct electric-field effect rather than the strain effect at the interface. The magnetoelectric effect and the induced surface anisotropy are found to be dependent on the Fe film thickness and are linear with respect to the applied electric field. PMID:25669896

  14. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-05-01

    The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  15. Compact high-resolution differential interference contrast soft x-ray microscopy

    SciTech Connect

    Bertilson, Michael C.; Hofsten, Olov von; Lindblom, Magnus; Hertz, Hans M.; Vogt, Ulrich

    2008-02-11

    We demonstrate high-resolution x-ray differential interference contrast (DIC) in a compact soft x-ray microscope. Phase contrast imaging is enabled by the use of a diffractive optical element objective which is matched to the coherence conditions in the microscope setup. The performance of the diffractive optical element objective is evaluated in comparison with a normal zone plate by imaging of a nickel siemens star pattern and linear grating test objects. Images obtained with the DIC optic exhibit typical DIC enhancement in addition to the normal absorption contrast. Contrast transfer functions based on modulation measurements in the obtained images show that the DIC optic gives a significant increase in contrast without reducing the spatial resolution. The phase contrast operation mode now available for our compact soft x-ray microscope will be a useful tool for future studies of samples with low absorption contrast.

  16. Compact dusty clouds in a cosmic environment

    SciTech Connect

    Tsytovich, V. N.; Ivlev, A. V.; Burkert, A.; Morfill, G. E.

    2014-01-10

    A novel mechanism of the formation of compact dusty clouds in astrophysical environments is discussed. It is shown that the balance of collective forces operating in space dusty plasmas can result in the effect of dust self-confinement, generating equilibrium spherical clusters. The distribution of dust and plasma density inside such objects and their stability are investigated. Spherical dusty clouds can be formed in a broad range of plasma parameters, suggesting that this process of dust self-organization might be a generic phenomenon occurring in different astrophysical media. We argue that compact dusty clouds can represent condensation seeds for a population of small-scale, cold, gaseous clumps in the diffuse interstellar medium. They could play an important role in regulating its small-scale structure and its thermodynamical evolution.

  17. A compact PE memory for vision chips

    NASA Astrophysics Data System (ADS)

    Cong, Shi; Zhe, Chen; Jie, Yang; Nanjian, Wu; Zhihua, Wang

    2014-09-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm2/bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction.

  18. Compact fast analyzer of rotary cuvette type

    DOEpatents

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  19. Progress Toward Improved Compact Stellarator Designs

    NASA Astrophysics Data System (ADS)

    Neilson, G. H.; Brown, T.; Gates, D.; Ku, L. P.; Lazerson, S.; Pomphrey, N.; Reiman, A.; Zarnstorff, M.; Bromberg, L.; Boozer, A.; Harris, J.

    2010-11-01

    Stellarators offer robust physics solutions for MFE challenges-- steady-state operation, disruption elimination, and high-density operation-- but require design improvements to overcome technical risks in the construction and maintenance of future large-scale stellarators. Using the ARIES-CS design (aspect ratio 4.56) as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. By making the outboard legs of the main magnetic field coils nearly straight and parallel, a sector maintenance scheme compatible with high availability becomes possible. Approaches that can allow the main coil requirements to be relaxed in this way are: 1) increase aspect ratio at the expense of compactness, 2) add local removable coils in the maintenance ports for plasma shaping, and 3) use passive conducting tiles made of bulk high-temperature superconducting material to help shape the magnetic field. Such tiles would be arranged on a shaped, segmented internal support structure behind the shield.

  20. Rapid Compact Binary Coalescence Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Pankow, Chris; Brady, Patrick; O'Shaughnessy, Richard; Ochsner, Evan; Qi, Hong

    2016-03-01

    The first observation run with second generation gravitational-wave observatories will conclude at the beginning of 2016. Given their unprecedented and growing sensitivity, the benefit of prompt and accurate estimation of the orientation and physical parameters of binary coalescences is obvious in its coupling to electromagnetic astrophysics and observations. Popular Bayesian schemes to measure properties of compact object binaries use Markovian sampling to compute the posterior. While very successful, in some cases, convergence is delayed until well after the electromagnetic fluence has subsided thus diminishing the potential science return. With this in mind, we have developed a scheme which is also Bayesian and simply parallelizable across all available computing resources, drastically decreasing convergence time to a few tens of minutes. In this talk, I will emphasize the complementary use of results from low latency gravitational-wave searches to improve computational efficiency and demonstrate the capabilities of our parameter estimation framework with a simulated set of binary compact object coalescences.

  1. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  2. A compact high field magnetic force microscope.

    PubMed

    Zhou, Haibiao; Wang, Ze; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present the design and performance of a simple and compact magnetic force microscope (MFM), whose tip-sample coarse approach is implemented by the piezoelectric tube scanner (PTS) itself. In brief, a square rod shaft is axially spring-clamped on the inner wall of a metal tube which is glued inside the free end of the PTS. The shaft can thus be driven by the PTS to realize image scan and inertial stepping coarse approach. To enhance the inertial force, each of the four outer electrodes of the PTS is driven by an independent port of the controller. The MFM scan head is so compact that it can easily fit into the 52mm low temperature bore of a 20T superconducting magnet. The performance of the MFM is demonstrated by imaging a manganite thin film at low temperature and in magnetic fields up to 15T. PMID:25189114

  3. RNA isolation and fractionation with compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, J. C.; Fox, G. E.; Willson, R. C.

    2001-01-01

    A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.

  4. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data. PMID:22667637

  5. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  6. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  7. Acoustic Scattering from Compact Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Schindall, Jeffrey Alan

    In this study, a simple model describing the low -frequency scattering properties of high void fraction bubble clouds in both the free field and near the ocean surface is developed. This model, which is based on an effective medium approximation and acoustically compact scatters, successfully predicts the results of the bubble cloud scattering experiment carried out at Lake Seneca in New York state for frequencies consistent with the model assumptions (Roy et al., 1992). The introduction of the surface is facilitated by the method of images and is subject to the same constraint of low-acoustic frequency imposed by the compact scatterer assumption. This model is not intended to serve as an exact replicate of oceanic bubble cloud scattering. The model herein was kept simple by design, for only then can the complex physical behavior be expressed in a simple analytical form. Simple, analytic theories facilitate the exploration of parameter space, and more importantly serve to illuminate the underlying physics.

  8. Compact inductive energy storage pulse power system.

    PubMed

    K, Senthil; Mitra, S; Roy, Amitava; Sharma, Archana; Chakravarthy, D P

    2012-05-01

    An inductive energy storage pulse power system is being developed in BARC, India. Simple, compact, and robust opening switches, capable of generating hundreds of kV, are key elements in the development of inductive energy storage pulsed power sources. It employs an inductive energy storage and opening switch power conditioning techniques with high energy density capacitors as the primary energy store. The energy stored in the capacitor bank is transferred to an air cored storage inductor in 5.5 μs through wire fuses. By optimizing the exploding wire parameters, a compact, robust, high voltage pulse power system, capable of generating reproducibly 240 kV, is developed. This paper presents the full details of the system along with the experimental data.

  9. Compact fluorescence spectroscopic tool for cancer detection

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie; Hamdan, Khaled; Hewett, Jacqueline; Makaryceva, Juljia; Tait, Iain; Cuschieri, Alfred; Padgett, Miles J.

    2002-05-01

    We describe a compact fluorescence spectroscopic tool for in vivo point monitoring of aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence and autofluorescence, as a non-invasive method of differentiating normal and cancerous tissue. This instrument incorporates a 405nm diode laser with a shutter to prevent exposure of tissue to harmful light doses and reduce photobleaching, a bifurcated optical fibre to allow illumination of tissue and collection of fluorescence with a single fibre, a compact grating spectrometer for collection of spectra and a PC for system control. We present spectra obtained using this system both during routine gastro-intestinal (GI) endoscopy for cancer detection and during photodynamic therapy (PDT) of anal intraepithelial neoplasia (AIN) for monitoring of treatment progress. These results illustrate the potential of the system to be used for fluorescence monitoring in a variety of clinical applications.

  10. Spinning compact binary dynamics and chameleon orbits

    NASA Astrophysics Data System (ADS)

    Gergely, László Árpád; Keresztes, Zoltán

    2015-01-01

    We analyze the conservative evolution of spinning compact binaries to second post-Newtonian (2PN) order accuracy, with leading-order spin-orbit, spin-spin and mass quadrupole-monopole contributions included. As a main result we derive a closed system of first-order differential equations in a compact form, for a set of dimensionless variables encompassing both orbital elements and spin angles. These evolutions are constrained by conservation laws holding at 2PN order. As required by the generic theory of constrained dynamical systems we perform a consistency check and prove that the constraints are preserved by the evolution. We apply the formalism to show the existence of chameleon orbits, whose local, orbital parameters evolve from elliptic (in the Newtonian sense) near pericenter, towards hyperbolic at large distances. This behavior is consistent with the picture that general relativity predicts stronger gravity at short distances than Newtonian theory does.

  11. Starbursts in blue compact dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh Xuan

    1987-01-01

    All the arguments for a bursting mode of star formation in blue compact dwarf galaxies (BCD) are summarized. It is shown that spectral synthesis of far-ultraviolet spectra of BCDs constitutes a powerful way to study the star formation history in these galaxies. BCD luminosity functions show jumps and discontinuities. These jumps act like fossil records of the star-forming bursts, aiding in the counting and dating of the bursts.

  12. Compact pulsed laser having improved heat conductance

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1977-01-01

    A highly efficient, compact pulsed laser having high energy to weight and volume ratios is provided. The laser utilizes a cavity reflector that operates as a heat sink and is essentially characterized by having a high heat conductivity, by being a good electrical insulator and by being substantially immune to the deleterious effects of ultra-violet radiation. Manual portability is accomplished by eliminating entirely any need for a conventional circulating fluid cooling system.

  13. Compact 2-D graphical representation of DNA

    NASA Astrophysics Data System (ADS)

    Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana

    2003-05-01

    We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.

  14. Compact quiescent galaxies at intermediate redshifts {sup ,}

    SciTech Connect

    Hsu, Li-Yen; Stockton, Alan; Shih, Hsin-Yi

    2014-12-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have selected 22 luminous galaxies between z ∼ 0.4 and z ∼ 0.9 that have colors and sizes similar to those of the compact quiescent galaxies at z > 2. By exploring structural parameters and stellar populations, we found that most of these galaxies actually formed most of their stars at z < 2 and are generally less compact than those found at z > 2. Several of these young objects are disk-like or possibly prolate. This lines up with several previous studies that found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disk-like, their formation mechanism must be able to account for both compactness and disks. On the other hand, if these galaxies were to be confirmed to be prolate, the fact that prolate galaxies do not exist in the local universe would indicate that galaxy formation mechanisms have evolved over cosmic time. We also found five galaxies forming over 80% of their stellar masses at z > 2. Three of these galaxies appear to have been modified to have spheroid-like morphologies, in agreement with the scenario of 'inside-out' buildup of massive galaxies. The remaining galaxies, SDSS J014355.21+133451.4 and SDSS J115836.93+021535.1, have truly old stellar populations and disk-like morphologies. These two objects would be good candidates for nearly unmodified compact quiescent galaxies from high redshifts that are worth future study.

  15. Optical Omega network: a compact implementation technique

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Cheng, L. M.

    1995-10-01

    We propose a technique for the compact implementation of an optical Omega network. This technique utilizes the concept that both the perfect-shuffle interconnection and the switching stages can be realized by the same procedures, i.e., duplicate, shift, superimpose, and mask. As a result, a single set of optics is sufficient to realize the whole Omega network in a time-multiplexed recursive manner. Optical setups were designed and a proof-of-principle experiment was performed.

  16. Compact photomultiplier housing with controlled cooling.

    NASA Technical Reports Server (NTRS)

    SHARDANAND

    1972-01-01

    Description of a compact photomultiplier housing which can provide controlled cooling to the photomultiplier tube down to -90 C. The cooling is accomplished by flowing liquid nitrogen cooled helium gas through a series of coils which envelop the photocathode portion of the tube. The temperature is controlled by controlling the flow of the gas with a fine adjustable needle valve. The temperature is measured near the photocathode of the photomultiplier by a calibrated thermistor.

  17. Dirt depreciation of compact fluorescent lamp downlights

    SciTech Connect

    Siminovitch, M.; Hamilton, A.; Zhang, Chin; Verderber, R.

    1993-08-01

    An experimental protocol and apparatus was developed to assess the relative differences in dirt depreciation between vented and unvented compact fluorescent recessed downlights under simulated conditions. A simulated plenum/ceiling chamber is designed to expose both vented and unvented fixtures simultaneously to a controlled dust environment over an extended period of time. Experimental data shows that the unvented fixture depreciated faster over time due to dust exposure than the vented fixture.

  18. ROSAT: X ray survey of compact groups

    NASA Technical Reports Server (NTRS)

    Vangorkom, Jacqueline

    1993-01-01

    This is the final technical report on grant NAG5-1954, which was awarded under the NASA ROSAT Guest Investigator Program to Columbia University. This grant was awarded for a number of projects on two rather different topics: (1) an x-ray survey of compact groups of galaxies; and (2) the fate of gas in merging galaxies. Progress made in these projects is presented.

  19. Light, Compact Pumper for Harbor Fires

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1983-01-01

    Report describes development of new transportable water-pumping unit for fire-fighting. Compact, self-contained unit provides fire protection at coastal and inland ports and is lighter than standard firetruck pumper of same capacity. Used to fight fires in harbors, cities, forests, refineries, chemical plants, and offshore drilling platforms. Other possible applications include cleaning up oilspills, pumping out ships, and flood control pumping.

  20. Compact stars in Kaluza -Klein World

    NASA Astrophysics Data System (ADS)

    Gábor Barnaföldi, Gergely; Lévai, Péter; Lukács, Béla

    2010-03-01

    Unification and geometrization of interactions has been extensively studied during the XX. century. In this short contribution we investigated the possible effect of an extra compactified dimension (alias hypercharge) on a flavor dependent gravitational potential, proposed by Fischbach et al.. We estimated the deviation from the 3 + 1 dimensional scheme and found that, although the deviation is moderate, for celestial compact object it may be higher by orders of magnitude than in terrestrial laboratory measurements.