Science.gov

Sample records for compact pmn-pt modulator

  1. Switching of 800 nm femtosecond laser pulses using a compact PMN-PT modulator.

    PubMed

    Adany, Peter; Price, E Shane; Johnson, Carey K; Zhang, Run; Hui, Rongqing

    2009-03-01

    A voltage-controlled birefringent cell based on ceramic PMN-PT material is used to enable fast intensity modulation of femtosecond laser pulses in the 800 nm wavelength window. The birefringent cell based on a PMN-PT compound has comparatively high electro-optic response, allowing for a short interaction length of 3 mm and thus very small size, low attenuation of 0.16 dB, and negligible broadening for 100 fs optical pulses. As an application example, agile wavelength tuning of optical pulses is demonstrated using the soliton self-frequency shift in a photonic crystal fiber. By dynamically controlling the optical power into the fiber, this system switches the wavelength of 100 fs pulses from 900 nm to beyond 1120 nm with less than 5 micros time. In addition, a feedback system stabilizes the wavelength drift against external conditions resulting in high wavelength stability.

  2. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-09

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices.

  3. Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics.

    PubMed

    Wei, Danzhu; Xu, Tian; Yuan, Li; Tian, Shu; Fang, Jinghuai; Jin, Yonglong; Wang, Chaonan; Ma, Xinxiang; Shi, Jianzhen

    2016-04-01

    A three-layer planar waveguide structure comprising a perovskite (1-x)Pb(Mg1/3Nb2/3Nb2/3)O3-xPbTiO3 (PMN-PT) ceramic sandwiched by two silver films is designed and called PMPW. Using the high sensitivity of ultrahigh-order modes, theoretical analysis is performed to calculate the effective refractive index (ERI) of the PMPW. A detailed analysis of the Raman spectrum of PMN-PT at 795  cm-1 is performed. A comparison of the numerical analysis and experimental results reveals that the nonlinear change in ERI plays a primary role in the Raman signal variation. Analysis of the Raman spectrum of a sample deposited on PMPW confirms that it is effective for modulating Raman signals.

  4. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  5. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  6. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-26

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  7. Electric-Field Modulation of Interface Magnetic Anisotropy and Spin Reorientation Transition in (Co/Pt)3/PMN-PT Heterostructure.

    PubMed

    Sun, Ying; Ba, You; Chen, Aitian; He, Wei; Wang, Wenbo; Zheng, Xiaoli; Zou, Lvkuan; Zhang, Yijun; Yang, Qu; Yan, Lingjia; Feng, Ce; Zhang, Qinghua; Cai, Jianwang; Wu, Weida; Liu, Ming; Gu, Lin; Cheng, Zhaohua; Nan, Ce-Wen; Qiu, Ziqiang; Wu, Yizheng; Li, Jia; Zhao, Yonggang

    2017-03-29

    We report electric-field control of magnetism of (Co/Pt)3 multilayers involving perpendicular magnetic anisotropy with different Co-layer thicknesses grown on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) FE substrates. For the first time, electric-field control of the interface magnetic anisotropy, which results in the spin reorientation transition, was demonstrated. The electric-field-induced changes of the bulk and interface magnetic anisotropies can be understood by considering the strain-induced change of magnetoelastic energy and weakening of Pt 5d-Co 3d hybridization, respectively. We also demonstrate the role of competition between the applied magnetic field and the electric field in determining the magnetization of the sample with the coexistence phase. Our results demonstrate electric-field control of magnetism by harnessing the strain-mediated coupling in multiferroic heterostructures with perpendicular magnetic anisotropy and are helpful for electric-field modulations of Dzyaloshinskii-Moriya interaction and Rashba effect at interfaces to engineer new functionalities.

  8. PMN-PT nanostructures for energy scavenging

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Yao, Nan

    2017-06-01

    Piezoelectric nanocrystals have been used for self-powered nanosystems, implantable biodevices, wireless sensors and portable/wearable electronics. A profound way to increase the output voltage (or power) of the piezoelectric devices is to utilize a material with higher piezoelectric constants. (1 - x)Pb (Mg1/3Nb2/3)O3 - x PbTiO3 (PMN-PT) has been considered as the piezoelectric material of the next generation due to the high piezoelectric constant. The high flexibility, sensitivity and strain tolerance of PMN-PT nanostructures make them ideal for self-powered nanosystems. This article reviews the fabrication and structural characterization of different PMN-PT nanostructures, and their applications in various devices.

  9. Misfit strain phase diagrams of epitaxial PMN-PT films

    NASA Astrophysics Data System (ADS)

    Khakpash, N.; Khassaf, H.; Rossetti, G. A.; Alpay, S. P.

    2015-02-01

    Misfit strain-temperature phase diagrams of three compositions of (001) pseudocubic (1 - x).Pb (Mgl/3Nb2/3)O3 - x.PbTiO3 (PMN-PT) thin films are computed using a phenomenological model. Two (x = 0.30, 0.42) are located near the morphotropic phase boundary (MPB) of bulk PMN-PT at room temperature (RT) and one (x = 0.70) is located far from the MPB. The results show that it is possible to stabilize an adaptive monoclinic phase over a wide range of misfit strains. At RT, the stability region of this phase is much larger for PMN-PT compared to barium strontium titanate and lead zirconate titanate films.

  10. PMN-PT nanowires with a very high piezoelectric constant.

    PubMed

    Xu, Shiyou; Poirier, Gerald; Yao, Nan

    2012-05-09

    A profound way to increase the output voltage (or power) of the piezoelectric nanogenerators is to utilize a material with higher piezoelectric constants. Here we report the synthesis of novel piezoelectric 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-PT) nanowires using a hydrothermal process. The unpoled single-crystal PMN-PT nanowires show a piezoelectric constant (d(33)) up to 381 pm/V, with an average value of 373 ± 5 pm/V. This is about 15 times higher than the maximum reported value of 1-D ZnO nanostructures and 3 times higher than the largest reported value of 1-D PZT nanostructures. These PMN-PT nanostructures are of good potential being used as the fundamental building block for higher power nanogenerators, high sensitivity nanosensors, and large strain nanoactuators.

  11. PMN-PT/PVDF Nanocomposite for High Output Nanogenerator Applications.

    PubMed

    Li, Chuan; Luo, Wenbo; Liu, Xingzhao; Xu, Dong; He, Kai

    2016-04-11

    The 0.7Pb(Mg1/3Nb2/3)O₃-0.3PbTiO₃(0.7PMN-0.3PT) nanorods were obtained via hydrothermal method with high yield (over 78%). Then, new piezoelectric nanocomposites based on (1-x)Pb(Mg1/3Nb2/3)O₃-xPbTiO₃ (PMN-PT) nanorods were fabricated by dispersing the 0.7PMN-0.3PT nanorods into piezoelectric poly(vinylidene fluoride) (PVDF) polymer. The mechanical behaviors of the nanocomposites were investigated. The voltage and current generation of PMN-PT/PVDF nanocomposites were also measured. The results showed that the tensile strength, yield strength, and Young's modulus of nanocomposites were enhanced as compared to that of the pure PVDF. The largest Young's modulus of 1.71 GPa was found in the samples with 20 wt % nanorod content. The maximum output voltage of 10.3 V and output current of 46 nA were obtained in the samples with 20 wt % nanorod content, which was able to provide a 13-fold larger output voltage and a 4.5-fold larger output current than that of pure PVDF piezoelectric polymer. The current density of PMN-PT/PVDF nanocomposites is 20 nA/cm². The PMN-PT/PVDF nanocomposites exhibited great potential for flexible self-powered sensing applications.

  12. PMN-PT/PVDF Nanocomposite for High Output Nanogenerator Applications

    PubMed Central

    Li, Chuan; Luo, Wenbo; Liu, Xingzhao; Xu, Dong; He, Kai

    2016-01-01

    The 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3(0.7PMN-0.3PT) nanorods were obtained via hydrothermal method with high yield (over 78%). Then, new piezoelectric nanocomposites based on (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanorods were fabricated by dispersing the 0.7PMN-0.3PT nanorods into piezoelectric poly(vinylidene fluoride) (PVDF) polymer. The mechanical behaviors of the nanocomposites were investigated. The voltage and current generation of PMN-PT/PVDF nanocomposites were also measured. The results showed that the tensile strength, yield strength, and Young’s modulus of nanocomposites were enhanced as compared to that of the pure PVDF. The largest Young’s modulus of 1.71 GPa was found in the samples with 20 wt % nanorod content. The maximum output voltage of 10.3 V and output current of 46 nA were obtained in the samples with 20 wt % nanorod content, which was able to provide a 13-fold larger output voltage and a 4.5-fold larger output current than that of pure PVDF piezoelectric polymer. The current density of PMN-PT/PVDF nanocomposites is 20 nA/cm2. The PMN-PT/PVDF nanocomposites exhibited great potential for flexible self-powered sensing applications. PMID:28335195

  13. Piezoelectric PMN-PT fibre hydrophone for ultrasonic transducer calibration

    NASA Astrophysics Data System (ADS)

    Lau, S. T.; Lam, K. H.; Chan, H. L. W.; Choy, C. L.; Luo, H. S.; Yin, Q. R.; Yin, Z. W.

    2005-01-01

    A newly developed ceramic fibre hydrophone with an active element as small as 0.25 mm in diameter is described in this work. Lead magnesium niobate-lead titanate (PMN-PT) ceramic fibre with a nominal composition of 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 was fabricated by an extrusion method. PMN-PT single crystals were ground to a powder form and then mixed with poly(acrylic) acid to form a homogenous slurry. The fibre was extruded by pressing the slurry through a spinneret and then sintering at 1250 °C for crystallization. The electrical characteristics of the PMN-PT fibre were evaluated by measuring the relative permittivity and the impedance spectrum. A piezoelectric PMN-PT fibre hydrophone was fabricated and its sensitivity, angular response, and spatial resolution were evaluated. The fibre hydrophone provides good spatial resolution, angular response and receiving sensitivity.

  14. Design and fabrication of PIN-PMN-PT single-crystal high-frequency ultrasound transducers.

    PubMed

    Sun, Ping; Zhou, Qifa; Zhu, Benpeng; Wu, Dawei; Hu, Changhong; Cannata, Jonathan M; Tian, Jin; Han, Pengdi; Wang, Gaofeng; Shung, K Kirk

    2009-12-01

    High-frequency PIN-PMN-PT single crystal ultrasound transducers at center frequencies of 35 MHz and 60 MHz were successfully fabricated using lead indium niobate-lead magnesium niobate-lead titanate (0.23PIN- 0.5PMN-0.27PT) single crystal. The new PIN-PMN-PT single crystal has higher coercivity (6.0 kV/cm) and higher Curie temperature (160 degrees C) than PMN-PT crystal. Experimental results showed that the PIN-PMN-PT transducers have similar performance but better thermal stability compared with the PMN-PT transducers.

  15. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-07-01

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications.

  16. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure

    PubMed Central

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-01-01

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications. PMID:27417902

  17. Four-state memory based on a giant and non-volatile converse magnetoelectric effect in FeAl/PIN-PMN-PT structure.

    PubMed

    Wei, Yanping; Gao, Cunxu; Chen, Zhendong; Xi, Shibo; Shao, Weixia; Zhang, Peng; Chen, Guilin; Li, Jiangong

    2016-07-15

    We report a stable, tunable and non-volatile converse magnetoelectric effect (ME) in a new type of FeAl/PIN-PMN-PT heterostructure at room temperature, with a giant electrical modulation of magnetization for which the maximum relative magnetization change (ΔM/M) is up to 66%. The 109° ferroelastic domain switching in the PIN-PMN-PT and coupling with the ferromagnetic (FM) film via uniaxial anisotropy originating from the PIN-PMN-PT (011) surface are the key roles in converse ME effect. We also propose here a new, four-state memory through which it is possible to modify the remanent magnetism state by adjusting the electric field. This work represents a helpful approach to securing electric-writing magnetic-reading with low energy consumption for future high-density information storage applications.

  18. Microscopic evidence of strain-mediated magnetoelectric coupling in Co/Pt multilayers/PMN-PT(011) heterostructures

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wang, Wenbo; Wu, Weida; Zheng, Xiaoli; Cai, Jianwang; Zhao, Yonggang; Liu, Ming

    A promising way to control magnetization(M) via an electric field(E-field) is using magnetoelectric(ME) effect in FM/FE heterostructures. We use magnetic(electric) force microscopy(M(e)FM) to study the strain-mediated E-field modulation of M in (Co/Pt)n with perpendicular magnetic anisotropy(PMA) or in-plane anisotropy on PMN-PT(011) substrates. MFM were performed on (Co/Pt)n with an DC E-field applied to PMN-PT. In MeFM, we superimpose an AC modulation on a DC one and utilize lock-in technique to detect weak ME effect. For (Co/Pt)n with PMA, MFM images show stripe domains with no obvious changes at varied DC E-fields. However, MeFM shows interesting structures and the image contrast reverses sign at opposite strain slopes of the PMN-PT substrate. For sample with in-plane anisotropy, both MFM and MeFM images show dipole-like domains. Interestingly, the MeFM image contrast reverses sign at opposite strain slopes of the substrate. The sign reversal of MeFM contrast indicates that features revealed by MeFM are intrinsic local ME effect. Our MeFM data are consistent with the ferromagnetic resonance results showing that strain-induced anisotropy change will cause part of M switching to the in-plane direction. Possible scenarios will be discussed.

  19. Design, production and testing of PMN-PT electrostrictive transducers.

    PubMed

    Coutte, J; Dubus, B; Debus, J C; Granger, C; Jones, D

    2002-05-01

    Lead magnesium niobate ceramics (PMN) are promising materials for application in the field of high power transducers. The advantage of PMN materials are the large strains generated under moderate electric field and the low hysteresis. The electrostrictive effect is non-linear, the corresponding physical constants depend on temperature and frequency and a DC electrical bias is required. These difficulties must be considered at the design stage. A finite element model has been developed and validated in the ATILA code for non-linear static and time-domain analyses. These numerical modelings are used to design and test two Langevin-type electrostrictive transducers. The first transducer is made of PMN-PT-La (90-10-1%) ceramics (TRS Ceramics), the second one of ESCI ceramics (Morgan Matroc). For given static mechanical prestresses, resonance frequencies and effective coupling coefficients are measured at different DC electric fields and temperatures.

  20. Fabrication of flexible piezoelectric PMN-PT based composite films for energy harvesting

    NASA Astrophysics Data System (ADS)

    Das, Satyabati; Biswal, Asutya Kumar; Roy, Amritendu

    2017-02-01

    Flexible piezoelectric composite films of lead magnesium niobate and lead titanate (PMN-PT) ceramic and multiwalled carbon nanotube (MW-CNT) in the matrix of polyvinyldene fluoride (PVDF) were fabricated for green energy harvesting and self-powered sensing. Compositions of PMN-PT was varied from 10-50 volume (vol. %) in PVDF matrix while a constant concentration of MW-CNT was maintained (1vol. %). Phase purity of the synthesized composites was confirm by X-ray diffraction (XRD) analysis. PMN-PT powder was found to be in single phase without the presence of any additional peak, which generally arises due to crystallization of another pyrochlore phase. Surface morphology study by scanning electron microscopy (SEM) revealed a well dispersed PMN-PT/CNT in PVDF matrix. The maximum measured output voltage and current during mechanical pressing and releasing conditions were found to be ∼ 3 volt and 30 nA, respectively in 30 vol. % PMN-PT composite.

  1. Strong magnetoelectric and spin phonon coupling in SmFeO3/PMN-PT composite

    NASA Astrophysics Data System (ADS)

    Ahlawat, Anju; Satapathy, S.; Sathe, V. G.; Choudhary, R. J.; Gupta, P. K.

    2016-08-01

    We have investigated spin phonon coupling in the strain coupled magnetoelectric SmFeO3/0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) composite in the temperature range of 300-650 K by Raman spectroscopy and magnetic measurements. The SmFeO3/PMN-PT composite shows sharp rise in magnetic moment across ferroelectric transition temperature (Tc) of PMN-PT. Around this transition temperature (Tc of PMN-PT), the temperature evolution of Raman spectra of the composite also shows anomalies in the phonon frequencies and line width corresponding to the SmFeO3 phase which indicate structural modifications in the SmFeO3 phase around Tc of PMN-PT. The observed structural, magnetic, and phonon anomalies of SmFeO3 around Tc of PMN-PT in SmFeO3/PMN-PT are attributed to spin-phonon coupling providing evidence of strong strain mediated magnetoelectric effects.

  2. High-performance energy harvester fabricated with aerosol deposited PMN-PT material

    NASA Astrophysics Data System (ADS)

    Chen, C. T.; Lin, S. C.; Lin, T. K.; Wu, W. J.

    2016-11-01

    This paper reports a high-performance piezoelectric energy harvester (EH) fabricated with xPb(Mg1/3Nb2/3)-(l-x)PbTiO3 (PMN-PT) by aerosol deposition method. The result indicates that PMN-PT based EH owns 1.8 times output power which is higher than traditional PbZrxTi1- xO3 (PZT) based EH. In order to compare the output performance of EH fabricated with PMN- PT compared with PZT, the similar thickness of PMN-PT and PZT thin film is deposited on stainless steel subtracted. The experimental results show that PZT-based EH had a maximum output power of 4.65 μW with 1.11 Vp-p output voltage excited at 94.4 Hz under 0.5g base excitation, while the PMN-PT based device has a maximum output power of 8.42 μW with 1.49 Vp-p output voltage at a vibration frequency of 94.8 Hz and the same base excitation level. The volumetric power density was 82.95 μW/mm3 and 48.05 μW/mm3 for the device based on PMN- PT and PZT materials, respectively. All the results demonstrate that PMN-PT has better output performance than PZT.

  3. Colloidal processing of PMN-PT thick films for piezoelectric sensor applications

    NASA Astrophysics Data System (ADS)

    Luo, Hongyu

    65%Pb(Mg1/3Nb2/3)O3-35%PbTiO3 (65PMN-35PT, or PMN-PT) is a highly piezoelectric ceramic with superior piezoelectric coefficients over the more popular Pb(Zr0.5Ti0.5)O 3 (PZT). Because of its complex chemistry and high volatility of lead above 1000°C, the perovskite phase of PMN-PT is hard to process and has prevented PMN-PT from various piezoelectric applications, especially in the new area of piezoelectric micro-electro-mechanical systems (PMEMS) involving thick or thin piezoelectric films. In this thesis, a novel precursor suspension method is introduced that substantially lowers the sintering temperature of PMN-PT to 850°C from a PMN precursor powder made by coating Mg(OH) 2 on Nb2O5 particles. The precursor suspension method entails suspending PMN powders in PT precursor and uses the reaction sintering capability of PMN with nano-sized PT in the temperature range of 800°C˜1000°C. Moreover, free-standing PMN-PT thick films were obtained by tape casting the PMN-PT powder. This new geometry of PMN-PT shows giant electric-field enhanced piezoelectric responses comparable with those of single crystals. As an example of application, the PMN-PT thick film is bonded to a thinner layer of copper by electroplating and made into piezoelectric cantilever sensors. In conclusion, the colloidal suspension processing method produces free-standing PMN-PT thick films with ultrahigh piezoelectric properties.

  4. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods.

    PubMed

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-12-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V.

  5. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-02-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V.

  6. Electric-field modulation of photoinduced effect in phase-separated Pr0.65 (Ca0.75Sr0.25)0.35MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Li, W.; Dong, X. L.; Wang, S. H.; Jin, K. X.

    2016-08-01

    In this letter, we report the photoinduced effect modulated by different electric fields in the Pr0.65 (Ca0.75Sr0.25)0.35MnO3/0.7PbMg1/3Nb2/3O3-0.3PbTiO3 heterostructure. The film exhibits a decrease in the resistance up to five orders of magnitude by enhancing applied electric fields, combined with an electric-field-induced insulator-to-metal transition. More interestingly, a reversible bistability arises in the photoinduced change in resistance at T < 80 K as the voltages are increased. The results can be attributed to the phase separation in manganites, which provides a prototype of photoelectric conversion for electric-field modulation of all-oxide heterostructures.

  7. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    PubMed Central

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-01-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories. PMID:25909177

  8. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  9. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  10. The Strength of PIN-PMN-PT Single Crystals under Bending with a Longitudinal Electric Field

    DTIC Science & Technology

    2011-04-06

    The strength of PIN– PMN – PT single crystals under bending with a longitudinal electric field This article has been downloaded from IOPscience. Please...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Strength Of PIN- PMN - PT Single Crystals Under Bending With A Longitudinal Electric Field... PMN ? PT ) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The

  11. Surface-effect enhanced magneto-electric coupling in FePt/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L.; Wang, D. H.; Du, Y. W.

    2017-05-01

    A series of FePt films with different film thickness are deposited on Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) substrates. A standard symmetric `Butterfly' shaped Δ M /M -Ed c loops is obtained in 8 nm FePt/PMN-PT heterostrucuture via strain mediated magnetoelectric coupling. For the 3 nm FePt/PMN-PT heterostructure, the loop-like in-plane magnetization (M) -E curve shares a similar shape with the electric polarization of PMN-PT as a function of electric field. The value of MS shows a dramatic change of 30.9% with Edc changing from 0 to 8 kV/cm, this giant magnetoelectric effect in 3 nm FePt/PMN-PT heterostructure results from the remnant polarization induced charge on FePt/PMN-PT interface via the screening charge effect. The enhanced magnetoelectric coupling in thin magnetic/ferroelectric heterostructures opens a promising avenue for the design of ultralow power magnetoelectric devices and information storage devices.

  12. Fabrication and properties of radially <001>C textured PMN-PT cylinders for transducer applications

    NASA Astrophysics Data System (ADS)

    Poterala, Stephen F.; Meyer, Richard J.; Messing, Gary L.

    2012-07-01

    <001>C Textured PMN-PT ceramics have electromechanical properties (d33 = 850-1050 pm/V, k33 = 0.79-0.83) between those of conventional PZT ceramics and relaxor PMN-PT crystals. In this work, we tailor crystallographic orientation in textured PMN-PT ceramics for transducer designs with non-planar poling surfaces. Specifically, omni-directional cylindrical transducer elements were fabricated using monolithic, radially <001>C textured and poled PMN-PT ceramic. Texture was produced by templated grain growth using NBT-PT templates, which were oriented radially by wrapping green ceramic tapes around a cylindrical mandrel. Finished transducer elements measure ˜5 cm in diameter by ˜2.5 cm in height and demonstrate scalability of textured ceramic fabrication techniques. The fabricated cylinders are ˜50 vol. % textured and show high 31-mode electromechanical properties compared to PZT ceramics (d31 = -259 pm/V, k31 = 0.43, ɛT33 = 3000, and Qm = 350). Frequency bandwidth is related to the square of the hoop mode coupling coefficient kh2, which is ˜60% higher in textured PMN-PT cylinders compared to PZT 5H. Finite element simulations show that this parameter may be further increased by improving texture quality to ≥90 vol. %. Radially textured PMN-PT may thus improve performance in omni-directional cylindrical transducers while avoiding the need for segmented single crystal designs.

  13. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging

    PubMed Central

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3–PbMg1/3Nb2/3O3–PbTiO3 (PIN-PMN-PT) single crystal 1–3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT. PMID:24960706

  14. Energy scavenging based on a single-crystal PMN-PT nanobelt

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 ‑ x)Pb(Mg1/3Nb2/3)O3 ‑ xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  15. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal.

    PubMed

    Wang, Wei; Zhao, Xiangyong; Or, Siu Wing; Leung, Chung Ming; Zhang, Yaoyao; Jiao, Jie; Luo, Haosu

    2012-09-01

    Ternary Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) single crystal was investigated for potential application in ultrasonic linear array. Orientation and temperature dependences of height extensional electromechanical coupling coefficient k'(33) for PIN-PMN-PT single crystal were studied. It was found that the [001] poled PIN-PMN-PT diced along the [100] direction would achieve a maximum k'(33) (~87%) and the service temperature was up to 110 °C. Ultrasonic linear arrays using PIN-PMN-PT single crystal and PZT ceramic were fabricated and compared. The bandwidth at -6 dB, two-way insertion loss and pulse length of the PIN-PMN-PT array were 98.6%, -45.1 dB, and 0.28 μs, respectively, which were about 25% broader, 3.7dB higher, and 0.08 μs shorter than those of the PZT array. The experimental results agreed well with the theoretical simulation. These superior performances were attributable to the excellent piezoelectric properties of PIN-PMN-PT single crystal.

  16. Energy scavenging based on a single-crystal PMN-PT nanobelt

    PubMed Central

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-01-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs. PMID:26928788

  17. Energy scavenging based on a single-crystal PMN-PT nanobelt.

    PubMed

    Wu, Fan; Cai, Wei; Yeh, Yao-Wen; Xu, Shiyou; Yao, Nan

    2016-03-01

    Self-powered nanodevices scavenging mechanical energy require piezoelectric nanostructures with high piezoelectric coefficients. Here we report the fabrication of a single-crystal (1 - x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (PMN-PT) nanobelt with a superior piezoelectric constant (d33 = ~550 pm/V), which is approximately ~150%, 430%, and 2100% of the largest reported values for previous PMN-PT, PZT and ZnO nanostructures, respectively. The high d33 of the single-crystalline PMN-PT nanobelt results from the precise orientation control during its fabrication. As a demonstration of its application in energy scavenging, a piezoelectric nanogenerator (PNG) is built on the single PMN-PT nanobelt, generating a maximum output voltage of ~1.2 V. This value is ~4 times higher than that of a single-CdTe PNG, ~13 times higher than that of a single-ZnSnO3 PNG, and ~26 times higher than that of a single-ZnO PNG. The profoundly increased output voltage of a lateral PNG built on a single PMN-PT nanobelt demonstrates the potential application of PMN-PT nanostructures in energy harvesting, thus enriching the material choices for PNGs.

  18. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    PubMed

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.

  19. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    PubMed

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications.

  20. Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films.

    PubMed

    Wu, Zhenping; Zhang, Yang; Bai, Gongxun; Tang, Weihua; Gao, Ju; Hao, Jianhua

    2014-11-17

    Thin films of Yb3+/Er3+ co-doped BaTiO3 (BTO:Yb/Er) have been epitaxially grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrates. Biaxial strain can be effectively controlled by applying electric field on PMN-PT substrate. A reversible, in situ and dynamic modification of upconversion photoluminescence in BTO:Yb/Er film was observed via converse piezoelectric effect. Detailed analysis and in situ X-ray diffraction indicate that such modulations are possibly due to the change in the lattice deformation of the thin films. This result suggests an alternative method to rationally tune the upconversion emissions via strain engineering.

  1. High Frequency PMN-PT 1–3 Composite Transducer for Ultrasonic Imaging Application

    PubMed Central

    SUN, PING; WANG, GAOFENG; WU, DAWEI; ZHU, BENPENG; HU, CHANGHONG; LIU, CHANGGENG; DJUTH, FRANK T.; ZHOU, QIFA; SHUNG, K. KIRK

    2011-01-01

    Development of PMN-PT single crystal/epoxy 1–3 composites for high-frequency ultrasonic transducers application is presented. The composite was fabricated by using a DRIE dry etching process with a 45% volume fraction of PMN-PT. A 35 MHz ultrasound flat transducer was fabricated with the composite, which was found to have an effective electromechanical coupling coefficient of 0.81, an insertion loss of 18 db, and a –6 dB bandwidth as high as 100%. Tungsten wire phantom image shows that the transducer had an axial resolution of 30 μm, which was in good agreement with the theoretical expectation. The initial results showed that the PMN-PT/epoxy 1–3 composite has many attractive properties over conventional piezoelectric materials for medical imaging applications. PMID:21869845

  2. High Frequency PMN-PT 1-3 Composite Transducer for Ultrasonic Imaging Application.

    PubMed

    Sun, Ping; Wang, Gaofeng; Wu, Dawei; Zhu, Benpeng; Hu, Changhong; Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2010-01-01

    Development of PMN-PT single crystal/epoxy 1-3 composites for high-frequency ultrasonic transducers application is presented. The composite was fabricated by using a DRIE dry etching process with a 45% volume fraction of PMN-PT. A 35 MHz ultrasound flat transducer was fabricated with the composite, which was found to have an effective electromechanical coupling coefficient of 0.81, an insertion loss of 18 db, and a -6 dB bandwidth as high as 100%. Tungsten wire phantom image shows that the transducer had an axial resolution of 30 μm, which was in good agreement with the theoretical expectation. The initial results showed that the PMN-PT/epoxy 1-3 composite has many attractive properties over conventional piezoelectric materials for medical imaging applications.

  3. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics.

    PubMed

    Xiao, Pingping; Wang, Xianping; Sun, Jingjing; Huang, Meizhen; Chen, Xianfeng; Cao, Zhuangqi

    2012-06-18

    A new scheme is proposed to measure the electro-optical (EO) and converse-piezoelectric (CPE) coefficients of the PMN-PT ceramics simultaneously, in which the PMN-PT ceramics acts as the guiding layer of a symmetrical metal-cladding waveguide. As the applied electric field exerts on the waveguide, the effective refractive index (RI) (or synchronous angle) can be effectively tuned from a selected mode to another adjacent mode owing to the high sensitivity and the small spacing of the ultra-high order modes. Subsequently, a correlation between EO and CPE coefficients is established. With this correlation and the measurement of the effective RI change to the applied voltage, the quadratic EO and CPE coefficients of PMN-PT ceramics are obtained simultaneously. The obtained results are further checked by fitting the variations of effective RI to a quadratic function. Our measurement method can be extended to a wide range of other materials.

  4. Characterization of PMN-PT piezoelectric single crystal and PMN-PT 1-3 composite at elevated temperatures by electrical impedance resonance analysis.

    PubMed

    Wu, Zhengbin; Xi, Kui

    2014-07-01

    In this paper, lead magnesium niobate-lead titanate (PMN-PT) piezoelectric single crystal and its 1-3 composite counterpart were characterized and analyzed under different stable temperatures using both a Simulated Annealing (SA) optimization algorithm and the commercial software PRAP (Piezoelectric Resonance Analysis Program). Electrical impedance resonance characteristics of the two material samples over the range 25-125 °C were measured. The correlation between experimental data and numerical fits derived from both SA and PRAP is considered. Calculation of the determination coefficient (R1(2)) between numerically fitted and measured results is above 95% for both methods. Furthermore, variations in the number of data values used for the fit introduced no more than 3.1% uncertainty on the calculated material parameters. It is found that the complex material parameters of PMN-PT composite are more dependent on temperature than the single crystal. The phase transition of the PMN-PT, which is close to 90 °C, has an effect on the high temperature material characteristics of both piezoelectric materials. These calculated complex material parameters can be used for the design of ultrasonic transducers for elevated temperature applications.

  5. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering.

    PubMed

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-07-17

    We report the tunable near-infrared luminescence of Ni(2+) doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg(1/3)Nb(2/3))(0.7)Ti(0.3)O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni(2+) ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources.

  6. Tuning of near-infrared luminescence of SrTiO3:Ni2+ thin films grown on piezoelectric PMN-PT via strain engineering

    PubMed Central

    Bai, Gongxun; Zhang, Yang; Hao, Jianhua

    2014-01-01

    We report the tunable near-infrared luminescence of Ni2+ doped SrTiO3 (STO:Ni) thin film grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate via strain engineering differing from conventional chemical approach. Through controlling the thickness of STO:Ni film, the luminescent properties of the films including emission wavelength and bandwidth, as well as lifetime can be effectively tuned. The observed phenomena can be explained by the variation in the crystal field around Ni2+ ions caused by strain due to the lattice mismatch. Moreover, the modulation of strain can be controlled under an external electric field via converse piezoelectric effect of PMN-PT used in this work. Consequently, controllable emission of the STO:Ni thin film is demonstrated in a reversible and real-time way, arising from the biaxial strain produced by piezoelectric PMN-PT. Physical mechanism behind the observation is discussed. This work will open a door for not only investigating the luminescent properties of the phosphors via piezoelectric platform, but also potentially developing novel planar light sources. PMID:25030046

  7. Single crystal PMN-PT/epoxy 1-3 composite for energy-harvesting application.

    PubMed

    Ren, Kailiang; Liu, Yiming; Geng, Xuecang; Hofmann, Heath F; Zhang, Qiming M

    2006-03-01

    One key parameter in using electroactive materials to harvest electric energy from mechanical sources is the energy conversion efficiency. Recently, it was shown that, in the relaxor ferroelectric PMN-PT single crystals, a very high longitudinal electromechanical coupling factor (>90%) can be obtained. This paper investigates energy harvesting using 1-3 composites of PMN-PT single crystals in a soft epoxy matrix. It is shown that 1-3 composites enable the single crystals operating in the longitudinal mode to achieve high efficiency for energy harvesting, and the soft-polymer, matrix-supported single-crystal rods maintain high mechanical integrity under different external loads. For comparison, 1-3 composites with piezoceramic PZT also are investigated in energy-harvesting applications, and the results show that the high coupling factor of single crystal PMN-PT 1-3 composites leads to much higher electric energy output for similar mechanical energy input. The harvested energy density of 1-3 composite with single crystal (22.1 mW/cm3 under a stress of 40.4 MPa) is about twice of that harvested with PZT ceramic 1-3 composite (12 mW/cm3 under a stress of 39 MPa). At a higher stress level, the harvested-energy density of 1-3 PMN-PT single crystal composite can reach 96 mW/cm3.

  8. Recent Developments on High Curie Temperature PIN-PMN-PT Ferroelectric Crystals.

    PubMed

    Zhang, Shujun; Li, Fei; Sherlock, Nevin P; Luo, Jun; Lee, Hyeong Jae; Xia, Ru; Meyer, Richard J; Hackenberger, Wesley; Shrout, Thomas R

    2011-03-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) ferroelectric crystals attracted extensive attentions in last couple years, due to their higher usage temperatures range (> 30°C) and coercive fields (~5kV/cm), meanwhile maintaining similar electromechanical couplings (k(33)> 90%) and piezoelectric coefficients (d(33)~1500pC/N), when compared to their binary counterpart Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3). In this article, we reviewed recent developments on the PIN-PMN-PT single crystals, including the Bridgman crystal growth, dielectric, electromechanical, piezoelectric and ferroelectric behaviors as function of temperature and dc bias. Mechanical quality factor Q was studied as function of orientation and phase. Of particular interest is the dynamic strain, which related to the Q and d(33), was found to be improved when compared to binary system, exhibiting the potential usage of PIN-PMN-PT in high power application. Furthermore, PIN-PMN-PT crystals exhibit improved thickness dependent properties, due to their small domain size, being on the order of 1μm. Finally, the manganese acceptor dopant in the ternary crystals was investigated and discussed briefly in this paper.

  9. Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates

    NASA Astrophysics Data System (ADS)

    Tkach, Alexander; Kehlberger, Andreas; Büttner, Felix; Jakob, Gerhard; Eisebitt, Stefan; Kläui, Mathias

    2015-02-01

    This study reports the magnetotransport and magnetic properties of 20 nm-thick polycrystalline Ni films deposited by magnetron sputtering on unpoled piezoelectric (011) [PbMg1/3Nb2/3O3]0.68-[PbTiO3]0.32 (PMN-PT) substrates. The longitudinal magnetoresistance (MR) of the Ni films on (011) PMN-PT, measured at room temperature in the magnetic field range of -0.3 T < μ0H < 0.3 T, is found to depend on the crystallographic direction and polarization state of piezosubstrate. Upon poling the PMN-PT substrate, which results in a transfer of strain to the Ni film, the MR value decreases by factor of 20 for the current along [100] of PMN-PT and slightly increases for the [ 01 1 ¯ ] current direction. Simultaneously, a strong increase (decrease) in the field value, where the MR saturates, is observed for the [ 01 1 ¯ ] ([100]) current direction. The anisotropic magnetoresistance is also strongly affected by the remanent strain induced by the electric field pulses applied to the PMN-PT in the non-linear regime revealing a large (132 mT) magnetic anisotropy field. Applying a critical electric field of 2.4 kV/cm, the anisotropy field value changes back to the original value, opening a path to voltage-tuned magnetic field sensor or storage devices. This strain mediated voltage control of the MR and its dependence on the crystallographic direction is correlated with the results of magnetization reversal measurements.

  10. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface.

    PubMed

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M; Brown, Gail J; Sun, Nian X

    2014-01-14

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling.

  11. Strong magnetoelectric and spin phonon coupling in SmFeO{sub 3}/PMN-PT composite

    SciTech Connect

    Ahlawat, Anju E-mail: anju@rrcat.gov.in; Satapathy, S.; Gupta, P. K.; Sathe, V. G.; Choudhary, R. J.

    2016-08-22

    We have investigated spin phonon coupling in the strain coupled magnetoelectric SmFeO{sub 3}/0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN-PT) composite in the temperature range of 300–650 K by Raman spectroscopy and magnetic measurements. The SmFeO{sub 3}/PMN-PT composite shows sharp rise in magnetic moment across ferroelectric transition temperature (T{sub c}) of PMN-PT. Around this transition temperature (T{sub c} of PMN-PT), the temperature evolution of Raman spectra of the composite also shows anomalies in the phonon frequencies and line width corresponding to the SmFeO{sub 3} phase which indicate structural modifications in the SmFeO{sub 3} phase around T{sub c} of PMN-PT. The observed structural, magnetic, and phonon anomalies of SmFeO{sub 3} around T{sub c} of PMN-PT in SmFeO{sub 3}/PMN-PT are attributed to spin-phonon coupling providing evidence of strong strain mediated magnetoelectric effects.

  12. Effect of manganese doping on PIN-PMN-PT single crystals for high power applications

    NASA Astrophysics Data System (ADS)

    Sahul, Raffi

    Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc <140 °C). When these ternary PIN-PMN-PT crystals are doped with manganese (Mn:PIN-PMN-PT), they behave like hard piezoelectric materials demonstrating an internal bias field (Ei ˜0.8-1.6 kV/cm), leading to low elastic losses and high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT <150). Although the spontaneous polarization directions for these rhombohedral crystals are in the c directions, the giant piezoelectric effect (d33 >2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic

  13. Tip-bias-induced domain evolution in PMN-PT transparent ceramics via piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, K. Y.; Zhao, W.; Zeng, H. R.; Yu, H. Z.; Ruan, W.; Xu, K. Q.; Li, G. R.

    2015-05-01

    Piezoresponse force microscopy (PFM) was employed to investigate ferroelectric domain structures and their dynamic behavior of lead magnesium niobate-lead titanate [Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)] transparent ceramics under an tip-bias-induced electric field. A remarkable effect of fluctuation of PT content on the domain configurations and domain dynamic response in PMN-PT transparent ferroelectric ceramics were found by PFM. Comparing with PMN-10%PT and PMN-20%PT, the reversed polarization of macrodomain area in PMN-35%PT and PMN-25%PT exhibits a relatively higher response behavior and better polarization retention performance under the PFM tip-bias-induced electric field, which correspond to their unique macroscopic electro-optic properties.

  14. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  15. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    SciTech Connect

    Ziętek, Slawomir Skowroński, Witold; Stobiecki, Tomasz; Ogrodnik, Piotr; Stobiecki, Feliks; Dijken, Sebastiaan van; Barnaś, Józef

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  16. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.

    PubMed

    Hwang, Geon-Tae; Park, Hyewon; Lee, Jeong-Ho; Oh, SeKwon; Park, Kwi-Il; Byun, Myunghwan; Park, Hyelim; Ahn, Gun; Jeong, Chang Kyu; No, Kwangsoo; Kwon, HyukSang; Lee, Sang-Goo; Joung, Boyoung; Lee, Keon Jae

    2014-07-23

    A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source.

  17. High-power characterization of a microcutter actuated by PMN-PT piezocrystals.

    PubMed

    Kuang, Yang; Sadiq, Muhammad; Cochran, Sandy; Huang, Zhihong

    2015-11-01

    An ultrasonic microcutter is an alternative approach to conventional ultrasonic instruments actuated by sandwich piezoelectric transducers for surgery. This paper reports high-power behavior of a microcutter actuated by the piezocrystal lead magnesium niobate-lead titanate (PMN-PT), defining its practical performance and the feasibility of PMNPT actuation for surgical applications. The microcutter was driven at resonance with constant current amplitudes, either unloaded or loaded by poultry breast tissue, until its behavior achieved a steady state. During this driving process, its electric impedance, resonant frequency, and vibration velocity, along with the temperature increase of the PMN-PT, were recorded in real time. The microcutter produced a maximum vibration velocity >2.8 m/s with an excitation current of 0.11 A(rms). The mechanical loss increased significantly with current amplitude, resulting in a maximum temperature increase approaching 50°C around the interface between the PMN-PT and the blade, where they were bonded together with epoxy. Because of the low phase-transition temperature of PMN-PT, this temperature rise prevented the microcutter from working at higher current amplitudes. Along with the high vibration velocity, it also caused a frequency shift downward by 3 kHz at the same current amplitude. During tests with poultry breast tissue, radiation reactance increased the resonant frequency and the radiation resistance increased the loss of the microcutter. However, the loss did not further increase the temperature of the piezoelectric material. The maximum force and the overall work required to penetrate the microcutter into poultry breast tissue were reduced by 47.1 ± 8% and 53.5 ± 6%, respectively, when the microcutter was actuated at a current of 0.07 A(rms).

  18. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  19. Effects of oxygen ion irradiation on PMN-PT ferroelectric materials for space applications

    NASA Astrophysics Data System (ADS)

    Guggilla, Padmaja; Batra, A. K.; Powell, Rachel

    2016-09-01

    Lead magnesium niobate-lead titanate (PMN-PT) is an important and high performance piezoelectric and pyroelectric relaxor material having wide range of applications in infrared sensor devices. Present work studies the fabrication and dielectric characteristics of PMN-PT in the bulk form. The PMN-PT bulk material was prepared in sol-gel method and subsequently irradiated with heavy ion oxygen. The materials were analyzed and determined that the relaxorferroelectric material indicated changes in its dielectric constant and pyroelectric coefficient after irradiation. Due to the radiation fluent of 1×1016 ions/cm2, the dielectric constant of the material increased uniformly, while its pyroelectric coefficient showed a sharp increased to the value of 5×10-9 μC/cm2 °C with increase in temperature. Its dielectric constants showed increase in values of 527 μC/cm2 °C at 50°C, 635 μC/cm2 °C at 60°C and 748 μC/cm2 °C at 70°C. Properties such as the material impedance, admittance and modulus were investigated for changes in properties which became evident after irradiation.

  20. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film.

    PubMed

    Li, Xiang; Wu, Wei; Chung, Youngsoo; Shih, Wan Y; Shih, Wei-Heng; Zhou, Qifa; Shung, K Kirk

    2011-11-01

    [Pb(Mg(1/3)Nb(2/3))O(3)](0.63)[PbTiO(3)](0.37) (PMN-PT) free-standing film of comparable piezoelectric properties to bulk material with thickness of 30 μm has been fabricated using a modified precursor coating approach. At 1 kHz, the dielectric permittivity and loss were 4364 and 0.033, respectively. The remnant polarization and coercive field were 28 μC/cm(2) and 18.43 kV/cm. The electromechanical coupling coefficient k(t) was measured to be 0.55, which was close to that of bulk PMN-PT single-crystal material. Based on this film, high-frequency (82 MHz) miniature ultrasonic transducers were fabricated with 65% bandwidth and 23 dB insertion loss. Axial and lateral resolutions were determined to be as high as 35 and 176 μm. In vitro intravascular imaging on healthy rabbit aorta was performed using the thin film transducers. In comparison with a 35-MHz IVUS transducer, the 80-MHz transducer showed superior resolution and contrast with satisfactory penetration depth. The imaging results suggest that PMN-PT free-standing thin film technology is a feasible and efficient way to fabricate very-high-frequency ultrasonic transducers.

  1. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x(0.65PMN-0.35PT)-(1 - x)PZT (xPMN-PT-(1 - x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT-(1 - x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  2. PMN-PT single-crystal high-frequency kerfless phased array.

    PubMed

    Chen, Ruimin; Cabrera-Munoz, Nestor E; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K Kirk

    2014-06-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at -6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application.

  3. Fine grains ceramics of PIN-PT, PIN-PMN-PT and PMN-PT systems: drift of the dielectric constant under high electric field.

    PubMed

    Pham-Thi, M; Augier, C; Dammak, H; Gaucher, P

    2006-12-22

    Lead-based ferroelectric ceramics with (1-x)Pb(B1 B2)O3-xPbTiO3 formula have emerged as a group of promising materials for various applications like ultrasonic sonars or medical imaging transducers. (1-x)PMN-xPT, (1-x)PIN-xPT and ternary solutions xPIN-yPMN-zPT ceramics are synthesised using the solid state reaction method. Our objective is to achieve higher structural transition temperatures than those of PMN-PT ceramics with as good dielectric, piezoelectric and electromechanical properties. Ceramics capacitance and loss tangent are measured when the ac field of measurement increases up to E=500 V/mm. Behaviours of these materials under ac field are related to their coercive field and Curie temperature.

  4. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  5. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  6. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-08-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or `Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  7. Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface

    PubMed Central

    Nan, Tianxiang; Zhou, Ziyao; Liu, Ming; Yang, Xi; Gao, Yuan; Assaf, Badih A.; Lin, Hwaider; Velu, Siddharth; Wang, Xinjun; Luo, Haosu; Chen, Jimmy; Akhtar, Saad; Hu, Edward; Rajiv, Rohit; Krishnan, Kavin; Sreedhar, Shalini; Heiman, Don; Howe, Brandon M.; Brown, Gail J.; Sun, Nian X.

    2014-01-01

    Strain and charge co-mediated magnetoelectric coupling are expected in ultra-thin ferromagnetic/ferroelectric multiferroic heterostructures, which could lead to significantly enhanced magnetoelectric coupling. It is however challenging to observe the combined strain charge mediated magnetoelectric coupling, and difficult in quantitatively distinguish these two magnetoelectric coupling mechanisms. We demonstrated in this work, the quantification of the coexistence of strain and surface charge mediated magnetoelectric coupling on ultra-thin Ni0.79Fe0.21/PMN-PT interface by using a Ni0.79Fe0.21/Cu/PMN-PT heterostructure with only strain-mediated magnetoelectric coupling as a control. The NiFe/PMN-PT heterostructure exhibited a high voltage induced effective magnetic field change of 375 Oe enhanced by the surface charge at the PMN-PT interface. Without the enhancement of the charge-mediated magnetoelectric effect by inserting a Cu layer at the PMN-PT interface, the electric field modification of effective magnetic field was 202 Oe. By distinguishing the magnetoelectric coupling mechanisms, a pure surface charge modification of magnetism shows a strong correlation to polarization of PMN-PT. A non-volatile effective magnetic field change of 104 Oe was observed at zero electric field originates from the different remnant polarization state of PMN-PT. The strain and charge co-mediated magnetoelectric coupling in ultra-thin magnetic/ferroelectric heterostructures could lead to power efficient and non-volatile magnetoelectric devices with enhanced magnetoelectric coupling. PMID:24418911

  8. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    PubMed Central

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  9. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  10. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

    PubMed

    Wu, S Z; Miao, J; Xu, X G; Yan, W; Reeve, R; Zhang, X H; Jiang, Y

    2015-03-10

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  11. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  12. Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array.

    PubMed

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk

    2012-04-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9×9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm(2) with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.

  13. Influence of the polarization anisotropy on the electrocaloric effect in epitaxial PMN-PT thin films

    NASA Astrophysics Data System (ADS)

    Mietschke, M.; Chekhonin, P.; Molin, C.; Gebhardt, S.; Fähler, S.; Nielsch, K.; Schultz, L.; Hühne, R.

    2016-09-01

    Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) compounds, which are typically used for high performance actuator applications due to their outstanding piezoelectric properties, show, in addition, a pronounced electrocaloric (EC) effect. The study of epitaxial films is a useful tool to analyze the correlation between the microstructure and EC properties in order to optimize the performance of these materials. Therefore, the 0.9PMN-0.1PT films were grown by a pulsed laser deposition on (001) as well as (111) oriented SrTiO3 single crystalline substrates using a La0.7Sr0.3CoO3 buffer as the bottom electrode and additional Au top electrodes. The structural properties determined by a high resolution X-ray and electron microscopy techniques indicated an undisturbed epitaxial growth. The anisotropy of the ferroelectric domain structure was investigated by a vertical and lateral piezoresponse force microscopy showing clear differences between the two orientations. A significant reduction of the thermal hysteresis was observed in the T-dependent polarization measurements for (111) oriented PMN-PT films, whereas the indirectly determined EC properties yield a maximum ΔT of around 15 K at 40 °C for a field of about 400 kV/cm for both film orientations.

  14. Magnetoelectric properties of epitaxial Fe3O4 thin films on (011) PMN-PT piezosubstrates

    NASA Astrophysics Data System (ADS)

    Tkach, Alexander; Baghaie Yazdi, Mehrdad; Foerster, Michael; Büttner, Felix; Vafaee, Mehran; Fries, Maximilian; Kläui, Mathias

    2015-01-01

    We determine the magnetic and magnetotransport properties of 33 nm thick Fe3O4 films epitaxially deposited by rf-magnetron sputtering on unpoled (011) [PbMg1/3Nb2/3O3] 0.68-[PbTiO3]0.32 (PMN-PT) substrates. The magnetoresistance (MR), as well as the magnetization reversal, strongly depend on the in-plane crystallographic direction of the epitaxial (011) Fe3O4 film and strain. When the magnetic field is applied along [100], the magnetization loops are slanted and the sign of the longitudinal MR changes from positive to negative around the Verwey transition at 125 K on cooling. Along the [01 1 ¯] direction, the loops are square shaped and the MR is negative above the switching field across the whole temperature range, just increasing in absolute value when cooling from 300 K to 150 K. The value of the MR is found to be strongly affected by poling the PMN-PT substrate, decreasing in the [100] direction and slightly increasing in the [01 1 ¯] direction upon poling, which results in a strained film.

  15. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  16. Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals

    NASA Astrophysics Data System (ADS)

    Li, Xiuzhi; Wang, Zujian; He, Chao; Long, Xifa; Ye, Zuo-Guang

    2012-02-01

    Ternary solid solution crystals of 0.19Pb(In1/2Nb1/2)O3- 0.46Pb(Mg1/3Nb2/3)O3- 0.35PbTiO3 [PIMNT(19/46/35)] with dimensions of 35 × 38 × 15 mm3 were grown by the top-seeded solution growth (TSSG) method. The dielectric, piezo- and ferroelectric properties of the grown crystals were characterized. The ternary piezocrystals exhibit a Curie temperature TC = 190 °C and a tetragonal-rhombohedral phase transition temperature TR-T = 130 °C, which are increased significantly compared with TC ≈ 155 °C and TR-T ≈ 80 °C of PMN-PT crystals. The dielectric constant (ɛ') and dielectric loss tangent (tan δ) are 4300 and 0.40 at room temperature. The piezoelectric coefficient d33 is found to be 2380 pC/N. The longitudinal electromechanical coupling factor k33 reaches 90% at room temperature. A peak-to-peak bipolar strain value of 0.13% is obtained at E ≈ ± 14 kV/cm. The coercive field Ec and remanent polarization Pr are 5.50 kV/cm and 27.10 μC/cm2, respectively, which are also improved from the vales of PMN-PT crystals.

  17. Electrical switching of the magnetic vortex circulation in artificial multiferroic structure of Co/Cu/PMN-PT(011)

    NASA Astrophysics Data System (ADS)

    Li, Q.; Tan, A.; Scholl, A.; Young, A. T.; Yang, M.; Hwang, C.; N'Diaye, A. T.; Arenholz, E.; Li, J.; Qiu, Z. Q.

    2017-06-01

    Co films and micron sized disks were grown on top of piezoelectric PMN-PT(011) and Cu/PMN-PT(001) substrates and investigated by the Magneto-Optic Kerr Effect and Photoemission Electron Microscopy. By applying an electric field in the surface normal direction, we find that the strain of the ferroelectric PMN-PT(011) substrate induces an in-plane uniaxial magnetic anisotropy in the Co overlayer. Under specific conditions, the Co magnetic vortex could be switched between clockwise and counter-clockwise circulations. The variations of the Co vortex switching were attributed to the variations of the ferroelectric domains under the Co disks. We speculate that the switching of the magnetic vortex circulation is a dynamical process which may involve pulses of appropriate magnitude and duration of the uniaxial magnetic anisotropy delivered to the magnetic vortex.

  18. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising.

  19. Integration, electrical, and electromechanical properties of PZT and PMN-PT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kuegeler, Carsten; Hoffmann, Marcus; Boettger, Ulrich; Waser, Rainer

    2002-07-01

    Piezoelectric and electrostrictive thin films are potential candidates for actuator functions in micro-electro-mechanical systems (MEMS) offering displacements and forces which outperform standard solutions, e.g. in micro mirrors and micro relays. Within this context the paper reports on the preparation and the integration processes of chemical solution deposited (CSD) PZT and PMN-PT thin films in combination with silicon bulk micro machining technique. The operativeness of the processes is demonstrated by the development of an integrated micro actuator for a micro switch application. Furthermore, the work deals also with the characterization of the integrated materials. For fabrication control and electrical characterizations microscopy, SEM, hysteresis- and CV-, and degradation measurements were performed. Laser interferometry and resonance frequency measurements were used to characterize the electromechanical performance of both materials in comparison to the behavior of the developed micro actuator.

  20. PMN-PT single crystal focusing transducer fabricated using a mechanical dimpling technique.

    PubMed

    Lam, K H; Chen, Y; Cheung, K F; Dai, J Y

    2012-01-01

    A ∼5MHz focusing PMN-PT single crystal ultrasound transducer has been fabricated utilizing a mechanical dimpling technique, where the dimpled crystal wafer was used as an active element of the focusing transducer. For the dimpled focusing transducer, the effective electromechanical coupling coefficient was enhanced significantly from 0.42 to 0.56. The dimpled transducer also yields a -6dB bandwidth of 63.5% which is almost double the bandwidth of the plane transducer. An insertion loss of the dimpled transducer (-18.1dB) is much lower than that of the plane transducer. Finite element simulation also reveals specific focused beam from concave crystal surface. These promising results show that the dimpling technique can be used to develop high-resolution focusing single crystal transducers.

  1. Giant isothermal entropy change In (111)-oriented PMN-PT thin film

    NASA Astrophysics Data System (ADS)

    Hamad, Mahmoud A.

    2014-11-01

    An isothermal entropy change of 240 nm (111)-oriented PMN-PT 65/35 film near the ferroelectric Curie temperature, relative cooling power (RCP) and change of heat capacity have been investigated. The extracted data characterized giant isothermal entropy change of more than 16 J/kg K in electric field shift ΔE of 455 kV cm-1, which is nearly twice than that found for PbZr0.95Ti0.05O3 thin film at 492 kV cm-1 near the Curie point. Furthermore, the RCP ≈ 700 J/kg and change of heat capacity ≈ 233 J/kg K in electric field shift ΔE of 747 kV cm-1.

  2. Design and Characterization of an Ultrasonic Surgical Tool Using d31 PMN-PT Plate

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Sadiq, M.; Cochran, S.; Huang, Z.

    An ultrasonic surgical tool for tissue incision and dissection has been designed and characterized. The surgical tool is based on a simple geometry to which PMN-PT d31 plates are bonded directly. The performance of the surgical tool has been defined numerically with the Abaqus finite element analysis (FEA) package and practically with laser vibrometer and impedance spectroscopy. The results show the ability of FEA to accurately predict the behaviors of an ultrasonic device as numerical and practical analysis were found to be in a good agreement. The design of the tool presented has the ability to generate displacement amplitude high enough to carry out soft tissue incision with relatively low driving voltage.

  3. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    PubMed

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  4. Measurements along the growth direction of PMN-PT crystals: dielectric, piezoelectric, and elastic properties.

    PubMed

    Tian, Jian; Han, Pengdi; Payne, David A

    2007-09-01

    Property measurements are reported for Pb(Mg1/3Nb2/3)03-PbTiO3 (PMN-PT) single crystals grown along (001) by a seeded-melt method. Chemical segregation occurs during crystal growth, leading to property changes along the growth direction. Variations in dielectric, piezoelectric, and elastic properties were evaluated for specimens selected from the crystals. Room-temperature data are correlated with Tc and composition that ranged from 27 to 32% PT, i.e., in the vicinity of the morphotropic phase boundary (MPB). While there was little change in the high electromechanical coupling factor k33 (0.87-0.92), both the piezoelectric charge coefficient d33 (1100-1800 pC/N) and the free dielectric constant K3 (4400-7000) were found to vary significantly with position. Increases in d33 and KT33 were relatively offsetting in that the ratio yielded a relatively stable piezoelectric voltage coefficient g33 (27-31 x 10(-3) Vm/N). Values are also reported for the elastic compliance (3.3-6.3 x 10(-11) m2/N) determined from resonance measurements. Enhancements in d33 and K(T)33 were associated with lattice softening (increasing sE33) as the composition approached the MPB. Details are reported for the piezoelectric, dielectric, and elastic properties as a function of growth direction, Tc, and composition. The results are useful for an understanding of properties in PMN-PT crystals and for the design of piezoelectric devices.

  5. Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals Under Large Drive Field

    PubMed Central

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas R.

    2013-01-01

    The coercive fields (EC) of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (Eint), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shear-mode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥60% of their coercive fields, because of the developed Eint, induced by the acceptor-oxygen vacancy defect dipoles. PMID:21342812

  6. Thermal-Independent Properties of PIN-PMN-PT Single-Crystal Linear-Array Ultrasonic Transducers

    PubMed Central

    Chen, Ruimin; Wu, Jinchuan; Lam, Kwok Ho; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K. Kirk

    2013-01-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227

  7. Mechanical and thermal transitions in morphotropic PZN-pT and PMN-PT single crystals and their implication for sound projectors.

    PubMed

    Amin, Ahmed; McLaughlin, Elizabeth; Robinson, Harold; Ewart, Lynn

    2007-06-01

    Isothermal compression experiments on multidomain [001] oriented and poled ferroelectric rhombohedral PZN-0.07PT and PMN-0.30PT single crystals revealed elastic instabilities corresponding to zero field ferroelectric-ferroelectric phase transition under mechanical compression. The application of an appropriate dc bias field doubled the stability range of the ferroelectric rhombohedral state under uniaxial compression for both crystals and maintained a linear elastic response. Young's modulus as derived from the quasistatic, zero field stress-strain linear response agreed well with that derived from small signal resonance for the ferroelectric rhombohedral FR state of both PZN-PT and PMN-PT. Elastic compliances s(E)33 as determined from high temperature resonance revealed a monotonically decreasing Young's modulus as a function of temperature in the ferroelectric rhombohedral state with a sudden stiffening near the ferroelectric rhombohedral (FR)-ferroelectric tetragonal (FT) transition. The reversible ferroelectric-ferroelectric transition of morphotropic PZN-PT and PMN-PT single crystals as accessed by mechanical compression is discussed in terms of strain calculations from Devonshire's theory, domain unfolding, and morphotropic phase boundary shift with mechanical stress. The mechanically-induced and thermally-induced ferroelectric-ferroelectric transition trajectories are discussed in terms of the Devonshire theory. Implications of these observations for sound projectors are discussed. A single crystal tonpilz projector fabricated into a 16-element array and a segmented cylinder transducer demonstrated the outstanding capabilities of single crystals to achieve compact, broadband, and high-source level projectors when compared to conventional lead zirconate-titanate PZT8 projectors.

  8. Electric-Field-Induced Amplitude Tuning of Ferromagnetic Resonance Peak in Nano-granular Film FeCoB-SiO2/PMN-PT Composites.

    PubMed

    Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang

    2016-12-01

    One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO2/PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability (μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.

  9. Electric-Field-Induced Amplitude Tuning of Ferromagnetic Resonance Peak in Nano-granular Film FeCoB-SiO2/PMN-PT Composites

    NASA Astrophysics Data System (ADS)

    Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang

    2016-11-01

    One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO2/PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability ( μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.

  10. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators

    NASA Astrophysics Data System (ADS)

    Ngernchuklin, Piyalak

    In the past few decades, significant advances have been achieved to replace the conventional actuators, including hydraulic, shape memory alloy, electromagnetic and linear induction, with piezoelectric actuators since they are light weight and small in size, have precision positioning capabilities, offer a wide range of generative force, consume less power, and provide higher durability and reliability. The strain produced by bulk polycrystalline piezoelectric ceramics and single crystals are typically in the range of 0.1 to 1%, respectively, which is still low for many applications. Therefore, various strain amplification designs including multilayer, bimorph, unimorph, flextensional actuators (Moonie and cymbal), co-fired and functionally graded ceramics have been proposed to enhance the displacement. In this investigation, Piezoelectric/Electrostrictive Bi-Layer Monolithic Composites (PE-MBLC) were fabricated by co-pressing and co-sintering of the piezoelectric (PMN-PT 65/35: P) and electrostrictive (PMN/PT 90/10: E) powders. Flat and dome shaped of PE-MBLCs were obtained by optimizing processing conditions such as pressing pressure and sintering temperature. In addition, poling conditions of bilayer composite actuators were thoroughly studied to maximize their electromechanical properties. It was found that composites had lower d33eff and Keff values than the calculated values. This was attributed to a significant difference between relative permittivities of P and E materials as well as the presence of induced stresses in both P and E layers after sintering that hindered domain switching within piezoelectric layer during poling. The shape change (planar to dome), electromechanical properties, and actuation performance of PE-MBLC actuators were examined as a function of volume percent of piezoelectric phase. The highest displacement ˜15 mum was obtained from PE-MBLC actuator with 50 volume % piezoelectric phase due to the transverse strain response of

  11. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast. PMID:25914443

  12. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging.

    PubMed

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K Kirk; Kim, Hyung Ham

    2015-06-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

  13. Elastic, dielectric and piezoelectric characterization of single domain PIN-PMN-PT: Mn crystals.

    PubMed

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2012-12-15

    Mn modified 0.26Pb(In(1/2)Nb(1/2))O(3)-0.42Pb(Mg(1/3)Nb(2/3))O(3)-0.32PbTiO(3) (PIN-PMN-PT:Mn) single crystals with orthorhombic perovskite crystal structure were polarized along [011] direction, resulting in the single domain state "1O." The complete set of material constants was determined using the combined resonance and ultrasonic methods. The thickness shear piezoelectric coefficient d(15) and electromechanical coupling factor k(15) were found to be on the order of 3100 pC/N and 94%, respectively, much higher than longitudinal d(33) ∼ 270 pC/N and k(33) ∼ 70%. Using the single domain data, the rotated value of d(33)* along [001] direction was found to be 1230 pC/N, in agreement with the experimentally determined d(33) value of 1370 pC/N, conferring extrinsic contributions being about 10%, which was also confirmed using the Rayleigh analysis. In addition, the mechanical quality factors Q(m) were evaluated for different "1O" vibration modes, where the longitudinal Q(m) was found to be ∼1200, much higher than the value for "4O" crystals, ∼300.

  14. Implementation of a PMN-PT piezocrystal-based focused array with geodesic faceted structure.

    PubMed

    Qiu, Zhen; Qiu, Yongqiang; Demore, Christine E M; Cochran, Sandy

    2016-07-01

    The higher performance of relaxor-based piezocrystals compared with piezoceramics is now well established, notably including improved gain-bandwidth product, and these materials have been adopted widely for biomedical ultrasound imaging. However, their use in other applications, for example as a source of focused ultrasound for targeted drug delivery, is hindered in several ways. One of the issues, which we consider here, is in shaping the material into the spherical geometries used widely in focused ultrasound. Unlike isotropic unpoled piezoceramics that can be shaped into a monolithic bowl then poled through the thickness, the anisotropic structure of piezocrystals make it impossible to machine the bulk crystalline material into a bowl without sacrificing performance. Instead, we report a novel faceted array, inspired by the geodesic dome structure in architecture, which utilizes flat piezocrystal material and maximizes fill factor. Aided by 3D printing, a prototype with f#≈ 1.2, containing 96 individually addressable elements was manufactured using 1-3 connectivity PMN-PT piezocrystal-epoxy composite. The fabrication process is presented and the array was connected to a 32-channel controller to shape and steer the beam for preliminary performance demonstration. At an operating frequency of 1MHz, a focusing gain around 30 was achieved and the side lobe intensities were all at levels below -12dB compared to main beam. We conclude that, by taking advantage of contemporary fabrication techniques and driving instrumentation, the geodesic array configuration is suitable for focused ultrasound devices made with piezocrystal.

  15. Electric-field tunable spin waves in PMN-PT/NiFe heterostructure: Experiment and micromagnetic simulations

    NASA Astrophysics Data System (ADS)

    Ziȩtek, Slawomir; Chȩciński, Jakub; Frankowski, Marek; Skowroński, Witold; Stobiecki, Tomasz

    2017-04-01

    We present a comprehensive theoretical and experimental study of voltage-controlled standing spin waves resonance (SSWR) in PMN-PT/NiFe multiferroic heterostructures patterned into microstrips. A spin-diode technique was used to observe ferromagnetic resonance (FMR) mode and SSWR in NiFe strip mechanically coupled with a piezoelectric substrate. Application of an electric field to a PMN-PT creates a strain in permalloy and thus shifts the FMR and SSWR fields due to the magnetostriction effect. The experimental results are compared with micromagnetic simulations and a good agreement between them is found for dynamics of FMR and SSWR with and without electric field. Moreover, micromagnetic simulations enable us to discuss the amplitude and phase spatial distributions of FMR and SSWR modes, which are not directly observable by means of spin diode detection technique.

  16. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    NASA Astrophysics Data System (ADS)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  17. In situ hard x-ray photoemission spectroscopy of barrier-height control at metal/PMN-PT interfaces

    NASA Astrophysics Data System (ADS)

    Kröger, E.; Petraru, A.; Quer, A.; Soni, R.; Kalläne, M.; Pertsev, N. A.; Kohlstedt, H.; Rossnagel, K.

    2016-06-01

    Metal-ferroelectric interfaces form the basis of novel electronic devices. A key effect determining the device functionality is the bias-dependent change of the electronic energy-level alignment at the interface. Here, hard x-ray photoelectron spectroscopy (HAXPES) is used to determine the energy-level alignment at two metal-ferroelectric interfaces—Au versus SrRuO3 on the relaxor ferroelectric Pb (Mg1 /3Nb2 /3 )0.72Ti0.28O3 (PMN-PT)—directly in situ as a function of electrical bias. The bias-dependent average shifts of the PMN-PT core levels are found to have two dominant contributions on the 0.1 -1-eV energy scale: one depending on the metal electrode and the remanent electric polarization and the other correlated with electric-field-induced strain. Element-specific deviations from the average shifts are smaller than 0.1 eV and appear to be related to predicted dynamical charge variations in PMN-PT. In addition, the efficiency of ferroelectric polarization switching is shown to be reduced near the coercive field under x-ray irradiation. The results establish HAXPES as a tool for the in operando investigation of metal-ferroelectric interfaces and suggest electric-field-induced modifications of the polarization distribution as a novel way to control the barrier height at such interfaces.

  18. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN-PT thin-film structures.

    PubMed

    Zhang, Yang; Gao, Guanyin; Chan, Helen L W; Dai, Jiyan; Wang, Yu; Hao, Jianhua

    2012-04-03

    Electric-field-controllable luminescence of a ZnS:Mn/PMN-PT system is demonstrated. The light-emission of ZnS:Mn is caused by the piezoelectric potential, resulting from the converse piezoelectric effect of the PMN-PT substrate. Simultaneous generation of light and ultrasound waves is observed in this single system, which offers great potential to develop a dual-modal source combing light and ultrasonic waves for various applications.

  19. Bulk Crystal Growth of Piezoelectric PMN-PT Crystals Using Gradient Freeze Technique for Improved SHM Sensors

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Kochary, F.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    There has been a growing interest in recent years in lead based perovskite ferroelectric and relaxor ferroelectric solid solutions because of their excellent dielectric, piezoelectric and electrostrictive properties that make them very attractive for various sensing, actuating and structural health monitoring (SHM) applications. We are interested in the development of highly sensitive and efficient PMN-PT sensors based on large single crystals for the structural health monitoring of composite materials that may be used in future spacecrafts. Highly sensitive sensors are needed for detection of defects in these materials because they often tend to fail by distributed and interacting damage modes and much of the damage occurs beneath the top surface of the laminate and not detectable by visual inspection. Research is being carried out for various combinations of solid solutions for PMN-PT piezoelectric materials and bigger size crystals are being sought for improved sensor applications. Single crystals of this material are of interest for sensor applications because of their high piezoelectric coefficient (d33 greater than 1700 pC/N) and electromechanical coefficients (k33 greater than 0.90). For comparison, the commonly used piezoelectric ceramic lead zirconate titanate (PZT) has a d33 of about 600 pC/N and electromechanical coefficients k33 of about 0.75. At the present time, these piezoelectric relaxor crystals are grown by high temperature flux growth method and the size of these crystals are rather small (3x4x5 mm(exp 3). In the present paper, we have attempted to grow bulk single crystals of PMN-PT in a 2 inch diameter platinum crucible and successfully grown a large size crystal of 67%PMN-33%PT using the vertical gradient freeze technique with no flux. Piezoelectric properties of the grown crystals are investigated. PMN-PT plates show excellent piezoelectric properties. Samples were poled under an applied electric field of 5 kV/cm. Dielectric properties at a

  20. Effect of Elevated Pressure on the Heat Transfer and Power Requirements During Bridgman Growth of PMN-PT Crystals

    NASA Technical Reports Server (NTRS)

    Bune, Andris; Ostrogorsky, Aleksandar; Marin, Carlos; Nicoara, Irina; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Performance of the furnace during Bridgman growth of the lead magnesium niobate-lead titanate crystal (PMN-PT) is analyzed. PMN-PT is electrostrictive ceramic that has near ideal strain-voltage function. Furthermore piezoelectric (2000 to 2300 pC/N) and coupling (92 to 95%) constants are exceptionally good. Due to these properties PMN-PT has wide range of applications - from sonars to transducers in a high precision optical systems. In this research first attempt to crystallize PMN-PT in a Mellen type vertical Bridgman furnace was not successful, as melting temperature of precursor materials was not achieved. At this point choice was between building a new more powerful facility or finding ways to enhance performance of the existing furnace. Besides adjusting power supply to the individual heating elements, redesigning ampoule holding cartridge and improving furnace insulation one more radical improvement was proposed. The entire furnace was placed into the high pressure chamber. Further experiments confirmed that temperature inside the furnace was increased sufficiently to melt precursor materials to obtain PMN-PT. Numerical modeling is undertaken to find limitations of this technique and to predict temperature distribution inside the ampoule. It is of interest also to account for main factors contributing to a higher temperatures achieved in the furnace under the higher pressure (up to 10 atm.). Numerical model of the furnace is based on general purpose finite - element code FIDAP and on previous efforts to model Bridgman type furnace with multiply heaters. In order to account for all heat transfer mechanism involved - conduction, convection and radiation - different parts of the furnace are modeled in accordance with expected dominant mode of heat transfer - conduction in the solid parts, conduction and radiation in the ampoule, gas convection and conduction in the furnace openings complemented with wall-to-wall radiation. Because of these complicating factors

  1. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  2. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  3. Compact optical microfiber phase modulator.

    PubMed

    Zhang, Xueliang; Belal, M; Chen, G Y; Song, Zhangqi; Brambilla, G; Newson, T P

    2012-02-01

    A compact optical microfiber phase modulator with MHz bandwidth is presented. A micrometer-diameter microfiber is wound on a millimeter-diameter piezoelectric ceramic rod with two electrodes. When a voltage is applied to the piezoelectric ceramic, the rod is strained, leading to a phase change along the microfiber; because of the small size, the optical microfiber phase modulator can have as high as a few MHz bandwidth response.

  4. Microwave Magnetoelectric Effects in Single Crystal YIG/PMN-PT Bilayers

    NASA Astrophysics Data System (ADS)

    Shastry, S.; Srinivasan, G.; Mantese, J. V.

    2004-03-01

    Layered magnetostrictive/piezoelectric structures are multifunctional due to mechanical force mediated electromagnetic coupling. This study is concerned with microwave magnetoelectric (ME) interactions in layered ferrite-piezoelectric oxides. Ferromagnetic resonance (FMR) is a powerful tool for such studies. An electric field E applied to the composite produces a mechanical deformation in PZT that in turn is coupled to the ferrite, resulting in a shift in the resonance field. Information on the nature of high frequency ME coupling could therefore be obtained from data on field shift vs E. Since the measurement accuracy depends very much on the FMR line width, bilayers consisting of single crystal or epitaxial low-loss ferrites are ideal for the investigations. Studies were performed at 9.4 GHz on bilayers consisting of (100), (110) or (111) epitaxial yttrium iron garnet (YIG) films (1-130 micron) and (100) lead magnesium niobate-lead titanate (PMN-PT). The samples were positioned outside a hole at the bottom or side of a TE102-reflection type cavity. Resonance absorption vs bias magnetic field H were obtained as a function of E = 0-8 kV/cm for both in-plane and out-of-plane H. Important results are as follows. (i) The ME coupling is stronger for H perpendicular to the bilayer than for in-plane H. (ii) The coupling strength is maximum for E and H along <111> in YIG. (iii) The ME constant varies from a maximum of 6 Oe cm/kV for bilayers with 4 micron YIG to a minimum of 3 Oe cm/kV for 110 micron YIG. (iv) The variation of resonance field shift with the volume ratio for the two phases is in agreement with theory [1,2]. 1. M. I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan, Phys. Rev. B 64, 094409 (2001). 2. M. I. Bichurin, V. M. Petrov, Yu. V. Kiliba, G. Srinivasan, Phys. Rev. B 66, 134404 (2002). This work was supported by a grant from the National Science Foundation (DMR-0322254)

  5. Silver Doped 0.9PMN-PT-0.1PZT Composite Films for very High Frequency Ultrasonic Transducer Applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Wei, Qiang; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2013-05-01

    A series of silver doping concentration into the 0.9PMN-PT-0.1PZT (PMN-PT-PZT) films via the composite sol-gel technique were prepared. The crystallographic properties and microstructures of PMN-PT-PZT films with the silver dopant were investigated. Additionally, the effect of silver doping on dielectric and ferroelectric properties was examined. The results show that in general, the dielectric permittivity and remnant polarization increase as the silver doping concentration is increased. The PMN-PT-PZT+ 2.5 mol% Ag film exhibits a dielectric constant of 3,610 at 1 kHz and a remnant polarization of 57.6 µC/cm(2) at room temperature. From this silver doped film, very high frequency ultrasonic needle transducers were fabricated and evaluated. The representative transducer had the center frequency of 225 MHz with a -6 dB bandwidth of 29% (65 MHz) and 62 dB insertion loss. The performance of this transducer is comparable to other composite sol-gel films transducer. The results suggest that this silver-doped PMN-PT-PZT film is a promising candidate as an alternative piezoelectric film for very high frequency transducer applications.

  6. Performance of PIN-PMN-PT Single Crystal Piezoelectric versus PZT8 Piezoceramic Materials in Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The recent advancements in the manufacturing of single crystal PIN-PMN-PT piezoelectric materials now make them a cost-competitive alternative to PZT4 and PZT8 (Navy Types I and III) piezoceramic materials, which have been the workhorse of power ultrasonic applications (e.g., welding, cutting, sonar, etc.) for over 50 years. Although there are great benefits to the use of single crystal materials with respect to high output, as well as added actuating and sensing abilities, many transducer designers are still reluctant to explore these materials due to inadequate design guidelines for substituting the familiar PZT materials; for example, what are the implications of the higher capacitance, sensitivity to chipping/cracks, aging effects, frequency shifts, or how much preload can be used are all common questions. This research is a case study on the performance of identical ultrasonic transducer bodies, used for semiconductor wire bonding, assembled with either PZT8 or PIN-PMN-PT piezo material. The main purpose of the study is to establish rule-of-thumb design guidelines for direct substitution of single crystal materials in existing PZT8 transducer designs, along with a side-by-side performance comparison to highlight benefits. Several metrics are investigated such as impedance, frequency, displacement gain, quality factor and electromechanical coupling factor.

  7. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    PubMed

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  8. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-12-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO3) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10-9 m/V, about 45 times larger than for LiNbO3) but it decreased rapidly below 75 K; at 1.3 K, d15 was only about 8% of its room temperature value.

  9. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  10. A comparative study of ultrasonic micro-motors based on single crystal PMN-PT and polycrystalline PZT ceramics

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen A.; Rayner, Philip J.; Gore, Jonathan; Bowles, Adrian R.; McBride, Richard C.

    2008-03-01

    A comparative study has been made to explore the potential benefits of newly available single-crystal ferroelectric materials when used in a practical device, in this case an ultrasonic micro-motor. This type of micro-motor exhibits exceptional power-to-weight characteristics, which could be exploited beneficially, for example, in unmanned air-vehicle (UAV) systems. The operating principles of a range of commercial and experimental motor designs were evaluated objectively in order to identify areas of performance that can potentially be enhanced using PMN-PT single-crystal piezoelectric ceramics. Based on this analysis a practical motor design was selected for construction and experimentation. Detailed numerical analysis indicated that a motor constructed from single crystal PMN-PT could be expected to provide an improvement in motor stall-torque by up to a factor of 2.8 and a no-load speed improvement by a factor of 1.5 when compared with motors based on standard polycrystalline lead-zirconate-titanate (PZT) ceramics. In practice single-crystal versions of the motor were found to produce double the power output of their polycrystalline counterparts. Overall efficiency was found to be improved two-fold. There were significant discrepancies between the numerical predictions for the single-crystal devices and their measured performance, whereas the polycrystalline devices were found to perform closely in line with predictions.

  11. Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

    PubMed Central

    Slodczyk, Aneta; Colomban, Philippe

    2010-01-01

    Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1−x)PbMg1/3Nb2/3O3−xPbTiO3) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO6 and TiO6), determine the short range arrangement and the outstanding ferro- and piezoelectric properties. PMID:28883367

  12. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  13. In situ detection of Bacillus anthracis spores using fully submersible, self-exciting, self-sensing PMN-PT/Sn piezoelectric microcantilevers.

    PubMed

    McGovern, John-Paul; Shih, Wan Y; Shih, Wei-Heng

    2007-08-01

    In this study, we have demonstrated in situ, all-electrical detection of Bacillus anthracis (BA) spores using lead magnesium niobate-lead titanate/tin (PMN-PT/Sn) piezoelectric microcantilever sensors (PEMS) fabricated from PMN-PT freestanding films and electrically insulated with methyltrimethoxysilane (MTMS) coatings on the tin surface. Antibody specific to BA spore surface antigen was immobilized on the platinum electrode of the PMN-PT layer. In phosphate-buffered saline (PBS) solution, the PMN-PT/Sn PEMS exhibited quality (Q) values ranging from 50 to 75. The detection was carried out in a closed-loop flow cell with a liquid volume of 0.8 ml and a flow rate of 1 ml min(-1). It was shown that one sensor, "PEMS-A" (500 microm long, 800 microm wide, with a 22 microm thick PMN-PT layer, a 20 microm thick tin layer and a 1 +/- 0.5 x 10(-12) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2100 +/- 200, 1100 +/- 100 and 700 +/- 100 Hz at concentrations of 20,000, 2000, and 200 spores ml(-1) or 16,000, 1600, and 160 total spores, respectively. Additionally, "PEMS-B" (350 microm long, 800 microm wide, with an 8 microm thick PMN-PT layer, a 6 microm thick tin layer and a 2 +/- 1 x 10(-13) g Hz(-1) mass detection sensitivity) exhibited resonance frequency shifts of 2400 +/- 200, 1500 +/- 200, 500 +/- 150 and 200 +/- 100 Hz at concentrations of 20,000, 2000, 100, and 45 spores ml(-1) or 16,000, 1600, 80, and 36 total spores, respectively.

  14. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-02-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  15. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure.

    PubMed

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X; Yang, Xi; Liu, Ming

    2016-02-05

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also "store" the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities.

  16. Magnetic microscopy and simulation of strain-mediated control of magnetization in Ni/PMN-PT nanostructures.

    PubMed

    Gilbert, Ian; Chavez, Andres C; Pierce, Daniel T; Unguris, John; Sun, Wei-Yang; Liang, Cheng-Yen; Carman, Gregory P

    2016-10-01

    Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric PMN-PT substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling. We evaluate two types of simulations of ferromagnetic nanostructures on strained ferroelectric substrates: conventional micromagnetic simulations including a simple uniaxial strain, and coupled micromagnetic-elastodynamic simulations. Both simulations qualitatively capture the response of the magnetization changes produced by the applied strain, with the coupled solution providing more accurate representation.

  17. Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Fitchorov, Trifon; Chen, Yajie; Hu, Bolin; Gillette, Scott M.; Geiler, Anton; Vittoria, Carmine; Harris, Vincent G.

    2011-12-01

    The fringe magnetic field, induced by magnetoelectric coupling in a bilayer Fe-Ga/Pb(Mg1/3Nb2/3)O3_PbTiO3 (PMN-PT) multifunctional composite, was investigated. The induced external field is characterized as having a butterfly hysteresis loop when tuned by an applied electric field. A tuning coefficient of the electrically induced fringe magnetic field is derived from the piezoelectric and magnetostrictive properties of the composite. A measured maximum tuning coefficient, 4.5 Oe/(kV cm-1), is found to agree well with theoretical prediction. This work establishes a foundation in the design of transducers based on the magnetoelectric effect.

  18. The memory effect of magnetoelectric coupling in FeGaB/NiTi/PMN-PT multiferroic heterostructure

    PubMed Central

    Zhou, Ziyao; Zhao, Shishun; Gao, Yuan; Wang, Xinjun; Nan, Tianxiang; Sun, Nian X.; Yang, Xi; Liu, Ming

    2016-01-01

    Magnetoelectric coupling effect has provided a power efficient approach in controlling the magnetic properties of ferromagnetic materials. However, one remaining issue of ferromagnetic/ferroelectric magnetoelectric bilayer composite is that the induced effective anisotropy disappears with the removal of the electric field. The introducing of the shape memory alloys may prevent such problem by taking the advantage of its shape memory effect. Additionally, the shape memory alloy can also “store” the magnetoelectric coupling before heat release, which introduces more functionality to the system. In this paper, we study a FeGaB/NiTi/PMN-PT multiferroic heterostructure, which can be operating in different states with electric field and temperature manipulation. Such phenomenon is promising for tunable multiferroic devices with multi-functionalities. PMID:26847469

  19. Electric field controlled strain induced reversible switching of magnetization in Galfenol nanomagnets delineated on PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    We report a non-volatile converse magneto-electric effect in elliptical Galfenol (FeGa) nanomagnets of ~300 nm lateral dimensions and ~10nm thickness delineated on a PMN-PT substrate. This effect can be harnessed for energy-efficient non-volatile memory. The nanomagnets are fabricated with e-beam lithography and sputtering. Their major axes are aligned parallel to the direction in which the substrate is poled and they are magnetized in this direction with a magnetic field. An electric field in the opposite direction generates compressive strain in the piezoelectric substrate which is partially transferred to the nanomagnets and rotates their magnetization away from the major axes to metastable orientations. There they remain after the field is removed, resulting in non-volatility. Reversing the electric field generates tensile strain which returns the magnetization to the original state. The two states can encode two binary bits which can be written using the correct voltage polarity, resulting in non-toggle behavior. Scaled memory fashioned on this effect can exhibit write energy dissipation of only ~2 aJ. Work is supported by NSF under ECCS-1124714 and CCF-1216614. Sputtering was carried out at NIST Gaithersburg.

  20. Investigations on ferroelectric PMN-PT and PZN-PT single crystals ability for power or resonant actuators.

    PubMed

    Lebrun, L; Sebald, G; Guiffard, B; Richard, C; Guyomar, D; Pleska, E

    2004-04-01

    Ferroelectric single crystals of PZN-PT and PMN-PT exhibit outstanding properties: high charge coefficient (dij), high coupling factor (kij) and high strain levels under DC fields. Besides, their mechanical quality factor is believed to be low. Their usefulness for non-resonant or large bandwidth transducers has therefore been previously investigated. However, few studies have been devoted to the dielectric and mechanical losses of single crystals and to their stability under high levels of excitations (electric fields, temperature and mechanical stress). A knowledge and understanding of such performances is needed to determine whether single crystals are suitable materials for power or resonant transducers. In this work, losses and non-linearity versus external excitations are investigated. Dielectric losses and mechanical losses are measured versus electric field for different compositions, orientations. The evolution of d33 and epsilonT33 are obtained versus electric field and temperature for the longitudinal mode. Strain and hysteresis versus sweep mode (up and down) are measured near the resonance frequency using a laser Doppler vibrometer.

  1. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.

    PubMed

    Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk

    2007-03-01

    High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.

  2. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    PubMed

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films

    NASA Astrophysics Data System (ADS)

    Garg, T.; Kulkarni, A. R.; Venkataramani, N.

    2016-08-01

    The magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films prepared on a glass substrate using RF magnetron sputtering has been investigated in this work. PMN-PT thin films (i.e. PMN-PT/LCMO/Pt/Ti/glass) deposited on glass were used as a substrate for deposition of ZnFe2O4 thin films. ZnFe2O4 thin films were annealed ex situ at different temperatures. Structural, magnetic, ferroelectric, dielectric and magneto-dielectric studies were carried out on these multiferroic bilayer thin films. Structural studies revealed the presence of each layer in its respective single phase. Magnetic and ferroelectric studies revealed the ferromagnetic and ferroelectric behaviors of these bilayers. To quantify the magnetoelectric coupling, the dielectric constant of the bilayer was measured at room temperature as a function of frequency with and without the applied magnetic field. The magneto-dielectric response MD(%) was calculated by finding the relative change in dielectric constant at 1 kHz as a percentage. The observed MD response was correlated with magnetization of the ferrite layer. An MD response of 2.60% was found for a bilayer film annealed at 350 °C. At this particular annealing temperature, the ZnFe2O4 layer also has the highest saturation magnetization of 1900 G.

  4. Equivalent properties of 1-3 piezocomposites made of PMN-PT single crystals for underwater sonar transducers

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Roh, Yongrae

    2011-04-01

    The design of a piezocomposite transducer is accomplished by such advanced modeling technique as finite element method (FEM). However, accurate analysis of a 1-3 piezocomposite transducer enforces three dimensional (3D) modeling that requires very finemeshing of the transducer structure, which is frequently over affordable calculation resource capacity. In order to simplify the FEM model for complicated underwater transducers, the 1-3 piezocomposite needs to be simulated with a single phase material of equivalent properties. The 1-3 piezocomposite material in this study is made of the PMN-PT single crystal as the active material and urethane as the matrix material. Theoretical models for the calculation of new material parameters of 1-3 composites having fine lateral periodicity have been derived. For the validation of the equivalent properties, TE (thickness extensional), LE (length extensional), LTE (length thickness extensional), and TS (thickness shear) FEM models have been built to compare the impedance-frequency spectra of the 1-3 composite material and an equivalent material. Through the simulation with the models, all the equivalent elastic, dielectric and piezoelectric constants of the single phase material are determined. Further, 3D and axis-symmetric 2D FEM models of a multi-mode Tonpilz transducer have been constructed with the equivalent material properties. The equivalent material provides a very good correlation between the 2D and 3D transducer models, which is not easily attainable with the full 1-3 piezocomposite model. This result confirms the efficacy of the equivalent material properties of the 1-3 piezocomposites.

  5. Compact nanomechanical plasmonic phase modulators

    SciTech Connect

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  6. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    SciTech Connect

    Himcinschi, Cameliu Talkenberger, Andreas; Kortus, Jens; Guo, Er-Jia; Dörr, Kathrin

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  7. [111]-oriented PIN-PMN-PT crystals with ultrahigh dielectric permittivity and high frequency constant for high-frequency transducer applications

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Shujun; Luo, Jun; Geng, Xuecang; Xu, Zhuo; Shrout, Thomas R.

    2016-08-01

    The electromechanical properties of [111]-oriented tetragonal Pb(In1/2Nb1/2O3)-Pb(Mg1/3Nb2/3O3)-PbTiO3 (PIN-PMN-PT) crystals were investigated for potential high frequency ultrasonic transducers. The domain-engineered tetragonal crystals exhibit an ultrahigh free dielectric permittivity ɛ33T > 10 000 with a moderate electromechanical coupling factor k33 ˜ 0.79, leading to a high clamped dielectric permittivity ɛ33S of 2800, significantly higher than those of the rhombohedral relaxor-PT crystals and high-K (dielectric permittivity) piezoelectric ceramics. Of particular significance is that the [111]-oriented tetragonal crystals were found to possess high elastic stiffness, with frequency constant N33 of ˜2400 Hz m, allowing relatively easy fabrication of high-frequency transducers. In addition, no scaling effect of piezoelectric and dielectric properties was observed down to thickness of 0.1 mm, corresponding to an operational frequency of ˜24 MHz. These advantages of [111]-oriented tetragonal PIN-PMN-PT crystals will benefit high-frequency ultrasonic array transducers, allowing for high sensitivity, broad bandwidth, and reduced noise/crosstalk.

  8. Fabrication and performance of endoscopic ultrasound radial arrays based on PMN-PT single crystal/epoxy 1-3 composite.

    PubMed

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-02-01

    In this paper, 0.7Pb(Mg(¹/₃)Nb(²/₃)O₃-0.3PbTiO₃ (PMN-PT) single crystal/epoxy 1/3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (k(t) = 0.81%), very low mechanical quality factor (Q(m) = 11) and relatively low acoustic impedance (Z(t) = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1/3 composite radial array transducer with 64 elements was tested in a pulseecho response measurement. The -6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be -32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications.

  9. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    NASA Astrophysics Data System (ADS)

    Himcinschi, Cameliu; Guo, Er-Jia; Talkenberger, Andreas; Dörr, Kathrin; Kortus, Jens

    2016-01-01

    BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO3, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  10. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite

    NASA Astrophysics Data System (ADS)

    Zeng, Zhou; Gai, Linlin; Wang, Xian; Lin, Di; Wang, Sheng; Luo, Haosu; Wang, Dong

    2017-03-01

    We present a high performance flexible piezoelectric energy harvester constituted by a Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal/epoxy 2-2 composite flake, a polyethylene terephthalate (PET) substrate, and a PET cover, which is capable of harvesting energy from biomechanical movements. Electrical properties of the device under different epoxy volume fractions, load resistances, and strains are studied systematically. Both theoretical and experimental results show that the plastic-composite-plastic structure contributes to the flexibility of the device, and a high performance bulk PIN-PMN-PT single crystal (a thickness of 50 μm) results in its high electrical output. At a low excitation frequency of 4.2 Hz, the optimal flexible energy harvester (with ve = 21%) can generate a peak voltage of 12.9 V and a maximum power density of 0.28 mW/cm3 under a bending radius of 10.5 mm, and maintain its performance after 40 000 bending-unbending cycles. High flexibility and excellent electrical output at low operational frequency demonstrate the promise of the device in biomechanical motion energy harvesting for wireless and portable low-power electronics.

  11. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    SciTech Connect

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; Dorr, Kathrin; Kortus, Jens

    2016-01-27

    In this study, BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poisson number for BiFeO3 one can determine the volume change induced by strain, and therefore the Gr neisen parameters for specific phonon modes.

  12. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    DOE PAGES

    Himcinschi, Cameliu; Guo, Er -Jia; Talkenberger, Andreas; ...

    2016-01-27

    In this study, BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows to obtain a quantitative correlation between strain and the shift of the Raman-active phonons, ruling out the influence of extrinsic factors, such as growth conditions, crystalline quality of substrates, or film thickness. Using the Poisson number for BiFeO3 one can determine the volume changemore » induced by strain, and therefore the Gr neisen parameters for specific phonon modes.« less

  13. Fabrication and Performance of Endoscopic Ultrasound Radial Arrays Based on PMN-PT Single Crystal/Epoxy 1-3 Composite

    PubMed Central

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K. Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-01-01

    In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications. PMID:21342833

  14. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  15. On the Binding Stress-Enhanced Sensitivity of (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO3) 0.35 (PMN-PT) Piezoelectric Plate Sensor (PEPS)

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    (Pb(Mg1/3Nb2/3)O3)0.65-(PbTiO 3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) showed enhanced sensitivity in chemical and biological sensing applications which has been attributed to binding-induced crystalline orientation switching in the PMN-PT layer. However, so far there has been no direct demonstration of PEPS crystalline orientation switching upon target-analyte binding. Using biotin and streptavidin binding as a model detection system and by direct X-Ray diffraction observations after analyte binding we have unambiguously demonstrated that switching of the crystalline orientations of the PMN-PT layer indeed occurred. In addition, we have shown that PEPS sensitivity enhancement increased with an increasing transverse electromechanical coupling constant, -k31, of the PMN-PT layer--which is known to correlate with the crystalline orientation switching capability--by increasing the grain size of the PMN-PT layer or by applying a DC bias electric field. Finally, unprecedented high sensitivity of PEPS with high -k31, (i.e., -k31 > 0.3) were illustrated by the aM (10-18 M) sensitivity of in situ DNA hybridization detection without amplification and by the 100 fg/ml (10-13 g/ml) sensitivity of rapid, in situ protein detection in biological fluids such as troponin I detection in serum for early sign of myocardial infarction (heart attack), Her2 detection in serum for cancer treatment and monitoring, Tn antigen and anti-Tn antibody detection in serum for early cancer detection, and Toxins detection in stool for Clostridium difficile infection detection.

  16. Apparatus for the compact cooling of modules

    SciTech Connect

    Iyengar, Madhusudan K.; Parida, Pritish R.

    2015-07-07

    An apparatus for the compact cooling of modules. The apparatus includes a clip, a first cover plate coupled to a first side of the clip, a second cover plate coupled to a second side of the clip opposite to the first side of the clip, a first frame thermally coupled to the first cover plate, and a second frame thermally coupled to the second cover plate. Each of the first frame and the second frame may include a plurality of channels for passing coolant through the first frame and the second frame, respectively. Additionally, the apparatus may further include a filler for directing coolant through the plurality of channels, and for blocking coolant from flowing along the first side of the clip and the second side of the clip.

  17. Fabrication of a PMN-PT Single Crystal-Based Transcranial Doppler Transducer and the Power Regulation of Its Detection System

    PubMed Central

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-01-01

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The −6 dB bandwidth of the transducer is 68.4% and the sensitivity is −17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries. PMID:25536000

  18. Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011).

    PubMed

    Liu, Ming; Hoffman, Jason; Wang, Jing; Zhang, Jinxing; Nelson-Cheeseman, Brittany; Bhattacharya, Anand

    2013-01-01

    A central goal of electronics based on correlated materials or 'Mottronics' is the ability to switch between distinct collective states with a control voltage. Small changes in structure and charge density near a transition can tip the balance between competing phases, leading to dramatic changes in electronic and magnetic properties. In this work, we demonstrate that an electric field induced two-step ferroelastic switching pathway in (011) oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates can be used to tune the Verwey metal-insulator transition in epitaxial Fe3O4 films in a stable and reversible manner. We also observe robust non-volatile resistance switching in Fe3O4 up to room temperature, driven by ferroelastic strain. These results provides a framework for realizing non-volatile and reversible tuning of order parameters coupled to lattice-strain in epitaxial oxide heterostructures over a broad range of temperatures, with potential device applications.

  19. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-01

    We report observation of a ‘non-volatile’ converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in ‘non-volatility’. In isolated nanomagnets, the magnetization rotates by \\lt 90^\\circ upon application of the electric field, but in a dipole-coupled pair consisting of one ‘hard’ and one ‘soft’ nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet’s magnetization rotates by \\gt 90^\\circ upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  20. Electric field control of magnetic states in isolated and dipole-coupled FeGa nanomagnets delineated on a PMN-PT substrate.

    PubMed

    Ahmad, Hasnain; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-10-09

    We report observation of a 'non-volatile' converse magneto-electric effect in elliptical FeGa nanomagnets delineated on a piezoelectric PMN-PT substrate. The nanomagnets are first magnetized with a magnetic field directed along their nominal major axes. Subsequent application of a strong electric field across the piezoelectric substrate generates strain in the substrate, which is partially transferred to the nanomagnets and rotates the magnetizations of some of them away from their initial orientations. The rotated magnetizations remain in their new orientations after the field is removed, resulting in 'non-volatility'. In isolated nanomagnets, the magnetization rotates by <90° upon application of the electric field, but in a dipole-coupled pair consisting of one 'hard' and one 'soft' nanomagnet, which are both initially magnetized in the same direction by the magnetic field, the soft nanomagnet's magnetization rotates by [Formula: see text] upon application of the electric field because of the dipole influence of the hard nanomagnet. This effect can be utilized for a nanomagnetic NOT logic gate.

  1. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system.

    PubMed

    Yue, Qingwen; Liu, Dongxu; Wang, Wei; Di, Wenning; Lin, Di; Wang, Xi'an; Luo, Haosu

    2014-12-19

    Doppler sonographic measurement of flow velocity in the basal cerebral arteries through the intact skull was developed using a pulsed Doppler technique and 2 MHz emitting frequency. Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were chosen to be the piezoelectric transducer material due to their ultrahigh piezoelectric coefficients, high electromechanical coupling coefficients and low dielectric loss. The pulse-echo response of the transducer was measured using the conventional pulse-echo method in a water bath at room temperature. The -6 dB bandwidth of the transducer is 68.4% and the sensitivity is -17.4 dB. In order to get a good match between transducer and detection system, different transmission powers have been regulated by changing the impedance of the transmitting electric circuit. In the middle cerebral artery (MCA) measurement photograph results, as the transmission power is increasing, the detection results become clearer and clearer. A comparison at the same transmission power for different transducers shows that the detection photograph obtained by the crystal transducer was clearer than that obtained with a commercial transducer, which should make it easier for doctors to find the cerebral arteries.

  2. Giant Electric Field Control of Magnetism and Narrow Ferromagnetic Resonance Linewidth in FeCoSiB/Si/SiO2/PMN PT Multiferroic Heterostructures (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2016-06-06

    1 Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures...c) 1Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, 02115, USA 2Materials and Manufacturing...coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175Oe

  3. Photomagnetism and photoluminescence (PL) of (Pb-Fe-e(-)) complex in lead magnesium niobate-lead titanate (PMN-PT) crystals containing beta-PbO nanoclusters.

    PubMed

    Bairavarasu, Sundar R; Edwards, Matthew E; Sastry, Medury D; Kochary, Faris; Kommidi, Praveena; Reddy, B Rami; Lianos, Dimitrios; Aggarwal, Manmohan D

    2008-12-15

    We present electron paramagnetic resonance (EPR)--evidence of photomagnetism under the conditions of in situ green laser illumination (photo-EPR) in lead magnesium niobate-lead titanate, Pb(Mg,Nb)O3-PbTiO3 (PMN-PT), containing nanoparticles/wires of orthorhombic beta-PbO as identified by Raman spectroscopy. Photo-EPR studies of the sample containing beta-PbO, brownish red in color, have shown intense line at g=2.00, and its yield increased when produced in the presence of 7.5 kG external magnetic field suggesting the formation of magnetic polaron. This was identified as due to interaction between Fe3+, photoinduced Pb3+ and unpaired electron trapped at oxygen vacancies. The photoinduced growth and decay of magnetic polaron has shown a non-exponential behavior. Photoluminescence (PL) studies were conducted with excitation at 308 nm (XeCl laser) and also at 454.5, 488 and 514.5 nm using Ar+ laser. The excitation with 308 nm gave broad PL centered at 500 and 710 nm the latter being quite prominent in beta-PbO containing crystals, along with cooperative luminescence at 350 nm involving two emitting centers. The excitation with Ar+ laser lines, close to the electronic absorption in samples containing beta-PbO gave richer and sharp PL emission in red region from the constituents of the magnetic polaron and also intense anti-Stokes emission on excitation with 514.5 nm radiation. This appears to be due to phototransfer optically stimulated luminescence (PT-OSL) involving electron-hole recombination at photoinduced magnetic polaron site.

  4. Design of compact Marx module with square pulse output

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Xie, Weiping; Yuan, Jianqiang; Wang, Lingyun; Ma, Xun; Jiang, Ping

    2016-07-01

    Compact pulsed power system based on compact Marx generator is widely used in terms of drive resistance and capacitive loads. This system usually adopts high performance components such as high energy density capacitors, compact switches, and integrated structure. Traditional compact Marx generator can only output double-exponential pulse profile. In this paper a compact, low-impedance Marx module which can output rectangular pulse profile is design and tested. This module has multiple circuits of different discharge frequencies in parallel to generate quasi-rectangular pulse. Discharge characteristic of an ideal module with infinite branches is calculated theoretically. A module with two branches has been designed and tested. Test results show that the impedance of the module is 1.2 Ω. When charging voltage is 100.6 kV and load resistance is 1 Ω, the peak output pulse is 45.2 kV voltage, the peak power is about 2 GW, the pulse width is about 130 ns, and the rise time is about 35 ns. The energy density and power density of the module are 15 kJ/m3 and 140 GW/m3, respectively.

  5. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  6. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  7. Optical inspection algorithm for dust defect of compact camera module

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Ju; Chen, Li-Yin; Lu, Mei-Ju

    2016-09-01

    Dust is one of the most critical issues in assembly of Compact Camera Module (CCM) for mobile phones. Defect due to dust entry or dust deposit severely degrades image quality. There have been lots of literatures about the compensating of dust defect on images by image processing, but the discussion about where the dust locates is still deficient. Dust may sneak in the CCM in any step of packaging process, so the analysis of the dust location may be useful for improving of the production line. This work develops an optical inspection algorithm to detect the location of dust inside CCM based on imaging optics. A planar light source with uniformly emission is designed as the capture target. A series of defocused images are then taken and analyzed. According to the dependence of the image defect on the capture distance, the location of the dust can be well defined. This inspection algorithm provides an easy and efficient way to help manufacturers improve their packaging process.

  8. Compact Pulse Width Modulation Circuitry for Silicon Photomultiplier Readout

    PubMed Central

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-01-01

    The adoption of solid state photo-detectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analog channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTC), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal to noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analog switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid state photomultiplier (PS-SSPM). Results show a 4×4 array 0.9mm×0.9mm×15mm of LYSO crystals being identified on the 5mm×5mm PS-SSPM at room temperature with no degradation for 2-fold multiplexing. In principle, much larger multiplexing ratios are

  9. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger

  10. Compact Multimedia Systems in Multi-chip Module Technology

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalaj, Leon

    1995-01-01

    This tutorial paper shows advanced multimedia system designs based on multi-chip module (MCM) technologies that provide essential computing, compression, communication, and storage capabilities for various large scale information highway applications.!.

  11. Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith; Church, Sarah; Lai, Richard; Mei, Xiaobing

    2009-01-01

    A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.

  12. Compact 40 Gbit/s EML Module Integrated with Driver IC

    NASA Astrophysics Data System (ADS)

    Yagisawa, Takatoshi; Ikeuchi, Tadashi

    A compact (13.3 × 8.0 × 5.6mm) 40Gbit/s 1.55-µm electroabsorption (EA) modulator monolithically integrated distributed feedback (DFB) laser diode (EML) [1] module integrated with a driver IC has been developed. Its compactness was realized by employing a broadband feed-through and a bias tee which were accurately designed by 3-dimensional (3D) electromagnetic simulation. It was confirmed that the simulation results of the frequency response and the actual measurement results are corresponding well. Clear eye opening of the 40Gbit/s optical output waveform of the fabricated EML module was observed. Degradation was not observed even when the 40Gbit/s electrical signal was launched into the module via the flexible printed circuit (FPC).

  13. Compact direct space-to-time pulse shaping with a phase-only spatial light modulator.

    PubMed

    Mansuryan, T; Kalashyan, M; Lhermite, J; Suran, E; Kermene, V; Barthelemy, A; Louradour, F

    2011-05-01

    A very compact and innovative pulse shaper is proposed and demonstrated. The standard architecture for pulse shaping that is composed of diffraction gratings associated with an amplitude-phase spatial light modulator (SLM) is replaced by a single phase-only SLM. It acts as a pulse stretcher and as an amplitude and phase modulator at the same time. Preliminary experiments demonstrate the accurate control of amplitude and phase of shaped pulses.

  14. Compact and fast photonic crystal silicon optical modulators.

    PubMed

    Nguyen, Hong C; Hashimoto, Satoshi; Shinkawa, Mizuki; Baba, Toshihiko

    2012-09-24

    We demonstrate the first sub-100 μm silicon Mach-Zehnder modulators (MZMs) that operate at >10 Gb/s, by exploiting low-dispersion slow-light in lattice-shifted photonic crystal waveguides (LSPCWs). We use two LSPCW-MZM structures, one with LSPCWs in both arms of the MZM, and the other with an LSPCW in only one of the arms. Using the first structure we demonstrate 10 Gb/s operation with a operating bandwidth of 12.5 nm, in a device with a phase-shifter length of only 50 μm. Using the second structure, owing to a larger group index as well as lower spectral noise, we demonstrate 40 Gb/s operation with a phase-shifter length of only 90 μm, which is more than an order-of-magnitude shorter than most 40 Gb/s MZMs.

  15. Ultra-compact optical modulator by graphene induced electro-refraction effect

    NASA Astrophysics Data System (ADS)

    Hao, Ran; Du, Wei; Chen, Hongsheng; Jin, Xiaofeng; Yang, Longzhi; Li, Erping

    2013-08-01

    We report a highly tunable graphene embedded waveguide which overall modal index is in linear relationship with the in-plane permittivity of graphene and the electro-refraction effect has been significantly enhanced after graphene is embedded. An eight-layer graphene embedded Mach-Zender modulator has been theoretically demonstrated with the advantage of ultra-compact footprint (4 × 30 μm2), high modulation efficiency (20 V.μm), fast modulation speed, and large extinction ratio (35 dB). Our results may promote various on-chip active components, boosting the utilization of graphene in optical applications.

  16. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-12-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained.

  17. Custom chipset and compact module design for a 75-110 GHz laboratory signal source

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.

    2016-12-01

    We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.

  18. Thirty-two channel LED array spectrometer module with compact optomechanical construction

    NASA Astrophysics Data System (ADS)

    Malinen, J.; Keranen, H.; Hannula, T.; Hyvarinen, T.

    1991-12-01

    A compact and versatile 32-wavelength spectrometer module has been developed based on a linear LED array and a fixed grating monochromator. The design includes all the optical, mechanical, and optoelectronic parts in a size of approximately 4 x 4 x 7 cu cm. The wavelength bands are scanned electronically without any moving parts. All the optical parts have been assembled to form a cemented solid glass construction, which is mechanically and thermally stable and well protected against water condensation or dust. The developed source module can be easily modified and has obvious advantages for spectroscopic analyzers, especially in process and portable applications.

  19. Compact Dielectric Wall Accelerator Development For Intensity Modulated Proton Therapy And Homeland Security Applications

    SciTech Connect

    Chen, Y -; Caporaso, G J; Guethlein, G; Sampayan, S; Akana, G; Anaya, R; Blackfield, D; Cook, E; Falabella, S; Gower, E; Harris, J; Hawkins, S; Hickman, B; Holmes, C; Horner, A; Nelson, S; Paul, A; Pearson, D; Poole, B; Richardson, R; Sanders, D; Stanley, J; Sullivan, J; Wang, L; Watson, J; Weir, J

    2009-06-17

    Compact dielectric wall (DWA) accelerator technology is being developed at the Lawrence Livermore National Laboratory. The DWA accelerator uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. Its high electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The DWA concept can be applied to accelerate charge particle beams with any charge to mass ratio and energy. Based on the DWA system, a novel compact proton therapy accelerator is being developed. This proton therapy system will produce individual pulses that can be varied in intensity, energy and spot width. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources. Applications of the DWA accelerator to problems in homeland security will also be discussed.

  20. A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator.

    PubMed

    Caporaso, G J; Mackie, T R; Sampayan, S; Chen, Y-J; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Paul, A; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J; Reckwerdt, P J; Schmidt, R; Pearson, D; Flynn, R W; Matthews, D; Purdy, J

    2008-06-01

    A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.

  1. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition.

    PubMed

    Briggs, Ryan M; Pryce, Imogen M; Atwater, Harry A

    2010-05-24

    We have integrated lithographically patterned VO2 thin films grown by pulsed laser deposition with silicon-on-insulator photonic waveguides to demonstrate a compact in-line absorption modulator for use in photonic circuits. Using single-mode waveguides at lambda=1550 nm, we show optical modulation of the guided transverse-electric mode of more than 6.5 dB with 2 dB insertion loss over a 2-microm active device length. Loss is determined for devices fabricated on waveguide ring resonators by measuring the resonator spectral response, and a sharp decrease in resonator quality factor is observed above 70 degrees C, consistent with switching of VO2 to its metallic phase. A computational study of device geometry is also presented, and we show that it is possible to more than double the modulation depth with modified device structures.

  2. Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Atwood, Bryan; Su, Yu; Limkrailassiri, Kevin; Nettleton, John E.; Goldberg, Lew; Cole, Brian J.; Hough, Nathaniel

    2015-02-01

    A highly compact and low power consuming Q-switch module was developed based on a fast single-axis MEMS mirror, for use in eye-safe battery-powered laser range finders The module's 1.6mm x 1.6mm mirror has <99% reflectance at 1535nm wavelength and can achieve mechanical angle slew rates of over 500 rad/sec when switching the Er/Yb:Glass lasing cavity from pumping to lasing state. The design targeted higher efficiency, smaller size, and lower cost than the traditional Electro-Optical Q-Switch. Because pulse-on-demand capability is required, resonant mirrors cannot be used to achieve the needed performance. Instead, a fast point-to-point analog single-axis tilt actuator was designed with a custom-coated high reflectance (HR) mirror to withstand the high intra-cavity laser fluence levels. The mirror is bonded on top of the MEMS actuator in final assembly. A compact MEMS controller was further implemented with the capability of autonomous on-demand operation based on user-provided digital trigger. The controller is designed to receive an external 3V power supply and a digital trigger and it consumes ~90mW during the short switching cycle and ~10mW in standby mode. Module prototypes were tested in a laser cavity and demonstrated high quality laser pulses with duration of ~20ns and energy of over 3mJ.

  3. Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Knowles, G. J.; Shea, B. G.

    2006-06-01

    We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.

  4. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  5. Compact Modules for Wireless Communication Systems in the E-Band (71-76 GHz)

    NASA Astrophysics Data System (ADS)

    Montero-de-Paz, Javier; Oprea, Ion; Rymanov, Vitaly; Babiel, Sebastian; García-Muñoz, Luis Enrique; Lisauskas, Alvydas; Hoefle, Matthias; Jimenez, Álvaro; Cojocari, Oleg; Segovia-Vargas, Daniel; Palandöken, Merih; Tekin, Tolga; Stöhr, Andreas; Carpintero, Guillermo

    2013-04-01

    The millimeter-wave spectrum above 70 GHz provides a cost-effective solution to increase the wireless communications data rates by increasing the carrier wave frequencies. We report on the development of two key components of a wireless transmission system, a high-speed photodiode (HS-PD) and a Schottky Barrier Diode (SBD). Both components operate uncooled, a key issue in the development of compact modules. On the transmitter side, an improved design of the HS-PD allows it to deliver an output RF power exceeding 0 dBm (1 mW). On the receiver side, we present the design process and achieved results on the development of a compact direct envelope detection receiver based on a quasi-optical SDB module. Different resonant (meander dipole) and broadband (Log-Spiral and Log-Periodic) planar antenna solutions are designed, matching the antenna and Schottky diode impedances at high frequency. Impedance matching at baseband is also provided by means of an impedance transition to a 50 Ohm output. From this comparison, we demonstrate the excellent performance of the broadband antennas over the entire E-band by setting up a short-range wireless link transmitting a 1 Gbps data signal.

  6. First operational experience from a compact, highly energy efficient Data Center Module

    NASA Astrophysics Data System (ADS)

    Acín, V.; Cruz, R.; Delfino, M.; Martínez, F.; Rodríguez, M.; Tallada, P.

    2011-12-01

    PIC, the Port d'Informació Científica in Barcelona, Spain has provisioned a compact, highly efficient Data Centre Module in order to expand its CPU servers at a minimal energy cost. The design aims are to build an enclosure of 30 square meters or less and equip it with commodity data centre components (for example, standard gas expansion air conditioners) which can host 80 KW of CPU servers with a PUE less than 1.7 (to be compared with PIC's legacy computer room with an estimated PUE of 2.3). Forcing the use of commodity components has lead to an interesting design, where for example a raised floor is used more as an air duct rather than to install cables, resulting in an "air conditioner which computes". The module is instrumented with many thermometers whose data will be used to compare to computer room simulation programs. Also, each electrical circuit has an electric meter, yielding detailed data on power consumption. The paper will present the first experience from operating the module. Although the module has a slightly different geometry from a "container", the results can be directly applied to them.

  7. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    NASA Astrophysics Data System (ADS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-08-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  8. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    SciTech Connect

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-08-25

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  9. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  10. Compact 100Gb/s DP-QPSK integrated receiver module employing three-dimensional assembly technology.

    PubMed

    Tanobe, H; Kurata, Y; Nakanishi, Y; Fukuyama, H; Itoh, M; Yoshida, E

    2014-03-10

    We demonstrate a compact 100 Gbit/s DP-QPSK receiver module that is only 18 mm (W) x 16 mm (D) x 2.8 mm (H). The module size is reduced by using a ball grid array (BGA) package with three-dimensional assembly technology and by applying a heterogeneous integrated PLC. Error-free DP-QPSK signal demodulation is successfully demonstrated.

  11. Modulation of the properties of thin ferromagnetic films with an externally applied electric field in ferromagnetic/piezoelectric/ferromagnetic hybrids

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Zeibekis, M.; Zhang, S. J.

    2013-10-01

    In many cases, technological advances are based on artificial low-dimensional structures of heterogeneous constituents, thus called hybrids, that when come together they provide stand-alone entities that exhibit entirely different properties. Such hybrids are nowadays intensively studied since they are attractive for both basic research and oncoming practical applications. Here, we studied hybrids constituted of piezoelectric (PE) and ferromagnetic (FM) components in the form FM/PE/FM, ultimately aiming to provide means for the controlled modulation of the properties of the FM electrodes, originating from the strain imposed to them by the PE mediator when an electric field is applied. The PE component is in single crystal form, 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT), while the FM outer layers are Cobalt (Co) in thin film form. Detailed magnetization measurements performed under variation of the electric field applied to PMN-PT demonstrated the efficient modulation of the properties of the Co electrodes at low temperature (coercive field modulation up to 27% and saturation magnetization absolute modulation up to 4% at T = 10 K for electric field not exceeding 6 kV/cm). The modulation degree faints upon increase of the temperature, evidencing that the thermal energy eventually dominates all other relevant energy scales. Candidate mechanisms are discussed for the explanation of these experimental observations. The results presented here demonstrate that commercially available materials can result in quantitatively noticeable effects. Thus, such elemental Co/PMN-PT/Co units can be used as a solid basis for the development of devices.

  12. Design of a Compact, Portable Test System for Thermoelectric Power Generator Modules

    NASA Astrophysics Data System (ADS)

    Faraji, Amir Yadollah; Akbarzadeh, Aliakbar

    2013-07-01

    Measurement of fundamental parameters of a thermoelectric generator (TEG) module, including efficiency, internal electrical resistance, thermal resistance, power output, Seebeck coefficient, and figure of merit ( Z), is necessary in order to design a thermoelectric-based power generation system. This paper presents a new design for a compact, standalone, portable test system that enables measurement of the main parameters of a TEG over a wide range of temperature differences and compression pressures for a 40 mm × 40 mm specimen. The Seebeck coefficient and figure of merit can also be calculated from the information obtained. In the proposed system, the temperature of each side of the TEG can be set at the desired temperature—the hot side as high as 380°C and the cold side as low as 5°C, with 0.5°C accuracy—utilizing an electrical heating system and a thermoelectric-based compact chilling system. Heating and cooling procedures are under control of two proportional-integral-derivative (PID) temperature controllers. Using a monitored pressure mechanism, the TEG specimen is compressed between a pair of hot and cold aluminum cubes, which maintain the temperature difference across the two sides of the TEG. The compressive load can be varied from 0 kPa to 800 kPa. External electrical loading is applied in the form of a direct-current (DC) electronic load. Data collection and processing are through an Agilent 34972A data logger, a computer, and BenchLink software, with results available as computer output. The input power comes from a 240-V general-purpose power point, and the only sound-generating component is a 4-W cooling fan. Total calculated uncertainty in results is approximately 7%. Comparison between experimental data and the manufacturer's published datasheet for a commercially available specimen shows good agreement. These results obtained from a preliminary experimental setup serve as a good guide for the design of a fully automatic portable test system

  13. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  14. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  15. High-performance PMN-PT thick films.

    PubMed

    Kosec, Marija; Ursic, Hana; Holc, Janez; Hrovat, Marko; Kuscer, Danjela; Malic, Barbara

    2010-10-01

    This article describes some of our work on ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃ (0.65PMN-0.35PT) thick films printed on alumina substrates. These thick films, with the nominal composition ₀.₆₅Pb(Mg₁/₃Nb(₂/₃)O₃-₀.₃₅PbTiO₃, were produced by screen-printing and firing a paste prepared from an organic vehicle and pre-reacted fine particles of avery chemically homogeneous powder. To improve the adhesion of the 0.65PMN-0.35PT to the platinized alumina substrate,a Pb(Zr₀.₅₃Ti₀.₄₇)O₃ layer was deposited between the electrode and the substrate. The samples were then sintered at 950 °C for 2 h with various amounts of packing powder on the alumina (Al₂O₃) substrates. The sintering procedure was optimized to obtain dense 0.65PMN-0.35PT films. The films were then characterized using scanning electron microscopy as well as measurements of the dielectric and piezoelectric constants.The electrostrictive behavior of the 0.65PMN-0.35PT thick films was investigated using an atomic force microscope(AFM). Finally, substrate-free, large-displacement bending type actuators were prepared and characterized, and the normalized displacement (i.e., the displacement per unit length) of the actuators was determined to be 55 μm/cm at 3.6 kV/cm.

  16. Nanodomain structures with hierarchical inhomogeneities in PMN-PT.

    PubMed

    Kurushima, Kosuke; Kobayashi, Keisuke; Mori, Shigeo

    2012-09-01

    The nanometric domain configuration of (1 - x) Pb(Mg(1/3)Nb(2/3))O(3-x)PbTiO(3) [(1 - x)PMN-xPT] single crystals in the monoclinic phase around a morphotropic phase boundary (MPB) has been examined thoroughly by means of transmission electron microscopy (TEM). Domain structures with hierarchically inhomogeneous configuration were found in the monoclinic phase near the MPB region around x ~ 0.32, which are characterized as nanoscaled lamella-type domain structures with ~10 nm width inside macroscopic-sized banded domains with 100 to 200 nm width. To elucidate formation processes of the domain structures with hierarchically inhomogeneous configuration, an in situ TEM observation of changes of the domain structures in the temperature window between 298K and 500K was carried out. It is revealed that these nanoscaled lamella-type domain structures with ~10 nm width appear inside the banded domains as a result of the tetragonal structure and are inherent to the monoclinic phase.

  17. Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter.

    PubMed

    Gao, Qiankun; Liu, Juan; Duan, Xinhui; Zhao, Tao; Li, Xin; Liu, Peilin

    2017-04-03

    A compact see-through three-dimensional head-mounted display (3D-HMD) is proposed and investigated in this paper. Two phase holograms are analytically extracted from the object wavefront and uploaded on different zones of the spatial light modulator (SLM). A holographic grating is further used as the frequency filter to couple the separated holograms together for wavefront modulation. The developed preliminary prototype has a simple optical facility and a compact structure (133.8mm × 40.4mm × 35.4mm with a 47.7mm length viewing accessory). Optical experiments demonstrated that the proposed system can present 3D images to the human eye with full depth cues. Therefore, it is free of the accommodation-vergence conflict and visual fatigue problem. The dynamic display ability is also tested in the experiments, which provides a promising potential for the true 3D interactive display.

  18. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    NASA Astrophysics Data System (ADS)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  19. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  20. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  1. FERRITE-FREE, OIL-SWITCHED, FOUR-STAGE, HIGH-GRADIENT MODULE FOR COMPACT PULSED POWER APPLICATIONS

    SciTech Connect

    Rhodes, M A; Watson, J; Sanders, D; Sampayan, S; Caporaso, G

    2007-06-15

    We describe the design and present initial experimental results of a novel, high-gradient, compact pulsed power module. Our application focus is linear accelerators but our technology is easily applicable to a wide range of pulse-power applications. Our design incorporates and combines for the first time a number of our recently developed, enabling technologies including: a novel, bipolar pulse-forming line allowing module stacking without ferrites, very compact and fast oil filled switches, novel high-dielectric constant insulator/energy storage material, and a novel method for reducing edge enhancements in the pulse forming structure. The combination of these technologies enables us to design a very compact stackable module that will deliver high-gradient (5-10 MV/m) voltage at 5-10kA to arbitrary loads. Our prototype is comprised of four stages. Each stage is designed to operate at 300kV producing 1.2-MV into 120 Ohms. The pulse length is 25-ns and the pulse-shape is rectangular. We present initial experimental results up to 75 kV per stage with the switches operating in self-break mode.

  2. Application of single-crystalline PMN-PT and PIN-PMN-PT in high-performance pyroelectric detectors.

    PubMed

    Yu, Ping; Ji, Yadong; Neumann, Norbert; Lee, Sang-Goo; Luo, Hasou; Es-Souni, Mohammed

    2012-09-01

    The suitability for use in pyroelectric detectors of single-crystalline doped and undoped lead indium niobate-lead magnesium niobate-lead titanate was tested and compared with high-quality Mn-doped lead magnesium niobate-lead titanate and standard lithium tantalate. Pyroelectric and dielectric measurements confirmed an increased processing and operating temperature range because of the higher phase transitions of lead indium niobate-lead magnesium niobate-lead titanate. Pyroelectric coefficients of 705 to 770 μC/m(2)K were obtained with doped and undoped lead indium niobate-lead magnesium niobate-lead titanate, which are about 70% to 80% of the pyroelectric coefficient of lead magnesium niobate-lead titanate but 4 times higher than standard lithium tantalate. Manganese doping has been proved as a solution to decrease the dielectric loss of lead magnesium niobate-lead titanate and it also works well for lead indium niobate-lead magnesium niobate-lead titanate. An outstanding specific detectivity D* of about 1.1 · 10(9) cm·Hz(1/2)/W was achieved at a frequency of 2 Hz for Mn-doped lead magnesium niobate-based detectors.

  3. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system.

    PubMed

    Yan, Jing; Xing, Yufei; Guo, Zhengbo; Li, Qing

    2015-06-15

    Liquid crystal phase modulators are emerging as a new technological advancement, since they can be used for a wide range of applications. To improve their performance, polymer stabilized blue phase liquid crystal (PS-BPLC) phase modulators with fast response time and accurate phase profile become a necessary. Here, we proposed a facile PS-BPLC phase modulator to achieve particularly low voltage and high resolution. By employing a specific external compact optical system setup, the driving voltage is reduced to 26.09V to obtain 2π phase change at the wavelength of 532 nm. An accurate numerical modeling is also conducted to provide a systematic investigation of the fringing electric field effect to the performance of high resolution PS-BPLC phase modulator. The wavefront distortion caused by the fringing electric field can be automatically compensated to generate accurate phase profile for fast response liquid crystal phase modulator. This work provides a new protocol to realize liquid crystal on silicon based fast response and high resolution phase modulator.

  4. Haemoglobin content modulated deformation dynamics of red blood cells on a compact disc.

    PubMed

    Kar, Shantimoy; Ghosh, Uddipta; Maiti, Tapas Kumar; Chakraborty, Suman

    2015-12-21

    We investigate the deformation characteristics of red blood cells (RBCs) on a rotating compact disc platform. Our study brings out the interplay between haemoglobin content and RBC deformability in a centrifugally actuated microfluidic environment. We reveal that RBC deformations follow the similar trend of principal stress distributed throughout the radial direction, rendering an insight into the mechano-physical processes involved. This study can be used as a diagnostic marker to determine haematological disorders in diseased blood samples tested on compact disc based microfluidic platforms.

  5. Ultra-compact electro-absorption VO2–Si modulator with TM to TE conversion

    NASA Astrophysics Data System (ADS)

    Sánchez Diana, Luis David; Cortés Juan, Frederic; Rosa Escutia, Alvaro; Sanchis Kilders, Pablo

    2017-03-01

    An ultra-compact (6 μm length) electro-absorber modulator with transverse magnetic (TM) to transverse-electric (TE) conversion is proposed. The device performance is controlled by means of the semiconductor-to-metal transition of the vanadium dioxide. For the insulating state, the device performs as a TM–TE converter with insertion losses of 0.3 dB and extinction ratio of 36 dB at a wavelength of 1.55 μm. Changing to the metallic state, the TE generated component is attenuated due to the increase of losses in the VO2 and the mode mismatch. This electro-absorber modulator shows a broadband operation with an extinction ratio higher than 10 dB and insertion losses below 0.5 dB for a range of 60 nm covering the whole C-band.

  6. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy

    PubMed Central

    Hansen, K.; Reckleben, C.; Diehl, I.; Klär, H.

    2015-01-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-Kα) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%. PMID:26366028

  7. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture.

    PubMed

    Zhou, Wenbin; Fan, Qingxia; Zhang, Qiang; Cai, Le; Li, Kewei; Gu, Xiaogang; Yang, Feng; Zhang, Nan; Wang, Yanchun; Liu, Huaping; Zhou, Weiya; Xie, Sishen

    2017-03-24

    It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m(-1) K(-2) and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.

  8. High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbin; Fan, Qingxia; Zhang, Qiang; Cai, Le; Li, Kewei; Gu, Xiaogang; Yang, Feng; Zhang, Nan; Wang, Yanchun; Liu, Huaping; Zhou, Weiya; Xie, Sishen

    2017-03-01

    It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ~1,500 μW m-1 K-2 and outstanding stability in air without encapsulation. Inspired by the findings, we design and successfully fabricate the compact-configuration flexible TE modules, which own great advantages compared with the conventional π-type configuration modules and well integrate the superior thermoelectric properties of p-type and n-type carbon nanotube films resulting in a markedly high performance. Moreover, the research results are highly scalable and also open opportunities for the large-scale production of flexible thermoelectric modules.

  9. A compact pulse shape discriminator module for large neutron detector arrays

    NASA Astrophysics Data System (ADS)

    Venkataramanan, S.; Gupta, Arti; Golda, K. S.; Singh, Hardev; Kumar, Rakesh; Singh, R. P.; Bhowmik, R. K.

    2008-11-01

    A cost-effective high-performance pulse shape discriminator module has been developed to process signals from organic liquid scintillator-based neutron detectors. This module is especially designed for the large neutron detector array used for studies of nuclear reaction dynamics at the Inter University Accelerator Center (IUAC). It incorporates all the necessary pulse processing circuits required for neutron spectroscopy in a novel fashion by adopting the zero crossover technique for neutron-gamma (n- γ) pulse shape discrimination. The detailed layout of the circuit and different features of the module are described in the present paper. The quality of n- γ separation obtained with this electronics is much better than that of commercial modules especially in the low-energy region. The results obtained with our module are compared with similar setups available in other laboratories.

  10. Test Results of a Compact Conventional Modulator for Two-Klystron Operation

    SciTech Connect

    Gold, S

    2004-05-04

    Modulator technology has not advanced greatly over the last 30 years. Today, with the advent of the High Voltage, High Power IGBT there are several approaches for a solid state ON/OFF switched modulator. Klystron and accelerator technology is forcing voltages and peak powers higher such as the demand for 500 kV and 500 amperes peak to power two X-Band klystrons. Conventional technology (line-type modulators) were never overly concerned about rise time and efficiency. A few years ago, the klystron department at Stanford Linear Accelerator Center (SLAC) undertook an investigation into what could be done in a conventional modulator at 500 kV. We have reported on test bed measurements and shown both conceptual and hardware pictures during design and construction. We have now completed the modulator tank.

  11. A compact 64-pixel CsI(T1)/Si PIN photodiode imaging module with IC readout

    SciTech Connect

    Gruber, Gregory J.; Choong, Woon-Seng; Moses, William W.; Derenzo, Stephen E.; Holland, Stephen E.; Pedrali-Noy, Marzio; Krieger, Brad; Mandelli, Emanuele; Meddeler, Gerrit; Wang, Nadine W.

    2001-08-09

    We characterize the performance of a complete 64-pixel compact gamma camera imaging module consisting of optically isolated 3 mm 3 mm 5 mm CsI(Tl) crystals coupled to a custom array of low-noise Si PIN photodiodes read out by a custom IC. At 50 V bias the custom 64-pixel photodiode arrays demonstrate an average leakage current of 28 pA per 3 mm 3 mm pixel, a 98.5 percent yield of pixels with <100 pA leakage, and a quantum efficiency of about 80 percent for 540 nm CsI(Tl) scintillation photons. The custom 64-channel readout IC uses low-noise preamplifiers, shaper amplifiers, and a winner-take-all (WTA) multiplexer. The IC demonstrates maximum gain of 120 mV / 1000 e-, the ability to select the largest input signal in less than 150 ns, and low electronic noise at 8 ms peaking time ranging from 25 e- rms (unloaded) to an estimated 180 e- rms (photodiode load of 3 pF, 50 pA). At room temperature a complete 64-pixel detector module employing a custom photodiode array and readout IC demonstrates an average energy resolution of 23.4 percent fwhm and an intrinsic spatial resolution of 3.3 mm fwhm for the 140 keV emissions of 99mTc. Construction of an array of such imaging modules is straightforward, hence this technology shows strong potential for numerous compact gamma camera applications, including scintimammography.

  12. A computerized compact module for separation of (99m)Tc-radionuclide from molybdenum.

    PubMed

    Chattopadhyay, Sankha; Barua, Luna; De, Anirban; Saha Das, Sujata; Kuniyil, Remashan; Bhaskar, Partha; Pal, Sasanka Shekhar; Sarkar, Sishir Kumar; Das, Malay Kanti

    2012-11-01

    An automated closed cycle module for the separation and recovery of various isotopes, radioactive or non-radioactive, using solvent extraction and column chromatography techniques, and in particular, for separation and recovery of (99m)Tc from low-medium specific activity (99)Mo, is described. The module may also be applicable for separation of (99m)Tc produced in a cyclotron. The module is safe and reliable to avoid human interference and hazards posed by handling of radioactive and hazardous chemicals. The entire system of automation includes a user-friendly PC based graphical user interface (GUI) that actually supervises the process via an embedded system based electronic controller.

  13. Compact, high-speed and power-efficient electrooptic plasmonic modulators.

    PubMed

    Cai, Wenshan; White, Justin S; Brongersma, Mark L

    2009-12-01

    CMOS compatible electrooptic plasmonic modulators are slated to be key components in chip-scale photonic circuits. In this work, we investigate detailed design and optimization protocols for electrooptic plasmonic modulators that are suitable for free-space coupling and on-chip integration. The metallic structures in the proposed devices offer simultaneous electric and optical functions. The resonance-enhanced nonlinear interaction and submicrometer-footprint of these devices meet the stringent requirements for future CMOS modulators, allowing for high-speed operation (>100 GHz) with a decent modulation depth (>3 dB) and moderate insertion loss (<3 dB) at a very low swing voltage ( approximately 1 V) and power dissipation ( approximately 1 fJ/bit). The realization of the proposed structures appears feasible with current materials and lithographic techniques.

  14. High-performance compact optical WDM transceiver module for passive double star subscriber systems

    NASA Astrophysics Data System (ADS)

    Ikushima, Ichiro; Himi, Susumu; Hamaguchi, Tsuruki; Suzuki, Munetoshi; Maeda, Narimichi; Kodera, Hiroshi; Yamashita, Kiichi

    1995-03-01

    High-performance transceiver-type optical WDM interface modules with a volume of only 36 cc have been developed for PDS subscriber systems. The new module comprises an optical WDM sub-module, hybrid-integrated transmitter and receiver circuits. In the WDM sub-module, a planar lightwave circuit chip was hermetically sealed together with laser and photodiode chips in order to minimize the size of the transceiver module. The lightwave circuit was formed on an optical-waveguide chip by adopting a high-silica based optical-waveguide technology. The circuit has a 3-dB directional coupler for bi-directional transmission with a 1.3-micron wavelength through a single fiber and a wavelength division multiplexer between both 1.3-micron and 1.55-micron wavelengths. The overall characteristics of the fabricated WDM sub-module achieved were a responsitivity of 0.25 +/- 0.05 A/W, an insertion loss approximately 3 dB at 1.55-micron and an isolation of 35 dB between both wavelengths. Optical output power of the fabricated transceiver module was -3.8 dBm. Also, receiver sensitivity of less than -35 dBm with an overload of over -14 dBm were obtained by introducing high-speed automatic gain and threshold control techniques. Thus, an allowable span loss of over 30 dB and an optical dynamic range of over 20 dB were attained. The preamble bit length required to reach stable receiver operation was confirmed to be within three bits.

  15. A compact, high-density gamma-detection module for Time-of-Flight measurements in PET applications

    NASA Astrophysics Data System (ADS)

    Sacco, I.; Dohle, R.; Fischer, P.; Piemonte, C.; Ritzert, M.

    2016-07-01

    We present a very compact γ-detection module primarily designed for PET applications. On a total area of about 30 × 30mm2, 144 SiPM photodetectors coupled to scintillator crystals are read out individually with fast timing ASICs. The core of the module is a LTCC ceramic substrate with internal water channels for efficient and stable liquid cooling. The top side of the LTCC is covered by 12×12 SiPMs in a regular pitch of 2.5 mm. The SiPMs are designed in the RGB-HD technology from FBK with a single cell size of 25 × 25 μm2, very low dark-count rate and stable performance over a wide temperature range from 0 to 20 °C. The readout of the SiPMs is done with 4 specialized PETA5 ASICs flip-chip mounted to the bottom side of the substrate. Each chip has 36 readout channels (available in single or differential ended configuration) with self-triggered hit detection, a very low noise discriminator, signal amplitude integration and digitization, a TDC with 50 ps binwidth, neighbor logic and fast veto mechanisms. The full height of the assembly, including the connector to the main readout board, is less than 1 cm. In a 1:1 coupling configuration with 10 mm high LYSO scintillator arrays for detection of 511 keV gammas, the module has already reached 205 ps CRT time resolution (FWHM in coincidence between channels on two different modules), sufficient for ToF operation in PET. The module design, details on chip operation and latest results with LYSO arrays are described.

  16. Design and integration of a compact common miniature environment-insensitive navigation module for unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Dai, Gang; Su, Wei; Li, Mei

    2010-10-01

    A common miniature environment-insensitive navigation module which not only can provide the accurate position through different environment but also can easily be configured to adapt to the different type of unmanned vehicles is proposed in this paper. The module prototype is composed of a integrated MEMS inertial navigation unit using MEMS accelerometers and gyroscopes, a hard aluminum module structure with rubber isolator, a series of sensor interface of magnetometer, embedded GPS receiver, infrared sensor, vision camera, radio frequency communication etc and a FPGA based central control and navigation calculation circuit. The fabricated MEMS accelerometers and gyroscopes can resist high-g shock and have temperature drift compensation. The structure of the module uses hard aluminum with finite element analysis to find the appropriate position for sensors. All sensors without antenna are packaged in the structure with moisture, heat isolation and rubber isolator. The navigation computation scheme use the status of connected sensors to choose appropriate algorithm function to compute the navigation output. FPGA is used to be the main control and process unit of this module. Algorithms are embedded in the FPGA using the DSP core. The multiply interfaces to other sensor are implemented using the flexible configuration of the FPGA and peripheral. The conclusions are reached at last.

  17. A Compact Disk Type Plasma Propulsion System with Modulated Magnetic Field for Nanoscale Space Vehicles

    SciTech Connect

    Fukuda, Takeshi; Ueda, Satoshi; Ohnishi, Yukihiro; Inomoto, Michiaki

    2008-12-31

    A compact 5 mm disk type plasma thruster simply composed of only a set of antenna windings and bias field coil which produces significant thrust of 0.74 mN with rotating magnetic field has been proposed and successfully developed for future applications to low altitude nanosatellites. The key technology issue is that the rotating speed is set above the ion plasma frequency but far below the electron plasma frequency, in order to produce the electron drag current and axial electric field as a consequence of the interaction with the bias field. The formation of axial electric field was confirmed and the produced plasma density was >6x10{sup 18} m{sup -3}, whereas the power consumption is 500 W in the inductively coupled mode of operation. The anticipated thrust density and specific thrust could potentially be extended to 7.64 Nm{sup -2} and 850 s, respectively, which is comparable to conventional Hall effect thrusters.

  18. Ligand binding modulates the structural dynamics and compactness of the major birch pollen allergen.

    PubMed

    Grutsch, Sarina; Fuchs, Julian E; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R; Tollinger, Martin

    2014-12-16

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens.

  19. Compact resonant electro-optic modulator using randomness of a photonic crystal waveguide.

    PubMed

    Ooka, Yuta; Daud, Nurul Ashikin Binti; Tetsumoto, Tomohiro; Tanabe, Takasumi

    2016-05-16

    We fabricate and demonstrate an electro-optic modulator that utilizes the randomness in a photonic crystal waveguide. We exploit a way of using random photonic crystals for device application that involves restricting the area influenced by the randomness. Our random photonic crystal waveguide is in a diffusive regime and the confinement of light is observed only for a W0.98 waveguide (98% of the original width) placed between W1.05 photonic crystal waveguides, where we obtained a transmittance spectrum with an ultra-high Q of 2.4 × 105. A numerical investigation revealed that the experimental yield rate of the appearance of the high-Q confined mode is larger than 80%, by properly designing the length of W0.98. Since the confinement location is predictable, we integrate a p-i-n structure and demonstrate a GHz electro-optic modulation.

  20. Ligand Binding Modulates the Structural Dynamics and Compactness of the Major Birch Pollen Allergen

    PubMed Central

    Grutsch, Sarina; Fuchs, Julian E.; Freier, Regina; Kofler, Stefan; Bibi, Marium; Asam, Claudia; Wallner, Michael; Ferreira, Fátima; Brandstetter, Hans; Liedl, Klaus R.; Tollinger, Martin

    2014-01-01

    Pathogenesis-related plant proteins of class-10 (PR-10) are essential for storage and transport of small molecules. A prominent member of the PR-10 family, the major birch pollen allergen Bet v 1, is the main cause of spring pollinosis in the temperate climate zone of the northern hemisphere. Bet v 1 binds various ligand molecules to its internal cavity, and immunologic effects of the presence of ligand have been discussed. However, the mechanism of binding has remained elusive. In this study, we show that in solution Bet v 1.0101 is conformationally heterogeneous and cannot be represented by a single structure. NMR relaxation data suggest that structural dynamics are fundamental for ligand access to the protein interior. Complex formation then leads to significant rigidification of the protein along with a compaction of its 3D structure. The data presented herein provide a structural basis for understanding the immunogenic and allergenic potential of ligand binding to Bet v 1 allergens. PMID:25517162

  1. FM characteristics and compact modules for coherent semiconductor lasers coupled to an external cavity

    SciTech Connect

    Shin, C.H.; Teshima, M.; Ohtsu, M. ); Imai, T.; Yoshida, J.; Nishide, K. )

    1990-03-01

    FM responses of a semiconductor laser optically coupled off-axis to a confocal Fabry--Perot cavity were measured. It is reported that this cavity acted as a frequency discriminator and as a phase comparator for slow and fast frequency fluctuations, respectively. The crossover between them was determined by a half linewidth of the cavity. Based on these investigations, we made two kinds of coherent semiconductor laser modules. External FP cavities were made by using an optical fiber and a hemispherical micro-lens, respectively. Linewidths of these lasers were less than 25 kHz.

  2. Roughness sensor based on a compact optoelectronic emitter-receiver modules

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Brodersen, Olaf; Steinke, Arndt

    2012-04-01

    In construction and manufacturing the surface roughness and their control plays a major role. The mechanical test probes are used in many applications, because the advantage of the higher resolution of optical systems often plays no role. But in all cases the measurement systems were uses outside of fabrication processes due to the complex and expensive equipment. To overcome these we developed a roughness sensor suitable for an automated control of machined surfaces. The sensor is able to handle high throughput and parallel systems is due to the low cost available. Our solution is compact stand-alone sensors that can be simple integrated in existing systems like machine tools or transport systems. The sensor is based on a diode laser, focusing optics and a special silicon photo diode array in a stable housing. The single-mode VCSEL at 670 nm emission wavelength is focused on the surface of the sample at distance of 5mm. The light was reflected from the test surface and detected with an 8-channel photodiode array. The position of the main reflex allows an optimization of the sensor distance to the surface. During the movement of the sample with a known velocity roughness depended signals over time were recorded at 8 cannels. This allows a detection of the angular distribution of the scattered light in combination of position dependent refection. It was shown here that we be able to achieve resolution below the spot diameter (30μm FWHM). We verify the sensor capabilities for real world applications on drilled samples with typical roughness variations in micro meter range.

  3. Compact-sized high-modulation-efficiency silicon Mach-Zehnder modulator based on a vertically dipped depletion junction phase shifter for chip-level integration.

    PubMed

    Kim, Gyungock; Park, Jeong Woo; Kim, In Gyoo; Kim, Sanghoon; Jang, Ki-Seok; Kim, Sun Ae; Oh, Jin Hyuk; Joo, Jiho; Kim, Sanggi

    2014-04-15

    We present small-sized depletion-type silicon Mach-Zehnder (MZ) modulator with a vertically dipped PN depletion junction (VDJ) phase shifter based on a CMOS compatible process. The fabricated device with a 100 μm long VDJ phase shifter shows a VπLπ of ∼0.6  V·cm with a 3 dB bandwidth of ∼50  GHz at -2  V bias. The measured extinction ratios are 6 and 5.3 dB for 40 and 50  Gb/s operation under 2.5  Vpp differential drive, respectively. On-chip insertion loss is 3 dB for the maximum optical transmission. This includes the phase-shifter loss of 1.88  dB/100  μm, resulting mostly from the extra optical propagation loss through the polysilicon-plug structure for electrical contact, which can be readily minimized by utilizing finer-scaled lithography nodes. The experimental result indicates that a compact depletion-type MZ modulator based on the VDJ scheme can be a potential candidate for future chip-level integration.

  4. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  5. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  6. Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation.

    PubMed

    Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N

    2009-06-08

    1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.

  7. Nitric Oxide Isotopic Analyzer Based on a Compact Dual-Modulation Faraday Rotation Spectrometer

    PubMed Central

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-01-01

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope (15NO) detection sensitivity of 0.36 ppbv·Hz−1/2, corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10−8 rad·Hz−1/2 and noise-equivalent absorbance (αL)min of 6.27 × 10−8 Hz−1/2. White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies. PMID:26473876

  8. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: Electromechanical design and validation

    SciTech Connect

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Blosser, E.; Brandon, J.; Horste, T.; Forman, J. D.

    2006-09-15

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30x30 cm{sup 2}. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 deg. and 60 deg. automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area.

  9. Compact, Intelligent, Digitally Controlled IGBT Gate Drivers for a PEBB-Based ILC Marx Modulator

    SciTech Connect

    Nguyen, M.N.; Burkhart, C.; Olsen, J.J.; Macken, K.; /SLAC

    2010-06-07

    SLAC National Accelerator Laboratory has built and is currently operating a first generation prototype Marx klystron modulator to meet ILC specifications. Under development is a second generation prototype, aimed at improving overall performance, serviceability, and manufacturability as compared to its predecessor. It is designed around 32 cells, each operating at 3.75 kV and correcting for its own capacitor droop. Due to the uniqueness of this application, high voltage gate drivers needed to be developed for the main 6.5 kV and droop correction 1.7 kV IGBTs. The gate driver provides vital functions such as protection of the IGBT from over-voltage and over-current, detection of gate-emitter open and short circuit conditions, and monitoring of IGBT degradation (based on collector-emitter saturation voltage). Gate drive control, diagnostic processing capabilities, and communication are digitally implemented using an FPGA. This paper details the design of the gate driver circuitry, component selection, and construction layout. In addition, experimental results are included to illustrate the effectiveness of the protection circuit.

  10. Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets

    NASA Astrophysics Data System (ADS)

    Kohfeldt, Anja; Kürbis, Christian; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Wicht, Andreas; Peters, Achim; Erbert, Götz; Tränkle, Günther

    2016-04-01

    We have realized a laser platform based on GaAs diode lasers that allows for an operation in mobile exper-imental setups in harsh environments, such as on sounding rockets. The platform comes in two versions: a master-oscillator-power-amplifier and an extended cavity diode laser. Our very robust micro-optical bench has a footprint of 80 x 25 mm2. It strictly omits any movable parts. Master-oscillator-power-amplifier systems based on distributed feedback master oscillators for 767 nm and 780 nm narrow linewidth emission have been implemented by now. A continuous wave optical output power of > 1 W with a power conversion efficiency of > 25% could be achieved. The continuous tuning range of these lasers is on the order of 100 GHz, the linewidth at 10 μs is about 1 MHz. For applications demanding a narrower linewidth we have developed an extended cavity diode laser that achieves a linewidth of 100 kHz at 10 μs. These lasers achieve a continuous spectral tuning range of about 50 GHz and an continuous wave optical power up to 30 mW. The modules have been successfully vibration tested up to 29 gRMS along all three axes and passed 1500 g shocks, again along all 3 axes. Both, master-oscillator-power-amplifiers and extended cavity diode lasers, have been employed in sounding rocket experiments.

  11. Nitric oxide isotopic analyzer based on a compact dual-modulation Faraday rotation spectrometer.

    PubMed

    Zhang, Eric; Huang, Stacey; Ji, Qixing; Silvernagel, Michael; Wang, Yin; Ward, Bess; Sigman, Daniel; Wysocki, Gerard

    2015-10-14

    We have developed a transportable spectroscopic nitrogen isotopic analyzer. The spectrometer is based on dual-modulation Faraday rotation spectroscopy of nitric oxide isotopologues with near shot-noise limited performance and baseline-free operation. Noise analysis indicates minor isotope ((15)NO) detection sensitivity of 0.36 ppbv·Hz(-1/2), corresponding to noise-equivalent Faraday rotation angle (NEA) of 1.31 × 10(-8) rad·Hz(-1/2) and noise-equivalent absorbance (αL)min of 6.27 × 10(-8) Hz(-1/2). White-noise limited performance at 2.8× the shot-noise limit is observed up to ~1000 s, allowing reliable calibration and sample measurement within the drift-free interval of the spectrometer. Integration with wet-chemistry based on acidic vanadium(III) enables conversion of aqueous nitrate/nitrite samples to gaseous NO for total nitrogen isotope analysis. Isotopic ratiometry is accomplished via time-multiplexed measurements of two NO isotope transitions. For 5 μmol potassium nitrate samples, the instrument consistently yields ratiometric precision below 0.3‰, thus demonstrating potential as an in situ diagnostic tool for environmental nitrogen cycle studies.

  12. Compact multileaf collimator for conformal and intensity modulated fast neutron therapy: electromechanical design and validation.

    PubMed

    Farr, J B; Maughan, R L; Yudelev, M; Blosser, E; Brandon, J; Horste, T; Forman, J D

    2006-09-01

    The electromechanical properties of a 120-leaf, high-resolution, computer-controlled, fast neutron multileaf collimator (MLC) are presented. The MLC replaces an aging, manually operated multirod collimator. The MLC leaves project 5 mm in the isocentric plane perpendicular to the beam axis. A taper is included on the leaves matching beam divergence along one axis. The 5-mm leaf projection width is chosen to give high-resolution conformality across the entire field. The maximum field size provided is 30 x 30 cm2. To reduce the interleaf transmission a 0.254-mm blocking step is included. End-leaf steps totaling 0.762 mm are also provided allowing opposing leaves to close off within the primary radiation beam. The neutron MLC also includes individual 45 degrees and 60 degrees automated universal tungsten wedges. The automated high-resolution neutron collimation provides an increase in patient throughput capacity, enables a new modality, intensity modulated neutron therapy, and limits occupational radiation exposure by providing remote operation from a shielded console area.

  13. A miniaturized compact open-loop RFOG with demodulation signal compensation technique to suppress intensity modulation noise

    NASA Astrophysics Data System (ADS)

    Ying, Diqing; Mao, Jianmin; Li, Qiang; Jin, Zhonghe

    2016-01-01

    A miniaturized compact open-loop resonator fiber optic gyro (RFOG) prototype with main body size of about 10.4 cm×10.4 cm×5.2 cm is reported, and a demodulation signal compensation technique is proposed, aiming to suppress the drift arising from accompanying intensity modulation induced by semiconductor laser diode (LD). The scheme of how to establish this miniaturized RFOG prototype is specifically stated. The linear relationship between the first-harmonic and second-harmonic demodulated signals respectively for the two counter propagating beams in the resonator is verified by theory and experiment, and based on this relationship, the demodulation signal compensation technique by monitoring the second-harmonic demodulated signal is described in detail. With this compensation technique, the gyro output stability under 1°/s rotation rate is effectively improved from 0.12°/s to 0.03°/s, and especially, an about 0.36°/s peak-to-peak fluctuation due to tuning current reset is significantly suppressed. A long term bias stability of about 4.5°/h in 1 h for such a small-sized RFOG prototype is demonstrated, which is of the same magnitude as that of currently reported large-sized RFOG systems utilizing LD as the laser source as well.

  14. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    PubMed

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  15. Traveling wave electrode design for ultra compact carrier-injection HBT-based electroabsorption modulator in a 130nm BiCMOS process

    NASA Astrophysics Data System (ADS)

    Fu, Enjin; Joyner Koomson, Valencia; Wu, Pengfei; Huang, Z. Rena

    2014-03-01

    Silicon photonic system, integrating photonic and electronic signal processing circuits in low-cost silicon CMOS processes, is a rapidly evolving area of research. The silicon electroabsorption modulator (EAM) is a key photonic device for emerging high capacity telecommunication networks to meet ever growing computing demands. To replace traditional large footprint Mach-Zehnder Interferometer (MZI) type modulators several small footprint modulators are being researched. Carrier-injection modulators can provide large free carrier density change, high modulation efficiency, and compact footprint. The large optical bandwidth and ultra-fast transit times of 130nm HBT devices make the carrierinjection HBT-based EAM (HBT-EAM) a good candidate for ultra-high-speed optical networks. This paper presents the design and 3D full-wave simulation results of a traveling wave electrode (TWE) structure to increase the modulation speed of a carrier-injection HBT-EAM device. A monolithic TWE design for an 180um ultra compact carrier-injection-based HBT-EAM implemented in a commercial 130nm SiGe BiCMOS process is discussed. The modulator is electrically modeled at the desired bias voltage and included in a 3D full-wave simulation using CST software. The simulation shows the TWE has a S11 lower than -15.31dB and a S21 better than -0.96dB covering a bandwidth from DC-60GHz. The electrical wave phase velocity is designed close to the optical wave phase velocity for optimal modulation speed. The 3D TWE design conforms to the design rules of the BiCMOS process. Simulation results show an overall increase in modulator data rate from 10Gbps to 60Gbps using the TWE structure.

  16. A Compact, Multifunctional Fusion Module Directs Cholesterol-Dependent Homomultimerization and Syncytiogenic Efficiency of Reovirus p10 FAST Proteins

    PubMed Central

    Key, Tim; Duncan, Roy

    2014-01-01

    The homologous p10 fusion-associated small transmembrane (FAST) proteins of the avian (ARV) and Nelson Bay (NBV) reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36–40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER). The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1) ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2) p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3) the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic efficiency and

  17. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    NASA Astrophysics Data System (ADS)

    Dai, Qiu-Sheng; Zhao, Cui-Lan; Zhang, Hua-Lin; Qi, Yu-Jin

    2010-08-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel sub-tractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99mTc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera.

  18. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Young Sun; Jang, Jae-Hyung

    2016-02-01

    A low-cost packaging method utilizing a fully passive optical alignment and surface-mounting method is demonstrated for pluggable compact and slim multichannel optical interconnection modules using a VCSEL/PIN-PD chip array. The modules are based on a nonplanar bent right-angle electrical signal path on a silicon platform and direct-butt-optical coupling without a bulky and expensive microlens array. The measured optical direct-butt-coupling efficiencies of each channel without any bulky optics are as high as 33% and 95% for the transmitter and receiver, respectively. Excellent lateral optical alignment tolerance of larger than 60 μm for both the transmitter and receiver module significantly reduces the manufacturing and material costs as well as the packaging time. The clear eye diagrams, extinction ratios higher than 8 dB at 10.3 Gbps for the transmitter module, and receiver sensitivity of better than -13.1 dBm at 10.3 Gbps and a bit error rate of 10-12 for all channels are demonstrated. Considering that the optical output power of the transmitter is greater than 0 dBm, the module has a sufficient power margin of about 13 dB for 10.3 Gbps operations for all channels.

  19. A compact NIR fiber-optic diode laser spectrometer for CO and CO(2): analysis of observed 2f wavelength modulation spectroscopy line shapes.

    PubMed

    Engelbrecht, R

    2004-12-01

    A compact fiber-optic diode laser spectrometer for the measurement of CO and CO(2) gas concentrations in the near infrared around 1580 nm is described. By use of a balanced receiver to suppress diode laser intensity noise a sensitivity of 6.4 x 10(-7) at 1 Hz system bandwidth was achieved. At a reduced pressure of 80 hPa this equals to a detection limit of 5.1 ppm CO and 9.1 ppm CO(2) with 1m absorption path length. The observed line shapes of the 2f wavelength modulation spectroscopy (WMS) scheme are analyzed theoretically and experimentally. Accurate measurements of magnitude and phase of the diode laser frequency and intensity modulation responses were found critically for modeling the observed line shapes. In situ measurements of gas dissociation processes inside of a medium-power carbon dioxide laser are presented as an application example.

  20. Demonstration of Compact and Low-Loss Athermal Arrayed-Waveguide Grating Module Based on 2.5%-Δ Silica-Based Waveguides

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Abe, Yukio; Uetsuka, Hisato

    2008-10-01

    We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.

  1. Strain-induced modulation of perpendicular magnetic anisotropy in Ta/CoFeB/MgO structures investigated by ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Wang, Zhenxing; Abolfath-Beygi, Maryam; He, Congli; Li, Xiang; Wong, Kin L.; Nordeen, Paul; Wu, Hao; Carman, Gregory P.; Han, Xiufeng; Alhomoudi, Ibrahim A.; Amiri, Pedram Khalili; Wang, Kang L.

    2015-02-01

    We demonstrate strain-induced modulation of perpendicular magnetic anisotropy (PMA) in (001)-oriented [Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x (PMN-PT) substrate/Ta/CoFeB/MgO/Ta structures using ferromagnetic resonance (FMR). An in-plane biaxial strain is produced by applying voltage between the two surfaces of the PMN-PT substrate, and is transferred to the ferromagnetic CoFeB layer, which results in tuning of the PMA of the CoFeB layer. The strain-induced change in PMA is quantitatively extracted from the experimental FMR spectra. It is shown that both first and second-order anisotropy terms are affected by the electric field, and that they have opposite voltage dependencies. A very large value of the voltage-induced perpendicular magnetic anisotropy modulation of ˜7000 fJ/V.m is obtained through this strain-mediated coupling. Using this FMR technique, the magnetostriction coefficient λ is extracted for the ultrathin 1.1 nm Co20Fe60B20 layer, and is found to be 3.7 × 10-5, which is approximately 4 times larger than the previously reported values for CoFeB films thicker than 5 nm. In addition, the effect of strain on the effective damping constant (αeff) is also studied and no obvious modulation of the αeff is observed. The results are relevant to the development of CoFeB-MgO magnetic tunnel junctions for memory applications.

  2. Compact Ku-Band T/R Module for High-Resolution Radar Imaging of Cold Land Processes

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Yueh, Simon H.; Krimskiy, Vladimir A.; Rahmat-Samii, Yahya

    2010-01-01

    Global measurement of terrestrial snow cover is critical to two of the NASA Earth Science focus areas: (1) climate variability and change and (2) water and energy cycle. For radar backscatter measurements, Ku-band frequencies, scattered mainly within the volume of the snowpack, are most suitable for the SWE (snow-water equivalent) measurements. To isolate the complex effects of different snowpack (density and snowgrain size), and underlying soil properties and to distinctly determine SWE, the space-based synthetic aperture radar (SAR) system will require a dual-frequency (13.4 and 17.2 GHz) and dual polarization approach. A transmit/receive (T/R) module was developed operating at Ku-band frequencies to enable the use of active electronic scanning phased-array antenna for wide-swath, high-resolution SAR imaging of terrestrial snow cover. The T/R module has an integrated calibrator, which compensates for all environmental- and time-related changes, and results in very stable power and amplitude characteristics. The module was designed to operate over the full frequency range of 13 to 18 GHz, although only the two frequencies, 13.4 GHz and 17.2 GHz, will be used in this SAR radar application. Each channel of the transmit module produces > 4 W (35 dbm) over the operating bandwidth of 20 MHz. The stability requirements of <0.1 dB receive gain accuracy and <0.1 dB transmit power accuracy over a wide temperature range are achieved using a self-correction scheme, which does real-time amplitude calibration so that the module characteristics are continually corrected. All the calibration circuits are within the T/R module. The timing and calibration sequence is stored in a control FPGA (field-programmable gate array) while an internal 128K 8bit high-speed RAM (random access memory) stores all the calibration values. The module was designed using advanced components and packaging techniques to achieve integration of the electronics in a 2 x6.5x1-in. (5x17x2.5-cm) package. The

  3. Fiber Bragg grating sensing system using a TO-can-based compact optical module for wavelength demodulation

    NASA Astrophysics Data System (ADS)

    Song, Hong Joo; Lee, Jun Ho; Roh, Cheong Hyun; Hahn, Cheol-Koo; Choi, Young Bok; Kim, Jeong Soo; Park, Jung Ho

    2015-12-01

    A combined scheme using the light source of a reflective semiconductor optical amplifier (RSOA) and an optical signal processing unit (OSPU) based on the compact TO-can package is fabricated and characterized for a fiber Bragg grating (FBG) sensing system. Due to the optical feedback behavior from the FBG sensor, the RSOA is self-injection locked and lasing occurs at the Bragg wavelength. Using the wavelength-dependent filter method, all of the components in the OSPU are compactly integrated on the TO-can package with a height of 17.6 mm and diameter of 6.0 mm. The wavelength demodulating output signals are based on the optical power difference, depending only on the wavelengths without the effect of input optical power variations. The sensitivity of the output signal to temperature shows 0.026 dB/°C. The entire FBG sensing system has an excellent linear response to temperatures controlled with an accuracy of ±0.3°C.

  4. Compact diode laser module at 1116 nm with an integrated optical isolation and a PM-SMF output

    NASA Astrophysics Data System (ADS)

    Jedrzejczyk, Daniel; Hofmann, Julian; Werner, Nils; Sahm, Alexander; Paschke, Katrin

    2017-02-01

    In this work, a fiber-coupled diode laser module emitting around 1116 nm with an output power P < 60 mW is realized. As a laser light source a distributed Bragg reflector (DBR) ridge waveguide diode laser is applied. The module comprises temperature stabilizing components, a micro-lens system as well as an optical micro-isolator. At the output, a polarization-maintaining single-mode fiber (PM-SMF) with a core diameter of 5.5 μm and a standard FC/APC connector are utilized. The generated diffraction limited beam is characterized by a narrow linewidth ( δν < 10 MHz) and a high polarization extinction ratio (PER > 25 dB).

  5. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy.

    PubMed

    Shakoor, Abdul; Nozaki, Kengo; Kuramochi, Eiichi; Nishiguchi, Katsuhiko; Shinya, Akihiko; Notomi, Masaya

    2014-11-17

    We demonstrate a small foot print (600 nm wide) 1D silicon photonic crystal electro-optic modulator operating with only a 50 mV swing voltage and 0.1 fJ/bit switching energy at GHz speeds, which are the lowest values ever reported for a silicon electro-optic modulator. A 3 dB extinction ratio is demonstrated with an ultra-low 50 mV swing voltage with a total device energy consumption of 42.8 fJ/bit, which is dominated by the state holding energy. The total energy consumption is reduced to 14.65 fJ/bit for a 300 mV swing voltage while still keeping the switching energy at less than 2 fJ/bit. Under optimum voltage conditions, the device operates with a maximum speed of 3 Gbps with 8 dB extinction ratio, which rises to 11 dB for a 1 Gbps modulation speed.

  6. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  7. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  8. Ion-beam induced domain structure in piezoelectric PMN-PT single crystal

    SciTech Connect

    Kim, Kyou-Hyun; Payne, David A.; Zuo Jianmin

    2010-12-27

    We report an investigation of the domain structure in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-30%PbTiO{sub 3} single crystals after ion milling. We show that ion milling induces microdomains, typically 0.1-1 {mu}m in size. The induced microdomains disappear after temperature annealing or electric poling, leaving behind nanodomains of a few nanometers in size. We attribute the microdomains to surface stress induced by ion milling. The results demonstrate the general importance of separating sample preparation artifacts from the true domain structure in the study of ferroic materials.

  9. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    SciTech Connect

    Schleicher, B. Niemann, R.; Schultz, L.; Fähler, S.; Diestel, A.; Hühne, R.

    2015-08-07

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  10. Lift-off PMN-PT Thick Film for High Frequency Ultrasonic Biomicroscopy.

    PubMed

    Zhu, Benpeng; Han, Jiangxue; Shi, Jing; Shung, K Krik; Wei, Q; Huang, Yuhong; Kosec, M; Zhou, Qifa

    2010-10-01

    Piezoelectric 0.65Pb(Mg(1/3)Nb(2/3))O(3)-0.35PbTiO(3) (PMN-35PT) thick film with a thickness of approximately 12 µm has been deposited on the platinum buffered Si substrate via a sol-gel composite method. The separation of the film from the substrate was achieved using a wet chemical method. The lifted-off PMN-35PT thick film exhibited good dielectric and ferroelectric properties. At 1 kHz, the dielectric constant and the dielectric loss were 3,326 and 0.037, respectively, while the remnant polarization was 30.0 µC/cm(2). A high frequency single element acoustic transducer fabricated with this film showed a bandwidth at -6 dB of 63.6% at 110 MHz.

  11. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    NASA Astrophysics Data System (ADS)

    Schleicher, B.; Niemann, R.; Diestel, A.; Hühne, R.; Schultz, L.; Fähler, S.

    2015-08-01

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  12. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    PubMed

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications.

  13. Self-Powered Ultrabroadband Photodetector Monolithically Integrated on a PMN-PT Ferroelectric Single Crystal.

    PubMed

    Fang, Huajing; Xu, Chao; Ding, Jie; Li, Qiang; Sun, Jia-Lin; Dai, Ji-Yan; Ren, Tian-Ling; Yan, Qingfeng

    2016-12-07

    Photodetectors capable of detecting two or more bands simultaneously with a single system have attracted extensive attentions because of their critical applications in image sensing, communication, and so on. Here, we demonstrate a self-powered ultrabroadband photodetector monolithically integrated on a 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-28PT) single crystal. By combining the optothermal and pyroelectric effect, the multifunctional PMN-28PT single crystal can response to a wide wavelength range from UV to terahertz (THz). At room temperature, the photodetector could generate a pyroelectric current under the intermittent illumination of incident light in absence of external bias. A systematic study of the photoresponse was investigated. The pyroelectric current shows an almost linear relationship to illumination intensity. Benefiting from the excellent pyroelectric property of PMN-28PT single crystal and the optimized device architecture, the device exhibited a dramatic improvement in operation frequency up to 3 kHz without any obvious degradation in sensitivity. Such a self-powered photodetector with ultrabroadband response may open a window for the novel application of ferroelectric materials in optoelectronics.

  14. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  15. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  16. PMN-PT single crystal for endoscopic ultrasound 2D array application

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhang; Liang, Huageng; Zhu, Benpeng; Zhou, Dan; Yang, Xiaofei

    2017-03-01

    Based on lead magnesium niobate-lead titanate single crystal, a 24 × 24 row-column addressing endoscopic two-dimensional array has been successfully fabricated using novel flanged electrodes and "semi-kerf" technologies. Each row/column array element was measured to have an electromechanical coupling coefficient of 0.81, a center frequency of 5MHz, and a fractional bandwidth of approximately 88% at -6 dB. Of particular significance was that the lead magnesium niobate-lead titanate element exhibits much higher sensitivity compared with lead zirconate titanate-based 2D arrays with similar operational frequency and element area. According to the Field II simulated results, although the obtained beamwidth at -6 dB was a little inferior to that of the fully sampled 24 × 24 two-dimensional array, it is believed that the beamwidth can be improved by appropriately increasing the element number. These results demonstrated that the lead magnesium niobate-lead titanate single-crystal 2D array is a promising candidate for real-time three-dimensional endoscopic ultrasound imaging.

  17. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  18. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  19. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  20. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  1. Compact torus

    SciTech Connect

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  2. Compact 35μm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA mini-bars

    NASA Astrophysics Data System (ADS)

    Witte, U.; Traub, M.; Di Meo, A.; Hamann, M.; Rubel, D.; Hengesbach, S.; Hoffmann, D.

    2016-03-01

    We present a compact, modular and cross talk free approach for dense wavelength division multiplexing of high power diode lasers based on ultra-steep dielectric filters. The mini bars consist of 5 narrow stripe broad area emitters with a beam parameter product in the range of 2 mm mrad and a wavelength spacing of 2.5 nm between 2 adjacent emitters. Experimental results for fiber coupling (35 μm core diameter, NA < 0.2) of internally and externally stabilized diode lasers are presented. Optical losses are analyzed and alternative optical designs to overcome the current limitations of the setup are discussed.

  3. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  4. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  6. Dynamic compaction of human mesenchymal stem/precursor cells (MSC) into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6 and STC1)

    PubMed Central

    Bazhanov, Nikolay; Kuhlman, Jessica; Prockop, Darwin J.

    2013-01-01

    Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on non-adherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes up-regulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the up-regulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6 and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models. PMID:23922312

  7. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.

  8. Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics[Lead Magnesium Niobium Oxides - Lead Titanium Oxides

    SciTech Connect

    James, A.R.; Srinivas, K.

    1999-06-01

    Single phase perovskite 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1(PbTiO{sub 3}) ceramics were prepared using the columbite precursor method after optimizing the synthesis conditions. X-ray diffraction (XRD) studies were carried out to verify the phase formation at each processing step. Scanning electron microscopy (SEM) was employed to observe the microstructure of the sintered ceramics. Impedance and modulus spectroscopic data were used to gain an insight into the electrical properties of the samples and with a view to observing the relaxations in them.

  9. Lattice reorientation in tetragonal PMN-PT thin film induced by focused ion beam preparation for transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Denneulin, Thibaud; Maeng, Wanjoo; Eom, Chang-Beom; Hÿtch, Martin

    2017-02-01

    Focused ion beam sample preparation for transmission electron microscopy (TEM) can induce relaxation mechanisms in epitaxial thin films. Here, we describe a relaxation mechanism that can occur in materials having a tetragonal structure. We investigated the lattice structure of a 600 nm thick 0.4 [ Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 ] - 0.6 [ PbTiO 3 ] layer grown by epitaxy on (110) GdScO3 substrate using geometrical phase analysis applied to high resolution TEM images. The lattice mismatch at the interface is expected to favor the formation of c-domains. However, it was measured that the out-of-plane lattice parameter can decrease abruptly along the growth direction and the transition depends on the thickness of the TEM lamella. Different observations indicate that the crystal flipped by 90° following the preparation of the sample, so that the c-axis is oriented in the thinning direction. Such a mechanism can easily lead to misinterpretations and might happen in other materials with a similar structure.

  10. PMN-PT single crystal thick films on silicon substrate for high-frequency micromachined ultrasonic transducers.

    PubMed

    Peng, J; Lau, S T; Chao, C; Dai, J Y; Chan, H L W; Luo, H S; Zhu, B P; Zhou, Q F; Shung, K K

    2008-11-02

    In this work, a novel high-frequency ultrasonic transducer structure is realized by using PMNPT-on-silicon technology and silicon micromachining. To prepare the single crystalline PMNPT-on-silicon wafers, a hybrid processing method involving wafer bonding, mechanical lapping and wet chemical thinning is successfully developed. In the transducer structure, the active element is fixed within the stainless steel needle housing. The measured center frequency and -6 dB bandwidth of the transducer are 35 MHz and 34%, respectively. Owing to the superior electromechanical coupling coefficient (k(t)) and high piezoelectric constant (d(33)) of PMNPT film, the transducer shows a good energy conversion performance with a very low insertion loss down to 8.3 dB at the center frequency.

  11. Magnetic microscopy and simulation of strain-mediated control of magnetization in PMN-PT/Ni nanostructures

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Chavez, Andres C.; Pierce, Daniel T.; Unguris, John; Sun, Wei-Yang; Liang, Cheng-Yen; Carman, Gregory P.

    2016-10-01

    Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric [Pb(Mg1/3Nb2/3)O3]0.68[PbTiO3]0.32 substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling. We evaluate two types of simulations of ferromagnetic nanostructures on strained ferroelectric substrates: conventional micromagnetic simulations including a simple uniaxial strain, and coupled micromagnetic-elastodynamic simulations. Both simulations qualitatively capture the response of the magnetization changes produced by the applied strain, with the coupled solution providing more accurate representation.

  12. Multiferroic heterostructures of Fe3O4/PMN-PT prepared by atomic layer deposition for enhanced interfacial magnetoelectric couplings

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Liu, Ming; Zhang, Le; Zhou, Ziyao; Peng, Bin; Wang, Chenying; Lin, Qijing; Jiang, Zhuang-De; Ren, Wei; Ye, Zuo-Guang

    2017-02-01

    In this work, multiferroic heterostructures have been prepared by in situ growing oxide magnetic films on ferroelectric single crystal substrates using atomic layer deposition (ALD). Strong interfacial mechanical coupling between the magnetic and ferroelectric phases has been created, arising from the formation of chemical bonds at the interface due to the nature of layer-by-layer self-limiting growth mechanism of the ALD technique. An enhanced magnetoelectric (ME) coupling has been achieved, which allows an electric field to robustly switch magnetic anisotropy up to 780 Oe. In addition, electrical impulse non-volatile tuning of magnetism has also been realized through partially coupled ferroelectric/ferroelastic domain switching. The ALD growth of magnetic oxide films onto ferroelectric substrates provides an effective platform for the preparation of multiferroic heterostructures at low temperatures with an improved ME coupling, demonstrating a great potential for applications in 3D spintronics, microelectronics and data storages.

  13. Single-crystal lead magnesium niobate-lead titanate (PMN/PT) as a broadband high power transduction material.

    PubMed

    Moffett, Mark B; Robinson, Harold C; Powers, James M; Baird, P David

    2007-05-01

    Two experimental underwater acoustic projectors, a tonpilz array, and a cylindrical line array, were built with single crystal, lead magnesium niobate/lead titanate, a piezoelectric transduction material possessing a large electromechanical coupling factor (k33 = 0.9). The mechanical quality factor, Q(m), and the effective coupling factor, k(eff), determine the frequency band over which high power can be transmitted; k(eff) cannot be greater than the piezoelectric material value, and so a high material coupling factor is a requisite for broadband operation. Stansfield's bandwidth criteria are used to calculate the optimum Q(m) value, Q(opt) approximately 1.2 (1-k(eff)2 1/2/k(eff). The results for the tonpilz projector exhibited k(eff) = 0.730, Q(m) = 1.17 (very near optimal), and a fractional bandwidth of 0.93. For the cylindrical transducer array, k(eff) = 0.867, Q(m) = 0.91 (larger than the optimum value, 0.7), and the bandwidth was 1.16. Although the measured bandwidths were less than optimal, they were accurately predicted by the theory, despite the highly simplified nature of the Van Dyke equivalent circuit, on which the theory is based.

  14. Ferroelastic strain control of multiple nonvolatile resistance tuning in SrRuO3/PMN-PT(111) multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Ni, Hao; Qi, Yaping; Huang, Weiyi; Zeng, Jiali; Gao, Ju

    2017-05-01

    The electric-field-tunable resistance switching in elastically coupled SrRuO3 thin films grown on (111)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ferroelectric-crystal substrates has been investigated. During the ferroelectric poling process, the resistance evolution tracks the electric-field-induced in-plane strain of the film efficiently, revealing strain but not the electrostatic charge-mediated coupling mechanism. Using 109° and 71° ferroelastic domain switching of the substrate, multiple reversible and nonvolatile resistance states can be achieved at room temperature, which is closely related to the relative proportion of in-plane polarization vectors and induced distinct in-plane strain states after domain switching. Our findings provide an approach to elucidate electrically driven domain switching dynamics and design energy efficient, high-density spintronic memory devices.

  15. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1986-05-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time 0(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguishes between flexible components (wires) and rigid components (modules). The algorithm first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer. An efficient single-layer router is already known; it is able to minimize the length of every wire, though not the number of jogs. As given, the compaction algorithm applies only to a VLSI model that requires wires to run a rectilinear grid. This restriction is needed only because the theory of planar routing (and single-layer routers) has not yet been extended to other models.

  16. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  17. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, E. M.

    1986-11-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time O(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguished between flexible components (wires) and rigid components (modules). The algorithms first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer.

  18. Compact inline optical electron polarimeter.

    PubMed

    Pirbhai, M; Ryan, D M; Richards, G; Gay, T J

    2013-05-01

    A compact optical electron polarimeter using a helium target is described. It offers a maximum fluorescence detection efficiency of ~20 Hz/nA, which is an order of magnitude higher than that of earlier designs. With an argon target, this device is expected to have a polarimetric figure-of-merit of 270 Hz/nA. By relying on a magnetic field to guide a longitudinally spin-polarized electron beam, the present instrument employs fewer electrodes. It also uses a commercially available integrated photon counting module. These features allow it to occupy a smaller volume and make it easier to operate.

  19. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Emori, Satoru; Peng, Bin; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Liu, Ming; Sun, Nian

    2016-01-01

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  20. Converse magnetoelectric coupling in NiFe/Pb(Mg1/3Nb2/3)O3-PbTiO3 nanocomposite thin films grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Hu, Jiamian; Wang, Jianjun; Li, Zheng; Shu, Li; Nan, C. W.

    2013-11-01

    Multiferroic NiFe (˜30 nm)/Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT, ˜220 nm) bilayered thin films were grown on common Pt/Ti/SiO2/Si substrates by a combination of off-axis magnetron sputtering and sol-gel spin-coating technique. By using AC-mode magneto-optical Kerr effect technique, the change in the Kerr signal (magnetization) of the NiFe upon applying a low-frequency AC voltage to the PMN-PT film was in situ acquired at zero magnetic field. The obtained Kerr signal versus voltage loop essentially tracks the electromechanical strain curve of the PMN-PT thin film, clearly demonstrating a strain-mediated converse magnetoelectric coupling, i.e., voltage-modulated magnetization, in the NiFe/PMN-PT nanocomposite thin films.

  1. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    SciTech Connect

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian; Peng, Bin; Liu, Ming; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  2. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  3. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  4. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  5. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  6. CompAction: Integrated compliance management software

    SciTech Connect

    Zipfel, J.M.

    1995-12-31

    CompAction is an integrated compliance management software tool for the solid waste disposal industry. The majority of environmental compliance software packages on the market allow users to access Federal and state regulations without increasing the usability of the information. By contrast, CompAction bridges the gap between regulatory requirements and the actions facilities must complete to ensure continued compliance. CompAction allows environmental compliance management personnel and consultants to schedule compliance assessment activities, verify, and track the related compliance status of the facility. CompAction modules allow facility managers to customize the system for specific Federal, state, local and permit requirements and assign. completion responsibilities to site personnel The system tracks completion of the assignment, the compliance status of the requirement and also an assigned plan of action for the requirements which are found to be deficient. CompAction may also assist facilities in demonstrating compliance with state audit privilege guidelines and is designed to adhere to compliance program requirements outlined by the USEPA and the Department of Justice. CompAction can schedule facility inspections and audits to ensure that the facility maintains an on-going compliance prevention and assessment program. Federal, State, local and permit Environmental, Health and Safety regulations can all be maintained by the system and modified as the requirements change. CompAction is an innovative compliance assessment and monitoring system designed for both public and private facilities. Use of CompAction will facilitate the maintenance of an efficient and effective environmental compliance management program for solid waste disposal facilities.

  7. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  8. Combined generating-accelerating buncher for compact linear accelerators

    NASA Astrophysics Data System (ADS)

    Savin, E. A.; Matsievskiy, S. V.; Sobenin, N. P.; Sokolov, I. D.; Zavadtsev, A. A.

    2016-09-01

    Described in the previous article [1] method of the power extraction from the modulated electron beam has been applied to the compact standing wave electron linear accelerator feeding system, which doesnt require any connection waveguides between the power source and the accelerator itself [2]. Generating and accelerating bunches meet in the hybrid accelerating cell operating at TM020 mode, thus the accelerating module is placed on the axis of the generating module, which consists from the pulsed high voltage electron sources and electrons dumps. This combination makes the accelerator very compact in size which is very valuable for the modern applications such as portable inspection sources. Simulations and geometry cold tests are presented.

  9. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  10. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2010-03-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  11. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2009-12-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  12. Inhomogeneous compact extra dimensions

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Budaev, R. I.; Grobov, A. V.; Dmitriev, A. E.; Rubin, Sergey G.

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ4 in pure f(R) theory, and the extra dimensions are stable relative to the "radion mode" of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ4. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f(R) gravity.

  13. Firefighting Module

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  14. Firefighting Module

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  15. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  16. Firefighting Module

    NASA Astrophysics Data System (ADS)

    1980-01-01

    Aviation Power Supply's mobile firefighting module called Firefly II is mounted on a trailer pulled by a pickup truck. Trailer unit has two three- inch water cannons, and the pickup carries a six inch cannon. Completely self contained, module pumps 3,000 gallons of water a minute from hydrants or open bodies of water. Stream can go as far as 400 feet or can be employed in a high-loft mode to reach the tops of tall refinery towers. Compact Firefly II weighs only 2,500 pounds when fully fueled. Key component is a specially designed two stage pump. Power for the pump is generated by a gas turbine engine. Module also includes an electronic/pump controller, multiple hose connections, up to 1,500 feet of hose and fuel for four hours operation. Firefly trailer can be backed onto specially-built large fireboat.

  17. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  18. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  19. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    detections (e.g., DDoS attacks), machine learning, databases, and search. Fundamentally, compact data representations are highly beneficial because they...Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence... Machine Learning (ICML), 2016 11. Ping Li, One Scan 1-Bit Compressed Sensing, in International Conference on Artificial Intelligence and Statistics

  20. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  1. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  2. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  3. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  4. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1990-01-01

    Compact resistance-welding pinch gun lets one operator do jobs formerly needing two workers. Light in weight and produces repeatable, high-quality weld joints. Welding-electrode head rotates for easy positioning. Lever at top of handle activates spring to pinch electrodes together at preset welding force. Button at bottom of handle activates welding current. Cables supply electrical power.

  5. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  6. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  7. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  8. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  9. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  10. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  11. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  12. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  13. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  14. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  15. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  16. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  17. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  18. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Thomas, Clark S.

    1991-01-01

    Spot welder designed for bonding insulated metal strips together. Compact, measuring only about 33.5 cm in its largest linear dimension. Pinch welder clamps electrodes on weldments with strong, repeatable force. Compressed air supplied through fitting on one handle. Small switch on same handle starts welding process when operator presses it with trigger. Provides higher, more repeatable clamping force than manually driven gun and thus produces weld joints of higher quality. Light in weight and therefore positioned precisely by operator.

  19. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  20. Firefighting Module

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA and the U.S. Coast Guard are working jointly to develop a helicopter transportable firefighting module that can shave precious minutes in combating shipboard or harbor fires. The program was undertaken in 1975, after a series of disastrous fires on oil tankers indicated a need for a lightweight, self-contained system that could be moved quickly to the scene of a fire. A prototype module was delivered to the Coast Guard last year and service testing is under way. The compact module weighs little more than a ton but it contains everything needed to fight a fire. The key component is a high output pump, which delivers up to 2,000 gallons of sea water a minute; the pump can be brought up to maximum output in only one minute after turning on the power source, a small Allison gas turbine engine. The module also contains hose, a foam nozzle and a spray nozzle, three sets of protective clothing for firefighters, and fuel for three hours operation. Designed to be assembled without special tools, the module can be set up for operation in less than 20 minutes.

  1. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  2. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  3. [Non-compaction cardiomyopathy].

    PubMed

    Wieneke, Heinrich; Neumann, Till; Breuckmann, Frank; Hunold, Peter; Fries, Jochen W U; Dirsch, Olaf; Erbel, Raimund

    2005-09-01

    Isolated non-compaction of the ventricular myocardium (INVM), also known as left ventricular hypertrabeculation or spongy myocardium, belongs to the "unclassified" cardiomyopathies according to the World Health Organization. The main characteristic of this entity is a prominent trabeculation of the left ventricle with deep intertrabecular recesses communicating with the ventricular cavity. The pathomechanism of INVM is thought to be an arrest in cardiac myogenesis with persistence of embryonic myocardial morphology. The most frequent clinical manifestations include congestive heart failure, ventricular arrhythmias and systemic thromboembolic events. The therapy of INVM comprises standard medical therapy for heart failure.

  4. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  5. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  6. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  7. Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor

    NASA Astrophysics Data System (ADS)

    Dusch, Yannick; Tiercelin, Nicolas; Klimov, Alexey; Giordano, Stefano; Preobrazhensky, Vladimir; Pernod, Philippe

    2013-05-01

    We present here the implementation of a magnetoelectric memory with a voltage driven writing method using a ferroelectric relaxor substrate. The memory point consists of a magnetoelastic element in which two orthogonal stable magnetic states are defined by combining uni-axial anisotropy together with a magnetic polarization in the hard axis direction. Using a ferroelectric relaxor substrate, an anisotropic stress is created in the magnetic element when applying a voltage across electrodes. Because of the inverse magnetostrictive effect, the effective anisotropy of the magnetic element is controlled by the applied voltage and used to switch magnetization from one state to the other.

  8. Electric control of magnetism and magnetocaloric effects in LaFe11.4Si1.6H1.5 using ferroelectric PMN-PT

    NASA Astrophysics Data System (ADS)

    Wang, Chuancong; Hu, Yong; Wang, Dunhui; Cao, Qingqi; Shao, Yanyan; Liu, Jian; Zhang, Hu; Du, Youwei

    2016-10-01

    The alloy with first-order magnetic phase transition has an advantage to exhibit large magnetoelectric effect in strain-mediated multiferroic composites, since the strain can drive its phase transition and consequently lead to a large magnetic change. In the present paper, we investigate the electric field manipulation of magnetic and magnetocaloric properties in LaFe11.4Si1.6H1.5/Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate. By applying an electric field on the ferroelectric substrate, the relative change of magnetization has a peak value of  -8% around the Curie temperature, showing a large converse magnetoelectric effect. As for the magnetocaloric performance, the peak temperature of magnetic entropy change (ΔS M) has a shift of 3 K to low temperature and the maximal value of ΔS M keeps almost unchanged under an electric field of 8 kV cm-1. Moreover, the thermal and magnetic hysteresis can be reduced as well with the application of the electric field.

  9. Magnetic field-induced ferroelectric domain structure evolution and magnetoelectric coupling for [110]-oriented PMN-PT/Terfenol-D multiferroic composites

    NASA Astrophysics Data System (ADS)

    Fang, F.; Jing, W. Q.

    2016-01-01

    Magnetic field-induced polarization rotation and magnetoelectric coupling effects are studied for [110]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3/Tb0.3Dy0.7Fe2(PMN-xPT/Terfenol-D) multiferroic composites. Two compositions of the [110]-oriented relaxor ferroelectric single crystals, PMN-28PT and PMN-33PT, are used. In [110]-oriented PMN-28PT, domains of rhombohedral (R) and monoclinic (MB) phases coexist prior to the magnetic loadings. Upon the applied magnetic loadings, phase transition from monoclinic MB to R phase occurs. In [110]-oriented PMN-33PT, domains are initially of mixed orthorhombic (O) and MB phases, and the phase transition from O to MB phase takes place upon the external magnetic loading. Compared to PMN-28PT, the PMN-33PT single crystal exhibits much finer domain boundary structure prior to the magnetic loadings. Upon the magnetic loadings, more domain variants are induced via the phase transition in PMN-33PT than that in PMN-28PT single crystal. The finer domain band structure and more domain variants contribute to stronger piezoelectric activity. As a result, the composite of PMN-33PT/Terfenol-D manifests a stronger ME coupling than PMN-28PT/Terfenol-D composite.

  10. Thermal Comfort Study of a Compact Thermoelectric Air Conditioner

    NASA Astrophysics Data System (ADS)

    Maneewan, S.; Tipsaenprom, W.; Lertsatitthanakorn, C.

    2010-09-01

    This paper evaluates the cooling performance and thermal comfort of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks and fans. Thermal acceptability assessment was performed to find out whether the cooled air met the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard-55’s 80% acceptability criteria. A suitable condition occurred at 1 A current flow with a corresponding cooling capacity of 29.2 W, giving an average cooled air temperature of 28°C and 0.9 m/s cooled air velocity. The coefficient of performance was calculated and found to be ˜0.34. Economic analysis indicates that the payback period is 0.75 years when one compact TE air conditioner unit is used instead of a 1-ton conventional air conditioner.

  11. Scalable Nonlinear Compact Schemes

    SciTech Connect

    Ghosh, Debojyoti; Constantinescu, Emil M.; Brown, Jed

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  12. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  13. Lacunarity for compact groups.

    PubMed

    Edwards, R E; Hewitt, E; Ross, K A

    1971-01-01

    Let G be a compact Abelian group with character group X. A subset Delta of X is called a [unk](q) set (1 < q < infinity) if for all trigonometric polynomials f = [unk](k=1) (n) alpha(k)chi(k) (chi(1),...,chi(n) [unk] Delta) an inequality parallelf parallel(q) [unk] [unk] parallelf parallel(1) obtains, where [unk] is a positive constant depending only on Delta. The subset Delta is called a Sidon set if every bounded function on Delta can be matched by a Fourier-Stieltjes transform. It is known that every Sidon set is a [unk](q) set for all q. For G = T, X = Z, Rudin (J. Math. Mech., 9, 203 (1960)) has found a set that is [unk](q) for all q but not Sidon. We extend this result to all infinite compact Abelian groups G: the character group X contains a subset Delta that is [unk](q) for all q, 1 < q < infinity, but Delta is not a Sidon set.

  14. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  15. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  16. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  17. Compact surface plasmonic waveguide component for integrated optical processor

    NASA Astrophysics Data System (ADS)

    Gogoi, Nilima; Sahu, Partha Pratim

    2015-06-01

    A compact surface plasmonic two mode interference waveguide component having silicon core and silver and GaAsInP side cladding is proposed for optical processor elements. Coupling operation is obtained by using index modulation of GaAsInP cladding with applied optical pulse.

  18. Dynamic Compaction of Porous Beds

    DTIC Science & Technology

    1985-12-26

    NSWVC TR 83-246 00 00 SDYNAMIC COMPACTION OF POROUS B3EDS BY H. W. SANDUSKY T. P. LIDDIARD RESEARCH AND TECHNOLOGY DEPARTMENT D I 26 DECEMBER 1985...RIOBA4313 11. TITLE (Include Security Classfication3 Dynamic Compaction of Porous Beds 12. PERSONAL AUTHOR(S) Sandusky, H. W., and Liddiard, T. P. 13a... Porous Bed Compaction Wave Velocity Oeflaaration-to-Detonation Transition Particle Velocity ABSTRACT (Continue on reverse if necessary and identify

  19. Firefighting module development

    NASA Technical Reports Server (NTRS)

    Burns, R. A.

    1981-01-01

    The firefighting module is a lightweight, compact, self contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency water pumping applications. Units were fabricated and tested. A production type unit is undergoing an inservice evaluation and demonstration program at the port of St Louis. The primary purpose is to promote enhanced harbor fire protection at inland and coastal ports. The module and its development are described.

  20. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  1. Criteria of cyclic compactness of the sets from Lp - spaces, associated with vector measure

    NASA Astrophysics Data System (ADS)

    Chilin, V.; Rakhimov, B.; Rakhimov, A.

    2013-09-01

    We study the conditional expectations in the Lp-modules associated with a partition of unity of a Boolean algebra. Cyclic compactness criteria of the subsets of Lp found in terms of convergent nets of conditional expectations.

  2. Coast Guard Firefighting Module

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA and the U.S. Coast Guard are jointly developing a lightweight, helicopter-transportable, completely self-contained firefighting module for combating shipboard and dockside fires. The project draws upon NASA technology in high-capacity rocket engine pumps, lightweight materials and compact packaging.

  3. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  7. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  8. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  9. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  10. Compact SAW aerosol generator.

    PubMed

    Winkler, A; Harazim, S; Collins, D J; Brünig, R; Schmidt, H; Menzel, S B

    2017-03-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.

  11. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  12. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  13. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  14. Compaction with Automatic Jog Introduction,

    DTIC Science & Technology

    1985-10-01

    The compaction algorithm This section defines mathematically the problem of compaction with auto- matk jog introduction, and presents a practical...t(5) of potential cuts of S, and usng their mutability cmndi to constrain the positiokn of modulo in S. The proof that this technique gen - erates a

  15. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  16. Compost improves compacted urban soil

    USDA-ARS?s Scientific Manuscript database

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  17. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  18. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface.

    PubMed

    Zhang, Chao; Wang, Fenglong; Dong, Chunhui; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-03-07

    We report non-volatile electric-field control of magnetism modulation in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Fe layer on a PMN-PT substrate using a molecular beam epitaxy technique. The remnant magnetization with a different electric field shows a non-symmetric loop-like shape, which demonstrates a change of interfacial chemistry and a large magnetoelectric coupling in Fe/PMN-PT at room temperature to realize low loss multistate memory under an electric field. Fitting with the angular-dependence of the in-plane magnetization reveals that the magnetoelectric effect is dominated by the direct electric-field effect rather than the strain effect at the interface. The magnetoelectric effect and the induced surface anisotropy are found to be dependent on the Fe film thickness and are linear with respect to the applied electric field.

  19. Electric field mediated non-volatile tuning magnetism at the single-crystalline Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 interface

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Wang, Fenglong; Dong, Chunhui; Gao, Cunxu; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-02-01

    We report non-volatile electric-field control of magnetism modulation in Fe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) heterostructure by fabricating an epitaxial Fe layer on a PMN-PT substrate using a molecular beam epitaxy technique. The remnant magnetization with a different electric field shows a non-symmetric loop-like shape, which demonstrates a change of interfacial chemistry and a large magnetoelectric coupling in Fe/PMN-PT at room temperature to realize low loss multistate memory under an electric field. Fitting with the angular-dependence of the in-plane magnetization reveals that the magnetoelectric effect is dominated by the direct electric-field effect rather than the strain effect at the interface. The magnetoelectric effect and the induced surface anisotropy are found to be dependent on the Fe film thickness and are linear with respect to the applied electric field.

  20. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  1. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  2. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  3. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  4. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  5. Compact photoacoustic tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Pramanik, Manojit

    2017-03-01

    Photoacoustic tomography (PAT) is a non-ionizing biomedical imaging modality which finds applications in brain imaging, tumor angiogenesis, monitoring of vascularization, breast cancer imaging, monitoring of oxygen saturation levels etc. Typical PAT systems uses Q-switched Nd:YAG laser light illumination, single element large ultrasound transducer (UST) as detector. By holding the UST in horizontal plane and moving it in a circular motion around the sample in full 2π radians photoacoustic data is collected and images are reconstructed. The horizontal positioning of the UST make the scanning radius large, leading to larger water tank and also increases the load on the motor that rotates the UST. To overcome this limitation, we present a compact photoacoustic tomographic (ComPAT) system. In this ComPAT system, instead of holding the UST in horizontal plane, it is held in vertical plane and the photoacoustic waves generated at the sample are detected by the UST after it is reflected at 45° by an acoustic reflector attached to the transducer body. With this we can reduce the water tank size and load on the motor, thus overall PAT system size can be reduced. Here we show that with the ComPAT system nearly similar PA images (phantom and in vivo data) can be obtained as that of the existing PAT systems using both flat and cylindrically focused transducers.

  6. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  7. Compactness of lateral shearing interferometers.

    PubMed

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-10

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  8. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  9. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  10. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  11. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  12. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  13. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  14. Compact Shelving Ten Years Later.

    ERIC Educational Resources Information Center

    Morris, Leslie R.

    1998-01-01

    Discusses experiences at the Niagara University Library with compact shelving. Highlights include citations to other relevant articles; patron use; selection of vendor; reliability; possible problems; and installation considerations, such as floor-load requirements. (LRW)

  15. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  16. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  17. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  18. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    NASA Astrophysics Data System (ADS)

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-01

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  19. Engineering Prototype for a Compact Medical Dielectric Wall Accelerator

    SciTech Connect

    Zografos, Anthony; Hening, Andy; Joshkin, Vladimir; Leung, Kevin; Pearson, Dave; Pearce-Percy, Henry; Rougieri, Mario; Parker, Yoko; Weir, John; Blackfield, Donald; Chen, Yu-Jiuan; Falabella, Steven; Guethlein, Gary; Poole, Brian; Hamm, Robert W.; Becker, Reinard

    2011-12-13

    A compact accelerator system architecture based on the dielectric wall accelerator (DWA) for medical proton beam therapy has been developed by the Compact Particle Acceleration Corporation (CPAC). The major subsystems are a Radio Frequency Quadrupole (RFQ) injector linac, a pulsed kicker to select the desired proton bunches, and a DWA linear accelerator incorporating a high gradient insulator (HGI) with stacked Blumleins to produce the required acceleration energy. The Blumleins are switched with solid state laser-driven optical switches integrated into the Blumlein assemblies. Other subsystems include a high power pulsed laser, fiber optic distribution system, electrical charging system, and beam diagnostics. An engineering prototype has been constructed and characterized, and these results will be used within the next three years to develop an extremely compact 150 MeV system capable of modulating energy, beam current, and spot size on a shot-to-shot basis. This paper presents the details the engineering prototype, experimental results, and commercialization plans.

  20. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  1. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1985-10-01

    A novel polynomial-time algorithm for compacting a VLSI layout is presented. Compared to previous algorithms, the algorithm promises to produce higher quality output while reducing the need for designer intervention. The performance gain is realized by converting wires into constraints on the positions of the active devices. These constraints can be solved by graph-theoretic techniques to yield optimal positions for chip components. A single-layer router is then used to restore the wires to the layout, using as many as jogs as necessary. An automated compaction procedure is an effective tool for cutting production costs of a VLSI circuit at low cost to the designer, because the yield of fabricated chips is strongly dependent on the total circuit area. Sect 1 is an introduction. Sect 2 states the definitions and theoretical results that underlie the new compaction method. Sect 3 shows how the circuit layout is converted to a data structure appropriate for compaction, and Sect 4 details the body of the compaction algorithm. Sect 5 covers several improvements to the algorithm that should make it run considerably faster. Sect 6 comments on the algorithms of results, and a discussion of the practical value of the compaction algorithm.

  2. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  3. High energy microlaser and compact MOPA transmitter

    NASA Astrophysics Data System (ADS)

    Brickeen, Brian K.; Bernot, Dave; Geathers, Eliot; Mosovsky, Joseph

    2011-06-01

    A compact micro-oscillator incorporating a dual-bounce, grazing incidence gain module with a folded resonator cavity is presented. The gain module, previously developed for Nd:YVO4, is embodied in highly doped ceramic Nd:YAG to generate improved Q-switch performance while maintaining localized pump absorption. The cavity design utilizes a doubly folded optics path around the gain crystal to increase the intra-cavity mode for a more optimum overlap with the pump light volume produced by standard lensed laser diode bars. A modified CS-package diode mount is developed to facilitate the reduced size of the oscillator without sacrificing the ability to use a high-energy, side-pumping arrangement. The oscillator is combined with a high gain, high energy extraction VHGM amplifier to generate a transmitter source on the order of 50 mJ. Cooling for both the oscillator and amplifier modules is provided via a conductive path through the base of the package. Both devices are mounted on opposite sides of a phase-change cooling reservoir to enable self-contained, burst-mode operation. Beam shaping of the oscillator output, in preparation for injection into the amplifier, is contained in a small cut-away path on the reservoir side.

  4. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2013-09-01

    Infrared sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection has become application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive infrared (IR) sensors, the Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage and 2-stage cold-head architectures with an inventive set of warm-end mechanisms into a single mechanical module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (<20% improvement) and exported vibration performance (<=25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  5. Natural examples of Valdivia compact spaces

    NASA Astrophysics Data System (ADS)

    Kalenda, Ondrej F. K.

    2008-04-01

    We collect examples of Valdivia compact spaces, their continuous images and associated classes of Banach spaces which appear naturally in various branches of mathematics. We focus on topological constructions generating Valdivia compact spaces, linearly ordered compact spaces, compact groups, L1 spaces, Banach lattices and noncommutative L1 spaces.

  6. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  7. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  8. Fractional Talbot field and of finite gratings: compact analytical formulation.

    PubMed

    Arrizón, V; Rojo-Velázquez, G

    2001-06-01

    We present a compact analytical formulation for the fractional Talbot effect at the paraxial domain of a finite grating. Our results show that laterally shifted distorted images of the grating basic cell form the Fresnel field at a fractional Talbot plane of the grating. Our formulas give the positions of those images and show that they are given by the convolution of the nondistorted cells (modulated by a quadratic phase factor) with the Fourier transform of the finite-grating pupil.

  9. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  10. Viral RNAs are unusually compact.

    PubMed

    Gopal, Ajaykumar; Egecioglu, Defne E; Yoffe, Aron M; Ben-Shaul, Avinoam; Rao, Ayala L N; Knobler, Charles M; Gelbart, William M

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  11. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  12. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  13. Silicon technology compatible photonic molecules for compact optical signal processing

    SciTech Connect

    Barea, Luis A. M. Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.

    2013-11-11

    Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (Q{sub T}), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high Q{sub T}. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ∼55 GHz.

  14. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  15. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  16. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  18. Compact Chern-Simons vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-09-01

    We introduce and investigate new models of the Chern-Simons type in the three-dimensional spacetime, focusing on the existence of compact vortices. The models are controlled by potentials driven by a single real parameter that can be used to change the profile of the vortex solutions as they approach their boundary values. One of the models unveils an interesting new behavior, the tendency to make the vortex compact, as the parameter increases to larger and larger values. We also investigate the behavior of the energy density and calculate the total energy numerically.

  19. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  20. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  1. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  2. Classification of radiating compact stars

    NASA Technical Reports Server (NTRS)

    Coppi, B.; Treves, A.

    1971-01-01

    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail.

  3. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  4. The Compact Project: Final Report.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…

  5. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  6. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  7. Compact vehicle drive module having improved thermal control

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2006-01-03

    An electric vehicle drive includes a thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  8. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  9. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  10. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  11. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  12. Dynamics of compact homogeneous universes

    SciTech Connect

    Tanimoto, M.; Koike, T.; Hosoya, A.

    1997-01-01

    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm{umlt u}ller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space{endash}time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space{endash}time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI{sub 0}, VII{sub 0}, and I universal covers. {copyright} {ital 1997 American Institute of Physics.}

  13. Cold compaction of water ice

    NASA Astrophysics Data System (ADS)

    Durham, William B.; McKinnon, William B.; Stern, Laura A.

    2005-09-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (~0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering.

  14. Compact all-fiber ring femtosecond laser with high fundamental repetition rate.

    PubMed

    Wei, Xiaoming; Xu, Shanhui; Huang, Huichang; Peng, Mingying; Yang, Zhongmin

    2012-10-22

    A 165-fs all-fiber ring laser is demonstrated with a fundamental repetition rate of 235 MHz based on a 5.7-cm-long Er(3+)/Yb(3+) codoped phosphate glass fiber and a technique of nonlinear polarization evolution. In order to further enhance the fundamental repetition rate and compact the structure of the all-fiber laser, an optical integrated module is designed. By employing this novel optical module, a much more compact 105-fs mode-locking all-fiber ring laser, operating at a 325 MHz fundamental repetition rate, is realized.

  15. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  16. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  17. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  18. Compaction of Global Data Fields

    DTIC Science & Technology

    1990-05-01

    AD- A225 856 Naval Oceanographic and Technical Note 27 Atmospheric Research Laboratory May 1990 nC II FILF Copy Compaction of Global Data Fields A. H...IU 0 Ij P\\ I -’ as - -O - - YrŘ 5/ ii Ch Cc I 4" IIJ /1 1 att, 14 o c qu 0 in 64 low Ln u Ln U Ln LLJ KA E0 U-j u odd LD x 0 LL- cr - -1 Ap 0 Ln 00

  19. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  20. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  1. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  2. Compact and high-resolution optical orbital angular momentum sorter

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Chen, Jian; Zhan, Qiwen

    2017-03-01

    A compact and high-resolution optical orbital angular momentum (OAM) sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM) to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  3. Conditions for compaction bands in porous rock

    NASA Astrophysics Data System (ADS)

    Issen, K. A.; Rudnicki, J. W.

    2000-09-01

    Reexamination of the results of Rudnicki and Rice for shear localization reveals that solutions for compaction bands are possible in a range of parameters typical of porous rock. Compaction bands are narrow planar zones of localized compressive deformation perpendicular to the maximum compressive stress, which have been observed in high-porosity rocks in the laboratory and field. Solutions for compaction bands, as an alternative to homogenous deformation, are possible when the inelastic volume deformation is compactive and is associated with stress states on a yield surface "cap." The cap implies that the shear stress required for further inelastic deformation decreases with increasing compressive mean stress. While the expressions for the critical hardening modulus for compaction and shear bands differ, in both cases, deviations from normality promote band formation. Inelastic compaction deformation associated with mean stress (suggested by Aydin and Johnson) promotes localization by decreasing the magnitude of the critical hardening modulus. Axisymmetric compression is the most favorable deviatoric stress state for formation of compaction bands. Predictions for compaction bands suggest that they could form on the "shelf" typically observed in axisymmetric compression stress strain curves of porous rock at high confining stress. Either shear or compaction bands may occur depending on the stress path and confining stress. If the increase in local density and decrease in grain size associated with compaction band formation result in strengthening rather than weakening of the band material, formation of a compaction band may not preclude later formation of a shear band.

  4. Evaluation of Revised Manual Compaction Rammers and Laboratory Compaction Procedures.

    DTIC Science & Technology

    1983-09-01

    the test, however, the procedure was changed to allow the rammer to free-fall from 12 in. above the soil surface . 2. The American Association of State...1964 that ASTM revised their Methods D 698 and D 1557 to specifically provide for the use of a sector-shaped striking surface on mechanical compactors...to permit complete coverage of the soil surface when compacting in a 6-in.-diam mold. Objections to the use of the sector-shaped foot within the Corps

  5. A compact polymer optical fibre ultrasound detector

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Gallego, Daniel; Pospori, Andreas; Zubel, Michal; Webb, David J.; Sugden, Kate; Carpintero, Guillermo; Lamela, Horacio

    2016-03-01

    Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.

  6. A Compact and Robust Method for Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Sparks, William

    2013-04-01

    A compact and robust method for spectropolarimetry is described which lends itself, in principle, to application in the field and in space. With space-based spectropolarimetry in the Solar System, exploration and characterization opportunities are greatly enhanced. Spectropolarimetry offers diagnostics for dust (cometary, zodiacal, rings), surfaces (rocky, regolith, icy), aerosols (clouds, dust storms) and high energy plasma emission processes. Beyond the Solar System, space-based telescopic spectropolarimetry has important contributions to make in the search for extrasolar planets, their characterization and the presence of life. There are astrobiological applications for full Stokes polarimetry stemming from the chiral interaction of light with living organisms. The instrumental approach requires no moving parts and encodes the polarimetric information onto a single data frame, hence it is immune to time dependencies, free of fragile modulating components, has the potential for high sensitivity and offers a wide wavelength range with full Stokes spectropolarimetry. We are laying the groundwork for understanding the design and usefulness of space-based exoplanet spectropolarimetry through development of a Moon-based Earth observing instrument concept CLOVE (Camera for Lunar Observations of the Variable Earth), within NASA's Lunar Science Institute. The polarimetric method could also be implemented in LOUPE (Lunar Observatory for Unresolved Polarimetry of Earth), which is being developed in the Netherlands. Both of these concepts aim to use the Earth as a benchmark for interpreting future observations of extrasolar Earth-like planets.

  7. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  8. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  9. Comparison of Obturation Quality in Modified Continuous Wave Compaction, Continuous Wave Compaction, Lateral Compaction and Warm Vertical Compaction Techniques

    PubMed Central

    Aminsobhani, Mohsen; Ghorbanzadeh, Abdollah; Sharifian, Mohammad Reza; Namjou, Sara; Kharazifard, Mohamad Javad

    2015-01-01

    Objectives: The aim of this study was to introduce modified continuous wave compaction (MCWC) technique and compare its obturation quality with that of lateral compaction (LC), warm vertical compaction (WVC) and continuous wave compaction techniques (CWC). The obturation time was also compared among the four techniques. Materials and Methods: Sixty-four single-rooted teeth with 0–5° root canal curve and 64 artificially created root canals with 15° curves in acrylic blocks were evaluated. The teeth and acrylic specimens were each divided into four subgroups of 16 for testing the obturation quality of four techniques namely LC, WVC, CWC and MCWC. Canals were prepared using the Mtwo rotary system and filled with respect to their group allocation. Obturation time was recorded. On digital radiographs, the ratio of area of voids to the total area of filled canals was calculated using the Image J software. Adaptation of the filling materials to the canal walls was assessed at three cross-sections under a stereomicroscope (X30). Data were statistically analyzed using ANOVA, Tukey’s post hoc HSD test, the Kruskal Wallis test and t-test. Results: No significant difference existed in adaptation of filling materials to canal walls among the four subgroups in teeth samples (P ≥ 0.139); but, in artificially created canals in acrylic blocks, the frequency of areas not adapted to the canal walls was significantly higher in LC technique compared to MCWC (P ≤ 0.02). The void areas were significantly more in the LC technique than in other techniques in teeth (P < 0.001). The longest obturation time belonged to WVC technique followed by LC, CW and MCWC techniques (P<0.05). The difference between the artificially created canals in blocks and teeth regarding the obturation time was not significant (P = 0.41). Conclusion: Within the limitations of this in vitro study, MCWC technique resulted in better adaptation of gutta-percha to canal walls than LC at all cross-sections with

  10. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  11. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  12. Compact Airborne Spectral Sensor (COMPASS)

    NASA Astrophysics Data System (ADS)

    Simi, Christopher G.; Winter, Edwin M.; Williams, Mary M.; Driscoll, David C.

    2001-08-01

    The COMPACT Airborne Spectral Sensor (COMPASS) design is intended to demonstrate a new design concept for solar reflective hyper spectral systems for the Government. Capitalizing from recent focal plane developments, the COMPASS system utilizes a single FPA to cover the 0.4-2.35micrometers spectral region. This system also utilizes an Offner spectrometer design as well as an electron etched lithography curved grating technology pioneered by NASA/JPL. This paper also discusses the technical trades, which drove the design selection of COMPASS. When completed, the core COMPASS spectrometer design could be used in a large variety of configurations on a variety of aircraft.

  13. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  14. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  15. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  16. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  17. Cantor network, control algorithm, two-dimensional compact structure and its optical implementation

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Liren; Yin, Yaozu

    1995-12-01

    A compact integrating module technique for packaging a optical multistage Cantor network with a polarization multiplex technique is suggested. The modules have a unique configuration, which is the solid-state combination of a polarization rotator, double birefringent slabs, and a 2 \\times 2 switch array. The design and the fabrication of an eight-channel optical nonblocking Cantor network are demonstrated, and a fast-setup control algorithm is developed. The network systems are easy to assemble and insensitive to environment disturbance.

  18. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  19. Structural properties of compact groups

    NASA Technical Reports Server (NTRS)

    De Carvalho, R. R.; Ribeiro, A. L. B.; Zepf, Stephen E.

    1994-01-01

    We report the results of a systematic study of galaxies in the regions of Hickson compact groups. Our sample is composed of the 22 Hickson groups which are located in the southern hemisphere and have cz less than 9000 km/s. Making use of digitized images of IIIa-J plates that cover an area of 0.5 x 0.5 deg around each group, we were able to detect and classify images down to a magnitude limit of 19.5 in the B band. This limit is typically three magnitudes fainter than previous studies. Most groups show a statistically significant excess of fainter galaxies compared to the background. These fainter galaxies typically have a somewhat more extended spatial distribution than the brighter galaxies originally classified by Hickson. Our data suggest that Hickson groups have a wide range in density and radius, ranging from very compact structures with overdensities of the order of 10(exp 2) and crossing times of roughly 0.01 H(sub 0 sup -1), to much more diffuse structures, similar to loose groups, with overdensities of about 3 and crossing times of roughly 0.5 H(sub 0 sup -1).

  20. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  1. Compact sources for eyesafe illumination

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pu, R.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2017-02-01

    Q-Peak has demonstrated a novel, compact, pulsed eyesafe laser architecture operating with <10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2 4), while also providing a path towards higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse-widths <30 ns, and utilizing an end-pumped Nd: YAG gain medium with a Rubidium Titanyl Phosphate (RTP) electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes Potassium Titanyl Arsenate (KTA) in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  2. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  3. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  4. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  5. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  6. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  7. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  8. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  9. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  10. Rapid Sintering of Nano-Diamond Compacts

    SciTech Connect

    Osipov, A.; Nauyoks, S; Zerda, T; Zaporozhets, O

    2009-01-01

    Diamond compacts were sintered from nano-size diamond crystals at high pressure, 8 GPa, and temperature above 1500 degrees C for very short times ranging from 5 to 11 s. Structure and mechanical properties of the compacts have been characterized. Although we have not completely avoided graphitization of diamonds, the amount of graphite produced was low, less than 2%, and despite relatively high porosity, the compacts were characterized by high hardness, bulk and Young moduli.

  11. Effect of slash on forwarder soil compaction

    Treesearch

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  12. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  13. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  14. Large resistivity modulation in mixed-phase metallic systems

    NASA Astrophysics Data System (ADS)

    Lee, Yeonbae; Liu, Zhiqi; Heron, John; Clarkson, James; Hong, Jeongmin; Ko, Changhyun; Biegalski, Michael; Aschauer, Ulrich; Hsu, Shang-Lin; Nowakowski, Mark; Wu, Junqiao; Christen, Hans; Salahuddin, Sayeef; Bokor, Jeffrey; Spaldin, Nicola; Schlom, Darrell; Ramesh, Ramamoorthy

    2015-03-01

    We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a ``giant'' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities, and the origin of the GER effect is the strain-mediated change in their relative proportions. The observed behavior is reminiscent of colossal magnetoresistance in perovskite manganites, and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

  15. Incorporating Sediment Compaction Into a Gravitationally Self-consistent Model for Global Sea-level Change

    NASA Astrophysics Data System (ADS)

    Ferrier, K.; Mitrovica, J. X.

    2015-12-01

    In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  16. Compact high-voltage structures

    SciTech Connect

    Wilson, M. J.; Goerz, D.A.

    1997-06-09

    A basic understanding of the critical issues limiting the compactness of high-voltage systems is required for the next generation of impulse generators. In the process of optimizing the design of a highly reliable solid-dielectric over-voltage switch, an understanding of the limiting factors found are shown. Results of a l3O kV operating switch, having a modest field enhancement of 16% above the average field stress in the switching region, are reported. The resulting high reliability is obtained by reducing the standard deviation of the switch to 6.8%. The total height of the switch is 1 mm. The resulting operating parameters are obtained by controlling field distribution across the entire switch package and field shaping the desired point of switch closure. The disclosed field management technique provides an approach to improve other highly stressed components and structures.

  17. Compact torus compression of microwaves

    SciTech Connect

    Hewett, D.W.; Langdon, A.B.

    1985-05-17

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code.

  18. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  19. Compact oleic acid in HAMLET.

    PubMed

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  20. Magnetohydodynamics stability of compact stellarators

    SciTech Connect

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-03

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 {minus} k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta ({approximately} 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current.

  1. Compact Hermitian Young projection operators

    NASA Astrophysics Data System (ADS)

    Alcock-Zeilinger, J.; Weigert, H.

    2017-05-01

    In this paper, we describe a compact and practical algorithm to construct Hermitian Young projection operators for irreducible representations of the special unitary group 𝖲𝖴 (N ) and discuss why ordinary non-Hermitian Young projection operators are unsuitable for physics applications. The proof of this construction algorithm uses the iterative method described by Keppeler and Sjödahl [J. Math. Phys. 55, 021702 (2014)]. We further show that Hermitian Young projection operators share desirable properties with Young tableaux, namely, a nested hierarchy when "adding a particle." We close by exhibiting the enormous advantage of the Hermitian Young projection operators constructed in this paper over those given by Keppeler and Sjödahl.

  2. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  3. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented.

  4. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  5. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  6. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  7. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  8. 77 FR 60475 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, DOJ. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  9. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  10. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting Notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  11. 78 FR 20355 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting Notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  12. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, DOJ. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  13. 76 FR 66326 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  14. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, Justice. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact...

  15. 77 FR 20051 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  16. Performance characteristics of a compact D-T generator system

    SciTech Connect

    Pfutzner, H.G.

    1994-12-31

    A compact and fully automated neutron generator system has been developed to be used in a wide range of applications, such as non-destructive analysis of bulk materials, online process control and assay of nuclear materials. It is built around a deuterium-tritium sealed tube neutron generator which was previoulsy used only for oil-well logging. It is designed to maximize the ease of use and convenience for the user. This is done by delegating all control and interlock functions to the computer and also by keeping all parts of the system as compact as possible. The system consists of three components: (1) the compact generator head housing the sealed tube and the high voltage insulating materials, (2) the very compact electronics module containing high voltage supply, low voltage supplies, ion source pulser, hardware interface and laptop PC, and (3) the interconnecting cable harness. The laptop computer is setup to receive commands from the keyboard or from a second user`s computer which is acquiring data from the detectors. The neutron output at 100 kV is 2x10{sup 8} neutrons/sec/4{pi}. The generator can be operated in continuous or pulsed mode. The maximum pulse frequency is 10 kHz and the minimum pulse width is 10 {mu}seconds. The rise and fall times of the neutron pulse (measured with a PMT and plastic scintillator) are under 1.25 {mu}s. Safety features are build into the system. The primary one being that the tube containing the tritium is a very rugged ceramic-metal design which is then contained in a sealed stainless steel housing. There are also allowances for the user`s door and radiation monitor interlocks.

  17. Remote maintenance concepts for the Compact Ignition Tokamak

    SciTech Connect

    Davis, F.C.; Hager, E.R.

    1988-01-01

    Because deuterium-tritium fuel will be used in the Compact Ignition Tokamak (CIT), remote handling technology is needed to carry out some maintenance operations on the machine. In keeping with the compact, low-cost nature of CIT, remote maintenance is provided only for systems with the highest probability of failure. Remote operations include removing, repairing (if feasible), and replacing such components as thermal protection tiles on the first wall, radio-frequency (rf) heating modules, and diagnostic modules. For maintenance inside the vacuum vessel, major pieces of equipment under development include an articulated boom manipulator with servomanipulators, an inspection manipulator, and special tooling. For maintenance outside the cryostat, remote equipment includes a bridge-mounted manipulator system, equipment for decontamination and hot cell activities, and for handling and packaging solid radioactive waste. The conceptual design phase of the CIT project is nearing completion; research and development activities in support of the project include demonstrations of remote maintenance operations on full-size partial mock-ups. 9 figs.

  18. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since

  19. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that...

  20. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are...

  1. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  2. Li-S batteries: Firing for compactness

    NASA Astrophysics Data System (ADS)

    Li, Yanguang; Chen, Fengjiao

    2017-07-01

    Conventional Li-S batteries have a non-compact cathode structure containing low areal loading of active materials. Now, a strategy of burning Li foils in a CS2 vapour is presented, which leads to the formation of highly compact Li2S nanoparticles as a lithiated sulfur cathode, offering promising battery performance.

  3. Ultrasonic compaction of granular geological materials.

    PubMed

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials.

  4. Modeling of oil shale compaction during retorting

    SciTech Connect

    Schreiber, J.D.

    1986-06-01

    A model of oil shale compacting during retorting has been developed and incorporated into a one-dimensional retorting model. The model calculates the vertical stress distribution in a column of oil shale rubble and the degree of compaction that these stresses cause. A correlation was developed that relates shale grade, initial void volume, and vertical stress to the final compaction of the shale bed. The model then determines the gas pressure drip through the retort and the effects of the varying pressure on the retorting process. The model has been tested by simulating the Rio Blanco Oil Shale Company's Tract C-a Retort 1. The model calculates 8.1% compaction, whereas 12 to 16 compaction was measured in the retort; causes of the discrepancy between calculated and measured values are discussed. 14 refs., 10 figs., 2 tabs.

  5. Compact thermoelectric converter systems technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.

  6. The Aerodynamic Module (ADM)

    SciTech Connect

    Achenbach, D.A.

    1995-11-01

    The Aerodynamic Module (ADM) provides a unique solution to the problem of particulate removal from dry gas flow. The application of advanced aerodynamic engineering provides the means to attain particulate collection efficiencies in excess of 95% with low energy consumption (3 inch--7 inch WC). The ADM is characterized by its simple design with no moving parts or fibers, compact size, high wearing tolerance, flexibility for installation, and high temperature tolerances to 1,600 F. The ADM is of a modular design, with 3 basic designs available. Individual modules may be combined in a parallel configuration, or ``block``, with a common hopper, to accommodate the process gas flow. The ADM may be mounted in a variety of orientations; vertical down-ward, inclined down-ward or horizontal, or combinations of these arrangements. Higher collection efficiencies may be obtained by staging or mounting ``blocks`` in series arrangements. This flexibility, combined with its compact size, results in low installation costs and provides the opportunity for installation as a material recovery system close to process equipment, with the recovered product being returned to the process at the source of generation. The ADM can be installed in new or existing systems.

  7. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    NASA Astrophysics Data System (ADS)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  8. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    SciTech Connect

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  9. Proliferation, angiogenesis and differentiation related markers in compact and follicular-compact thyroid carcinomas in dogs

    PubMed Central

    Pessina, P.; Castillo, V.A.; César, D.; Sartore, I.; Meikle, A.

    2016-01-01

    Immunohistochemical markers (IGF-1, IGF-1R, VEGF, FGF-2, RARα and RXR) were evaluated in healthy canine thyroid glands (n=8) and in follicular-compact (n=8) and compact thyroid carcinomas (n=8). IGF-1, IGF-1R and VEGF expression was higher in fibroblasts and endothelial cells of compact carcinoma than in healthy glands (P < 0.05). Compared to follicular-compact carcinoma, compact carcinoma had higher IGF-1R expression in fibroblasts, and higher FGF-2 expression in endothelial cells (P < 0.05). RARα expression was higher in endothelial cells of compact carcinoma than in those of other groups (P < 0.05). The upregulation of these proliferation- and angiogenesis-related factors in endothelial cells and/or fibroblasts and not in follicular cells of compact carcinoma compared to healthy glands supports the relevance of stromal cells in cancer progression. PMID:28116249

  10. Proliferation, angiogenesis and differentiation related markers in compact and follicular-compact thyroid carcinomas in dogs.

    PubMed

    Pessina, P; Castillo, V A; César, D; Sartore, I; Meikle, A

    2016-01-01

    Immunohistochemical markers (IGF-1, IGF-1R, VEGF, FGF-2, RARα and RXR) were evaluated in healthy canine thyroid glands (n=8) and in follicular-compact (n=8) and compact thyroid carcinomas (n=8). IGF-1, IGF-1R and VEGF expression was higher in fibroblasts and endothelial cells of compact carcinoma than in healthy glands (P < 0.05). Compared to follicular-compact carcinoma, compact carcinoma had higher IGF-1R expression in fibroblasts, and higher FGF-2 expression in endothelial cells (P < 0.05). RARα expression was higher in endothelial cells of compact carcinoma than in those of other groups (P < 0.05). The upregulation of these proliferation- and angiogenesis-related factors in endothelial cells and/or fibroblasts and not in follicular cells of compact carcinoma compared to healthy glands supports the relevance of stromal cells in cancer progression.

  11. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  12. An Embedded Reconfigurable Logic Module

    NASA Technical Reports Server (NTRS)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  13. Choice of momentum compaction factor for the APIARY low-energy ring

    SciTech Connect

    Zisman, M.S. )

    1990-08-01

    For the new low-energy ring of the APIARY B factory collider, there are several considerations that go into the choice of momentum compaction factor. In this note we enumerate these considerations and indicate the restrictions on momentum compaction factor that arise therefrom. Probably the most difficult condition to achieve is maintaining the same betatron tune modulation at the IP as occurs for the high-energy ring. Generally, however, we find that the constraints are rather loose, so the ring design is not heavily influenced. 5 refs.

  14. Compact, harmonic multiplying gyrotron amplifiers

    SciTech Connect

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.

    1995-12-31

    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  15. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  16. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  17. Compact Structure Patterns in Proteins.

    PubMed

    Chitturi, Bhadrachalam; Shi, Shuoyong; Kinch, Lisa N; Grishin, Nick V

    2016-10-23

    Globular proteins typically fold into tightly packed arrays of regular secondary structures. We developed a model to approximate the compact parallel and antiparallel arrangement of α-helices and β-strands, enumerated all possible topologies formed by up to five secondary structural elements (SSEs), searched for their occurrence in spatial structures of proteins, and documented their frequencies of occurrence in the PDB. The enumeration model grows larger super-secondary structure patterns (SSPs) by combining pairs of smaller patterns, a process that approximates a potential path of protein fold evolution. The most prevalent SSPs are typically present in superfolds such as the Rossmann-like fold, the ferredoxin-like fold, and the Greek key motif, whereas the less frequent SSPs often possess uncommon structure features such as split β-sheets, left-handed connections, and crossing loops. This complete SSP enumeration model, for the first time, allows us to investigate which theoretically possible SSPs are not observed in available protein structures. All SSPs with up to four SSEs occurred in proteins. However, among the SSPs with five SSEs, approximately 20% (218) are absent from existing folds. Of these unobserved SSPs, 80% contain two or more uncommon structure features. To facilitate future efforts in protein structure classification, engineering, and design, we provide the resulting patterns and their frequency of occurrence in proteins at: http://prodata.swmed.edu/ssps/. Copyright © 2016. Published by Elsevier Ltd.

  18. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  19. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  20. Peakompactons: Peaked compact nonlinear waves

    DOE PAGES

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-20

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less

  1. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  2. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  3. Color Superconductivity in Compact Stars

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    After a brief review of the phenomena expected in cold dense quark matter, color superconductivity and color-flavor locking, we sketch some implications of recent developments in our understanding of cold dense quark matter for the physics of compact stars. We give a more detailed summary of our recent work on crystalline color superconductivity and the consequent realization that (some) pulsar glitches may originate in quark matter.We acknowledge helpful discussions with P. Bedaque, J. Berges, D. Blaschke, I. Bombaci, G. Carter, D. Chakrabarty, J. Madsen, C. Nayak, M. Prakash, D. Psaltis, S. Reddy, M. Ruderman, S.-J. Rey, T. Schäfer, A. Sedrakian, E. Shuryak, E. Shuster, D. Son, M. Stephanov, I. Wasserman, F. Weber and F. Wilczek. KR thanks the organizers of the ECT Workshop on Neutron Star Interiors for providing a stimulating environment within which many of the helpful discussions acknowledged above took place. This work is supported in part by the DOE under cooperative research agreement #DF-FC02-94ER40818. The work of JB was supported in part by an NDSEG Fellowship; that of KR was supported in part by a DOE OJI Award and by the A. P. Sloan Foundation.

  4. A compact optical fiber positioner

    NASA Astrophysics Data System (ADS)

    Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.

  5. Peakompactons: Peaked compact nonlinear waves

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-01

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. These peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg-de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg-de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly by reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. A simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg-de Vries-type models are discussed as well.

  6. λ-size silicon-based modulator

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.; Lanzillotti-Kimura, Noberto D.; Ma, Ren-Min; Huang, Chen; Li, Zhuoran; Zhang, Xiang

    2013-02-01

    Electro-optic modulators have been identified as the key drivers for optical communication. With an ongoing miniaturization of photonic circuitries, an outstanding aim is to demonstrate an on-chip, ultra-compact, electro-optic modulator without sacrificing bandwidth and modulation strength. While silicon-based electro-optic modulators have been demonstrated, they require large device footprints of the order of millimeters as a result of weak non-linear electro-optical properties. The modulation strength can be increased by deploying a high-Q resonator, however with the trade-off of significantly sacrificing bandwidth. Furthermore, design challenges and temperature tuning limit the deployment of such resonance-based modulators. Recently, novel materials like Graphene have been investigated for electro-optic modulation applications with a 0.1 dB per micrometer modulation strength, while showing an improvement over pure silicon devices, this design still requires devices lengths of tens of micrometers due to the inefficient overlap between the Graphene layer and the optical mode of the silicon waveguide. Here we experimentally demonstrate an ultra-compact, Silicon-based, electro-optic modulator with a record-high 1dB per micrometer extinction ratio over a wide bandwidth range of 500 nm in ambient conditions. The device is based on a plasmonic Metal-Oxide-Semiconductor (MOS) waveguide, which efficiently concentrates the optical modes' electric field into a nanometer thin region comprised of an absorption coefficient-tuneable Indium-Tin-Oxide (ITO) layer. The modulation mechanism originates from electrically changing the free carrier concentration of the ITO layer. The seamless integration of such a strong optical beam modulation into an existing silicon-on-insulator platform bears significant potential towards broadband, compact and efficient communication links and circuits.

  7. Incorporating sediment compaction into a gravitationally self-consistent model for ice age sea-level change

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken L.; Austermann, Jacqueline; Mitrovica, Jerry X.; Pico, Tamara

    2017-10-01

    Sea-level changes are of wide interest because they regulate coastal hazards, shape the sedimentary geologic record and are sensitive to climate change. In areas where rivers deliver sediment to marine deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. Deposition affects sea level by increasing the elevation of the seafloor, by perturbing crustal elevation and gravity fields and by reducing the volume of seawater through the incorporation of water into sedimentary pore space. In a similar manner, compaction affects sea level by lowering the elevation of the seafloor and by purging water out of sediments and into the ocean. Here we incorporate the effects of sediment compaction into a gravitationally self-consistent global sea-level model by extending the approach of Dalca et al. (2013). We show that incorporating compaction requires accounting for two quantities that are not included in the Dalca et al. (2013) analysis: the mean porosity of the sediment and the degree of saturation in the sediment. We demonstrate the effects of compaction by modelling sea-level responses to two simplified 122-kyr sediment transfer scenarios for the Amazon River system, one including compaction and one neglecting compaction. These simulations show that the largest effect of compaction is on the thickness of the compacting sediment, an effect that is largest where deposition rates are fastest. Compaction can also produce minor sea-level changes in coastal regions by influencing shoreline migration and the location of seawater loading, which perturbs crustal elevations. By providing a tool for modelling gravitationally self-consistent sea-level responses to sediment compaction, this work offers an improved approach for interpreting the drivers of past sea-level changes.

  8. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  9. The classification of 2 -compact groups

    NASA Astrophysics Data System (ADS)

    Andersen, Kasper K. S.; Grodal, Jesper

    2009-04-01

    We prove that any connected 2 -compact group is classified by its 2 -adic root datum, and in particular the exotic 2 -compact group operatorname{DI}(4) , constructed by Dwyer-Wilkerson, is the only simple 2 -compact group not arising as the 2 -completion of a compact connected Lie group. Combined with our earlier work with Mo/ller and Viruel for p odd, this establishes the full classification of p -compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p -compact groups and root data over the p -adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Mo/ller-Viruel methods by incorporating the theory of root data over the p -adic integers, as developed by Dwyer-Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.

  10. Plasma optical modulators for intense lasers

    PubMed Central

    Yu, Lu-Le; Zhao, Yao; Qian, Lie-Jia; Chen, Min; Weng, Su-Ming; Sheng, Zheng-Ming; Jaroszynski, D. A.; Mori, W. B.; Zhang, Jie

    2016-01-01

    Optical modulators can have high modulation speed and broad bandwidth, while being compact. However, these optical modulators usually work for low-intensity light beams. Here we present an ultrafast, plasma-based optical modulator, which can directly modulate high-power lasers with intensity up to 1016 W cm−2 to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. This concept relies on two co-propagating laser pulses in a sub-millimetre-scale underdense plasma, where a drive laser pulse first excites an electron plasma wave in its wake while a following carrier laser pulse is modulated by the plasma wave. The laser and plasma parameters suitable for the modulator to work are based on numerical simulations. PMID:27283369

  11. 4π FOV compact Compton camera for nuclear material investigations

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Lee, Taewoong

    2011-10-01

    A compact Compton camera with a 4π field of view (FOV) was manufactured using the design parameters optimized with the effective choice of gamma-ray interaction order determined from a Monte Carlo simulation. The camera consisted of six CsI(Na) planar scintillators with a pixelized structure that was coupled to position sensitive photomultiplier tubes (H8500) consisting of multiple anodes connected to custom-made circuits. The size of the scintillator and each pixel was 4.4×4.4×0.5 and 0.2×0.2×0.5 cm, respectively. The total size of each detection module was only 5×5×6 cm and the distance between the detector modules was approximately 10 cm to maximize the camera performance, as calculated by the simulation. Therefore, the camera is quite portable for examining nuclear materials in areas, such as harbors or nuclear power plants. The non-uniformity of the multi-anode PMTs was corrected using a novel readout circuit. Amplitude information of the signals from the electronics attached to the scintillator-coupled multi-anode PMTs was collected using a data acquisition board (cDAQ-9178), and the timing information was sent to a FPGA (SPARTAN3E). The FPGA picked the rising edges of the timing signals, and compared the edges of the signals from six detection modules to select the coincident signal from a Compton pair only. The output of the FPGA triggered the DAQ board to send the effective Compton events to a computer. The Compton image was reconstructed, and the performance of the 4π FOV Compact camera was examined.

  12. Generalised model for anisotropic compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Deb, Debabrata

    2016-12-01

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 ( SS1) and SAX J 1808.4-3658 ( SS2) are concerned.

  13. Compacting a Kentucky coal for quality logs

    SciTech Connect

    Lin, Y.; Li, Z.; Mao, S.

    1999-07-01

    A Kentucky coal was found more difficult to be compacted into large size strong logs. Study showed that compaction parameters affecting the strength of compacted coal logs could be categorized into three groups. The first group is coal inherent properties such as elasticity and coefficient of friction, the second group is machine properties such as mold geometry, and the third group is the coal mixture preparation parameters such as particle size distribution. Theoretical analysis showed that an appropriate backpressure can reduce surface cracks occurring during ejection. This has been confirmed by the experiments conducted.

  14. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  15. Model building with non-compact cosets

    NASA Astrophysics Data System (ADS)

    Croon, Djuna Lize

    2016-11-01

    We explore Goldstone boson potentials in non-compact cosets of the form SO (n , 1) / SO (n). We employ a geometric approach to find the scalar potential, and focus on the conditions under which it is compact in the large field limit. We show that such a potential is found for a specific misalignment of the vacuum. This result has applications in different contexts, such as in Composite Higgs scenarios and theories for the Early Universe. We work out an example of inflation based on a non-compact coset which makes predictions which are consistent with the current observational data.

  16. Semi-compact skyrmion-like structures

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Rodrigues, E. I. B.

    2017-06-01

    We study three distinct types of planar, spherically symmetric and localized structures, one of them having non-topological behavior and the two others being of topological nature. The non-topological structures have energy density localized in a compact region in the plane, but are unstable against spherically symmetric fluctuations. The topological structures are stable and behave as vortices and skyrmions at larger distances, but they engender interesting compact behavior as one approaches their inner cores. They are semi-compact skyrmion-like spin textures generated from models that allow to control the internal behavior of such topological structures.

  17. Compact Ceramic Microchannel Heat Exchangers

    SciTech Connect

    Lewinsohn, Charles

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  18. Our compact with tomorrow's doctors.

    PubMed

    Cohen, Jordan J

    2002-06-01

    In recent years, the image of medicine as a caring profession has been badly tarnished by a rash of critical reports in the media. In the face of this negative publicity, do young people still want to be doctors? The author reviews conventional reasons given for the declining applicant pool (e.g., issues of declining income, loss of autonomy, etc.) and posits that an additional reason may be perceptions that doctors no longer command respect and that they are being oppressed by, rather than being guardians of, the health care system. Such views challenge academic medicine to broadcast to the world a realistic picture of the fabulous opportunities and gratifications that lie ahead for the next generation of physicians. However, academic medicine must also address some current realities within medical education, such as the admission process (where at present there is a tendency to overemphasize indices of academic achievement and underemphasize the personal characteristics sought in applicants) and the acculturation process in medical school (which can often dehumanize students and convert idealistic ones into cynics). The author acknowledges that these are tough challenges. He suggests as a first step that leaders of academic medicine prepare and disseminate an explicit statement of their commitments, a kind of compact between teachers and learners of medicine. He outlines these commitments, and states his hope that by fulfilling them, the academic medicine community can make clear that medicine-which at its core is still about the doctor-patient relationship-is a true calling, not just beleaguered occupation.

  19. A compact laser target designator

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Silver, M.; Barron, A.; Borthwick, A.; Morton, G.; McRae, I.; Coghill, M.; Smith, C.; Scouler, C.; Gardiner, G.; Imlach, N.; McNeill, C.; McSporran, D.; Rodgers, D.; Kerr, D.; Alexander, W.

    2016-05-01

    Lasers intended for application to man-portable and hand-held laser target designators are subject to significant constraints on size, weight, power consumption and cost. These constraints must be met while maintaining adequate performance across a challenging environmental specification. One of the challenges of operating a Nd3+:YAG laser over a broad ambient temperature range is that of diode-pump-tuning. This system is specified to operate over an ambient temperature range of -46°C to +71°C, and the system electrical power consumption requirements preclude active temperature control. As a result the laser must tolerate a 32.8nm pump wavelength range. The optical absorption of Nd3+:YAG varies dramatically over this wavelength range. This paper presents a laser that minimizes the effect of this change on laser output. A folded U-shaped geometry laser resonator is presented, made up of a corner cube at one end and a plane mirror substrate at the other. The action of the corner cube coupled with this configuration of end mirrors results in a resonator that is significantly less sensitive to misalignment of the end mirror and/or the corner cube. This Ushaped resonator is then further folded to fit the laser into a smaller volume. Insensitivity of this compact folded resonator to mirror misalignments was analyzed in Zemax via a Monte-Carlo analysis and the results of this analysis are presented. The resulting laser output energy, pulse duration and beam quality of this athermally pumped, misalignment insensitive folded laser resonator are presented over an ambient temperature range of -46°C to +71°C.

  20. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution.