ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moor, A.; Frey, S.; Lambert, S. B.
2011-06-15
Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For themore » first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.« less
Radio structure effects on the optical and radio representations of the ICRF
NASA Astrophysics Data System (ADS)
Andrei, A. H.; da Silva Neto, D. N.; Assafin, M.; Vieira Martins, R.
Silva Neto et al. (2002) show that comparing the ICRF Ext.1 sources standard radio position (Ma et al. 1998) against their optical counterpart position (Zacharias et al. 1999, Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9±1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio stucture. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.
NASA Astrophysics Data System (ADS)
Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.
VLBI observations at 2.3 GHz of the compact galaxy 1934-638
NASA Technical Reports Server (NTRS)
Tzioumis, Anastasios K.; Jauncey, David L.; Preston, Robert A.; Meier, David L.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Nicolson, George D.; Niell, Arthur E.; Wehrle, Ann E.
1989-01-01
VLBI observations of the strong radio source 1934-638 show it to be a binary with a component separation of 42.0 + or - 0.2 mas, a position angle of 90.5 + or - 1 deg, and component sizes of about 2.5 mas. The results imply the presence of an additional elongated component aligned with, and between, the compact double components. The sources's almost equal compact double structure, peaked spectrum, low variability, small polarization, and particle-dominated radio lobes suggests that it belongs to the class of symmetric compact double sources identified by Phillips and Mutel (1980, 1981, 1982).
Galactic Abundance Gradients fro IR Fine Strucuture LInes in Compact H II regions
NASA Technical Reports Server (NTRS)
Afflerbach, A.; Churchwell, E.; Werner, M. W.
1996-01-01
We present observations of the [S III]19(micro)m, [O III]52 and 88(micro)m, and [N III]57(micro)m lines toward 18 compact and ultracompact (UC) H II regions. These data were combined with data from the literature and high-resolution radio continuum maps to construct detailed statistical equilibrium and ionization equilibrium models of 34 compact H II regions located at galactocentric distances (Dg)0-12kpc. Our models simultaneously fit the observed IR fine-structure lines and high-resolution radio continuum maps.
Evidence of Non-Coincidence between Radio and Optical Positions of ICRF Sources.
NASA Astrophysics Data System (ADS)
Andrei, A. H.; da Silva, D. N.; Assafin, M.; Vieira Martins, R.
2003-11-01
Silva Neto et al. (SNAAVM: 2002) show that comparing the ICRF Ext1 sources standard radio position (Ma et al., 1998) against their optical counterpart position(ZZHJVW: Zacharias et al., 1999; USNO A2.0: Monet et al., 1998), a systematic pattern appears, which depends on the radio structure index (Fey and Charlot, 2000). The optical to radio offsets produce a distribution suggestive of a coincidence of the optical and radio centroids worse for the radio extended than for the radio compact sources. On average, the coincidence between the optical and radio centroids is found 7.9 +/- 1.1 mas smaller for the compact than for the extended sources. Such an effect is reasonably large, and certainly much too large to be due to errors on the VLBI radio position. On the other hand, it is too small to be accounted to the errors on the optical position, which moreover should be independent from the radio structure. Thus, other than a true pattern of centroids non-coincidence, the remaining explanation is of a hazard result. This paper summarizes the several statistical tests used to discard the hazard explanation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parra, R.; Conway, J. E.; Aalto, S.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less
X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine
NASA Astrophysics Data System (ADS)
Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.
2018-06-01
Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.
THE POPULATION OF COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbrich, J.; Meingast, S.; Rivilla, V. M.
We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30 hr single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 μ Jy bm{sup −1}, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The newmore » data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than ±0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.« less
Absorption models for low-frequency variability in compact radio sources
NASA Technical Reports Server (NTRS)
Marscher, A. P.
1979-01-01
The consequences of the most plausible version of the absorption model for low-frequency variability in compact extragalactic radio sources are considered. The general restrictions placed on such a model are determined, and observational tests are suggested that can be used either to support the model or to discriminate among its various versions. It is shown that low-frequency variability in compact radio sources can be successfully explained by a class of models in which the flux is modulated by changes in free-free optical depth within an intervening ionized medium. Two versions of such a model are distinguished, one involving large changes in optical depth and the other, small changes. It is noted that while absorption effects are capable of causing rapid flux and structural variations at centimetric wavelengths, the models predict detailed behavior that is in direct conflict with observational data.
The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz
NASA Astrophysics Data System (ADS)
Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.
2018-01-01
Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.
A search for extended radio emission from selected compact galaxy groups
NASA Astrophysics Data System (ADS)
Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.
2017-07-01
Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.
X-ray Properties and the Environment of Compact Radio Sources.
NASA Astrophysics Data System (ADS)
Siemiginowska, Aneta; Sobolewska, Malgorzata; Guainazzi, Matteo; Hardcastle, Martin; Migliori, Giulia; Ostorero, Luisa; Stawarz, Lukasz
2018-01-01
Compact extragalactic radio sources provide important insights into the initial stages of radio source evolution and probe states of a black hole activity at the time of the formation of the relativistic outflow. Such outflows propagate out to hundreds kpc distances from the origin and impact environment on many scales, and thus influence evolution of structures in the universe. These compact sources show radio features typically observed in large-scale radio galaxies (jets, lobes, hot spots), but contained within the central 1 kpc region of the host galaxy. Compact Symmetric Objects (CSOs, a subclass of GigaHertz Peaked spectrum radio sources) are symmetric and not affected by beaming. Their linear radio size can be translated into a source age if one measures the expansion velocity of the radio structures. Such ages has been measured for a small sample of CSOs. Using the Chandra X-ray Observatory and XMM-Newton we observed a pilot samples of 16 CSOs in X-rays (6 for the first time). Our results show heterogeneous nature of the CSOs X-ray emission indicating a range of AGN luminosities and a complex environment. In particular, we identified four Compton Thick sources with a dense medium (equivalent column > 1e24 cm^-2) capable of disturbing/slowing down the jet and confining the jet to a small region. Thus for the first time we gain the observational evidence in X-ray domain in favor of the hypothesis that in a sub-population of CSOs the radio jets may be confined by the dense X-ray obscuring medium. As a consequence, the kinematic ages of these CSOs may be underestimated.. We discuss the implications of our results on the emission models of CSOs, the earliest stages of the radio source evolution, jet interactions with the ISM, diversity of the environments in which the jets expand, and jet-galaxy co-evolution.Partial support for this work was provided by the NASA grants GO1-12145X, GO4-15099X, NNX10AO60G, NNX17AC23G and XMM AO15 project 78461. This work supported in part by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
Intrinsic Differences in the Inner Jets of High and Low Optically Polarized Radio Quasars
NASA Technical Reports Server (NTRS)
Lister, M.; Smith, P.
2000-01-01
We have conducted a high-resolution polarization study with the VLBA at 22 and 43 GHz to look for differences in the parsec-scale magnetic field structures of 18 high- and low-optically polarized, compact radio-loud quasars (HPQs and LPRQs, respectively).
Observations of compact radio nuclei in Cygnus A, Centaurus A, and other extended radio sources
NASA Technical Reports Server (NTRS)
Kellermann, K. I.; Clark, B. G.; Niell, A. E.; Shaffer, D. B.
1975-01-01
Observations of Cygnus A show a compact radio core 2 milliarcsec in extent oriented in the same direction as the extended components. Other large double- or multiple-component sources, including Centaurus A, have also been found to contain compact radio nuclei with angular sizes in the range 1-10 milliarcsec.
VLBI observations of Infrared-Faint Radio Sources
NASA Astrophysics Data System (ADS)
Middelberg, Enno; Phillips, Chris; Norris, Ray; Tingay, Steven
2006-10-01
We propose to observe a small sample of radio sources from the ATLAS project (ATLAS = Australia Telescope Large Area Survey) with the LBA, to determine their compactness and map their structures. The sample consists of three radio sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubbed Infrared-Faint Radio Sources, or IFRS, is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations: we will map their structure to test whether they resemble core-jet or double-lobed morphologies, and we will measure the flux densities on long baselines, to determine their compactness. Previous snapshot-style LBA observations of two other IFRS yielded no detections, hence we propose to use disk-based recording with 512 Mbps where possible, for highest sensitivity. With the observations proposed here, we will increase the number of VLBI-observed IFRS from two to five, soon allowing us to draw general conclusions about this intriguing new class of objects.
NASA Technical Reports Server (NTRS)
Larkin, J. E.; Matthews, K.; Lawrence, C. R.; Graham, J. R.; Harrison, W.; Jernigan, G.; Lin, S.; Nelson, J.; Neugebauer, G.; Smith, G.
1994-01-01
Images of the gravitational lens system MG 1131+0456 taken with the near-infrared camera on the W. M. Keck telescope in the J and K(sub s) bands show that the infrared counterparts of the compact radio structure are exceedingly red, with J - K greater than 4.2 mag. The J image reveals only the lensing galaxy, while the K(sub s) image shows both the lens and the infrared counterparts of the compact radio components. After subtracting the lensing galaxy from the K(sub s) image, the position and orientation of the compact components agree with their radio counterparts. The broad-band spectrum and observed brightness of the lens suggest a giant galaxy at a redshift of approximately 0.75, while the color of the quasar images suggests significant extinction by dust in the lens. There is a significant excess of faint objects within 20 sec of MG 1131+0456. Depending on their mass and redshifts, these objects could complicate the lensing potential considerably.
Richness of compact radio sources in NGC 6334D to F
NASA Astrophysics Data System (ADS)
Medina, S.-N. X.; Dzib, S. A.; Tapia, M.; Rodríguez, L. F.; Loinard, L.
2018-02-01
Context. The presence and properties of compact radio sources embedded in massive star forming regions can reveal important physical properties about these regions and the processes occurring within them. The NGC 6334 complex, a massive star forming region, has been studied extensively. Nevertheless, none of these studies has focused in its content in compact radio sources. Aims: Our goal here is to report on a systematic census of the compact radio sources toward NGC 6334, and their characteristics. This will be used to attempt to define their very nature. Methods: We used the VLA C band (4-8 GHz) archive data with 0.̋36 (500 AU) of spatial resolution and noise level of 50 μJy bm‑1 to carry out a systematic search for compact radio sources within NGC 6334. We also searched for infrared counterparts to provide some constraints on the nature of the detected radio sources. Results: A total of 83 compact sources and three slightly resolved sources were detected. Most of them are here reported for the first time. We found that 29 of these 86 sources have infrared counterparts and three are highly variable. Region D contains 18 of these sources. The compact source toward the center, in projection, of region E is also detected. Conclusions: From statistical analyses, we suggest that the 83 reported compact sources are real and most of them are related to NGC 6334 itself. A stellar nature for 27 of them is confirmed by their IR emission. Compared with Orion, region D suffers a deficit of compact radio sources. The infrared nebulosities around two of the slightly resolved sources are suggested to be warm dust, and we argue that the associated radio sources trace free-free emission from ionized material. We confirm the thermal radio emission of the compact source in region E. However, its detection at infrared wavelengths implies that it is located in the foreground of the molecular cloud. Finally, three strongly variable sources are suggested to be magnetically active young stars.
Small jets in radio-loud hot DOGs
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.; Whittle, M.; Trapp, A.; Patil, P.; Lonsdale, C. J.; Thorp, R.; Lacy, M.; Kimball, A. E.; Blain, A.; Jones, S.; Kim, M.
2016-02-01
We address the impact of young radio jets on the ISM and star formation in a sample of radiatively efficient, highly obscured, radio AGN with look back times that place them near the peak of the galaxy and BH building era, z˜ 1-3. By selecting systems with a high mid-infrared (MIR) luminosity we aim to identify radiatively efficient (``quasar-mode'' or ``radiative-mode") AGN in a peak fueling phase, and by selecting compact radio sources we favor young or re-generated radio jets which are confined within the hosts. By selecting AGN which are very red through the optical-MIR we favor highly obscured systems likely to have been recently merger-triggered and still in the pre-blow-out phase of AGN feedback into the surrounding ISM. ALMA imaging at 345 GHz of 49 sources has revealed that they are accretion dominated, relative to star formation, with luminosities reaching 1014 L⊙. Extensive VLA imaging at 8-10 GHz in both A-array and B-array for 155 sources reveals that the majority of these powerful radio systems are compact on < 2-5 kpc scales while some have resolved structures on 3-25 kpc scales, and a small number have giant radio lobes on hundreds of kpc scales. The majority of the GHz range radio SEDs are typical of optically thin synchrotron, however for the 34 sources with data at more than 2 frequencies, 40 % are likely to be CSS, GPS, or HFP sources. VLBA imaging of 62 sources reveals varied morphologies, from unresolved sources to complex multicomponent 1-10 mas scale structures. Data from ALMA, VLA, and VLBA
Revealing two radio-active galactic nuclei extremely near PSR J0437-4715
NASA Astrophysics Data System (ADS)
Li, Zhixuan; Yang, Jun; An, Tao; Paragi, Zsolt; Deller, Adam; Reynolds, Cormac; Hong, Xiaoyu; Wang, Jiancheng; Ding, Hao; Xia, Bo; Yan, Zhen; Guo, Li
2018-05-01
Newton's gravitational constant G may vary with time at an extremely low level. The time variability of G will affect the orbital motion of a millisecond pulsar in a binary system and cause a tiny difference between the orbital period-dependent measurement of the kinematic distance and the direct measurement of the annual parallax distance. PSR J0437-4715 is the nearest millisecond pulsar and the brightest at radio wavelengths. To explore the feasibility of achieving a parallax distance accuracy of one light-year, comparable to the recent timing result, with the technique of differential astrometry, we searched for compact radio sources quite close to PSR J0437-4715. Using existing data from the Very Large Array and the Australia Telescope Compact Array, we detected two sources with flat spectra, relatively stable flux densities of 0.9 and 1.0 mJy at 8.4 GHz and separations of 13 and 45 arcsec. With a network consisting of the Long Baseline Array and the Kunming 40-m radio telescope, we found that both sources have a point-like structure and a brightness temperature of ≥107 K. According to these radio inputs and the absence of counterparts in other bands, we argue that they are most likely the compact radio cores of extragalactic active galactic nuclei, rather than Galactic radio stars. The finding of these two radio active galactic nuclei will enable us to achieve a sub-pc distance accuracy with in-beam phase-referencing very-long-baseline interferometric observations and provide one of the most stringent constraints on the time variability of G in the near future.
Exploring three faint source detections methods for aperture synthesis radio images
NASA Astrophysics Data System (ADS)
Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.
2015-04-01
Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.
Structural Variability of 3C 111 on Parsec Scales
NASA Technical Reports Server (NTRS)
Grossberger, C.; Kadler, M.; Wilms, J.; Muller, C.; Beuchert, T.; Ros, E.; Ojha, R.; Aller, M.; Aller, H.; Angelakis, E.;
2011-01-01
We discuss the parsec-scale structural variability of the extragalactic jet 3C 111 related to a major radio flux density outburst in 2007, The data analyzed were taken within the scope of the MOJAVE, UMRAO, and F-GAMMA programs, which monitor a large sample of the radio brightest compact extragalactic jets with the VLBA, the University of Michigan 26 m, the Effelsberg 100 m, and the IRAM 30 m radio telescopes. The analysis of the VLBA data is performed by fitting Gaussian model components in the visibility domain, We associate the ejection of bright features in the radio jet with a major flux-density outburst in 2007, The evolution of these features suggests the formation of a leading component and multiple trailing components
THE POSITION/STRUCTURE STABILITY OF FOUR ICRF2 SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomalont, Ed; Johnston, Kenneth; Fey, Alan
2011-03-15
Four close radio sources in the International Celestial Reference Frame (ICRF) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6 GHz, and with VERA at 23 GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF. Although the four sources were compact at 8.6 GHz, the VLBA images at 43 GHz with 0.3 mas resolution showed that all were composed of several components. A component in each source was identified as the radio core using some or allmore » of the following emission properties: compactness, spectral index, location at the end of the extended emission region, and stationary in the sky. Over the observing period, the relative positions between the four radio cores were constant to 0.02 mas, the phase-referencing positional accuracy obtained at 23 and 43 GHz among the sources, suggesting that once a radio core is identified, it remains stationary in the sky to this accuracy. Other radio components in two of the four sources had detectable motion in the radio jet direction. Comparison of the 23 and 43 GHz VLBA images with the VLBA 8.6 GHz images and the ICRF positions suggests that some ICRF positions are dominated by a moving jet component; hence, they can be displaced up to 0.5 mas from the radio core and may also reflect the motion of the jet component. Future astrometric efforts to determine a more accurate quasar reference frame at 23 and 43 GHz and from the VLBI2010 project are discussed, and supporting VLBA or European VLBI Network observations of ICRF sources at 43 GHz are recommended in order to determine the internal structure of the sources. A future collaboration between the radio (ICRF) and the optical frame of GAIA is discussed.« less
Four hot DOGs in the microwave
NASA Astrophysics Data System (ADS)
Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao
2016-01-01
Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.
Multiepoch VLBI observations of 4C 39.25 - Superluminal motion amid stationary structure
NASA Technical Reports Server (NTRS)
Shaffer, David B.; Marscher, Alan P.; Marcaide, Jon; Romney, Jonathan D.
1987-01-01
Eight VLBI maps of the quasar 4C 39.25 are presented, covering the time interval November 1979 to July 1985. During this period the compact components at the eastern and western ends of the source remained roughly stationary with respect to each other. A third component emerged from the western component in 1982 and proceeded to move (relative to the other two components) eastward at a rate of 0.16 + or - 0.02 marcsec per year. This corresponds to an average apparent speed between 3.2c and 8.4c for Hubble's constant between 100 and 50 km/s Mpc and q0 between 1 and 0. This superluminal motion contrasts with the stationary structure observed in the 1970s and also still observed between the eastern and western ends of the source. Possible explanations include superluminal feeding of a stationary compact counterpart to a classical radio lobe, an obstacle in a relativistic jet, a relativistic jet which alternatively expands and contracts owing to gradients in the confining pressure, and gravitational lensing of the compact radio emission.
NASA Astrophysics Data System (ADS)
Kaczmarek, J. F.; Purcell, C. R.; Gaensler, B. M.; Sun, X.; O'Sullivan, S. P.; McClure-Griffiths, N. M.
2018-05-01
We present full-polarization, broad-band observations of the radio galaxy NGC 612 (PKS B0131-637) from 1.3 to 3.1 GHz using the Australia Telescope Compact Array. The relatively large angular scale of the radio galaxy makes it a good candidate with which to investigate the polarization mechanisms responsible for the observed Faraday depth structure. By fitting complex polarization models to the polarized spectrum of each pixel, we find that a single polarization component can adequately describe the observed signal for the majority of the radio galaxy. While we cannot definitively rule out internal Faraday rotation, we argue that the bulk of the Faraday rotation is taking place in a thin skin that girts the polarized emission. Using minimum energy estimates, we find an implied total magnetic field strength of 4.2 μG.
NASA Technical Reports Server (NTRS)
1990-01-01
This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.
Radio and optical observations of 0218+357 - The smallest Einstein ring?
NASA Technical Reports Server (NTRS)
O'Dea, Christopher P.; Baum, Stefi A.; Stanghellini, Carlo; Dey, Arjun; Van Breugel, Wil; Deustua, Susana; Smith, Eric P.
1992-01-01
VLA radio observations and optical imaging and spectroscopy of the Einstein radio ring 0218+357 are presented. The ring is detected at 22.4 GHz and shows a basically similar structure at 5, 15, and 22.4 GHz. The B component has varied and was about 15 percent brighter in the 8.4 GHz data than in the data of Patnaik et al. (1992). The ring is highly polarized. A weak jetlike feature extending out roughly 2 arcsec to the southeast of component A is detected at 6 cm. The source has amorphous radio structure extending out to about 11 arcsec from the core. For an adopted redshift of 0.68, the extended radio emission is very powerful. The optical spectrum is rather red and shows no strong features. A redshift of about 0.68 is obtained. The identification is a faint compact m(r) about 20 galaxy which extends to about 4.5 arcsec (about 27 kpc). As much as 50 percent of the total light may be due to a central AGN. The observed double core and ring may be produced by an off-center radio core with extended radio structure.
NASA Astrophysics Data System (ADS)
Chhetri, R.; Ekers, R. D.; Morgan, J.; Macquart, J.-P.; Franzen, T. M. O.
2018-06-01
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point (<0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above ˜3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
SAIP2014, the 59th Annual Conference of the South African Institute of Physics
NASA Astrophysics Data System (ADS)
Engelbrecht, Chris; Karataglidis, Steven
2015-04-01
The International Celestial Reference Frame (ICRF) was adopted by the International Astronomical Union (IAU) in 1997. The current standard, the ICRF-2, is based on Very Long Baseline Interferometric (VLBI) radio observations of positions of 3414 extragalactic radio reference sources. The angular resolution achieved by the VLBI technique is on a scale of milliarcsecond to sub-milliarcseconds and defines the ICRF with the highest accuracy available at present. An ideal reference source used for celestial reference frame work should be unresolved or point-like on these scales. However, extragalactic radio sources, such as those that definevand maintain the ICRF, can exhibit spatially extended structures on sub-milliarsecond scalesvthat may vary both in time and frequency. This variability can introduce a significant error in the VLBI measurements thereby degrading the accuracy of the estimated source position. Reference source density in the Southern celestial hemisphere is also poor compared to the Northern hemisphere, mainly due to the limited number of radio telescopes in the south. In order to dene the ICRF with the highest accuracy, observational efforts are required to find more compact sources and to monitor their structural evolution. In this paper we show that the astrometric VLBI sessions can be used to obtain source structure information and we present preliminary imaging results for the source J1427-4206 at 2.3 and 8.4 GHz frequencies which shows that the source is compact and suitable as a reference source.
H I absorption in nearby compact radio galaxies
NASA Astrophysics Data System (ADS)
Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.
2017-05-01
H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.
Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems
NASA Technical Reports Server (NTRS)
Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)
2002-01-01
We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.
NASA Astrophysics Data System (ADS)
Shastri, Prajval
2017-09-01
We seek to test the hypothesis that radiatively efficient accretion onto the central supermassive black holes (SMBHs) of two merging galaxies drive the emission-line structure and kinematics that we see in the ROSAT-detected Carafe. We have confirmed the presence of two compact sources with LINER-type spectra, which coincide with two compact radio sources that we detect. We have obtained the emission-line structure and kinematics of the Carafe with an optical IFU mosaic. We demonstrate that the proposed 35ksec ACIS imaging will yield both the soft and hard X-ray photons that we need to definitively distinguish between the following hypotheses: that the driver of the system is a pair of accreting SMBH, or that the hot extended gas in the Carafe is shock-excited by two compact star bursts.
Compact radio sources in luminous infrared galaxies
NASA Astrophysics Data System (ADS)
Parra, Rodrigo
2007-08-01
Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220 starburst. A subset of luminous infrared galaxies contain non-thermal spectral line emission from the OH radical. These OH megamasers often show diffuse extended (~100 pc) low gain emission surrounding compact ([Special characters omitted. 1 pc) high gain maser spots. These observational features have been explained in terms of unsaturated and saturated masers. Using numerical simulations we have shown how both the diffuse and compact components of the OH megamaser observed towards the luminous infrared galaxy IIIZw35 can be explained by a single phase of unsaturated maser clouds in which the compact bright masers are caused by the random line-of-sight overlap of several such clouds and the diffuse component by the beam spatial average of many low gain clouds too weak to be seen independently. The theoretical tools developed to analyse this particular case have been extended to the general problem of propagation of radiation in clumpy media.
Radio supernovae and super star clusters in the circumnuclear region of NGC 1365
NASA Astrophysics Data System (ADS)
Lindblad, P. O.; Kristen, H.
Groundbased optical and VLA observations have shown that the nucleus of the barred Seyfert 1 galaxy NGC 1365 is surrounded by a number of star forming regions, or "hot spots", as well as a number of resolved and unresolved continuum radio sources. HST/FOC observations reveal that the nucleus is surrounded by a ring of very compact unresolved sources of the kind that have been discovered in a number of other galaxies, and that have been assumed to be very compact young globular star clusters. The hot spots are resolved into groups of such compact sources. VLA observations at lambda = 2 cm, where the resolution approaches that of HST, reveals that the brightest unresolved radio source at 2 cm, which has been assumed to be a radio supernova, coincides with one of the compact HST sources. The implications of this will be discussed.
Hill, A. B.; Szostek, A.; Corbel, S.; ...
2011-07-08
We present an analysis of high energy (HE; 0.1–300 GeV) γ-ray observations of 1FGL J1227.9–4852 with the Fermi Gamma-ray Space Telescope, follow-up radio observations with the Australia Telescope Compact Array, Giant Metrewave Radio Telescope and Parkes radio telescopes of the same field and follow-up optical observations with the ESO VLT. We also examine archival XMM– Newton and INTEGRAL X-ray observations of the region around this source. The γ-ray spectrum of 1FGL J1227.9–4852 is best fitted with an exponentially cut-off power law, reminiscent of the population of pulsars observed by Fermi. A previously unknown, compact radio source within the 99.7 permore » cent error circle of 1FGL J1227.9–4852 is discovered and has a morphology consistent either with an AGN core/jet structure or with two roughly symmetric lobes of a distant radio galaxy. A single bright X-ray source XSS J12270–4859, a low-mass X-ray binary, also lies within the 1FGL J1227.9–4852 error circle and we report the first detection of radio emission from this source. The potential association of 1FGL J1227.9–4852 with each of these counterparts is discussed. Based upon the available data we find the association of the γ-ray source to the compact double radio source unlikely and suggest that XSS J12270–4859 is a more likely counterpart to the new HE source. As a result, we propose that XSS J12270–4859 may be a millisecond binary pulsar and draw comparisons with PSR J1023+0038.« less
VLBI survey of compact broad absorption line quasars with balnicity index BI = 0
NASA Astrophysics Data System (ADS)
Cegłowski, M.; Kunert-Bajraszewska, M.; Roskowiński, C.
2015-06-01
We present high-resolution observations, using both the European VLBI Network (EVN) at 1.7 GHz and the Very Long Baseline Array (VLBA) at 5 and 8.4 GHz, to image radio structures of 14 compact sources classified as broad absorption line (BAL) quasars based on the absorption index (AI). All sources but one were resolved, with the majority showing core-jet morphology typical for radio-loud quasars. We discuss in detail the most interesting cases. The high radio luminosities and small linear sizes of the observed objects indicate they are strong young active galactic nuclei. Nevertheless, the distribution of the radio-loudness parameter, log RI, of a larger sample of AI quasars shows that the objects observed by us constitute the most luminous, small subgroup of the AI population. Additionally, we report that for the radio-loudness parameter, the distribution of AI quasars and that for those selected using the traditional balnicity index differ significantly. Strong absorption is connected with lower log RI and thus probably larger viewing angles. Since the AI quasars have on average larger log RI, the orientation can mean that we see them less absorbed. However, we suggest that the orientation is not the only parameter that affects the detected absorption. That the strong absorption is associated with the weak radio emission is equally important and worth exploring.
The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View
NASA Technical Reports Server (NTRS)
Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.;
2016-01-01
Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.
Very high-resolution observations of compact radio sources in the directions of supernova remnants
NASA Technical Reports Server (NTRS)
Geldzahler, B. J.; Shaffer, D. B.
1981-01-01
Compact radio sources whose positions lie within the outlines of supernova remnants may be the stellar remnants of supernova explosions and, if they are related to the supernova remnants, may be used to explore the nature of any morphological connection between the Galactic and extragalactic radio sources. Three such compact sources, G 127.11+0.54, CL 4, and 2051+433, have been observed at 10.65 GHz with an array of very long baseline interferometers having elements in the USA and West Germany. The radio source 2051+433 was also observed briefly at 5.01 GHz. The measured size of CL 4 at 10.65 GHz is about 0.0005 arcsec and seems to be dominated by the effects of interstellar scattering. No fringes were seen in 2051+433, and results indicate there is no compact component of 2051+433 smaller than 0.001 arcsec radiating at 10.65 GHz above a level of about 50 mJy. The possibility is presented that G 127.11+0.54 is a Galactic object. It is found to consist of two components separated by about 0.002 arcsec and oriented perpendicular to both the radio bridge of the supernova remnant G 127.1+0.5 and the underlying optical image. G 127.11+0.54, if Galactic, lies at the extreme low-luminosity end of an apparent continuum of Galactic and extragalactic compact radio source luminosities.
Deep Radio Imaging with MERLIN of the Supernova Remnants in M82
NASA Astrophysics Data System (ADS)
Muxlow, T. W. B.; Pedlar, A.; Riley, J. D.; McDonald, A. R.; Beswick, R. J.; Wills, K. A.
An 8 day MERLIN deep integration at 5GHz of the central region of the starburst galaxy M82 has been used to investigate the radio structure of a number of supernova remnants in unprecedented detail revealing new shells and partial shell structures for the first time. In addition, by comparing the new deep 2002 image with an astrometrically aligned image from 36 hours of data taken in 1992, it has been possible to directly measure the expansion velocities of 4 of the most compact remnants in M82. For the two most compact remnants, 41.95+575 and 43.31+592, expansion velocities of 2800 ± 300 km s-1 and 8750 ± 400 km s-1 have been derived. These confirm and refine the measured expansion velocities which have been derived from VLBI multi-epoch studies. For remnants 43.18+583 and 44.01+596, expansion velocities of 10500 ± 750 km s -1 and 2400 ± 250 km s-1 have been measured for the first time. In addition, the peak of the radio emission for SNR 45.17+612 has moved between the two epochs implying velocities around 7500km s-1. The relatively compact remnants in M82 are thus found to be expanding over a wide range of velocities which appear unrelated to their size. The new 2002 map is the most sensitive high-resolution image yet made of M82, achieving an rms noise level of 17µJy beam-1. This establishes a first epoch for subsequent deep studies of expansion velocities for many SNR within M82.
The radio properties of infrared-faint radio sources
NASA Astrophysics Data System (ADS)
Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.
2011-02-01
Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.
Radio variability in complete samples of extragalactic radio sources at 1.4 GHz
NASA Astrophysics Data System (ADS)
Rys, S.; Machalski, J.
1990-09-01
Complete samples of extragalactic radio sources obtained in 1970-1975 and the sky survey of Condon and Broderick (1983) were used to select sources variable at 1.4 GHz, and to investigate the characteristics of variability in the whole population of sources at this frequency. The radio structures, radio spectral types, and optical identifications of the selected variables are discussed. Only compact flat-spectrum sources vary at 1.4 GHz, and all but four are identified with QSOs, BL Lacs, or other (unconfirmed spectroscopically) stellar objects. No correlation of degree of variability at 1.4 GHz with Galactic latitude or variability at 408 MHz has been found, suggesting that most of the 1.4-GHz variability is intrinsic and not caused by refractive scintillations. Numerical models of the variability have been computed.
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
The Position/Structure Stability of Four ICRF2 Sources
NASA Technical Reports Server (NTRS)
Fomalont, Ed; Johnston, Kenneth; Fey, Alan; Boboltz, Dave; Oyama, Tomoaki; Honma, Mareki
2010-01-01
Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.
ORIGIN OF THE COMPLEX RADIO STRUCTURE IN BAL QSO 1045+352
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Gawronski, Marcin P.; Janiuk, Agnieszka
2010-08-01
We present new, more sensitive, high-resolution radio observations of a compact broad absorption line (BAL) quasar, 1045+352, made with the EVN+MERLIN at 5 GHz. These observations allowed us to trace the connection between the arcsecond structure and the radio core of the quasar. The radio morphology of 1045+352 is dominated by a knotty jet showing several bends. We discuss possible scenarios that could explain such a complex morphology: galaxy merger, accretion disk instability, precession of the jet, and jet-cloud interactions. It is possible that we are witnessing an ongoing jet precession in this source due to internal instabilities within themore » jet flow; however, a dense environment detected in the submillimeter band and an outflowing material suggested by the X-ray absorption could strongly interact with the jet. It is difficult to establish the orientation between the jet axis and the observer in 1045+352 because of the complex structure. Nevertheless, taking into account the most recent inner radio structure, we conclude that the radio jet is oriented close to the line of sight, which can mean that the opening angle of the accretion disk wind can be large in this source. We also suggest that there is no direct correlation between the jet-observer orientation and the possibility of observing BALs.« less
7 Millimeter VLBA Observations of Sagittarius A*
NASA Astrophysics Data System (ADS)
Bower, Geoffrey C.; Backer, Donald C.
1998-04-01
We present 7 mm Very Long Baseline Array observations of the compact nonthermal radio source in the Galactic center, Sagittarius A*. These observations confirm the hypothesis that the image of Sgr A* is a resolved elliptical Gaussian caused by the scattering of an intervening thermal plasma. The measured major axis of Sgr A* is 0.76+/-0.04 mas, consistent with the predicted scattering size of 0.67+/-0.03. We find an axial ratio of 0.73+/-0.10 and a position angle of 77.0d +/- 7.4d. These results are fully consistent with VLBI observations at longer wavelengths and at 3 mm. We find no evidence for any additional compact structure to a limit of 35 mJy. The underlying radio source must be smaller than 4.1 AU for a Galactocentric distance of 8.5 kpc. This result is consistent with the conclusion that the radio emission from Sgr A* results from synchrotron or cyclo-synchrotron radiation of gas in the vicinity of a black hole with a mass near 106 Msolar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliori, Giulia; Siemiginowska, Aneta; Celotti, Annalisa, E-mail: migliori@cfa.harvard.edu
2012-04-20
We present the X-ray analysis of a deep ({approx}200 ks) Chandra observation of the compact steep spectrum radio-loud quasar 3C 186 (z = 1.06) and investigate the contribution of the unresolved radio jet to the total X-ray emission. The spectral analysis is not conclusive on the origin of the bulk of the X-ray emission. In order to examine the jet contribution to the X-ray flux, we model the quasar spectral energy distribution, adopting several scenarios for the jet emission. For the values of the main physical parameters favored by the observables, a dominant role of the jet emission in themore » X-ray band is ruled out when a single-zone (leptonic) scenario is adopted, even including the contribution of the external photon fields as seed photons for inverse Compton emission. We then consider a structured jet, with the blazar component that-although not directly visible in the X-ray band-provides an intense field of seed synchrotron photons Compton-scattered by electrons in a mildly relativistic knot. In this case, the whole X-ray emission can be accounted for if we assume a blazar luminosity within the range observed from flat spectrum radio quasars. The X-ray radiative efficiency of such a (structured) jet is intimately related to the presence of a complex velocity structure. The jet emission can provide a significant contribution in X-rays if it decelerates within the host galaxy on kiloparsec scales. We discuss the implications of this model in terms of jet dynamics and interaction with the ambient medium.« less
Discovery of a radio nebula around PSR J0855-4644
NASA Astrophysics Data System (ADS)
Maitra, C.; Roy, S.; Acero, F.; Gupta, Y.
2018-06-01
We report the discovery of a diffuse radio emission around PSR J0855-4644 using an upgraded GMRT (uGMRT) observation at 1.35 GHz. The radio emission is spatially coincident with the diffuse X-ray pulsar wind nebula (PWN) seen with XMM-Newton but is much larger in extent compared to the compact axisymmetric PWN seen with Chandra. The morphology of the emission, with a bright partial ring-like structure and two faint tail-like features strongly resembles a bow shock nebula, and indicates a velocity of 100 km s-1 through the ambient medium. We conclude that the emission is most likely to be associated with the radio PWN of PSR J0855-4644. From the integrated flux density, we estimate the energetics of the PWN.
Reflective electroabsorption modular for compact base station radio-over-fiber systems
NASA Astrophysics Data System (ADS)
Wu, Yang; Chang, Wei-Xi; Yu, Paul K. L.
2003-07-01
A Radio-over-Fiber system with simplified Base Station (BS) is proposed in which a single chip DBR Reflective Electro-absorption Modulator (REAM) serves both as an optical transceiver and as a mixer at the BS. It enables full duplex optical transmission for base band and RF band services simultaneously due to good isolation between uplink and downlink at the same chip. Grating structure is incorporated into the EA modulator for the sake of system design. It also improves yield and efficiency of high-speed devices.
Effects of the turbulent ISM on radio observations of quasars
NASA Astrophysics Data System (ADS)
Gabányi, Krisztina; Britzen, S.; Krichbaum, T. P.; Bach, U.; Fuhrmann, L.; Kraus, A.; Witzel, A.; Zensus, J. A.
In radio bands, the study of compact radio sources can be affected by propagation effects introduced by the interstellar medium, usually attributed to the presence of turbulent intervening plasma along the line of sight. Here, two of such effects are presented. The line of sight of B 2005+403 passes through the heavily scattered region of Cygnus causing substantial angular broadening of the source images obtained at frequencies between 0.6 GHz and 8 GHz. At higher frequencies, however, the intrinsic source structure shines through. Therefore, multi-frequency VLBI observations allow to study the characteristics of the intervening material, the source morphology and the interplay between them in forming the observed image.
A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow
NASA Astrophysics Data System (ADS)
Shih, Hsin-Yi; Stockton, Alan
2015-12-01
We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane
NASA Technical Reports Server (NTRS)
Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.
1993-01-01
Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.
Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants
NASA Technical Reports Server (NTRS)
Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.
1994-01-01
We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.
The radio sources CTA 21 and OF+247: The hot spots of radio galaxies
NASA Astrophysics Data System (ADS)
Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.
2013-06-01
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.
The high-resolution structure of the Centaurus A nucleus at 2.3 and 8.4 GHz
NASA Technical Reports Server (NTRS)
Meier, David L.; Preston, Robert A.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Wehrle, Ann E.; Niell, Arthur E.; Jauncey, David L.; Batchelor, Robert; Tzioumis, Anastasios K.
1989-01-01
VLBI observations of the nucleus of Centaurus A have been made at two frequencies with an array of five Australian radio telescopes as part of the Southern Hemisphere VLBI Experiment. Observations were made at 2.3 GHz with all five antennas, while only two were employed at 8.4 GHz. At 2.3 GHz seven tracks in the (u,v) plane with coverage of 6-8 hr each were obtained, yielding significant information on the structure of the nuclear jet. At 8.4 GHz a compact unresolved core was detected as well. It is found that the source consists of the compact self-absorbed core, a jet containing a set of three knots extending from 100 to 160 mas from the core, and a very long, narrow component elongated along the same position angle as the knots. The allowable range for the position angle of the jet is 51 + or - 3 deg, in agreement with that of the radio and X-ray structure on arcsecond and arcminute scales. The jet has brightened at 2.3 GHz by about 4 Jy, a factor of nearly 3, since the early 1970s, 1.8 Jy of which has occurred in the last 2 yr with no discernable changes in structure.
NASA Astrophysics Data System (ADS)
Tyul'Bashev, S. A.
2009-01-01
A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.
Flat spectrum multicomponent radio sources - Cosmic conspiracy or geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacholczyk, A.G.
1981-01-01
Compact radio sources which do not exhibit currently large flux density variations, are often characterized by spectra nearly flat over a wide range of wavelengths. Cotton et al. (1980) recently reported the results of the VLBI multifrequency interferometric and total flux density observations of a typical representative of the flat spectrum class of sources, a BL Lacertae object PKS 0735+178. If 0735+178 is indeed representative of flat spectrum sources, then some mechanism causing the component production and energy loss to be balanced must be operative among this type of radio source to maintain a flat spectrum over at least certainmore » periods of time. This effect is referred to as 'cosmic conspiracy'. It is suggested that the flatness of spectra of this class of radio sources may be related to a specific symmetry in the radio structure, namely, to a predominantly linear, one-dimensional evolution of radio radiating material, rather than spherical, three-dimensional evolution.« less
Searching for Compact Radio Sources Associated with UCH ii Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A.
Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous naturemore » for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.« less
Global e-VLBI observations of the gamma-ray narrow line Seyfert 1 PMN J0948+0022
NASA Astrophysics Data System (ADS)
Giroletti, M.; Paragi, Z.; Bignall, H.; Doi, A.; Foschini, L.; Gabányi, K. É.; Reynolds, C.; Blanchard, J.; Campbell, R. M.; Colomer, F.; Hong, X.; Kadler, M.; Kino, M.; van Langevelde, H. J.; Nagai, H.; Phillips, C.; Sekido, M.; Szomoru, A.; Tzioumis, A. K.
2011-04-01
Context. There is growing evidence of relativistic jets in radio-loud narrow-line Seyfert 1 (RL-NLS1) galaxies. Aims: We constrain the observational properties of the radio emission in the first RL-NLS1 galaxy ever detected in gamma-rays, PMN J0948+0022, i.e., its flux density and structure in both total intensity and polarization, its compactness, and variability. Methods: We performed three real-time e-VLBI observations of PMN J0948+0022 at 22 GHz, using a global array including telescopes in Europe, East Asia, and Australia. These are the first e-VLBI science observations ever carried out with a global array, reaching a maximum baseline length of 12 458 km. The observations were part of a large multiwavelength campaign in 2009. Results: The source is detected at all three epochs. The structure is dominated by a bright component, more compact than 55 μas, with a fainter component at a position angle θ ~ 35°. Relativistic beaming is required by the observed brightness temperature of 3.4 × 1011 K. Polarization is detected at a level of about 1%. Conclusions: The parameters derived by the VLBI observations, in addition to the broad-band properties, confirm that PMN J0948+0022 is similar to flat spectrum radio quasars. Global e-VLBI is a reliable and promising technique for future studies.
THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: RADIO STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov
2015-04-01
We present deep radio images of the inner ∼50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy—including the active nucleus, inner radio lobes, and star-forming disk—and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from themore » active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind.« less
BROADBAND RADIO POLARIMETRY AND FARADAY ROTATION OF 563 EXTRAGALACTIC RADIO SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J.
2015-12-10
We present a broadband spectropolarimetric survey of 563 discrete, mostly unresolved radio sources between 1.3 and 2.0 GHz using data taken with the Australia Telescope Compact Array. We have used rotation-measure synthesis to identify Faraday-complex polarized sources, those objects whose frequency-dependent polarization behavior indicates the presence of material possessing complicated magnetoionic structure along the line of sight (LOS). For sources classified as Faraday-complex, we have analyzed a number of their radio and multiwavelength properties to determine whether they differ from Faraday-simple polarized sources (sources for which LOS magnetoionic structures are comparatively simple) in these properties. We use this information tomore » constrain the physical nature of the magnetoionic structures responsible for generating the observed complexity. We detect Faraday complexity in 12% of polarized sources at ∼1′ resolution, but we demonstrate that underlying signal-to-noise limitations mean the true percentage is likely to be significantly higher in the polarized radio source population. We find that the properties of Faraday-complex objects are diverse, but that complexity is most often associated with depolarization of extended radio sources possessing a relatively steep total intensity spectrum. We find an association between Faraday complexity and LOS structure in the Galactic interstellar medium (ISM) and claim that a significant proportion of the Faraday complexity we observe may be generated at interfaces of the ISM associated with ionization fronts near neutral hydrogen structures. Galaxy cluster environments and internally generated Faraday complexity provide possible alternative explanations in some cases.« less
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-08-11
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905
Automated detection of extended sources in radio maps: progress from the SCORPIO survey
NASA Astrophysics Data System (ADS)
Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.
2016-08-01
Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.
VLBI observations of galactic nuclei at 18 centimeters - NGC 1052, NGC 4278, M82, and M104
NASA Technical Reports Server (NTRS)
Shaffer, D. B.; Marscher, A. P.
1979-01-01
Compact radio sources about a light year in size have been detected in the nuclei of the galaxies NGC 1052, NGC 3034 (M82), NGC 4278, and NGC 4594 (M104) at a wavelength of 18 cm. The compact nucleus detected in M81 at 6 cm was not seen at 18 cm. The compact source in M82 is unique among extragalactic sources in its size-spectrum relationship. It is either broadened by scattering within M82 or it lies behind, and is absorbed by, an H II region. In these galaxies, the size of the nuclear radio source at 18 cm is larger than it is at higher frequencies. The nucleus of the giant radio galaxy DA 240 was not detected.
Radio Observations of Elongated Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Ng, Stephen C.-Y.
2015-08-01
The majority of pulsars' rotational energy is carried away by relativistic winds, which are energetic particles accelerated in the magnetosphere. The confinement of the winds by the ambient medium result in synchrotron bubbles with broad-band emission, which are commonly referred to as pulsar wind nebulae (PWNe). Due to long synchrotron cooling time, a radio PWN reflects the integrated history of the system, complementing information obtained from the X-ray and higher energy bands. In addition, radio polarization measurements can offer a powerful probe of the PWN magnetic field structure. Altogether these can reveal the physical conditions and evolutionary history of a system.I report on preliminary results from high-resolution radio observations of PWNe associated with G327.1-1.1, PSRs J1015-5719, B1509-58, and J1549-4848 taken with the Australia Telescope Compact Array (ATCA). Their magnetic field structure and multiwavelength comparison with other observations are discussed.This work is supported by a ECS grant of the Hong Kong Government under HKU 709713P. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.
The radio structure of the peculiar narrow-line Seyfert 1 galaxy candidate J1100+4421
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; Paragi, Z.; Järvelä, E.; Morokuma, T.; An, T.; Tanaka, M.; Tar, I.
2018-01-01
Narrow-line Seyfert 1 galaxies (NLS1) are an intriguing subclass of active galactic nuclei. Their observed properties indicate low central black hole mass and high accretion rate. The extremely radio-loud NLS1 sources often show relativistic beaming and are usually regarded as younger counterparts of blazars. Recently, the object SDSS J110006.07+442144.3 was reported as a candidate NLS1 source. The characteristics of its dramatic optical flare indicated its jet-related origin. The spectral energy distribution of the object was similar to that of the γ-ray detected radio-loud NLS1, PMN J0948+0022. Our high-resolution European very long baseline interferometry network observations at 1.7 and 5 GHz revealed a compact core feature with a brightness temperature of ≳1010 K. Using the lowest brightness temperature value and assuming a moderate Lorentz factor of ∼9, the jet viewing angle is ≲26°. Archival Very Large Array data show a large-scale radio structure with a projected linear size of ∼150 kpc reminiscent of double-sided morphology.
The extreme blazar AO 0235+164 as seen by extensive ground and space radio observations
NASA Astrophysics Data System (ADS)
Kutkin, A. M.; Pashchenko, I. N.; Lisakov, M. M.; Voytsik, P. A.; Sokolovsky, K. V.; Kovalev, Y. Y.; Lobanov, A. P.; Ipatov, A. V.; Aller, M. F.; Aller, H. D.; Lahteenmaki, A.; Tornikoski, M.; Gurvits, L. I.
2018-04-01
Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra-compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multifrequency VLBA, EVN, and single-dish radio observations. We employ visibility modelling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multiband time delays of the flares. The multifrequency core size and time lags support prevailing synchrotron self-absorption. The intrinsic brightness temperature of the core derived from ground-based very long baseline interferometry (VLBI) is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 μas in the source, which might be responsible for the extreme apparent brightness temperatures of up to 1014 K as measured by RadioAstron. In 2007-2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor Γ = 14, the Doppler factor δ = 21, and the viewing angle θ = 1.7° of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.
A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, Patrick D.; Eisner, Josh A.; Mann, Rita K.
We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–freemore » and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.« less
The radio-far infrared correlation: Spiral and blue compact dwarf galaxies opposed
NASA Technical Reports Server (NTRS)
Klein, U.; Wunderlich, E.
1987-01-01
The recently established correlation between radio continuum and far infrared emission in galaxies was further investigated by comparing normal spiral and blue compact dwarf galaxies. The puzzling result is that the ratio of radio to far infrared luminosity and its dispersion is the same for both samples, although their ratios of blue to far infrared luminosity, their radio spectral indices and their dust temperatures exhibit markedly different mean values and dispersions. This suggests that the amount of energy radiated in the two regimes is enhanced in the same way although the mechanisms responsible for the two components are rather different and complex. The fact that the blue light does not increase at the same proportion shows that both the radio and the far infrared emission are connected with the recent star formation history.
Wireless Zigbee strain gage sensor system for structural health monitoring
NASA Astrophysics Data System (ADS)
Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce
2009-05-01
A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost, and temperature insensitivity for critical structural applications, which require immediate monitoring and feedback.
NASA Astrophysics Data System (ADS)
Anderson, C. S.; Gaensler, B. M.; Heald, G. H.; O’Sullivan, S. P.; Kaczmarek, J. F.; Feain, I. J.
2018-03-01
We present observations and analysis of the polarized radio emission from the nearby radio galaxy Fornax A over 1.28–3.1 GHz, using data from the Australia Telescope Compact Array. In this, the first of two associated papers, we use modern broadband polarimetric techniques to examine the nature and origin of conspicuous low-polarization (low-p) patches in the lobes. We resolve the (low-p) patches and find that their low fractional polarization is associated with complicated frequency-dependent interference in the polarized signal generated by Faraday effects along the line of sight (LOS). The low-p patches are spatially correlated with interfaces in the magnetic structure of the lobe, across which the LOS-projected magnetic field changes direction. Spatial correlations with the sky-projected magnetic field orientation and structure in total intensity are also identified and discussed. We argue that the (low-p) patches, along with associated reversals in the LOS magnetic field and other related phenomena, are best explained by the presence of { \\mathcal O }({10}9) {M}ȯ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the interstellar medium of NCG 1316 or its surrounding intracluster medium. Our study underscores the power and utility of spatially resolved, broadband, full-polarization radio observations to reveal new facets of flow behaviors and magneto-ionic structure in radio lobes and their interplay with the surrounding environment.
Source-to-accelerator quadrupole matching section for a compact linear accelerator
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.
2018-05-01
Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.
The Southern HII Region Discovery Survey
NASA Astrophysics Data System (ADS)
Wenger, Trey; Miller Dickey, John; Jordan, Christopher; Bania, Thomas M.; Balser, Dana S.; Dawson, Joanne; Anderson, Loren D.; Armentrout, William P.; McClure-Griffiths, Naomi
2016-01-01
HII regions are zones of ionized gas surrounding recently formed high-mass (OB-type) stars. They are among the brightest objects in the sky at radio wavelengths. HII regions provide a useful tool in constraining the Galactic morphological structure, chemical structure, and star formation rate. We describe the Southern HII Region Discovery Survey (SHRDS), an Australia Telescope Compact Array (ATCA) survey that discovered ~80 new HII regions (so far) in the Galactic longitude range 230 degrees to 360 degrees. This project is an extension of the Green Bank Telescope HII Region Discovery Survey (GBT HRDS), Arecibo HRDS, and GBT Widefield Infrared Survey Explorer (WISE) HRDS, which together discovered ~800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees. Similar to those surveys, candidate HII regions were chosen from 20 micron emission (from WISE) coincident with 10 micron (WISE) and 20 cm (SGPS) emission. By using the ATCA to detect radio continuum and radio recombination line emission from a subset of these candidates, we have added to the population of known Galactic HII regions.
Survey of Milliarcsec Structure in Eight Seyfert Galaxies: Results on NGC 1068 and NGC 4151
NASA Astrophysics Data System (ADS)
Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Wilson, A. S.; Norris, R. P.
We are surveying eight nearby Seyfert galaxies (four Sy1s and four Sy2s) that have compact radio cores, using the VLBA. We are interested in parsec-scale morphology and low-frequency absorption effects, and so are observing four frequencies (1.6, 4.8, 8.4 and 15 GHz) to get spectral-index diagnostics. In this paper, we present results on two galaxies, NGC 1068 and NGC 4151. NGC 4151 shows a curved radio jet on the sub-parsec scale, with the smallest scale structure misaligned by $55^\\circ$ from the jet on scales of parsecs to hundreds of parsecs. NGC 1068 contains several components in the inner tens of parsecs, with those components showing a variety of absorption and resolution effects.
FARADAY ROTATION STRUCTURE ON KILOPARSEC SCALES IN THE RADIO LOBES OF CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feain, I. J.; Ekers, R. D.; Norris, R. P.
2009-12-10
We present the results of an Australia Telescope Compact Array 1.4 GHz spectropolarimetric aperture synthesis survey of 34 deg{sup 2} centered on Centaurus A-NGC 5128. A catalog of 1005 extragalactic compact radio sources in the field to a continuum flux density of 3 mJy beam{sup -1} is provided along with a table of Faraday rotation measures (RMs) and linear polarized intensities for the 28% of sources with high signal to noise in linear polarization. We use the ensemble of 281 background polarized sources as line-of-sight probes of the structure of the giant radio lobes of Centaurus A. This is themore » first time such a method has been applied to radio galaxy lobes and we explain how it differs from the conventional methods that are often complicated by depth and beam depolarization effects. Assuming a magnetic field strength in the lobes of 1.3 B {sub 1} muG, where B {sub 1} = 1 is implied by equipartition between magnetic fields and relativistic particles, the upper limit we derive on the maximum possible difference between the average RM of 121 sources behind Centaurus A and the average RM of the 160 sources along sightlines outside Centaurus A implies an upper limit on the volume-averaged thermal plasma density in the giant radio lobes of (n{sub e} ) < 5 x 10{sup -5} B {sup -1} {sub 1} cm{sup -3}. We use an RM structure function analysis and report the detection of a turbulent RM signal, with rms sigma{sub RM} = 17 rad m{sup -2} and scale size 0.{sup 0}3, associated with the southern giant lobe. We cannot verify whether this signal arises from turbulent structure throughout the lobe or only in a thin skin (or sheath) around the edge, although we favor the latter. The RM signal is modeled as possibly arising from a thin skin with a thermal plasma density equivalent to the Centaurus intragroup medium density and a coherent magnetic field that reverses its sign on a spatial scale of 20 kpc. For a thermal density of n {sub 1} 10{sup -3} cm{sup -3}, the skin magnetic field strength is 0.8 n {sup -1} {sub 1} muG.« less
Renewed Radio Activity of Age 370 years in the Extragalactic Source 0108+388
NASA Astrophysics Data System (ADS)
Owsianik, I.; Conway, J. E.; Polatidis, A. G.
1998-08-01
We present the results of multi-epoch global VLBI observations of the Compact Symmetric Object (CSO) 0108+388 at 5 GHz. Analysis of data spread over 12 years shows strong evidence for an increase in the separation of the outer components at a rate of 0.197+/-0.026 h(-1) c. Given an overall size of 22.2 h(-1) pc this implies a kinematic age of only 367+/-48 yrs. This result strongly supports the idea that radio emission in Compact Symmetric Objects arises from recently activated radio sources. The presence of weak radio emission on kpc-scales in 0108+388 suggests recurrent activity in this source, and that we are observing it just as a new period of activity is beginning.
A radio monitoring survey of ultra-luminous X-ray sources
NASA Astrophysics Data System (ADS)
Körding, E.; Colbert, E.; Falcke, H.
2005-06-01
We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.
X-Ray Properties of the Youngest Radio Sources and Their Environments
NASA Astrophysics Data System (ADS)
Siemiginowska, Aneta; Sobolewska, Małgosia; Migliori, Giulia; Guainazzi, Matteo; Hardcastle, Martin; Ostorero, Luisa; Stawarz, Łukasz
2016-05-01
We present the first results from our X-ray study of young radio sources classified as compact symmetric objects (CSOs). Using the Chandra X-ray Observatory we observed six CSOs for the first time in X-rays, and re-observed four CSOs already observed with XMM-Newton or BeppoSAX. We also included six other CSOs with archival data to built a pilot study of a sample of the 16 CSO sources observed in X-rays to date. All the sources are nearby, z\\lt 1, and the age of their radio structures (\\lt 3000 yr) has been derived from the expansion velocity of their hot spots. Our results show the heterogeneous nature of the CSOs’ X-ray emission, indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, {L}2{--10{keV}}˜ {10}41-1045 erg s-1, and intrinsic absorbing column density of {N}{{H}}≃ {10}21-1022 cm-2. In particular, we detected extended X-ray emission in 1718-649 a hard photon index of {{Γ }}≃ 1 in 2021+614 and 1511+0518 consistent with either a Compton-thick absorber or non-thermal emission from compact radio lobes, and in 0710+439 an ionized iron emission line at {E}{rest}=(6.62+/- 0.04) keV and EW ˜ 0.15-1.4 keV, and a decrease by an order of magnitude in the 2-10 keV flux since the 2008 XMM-Newton observation in 1607+26. We conclude that our pilot study of CSOs provides a variety of exceptional diagnostics and highlights the importance of deep X-ray observations of large samples of young sources. This is necessary in order to constrain theoretical models for the earliest stage of radio source evolution and to study the interactions of young radio sources with the interstellar environment of their host galaxies.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong
2017-09-01
Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.
The Detection of Diffuse Extended Structure in 3C 273: Implications for Jet Power
NASA Astrophysics Data System (ADS)
Punsly, Brian; Kharb, Preeti
2016-12-01
We present deep Very Large Array imaging of 3C 273 in order to determine the diffuse, large scale radio structure of this famous radio-loud quasar. Diffuse extended structure (radio lobes) is detected for the first time in these observations as a consequence of high dynamic range in the 327.5 and 1365 MHz images. This emission is used to estimate a time averaged jet power, 7.2 × 1043 erg s-1 < \\overline{Q} < 3.7 × 1044 erg s-1. Brightness temperature arguments indicate consistent values of the time variability Doppler factor and the compactness Doppler factor for the inner jet, δ ≳ 10. Thus, the large apparent broadband bolometric luminosity of the jet, ˜3 × 1046 erg s-1, corresponds to a modest intrinsic luminosity ≳1042 erg s-1, or ˜1% of \\overline{Q}. In summary, we find that 3C 273 is actually a “typical” radio-loud quasar contrary to suggestions in the literature. The modest \\overline{Q} is near the peak of the luminosity distribution for radio-loud quasars and it is consistent with the current rate of dissipation emitted from millimeter wavelengths to gamma rays. The extreme core-jet morphology is an illusion from a near pole-on line of sight to a highly relativistic jet that produces a Doppler enhanced glow that previously swamped the lobe emission. 3C 273 apparently has the intrinsic kpc scale morphology of a classical double radio source, but it is distorted by an extreme Doppler aberration.
Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications
NASA Astrophysics Data System (ADS)
Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.
2010-11-01
A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.
The X-ray structure of Centaurus A
NASA Technical Reports Server (NTRS)
Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.
1981-01-01
The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldon, Javier; Ribo, Marc; Paredes, Josep M.
2011-05-01
PSR B1259-63 is a 48 ms pulsar in a highly eccentric 3.4 year orbit around the young massive star LS 2883. During the periastron passage the system displays transient non-thermal unpulsed emission from radio to very high energy gamma rays. It is one of the three galactic binary systems clearly detected at TeV energies, together with LS 5039 and LS I +61 303. We observed PSR B1259-63 after the 2007 periastron passage with the Australian Long Baseline Array at 2.3 GHz to trace the milliarcsecond (mas) structure of the source at three different epochs. We have discovered extended and variablemore » radio structure. The peak of the radio emission is detected outside the binary system near periastron, at projected distances of 10-20 mas (25-45 AU assuming a distance of 2.3 kpc). The total extent of the emission is {approx}50 mas ({approx}120 AU). This is the first observational evidence that non-accreting pulsars orbiting massive stars can produce variable extended radio emission at AU scales. Similar structures are also seen in LS 5039 and LS I +61 303, in which the nature of the compact object is unknown. The discovery presented here for the young non-accreting pulsar PSR B1259-63 reinforces the link with these two sources and supports the presence of pulsars in these systems as well. A simple kinematical model considering only a spherical stellar wind can approximately trace the extended structures if the binary system orbit has a longitude of the ascending node of {Omega} {approx} -40{sup 0} and a magnetization parameter of {sigma} {approx} 0.005.« less
The Nature of the Stingray Nebula from Radio Observations
NASA Astrophysics Data System (ADS)
Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.
2018-06-01
We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.
THE RADIO CONTINUUM STRUCTURE OF CENTAURUS A AT 1.4 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feain, I. J.; Cornwell, T. J.; Ekers, R. D.
2011-10-10
A 45 deg{sup 2} radio continuum imaging campaign of the nearest radio galaxy, Centaurus A, is reported. Using the Australia Telescope Compact Array and the Parkes 64 m radio telescope at 1.4 GHz, the spatial resolution of the resultant image is {approx}600 pc ({approx}50''), resolving the {approx}>500 kpc giant radio lobes with approximately five times better physical resolution compared to any previous image, and making this the most detailed radio continuum image of any radio galaxy to date. In this paper, we present these new data and discuss briefly some of the most interesting morphological features that we have discoveredmore » in the images. The two giant outer lobes are highly structured and considerably distinct. The southern part of the giant northern lobe naturally extends out from the northern middle lobe with uniformly north-streaming emission. The well known northern loop is resolved into a series of semi-regular shells with a spacing of approximately 25 kpc. The northern part of the giant northern lobe also contains identifiable filaments and partial ring structures. As seen in previous single-dish images at lower angular resolution, the giant southern lobe is not physically connected to the core at radio wavelengths. Almost the entirety of the giant southern lobe is resolved into a largely chaotic and mottled structure which appears considerably different (morphologically) to the diffuse regularity of the northern lobe. We report the discovery of a vertex and a vortex near the western boundary of the southern lobe, two striking, high surface brightness features that are named based on their morphology and not their dynamics (which are presently unknown). The vortex and vertex are modeled as reaccelerated lobe emission due to shocks from the active galactic nucleus itself or from the passage of a dwarf elliptical galaxy through the lobe. Preliminary polarimetric and spectral index studies support a plasma reacceleration model and could explain the origin of the Faraday rotation structure detected in the southern lobe. In addition, there are a series of low surface brightness wisps detected around the edges of both the giant lobes.« less
NASA Technical Reports Server (NTRS)
Kapahi, Vijay K.; Kulkarni, Vasant K.
1990-01-01
VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.
Disc-jet Coupling in the 2009 Outburst of the Black Hole Candidate H1743-322
NASA Technical Reports Server (NTRS)
Miller-Jones, J. C. A.; Sivakoff, G. R.; Altamirano, D.; Coriat, M.; Corbel, S.; Dhawan, V.; Krimm, H. A.; Remillard, R. A.; Rupen, M. P.; Russell, D. M.;
2012-01-01
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts with a positive correlation outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near beginning the and end of an outburst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunert-Bajraszewska, Magdalena; Katarzynski, Krzysztof; Siemiginowska, Aneta
2009-11-10
We present new results on X-ray properties of radio-loud broad absorption line (BAL) quasars and focus on broadband spectral properties of a high-ionization BAL (HiBAL) compact steep spectrum (CSS) radio-loud quasar 1045+352. This HiBAL quasar has a very complex radio morphology indicating either strong interactions between a radio jet and the surrounding interstellar medium or a possible re-start of the jet activity. We detected 1045+352 quasar in a short 5 ksec Chandra ACIS-S observation. We applied theoretical models to explain spectral energy distribution of 1045+352 and argue that non-thermal, inverse-Compton (IC) emission from the innermost parts of the radio jetmore » can account for a large fraction of the observed X-ray emission. In our analysis, we also consider a scenario in which the observed X-ray emission from radio-loud BAL quasars can be a sum of IC jet X-ray emission and optically thin corona X-ray emission. We compiled a sample of radio-loud BAL quasars that were observed in X-rays to date and report no correlation between their X-ray and radio luminosity. However, the radio-loud BAL quasars show a large range of X-ray luminosities and absorption columns. This is consistent with the results obtained earlier for radio-quiet BAL quasars and may indicate an orientation effect in BAL quasars or more complex dependence between X-ray emission, radio emission, and an orientation based on the radio morphology.« less
The Southern HII Region Discovery Survey: Preliminary Results
NASA Astrophysics Data System (ADS)
Shea, Jeanine; Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Armentrout, William P.; Bania, Thomas M.; Dawson, Joanne; Miller Dickey, John; Jordan, Christopher; McClure-Griffiths, Naomi M.
2017-01-01
HII regions are some of the brightest sources at radio frequencies in the Milky Way and are the sites of massive O and B-type star formation. They have relatively short (< 10 Myr) lifetimes compared to other Galactic objects and therefore reveal information about spiral structure and the chemical evolution of the Galaxy. The HII Region Discovery Surveys (HRDS) discovered about 800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees using primarily the Green Bank Telescope. Candidate HII regions were selected from mid-infrared emission coincident with radio continuum emission, and confirmed as HII regions by the detection of radio recombination lines. Here we discuss the Southern HII Region Discovery Survey (SHRDS), a continuation of the HRDS using the Australia Telescope Compact Array over the Galactic longitude range 230 to 360 degrees. We have reduced and analyzed a small sub-set of the SHRDS sources and discuss preliminary results, including kinematic distances and metallicities.
Study of the molecular and ionized gas in a possible precursor of an ultra-compact H II region
NASA Astrophysics Data System (ADS)
Ortega, M. E.; Paron, S.; Giacani, E.; Celis Peña, M.; Rubio, M.; Petriella, A.
2017-10-01
Aims: We aim to study the molecular and the ionized gas in a possible precursor of an ultra-compact H II region to contribute to the understanding of how high-mass stars build-up their masses once they have reached the zero-age main sequence. Methods: We carried out molecular observations toward the position of the Red MSX source G052.9221-00.4892, using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, C18O J = 3-2, and HCO+J = 4-3 lines with an angular resolution of about 22''. We also present radio continuum observations at 6 GHz carried out with the Jansky Very Large Array (JVLA; USA) interferometer with a synthesized beam of 4.8 arcsec × 4.1 arcsec. The molecular data were used to study the distribution and kinematics of the molecular gas, while the radio continuum data were used to characterize the ionized gas in the region. Combining these observations with public infrared data allowed us to inquire about the nature of the source. Results: The analysis of the molecular observations reveals the presence of a kinetic temperature and H2 column density gradients across the molecular clump in which the Red MSX source G052.9221-00.4892 is embedded, with the hotter and less dense gas in the inner region. The 12CO J = 3-2 emission shows evidence of misaligned massive molecular outflows, with the blue lobe in positional coincidence with a jet-like feature seen at 8 μm. The radio continuum emission shows a slightly elongated compact radio source, with a flux density of about 0.9 mJy, in positional coincidence with the Red MSX source. The polar-like morphology of this compact radio source perfectly matches the hourglass-like morphology exhibited by the source in the Ks band. Moreover, the axes of symmetry of the radio source and the near-infrared nebula are perfectly aligned. Thus, based on the presence of molecular outflows, the slightly elongated morphology of the compact radio source matching the hourglass-like morphology of the source at the Ks band, and the lack of evidence of collimated jets in the near-infrared spectrum, one interpretation for the nature of the source, is that the Red MSX source G052.9221-00.4892 could be transiting a hyper-compact H II region phase, in which the young central star emits winds and ionizing radiation through the poles. On the other hand, according to a comparison between the Brγ intensity and the radio flux density at 6 GHz, the source would be in a more evolved evolutionary stage of an optically thin UC H II region in photoionization equilibrium. If this is the case, from the radio continuum emission, we can conjecture upon the spectral type of its exciting star which would be a B0.5V.
Extended X-ray emission in PKS 1718-649
NASA Astrophysics Data System (ADS)
Beuchert, T.; Rodríguez-Ardila, A.; Moss, V. A.; Schulz, R.; Kadler, M.; Wilms, J.; Angioni, R.; Callingham, J. R.; Gräfe, C.; Krauß, F.; Kreikenbohm, A.; Langejahn, M.; Leiter, K.; Maccagni, F. M.; Müller, C.; Ojha, R.; Ros, E.; Tingay, S. J.
2018-04-01
PKS 1718-649 is one of the closest and most comprehensively studied candidates of a young active galactic nucleus (AGN) that is still embedded in its optical host galaxy. The compact radio structure, with a maximal extent of a few parsecs, makes it a member of the group of compact symmetric objects (CSO). Its environment imposes a turnover of the radio synchrotron spectrum towards lower frequencies, also classifying PKS 1718-649 as gigahertz-peaked radio spectrum (GPS) source. Its close proximity has allowed the first detection of extended X-ray emission in a GPS/CSO source with Chandra that is for the most part unrelated to nuclear feedback. However, not much is known about the nature of this emission. By co-adding all archival Chandra data and complementing these datasets with the large effective area of XMM-Newton, we are able to study the detailed physics of the environment of PKS 1718-649. Not only can we confirm that the bulk of the ≲kiloparsec-scale environment emits in the soft X-rays, but we also identify the emitting gas to form a hot, collisionally ionized medium. While the feedback of the central AGN still seems to be constrained to the inner few parsecs, we argue that supernovae are capable of producing the observed large-scale X-ray emission at a rate inferred from its estimated star formation rate.
Dynamically hot galaxies. I - Structural properties
NASA Technical Reports Server (NTRS)
Bender, Ralf; Burstein, David; Faber, S. M.
1992-01-01
Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1
NASA Technical Reports Server (NTRS)
Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.
2011-01-01
We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.
A radio characterization of Galactic compact bubbles
NASA Astrophysics Data System (ADS)
Ingallinera, A.; Trigilio, C.; Umana, G.; Leto, P.; Noriega-Crespo, A.; Flagey, N.; Paladini, R.; Agliozzo, C.; Buemi, C. S.
2014-02-01
We report the radio observations of a subsample of the 428 Galactic compact bubbles discovered at 24 μm with the MIPSGAL survey. Pervasive through the entire Galactic plane, these objects are thought to be different kinds of evolved stars. The very large majority of the bubbles (˜70 per cent) are however not yet classified. We conducted radio observations with the Expanded Very Large Array at 6 and 20 cm in order to obtain the spectral index of 55 bubbles. We found that at least 70 per cent of the 31 bubbles for which we were effectively able to compute the spectral index (or its lower limit) are likely to be thermal emitters. We were also able to resolve some bubbles, obtaining that the size of the radio nebula is usually similar to the IR size, although our low resolution (with respect to IR images) did not allow further morphological studies. Comparisons between radio flux densities and IR archive data from Spitzer and IRAS suggest that at least three unclassified bubbles can be treated as planetary nebula candidates.
An image-based search for pulsars among Fermi unassociated LAT sources
NASA Astrophysics Data System (ADS)
Frail, D. A.; Ray, P. S.; Mooley, K. P.; Hancock, P.; Burnett, T. H.; Jagannathan, P.; Ferrara, E. C.; Intema, H. T.; de Gasperin, F.; Demorest, P. B.; Stovall, K.; McKinnon, M. M.
2018-03-01
We describe an image-based method that uses two radio criteria, compactness, and spectral index, to identify promising pulsar candidates among Fermi Large Area Telescope (LAT) unassociated sources. These criteria are applied to those radio sources from the Giant Metrewave Radio Telescope all-sky survey at 150 MHz (TGSS ADR1) found within the error ellipses of unassociated sources from the 3FGL catalogue and a preliminary source list based on 7 yr of LAT data. After follow-up interferometric observations to identify extended or variable sources, a list of 16 compact, steep-spectrum candidates is generated. An ongoing search for pulsations in these candidates, in gamma rays and radio, has found 6 ms pulsars and one normal pulsar. A comparison of this method with existing selection criteria based on gamma-ray spectral and variability properties suggests that the pulsar discovery space using Fermi may be larger than previously thought. Radio imaging is a hitherto underutilized source selection method that can be used, as with other multiwavelength techniques, in the search for Fermi pulsars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele
2013-12-10
The Sombrero galaxy (M 104, NGC 4594) is associated with one of the nearest low-luminosity active galactic nuclei (AGNs). We investigated the detailed radio structure of the Sombrero nucleus using high-resolution, quasi-simultaneous, multi-frequency, phase-referencing Very Long Baseline Array observations. We obtained high-quality images of this nucleus at seven frequencies, where those at 15, 24, and 43 GHz are the first clear very long baseline interferometry detections. At 43 GHz, the nuclear structure was imaged on a linear scale under 0.01 pc or 100 Schwarzschild radii, revealing a compact, high-brightness-temperature (≳ 3 × 10{sup 9} K) radio core. We discovered themore » presence of the extended structure emanating from the core on two sides in the northwest and southeast directions. The nuclear radio spectra show a clear spatial gradient, which is similar to that seen in more luminous AGNs with powerful relativistic jets. Moreover, the size and position of the core tend to be frequency dependent. These findings provide evidence that the central engine of the Sombrero is powering radio jets and the jets are overwhelming the emission from the underlying radiatively inefficient accretion flow over the observed frequencies. Based on these radio characteristics, we constrained the following physical parameters for the M 104 jets: (1) the northern side is approaching, whereas the southern one is receding; (2) the jet viewing angle is relatively close to our line-of-sight (≲ 25°); and (3) the intrinsic jet velocity is highly sub-relativistic (≲ 0.2c). The derived pole-on nature of the M 104 jets is consistent with the previous argument that this nucleus contains a true type II AGN, i.e., the broad line region is actually absent or intrinsically weak if the plane of the circumnuclear torus is perpendicular to the jet axis.« less
A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky
NASA Astrophysics Data System (ADS)
de Gasperin, F.; Intema, H. T.; Frail, D. A.
2018-03-01
The radio spectral index is a powerful probe for classifying cosmic radio sources and understanding the origin of the radio emission. Combining data at 147 MHz and 1.4 GHz from the TIFR GMRT Sky Survey (TGSS) and the NRAO VLA Sky Survey (NVSS), we produced a large-area radio spectral index map of ˜80 per cent of the sky (Dec. > - 40 deg), as well as a radio spectral index catalogue containing 1396 515 sources, of which 503 647 are not upper or lower limits. Almost every TGSS source has a detected counterpart, while this is true only for 36 per cent of NVSS sources. We released both the map and the catalogue to the astronomical community. The catalogue is analysed to discover systematic behaviours in the cosmic radio population. We find a differential spectral behaviour between faint and bright sources as well as between compact and extended sources. These trends are explained in terms of radio galaxy evolution. We also confirm earlier reports of an excess of steep-spectrum sources along the galactic plane. This corresponds to 86 compact and steep-spectrum source in excess compared to expectations. The properties of this excess are consistent with normal non-recycled pulsars, which may have been missed by pulsation searches due to larger than average scattering along the line of sight.
Continuum radiation from active galactic nuclei: A statistical study
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.
1986-01-01
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.
NASA Astrophysics Data System (ADS)
Lister, M. L.; Tingay, S. J.; Preston, R. A.
2001-06-01
We have performed a multidimensional correlation analysis on the observed properties of a statistically complete core-selected sample of compact radio-loud active galactic nuclei based on data from the VLBI Space Observing Programme (Paper I) and previously published studies. Our sample is drawn from the well-studied Pearson-Readhead (PR) survey and is ideally suited for investigating the general effects of relativistic beaming in compact radio sources. In addition to confirming many previously known correlations, we have discovered several new trends that lend additional support to the beaming model. These trends suggest that the most highly beamed sources in core-selected samples tend to have (1) high optical polarizations; (2) large parsec- kiloparsec-scale jet misalignments; (3) prominent VLBI core components; (4) one-sided, core, or halo radio morphology on kiloparsec scales; (5) narrow emission line equivalent widths; and (6) a strong tendency for intraday variability at radio wavelengths. We have used higher resolution space and ground-based VLBI maps to confirm the bimodality of the jet misalignment distribution for the PR survey and find that the sources with aligned parsec- and kiloparsec-scale jets generally have arcsecond-scale radio emission on both sides of the core. The aligned sources also have broader emission line widths. We find evidence that the BL Lacertae objects in the PR survey are all highly beamed and have very similar properties to the high optically polarized quasars, with the exception of smaller redshifts. A cluster analysis on our data shows that after partialing out the effects of redshift, the luminosities of our sample objects in various wave bands are generally well correlated with each other but not with other source properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapahi, V.K.; Kulkarni, V.K.
1990-05-01
VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less
NASA Astrophysics Data System (ADS)
Herzog, A.; Middelberg, E.; Norris, R. P.; Spitler, L. R.; Deller, A. T.; Collier, J. D.; Parker, Q. A.
2015-06-01
Context. Infrared-faint radio sources (IFRS) form a new class of galaxies characterised by radio flux densities between tenths and tens of mJy and faint or absent infrared counterparts. It has been suggested that these objects are radio-loud active galactic nuclei (AGNs) at significant redshifts (z ≳ 2). Aims: Whereas the high redshifts of IFRS have been recently confirmed based on spectroscopic data, the evidence for the presence of AGNs in IFRS is mainly indirect. So far, only two AGNs have been unquestionably confirmed in IFRS based on very long baseline interferometry (VLBI) observations. In this work, we test the hypothesis that IFRS contain AGNs in a large sample of sources using VLBI. Methods: We observed 57 IFRS with the Very Long Baseline Array (VLBA) down to a detection sensitivity in the sub-mJy regime and detected compact cores in 35 sources. Results: Our VLBA detections increase the number of VLBI-detected IFRS from 2 to 37 and provide strong evidence that most - if not all - IFRS contain AGNs. We find that IFRS have a marginally higher VLBI detection fraction than randomly selected sources with mJy flux densities at arcsec-scales. Moreover, our data provide a positive correlation between compactness - defined as the ratio of milliarcsec- to arcsec-scale flux density - and redshift for IFRS, but suggest a decreasing mean compactness with increasing arcsec-scale radio flux density. Based on these findings, we suggest that IFRS tend to contain young AGNs whose jets have not formed yet or have not expanded, equivalent to very compact objects. We found two IFRS that are resolved into two components. The two components are spatially separated by a few hundred milliarcseconds in both cases. They might be components of one AGN, a binary black hole, or the result of gravitational lensing.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlot, P.; Boboltz, D. A.; Fey, A. L.
2010-05-15
We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less
A Three Parsec-Scale Jet-Driven Outflow from Sgr A
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Pound, M. W.; Roberts, D. A.; Royster, M.; Wardle, M.
2012-01-01
The compact radio source Sgr A* is coincident with a 4x 10(exp 6) solar Mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central 3' and report a faint continuous linear structure centered on Sgr A*. This feature is rotated by 28 deg in PA with respect to the Galactic plane. A number of weak blobs of radio emission with X-ray counterparts are detected along the axis of the linear structure. In addition, the continuous linear feature appears to be terminated symmetrically by two linearly polarized structures at 8.4 GHz, approx 75" from Sgr A*. The linear structure is best characterized by a mildly relativistic jet-driven outflow from Sgr A*, and an outflow rate 10(exp 6) solar M / yr. The near and far-sides of the jet are interacting with orbiting ionized and molecular gas over the last 1-3 hundred years and are responsible for the origin of a 2" hole, the "minicavity", where disturbed kinematics, enhanced FeII/III line emission, and diffuse X-ray gas have been detected. The estimated kinetic luminosity of the outflow is approx 1.2 X 10(exp 41) erg/s which can produce the Galactic center X-ray flash that has recently been identified
Enormous disc of cool gas surrounding the nearby powerful radio galaxy NGC612 (PKS0131-36)
NASA Astrophysics Data System (ADS)
Emonts, B. H. C.; Morganti, R.; Oosterloo, T. A.; Holt, J.; Tadhunter, C. N.; van der Hulst, J. M.; Ojha, R.; Sadler, E. M.
2008-06-01
We present the detection of an enormous disc of cool neutral hydrogen (HI) gas surrounding the S0 galaxy NGC612, which hosts one of the nearest powerful radio sources (PKS0131-36). Using the Australia Telescope Compact Array, we detect MHI = 1.8 × 109Msolar of HI emission-line gas that is distributed in a 140-kpc wide disc-like structure along the optical disc and dust lane of NGC612. The bulk of the gas in the disc appears to be settled in regular rotation with a total velocity range of 850kms-1, although asymmetries in this disc indicate that perturbations are being exerted on part of the gas, possibly by a number of nearby companions. The HI disc in NGC612 suggests that the total mass enclosed by the system is Menc ~ 2.9 × 1012 sin-2 iMsolar, implying that this early-type galaxy contains a massive dark matter halo. We also discuss an earlier study by Holt et al. that revealed the presence of a prominent young stellar population at various locations throughout the disc of NGC612, indicating that this is a rare example of an extended radio source that is hosted by a galaxy with a large-scale star-forming disc. In addition, we map a faint HI bridge along a distance of 400kpc in between NGC612 and the gas-rich (MHI = 8.9 × 109Msolar) barred galaxy NGC619, indicating that likely an interaction between both systems occurred. From the unusual amounts of HI gas and young stars in this early-type galaxy, in combination with the detection of a faint optical shell and the system's high infrared luminosity, we argue that either ongoing or past galaxy interactions or a major merger event are a likely mechanism for the triggering of the radio source in NGC612. This paper is part of an ongoing study to map the large-scale neutral hydrogen properties of nearby radio galaxies and it presents the first example of large-scale HI detected around a powerful Fanaroff-Riley type II (FR-II) radio galaxy. The HI properties of the FR-II radio galaxy NGC612 are very similar to those found for low-power compact radio sources, but different from those of extended Fanaroff-Riley type I (FR-I) sources.
Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen
2015-04-10
We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing andmore » new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.« less
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
Persaud, A.; Seidl, P. A.; Ji, Q.; ...
2017-10-26
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Seidl, P. A.; Ji, Q.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
NASA Astrophysics Data System (ADS)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
NASA Technical Reports Server (NTRS)
Worrall, Diana M.
1994-01-01
This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.
Probing the Galactic Structure of the Milky Way with H II Regions
NASA Astrophysics Data System (ADS)
Red, Wesley Alexander; Wenger, Trey V.; Balser, Dana; Anderson, Loren; Bania, Thomas
2018-01-01
Mapping the structure of the Milky Way is challenging since we reside within the Galactic disk and distances are difficult to determine. Elemental abundances provide important constraints on theories of the formation and evolution of the Milky Way. HII regions are the brightest objects in the Galaxy at radio wavelengths and are detected across the entire Galactic disk. We use the Jansky Very Large Array (VLA) to observe the radio recombination line (RRL) and continuum emission of 120 Galactic HII regions located across the Galactic disk. In thermal equilibrium, metal abundances are expected to set the nebular electron temperature with high abundances producing low temperatures. We derive the metallicity of HII regions using an empirical relation between an HII region's radio recombination line-to-continuum ratio and nebular metallicity. Here we focus on a subset of 20 HII regions from our sample that have been well studied with the Green Bank Telescope (GBT) to test our data reduction pipeline and analysis methods. Our goal is to expand this study to the Southern skies with the Australia Telescope Compact Array and create a metallicity map of the entire Galactic disk.
Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A
1983-01-07
By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.
FRB121102 Bursts Show Detailed Spectrotemporal Structure
NASA Astrophysics Data System (ADS)
Hessels, Jason; Seymour, Andrew; Spitler, Laura; Michilli, Daniele; Lynch, Ryan S.; Gajjar, Vishal; Gourdji, Kelly
2018-01-01
FRB121102 is a sporadic emitter of millisecond-duration radio bursts, and is associated with a compact, persistent radio source in the primary star-forming region of a dwarf galaxy at ~ 1 Gpc. Key to understanding FRB121102's physical nature is using the observed burst properties to elucidate the underlying emission mechanism and its local environment. Here we present a sample of high signal-to-noise bursts that reveal hitherto unseen spectrotemporal features. We find that the bursts are often composed of sub-bursts with finite bandwidths, and characteristic frequencies that drift downwards during the burst. While this behavior could be an intrinsic feature of the burst emission mechanism, we also discuss an interpretation in terms of plasma lensing in the source environment, similar to the pulse echoes sometimes seen from the Crab pulsar.
Radio and submillimetre observations of wind structure in zeta Puppis
NASA Astrophysics Data System (ADS)
Blomme, R.; van de Steene, G. C.; Prinja, R. K.; Runacres, M. C.; Clark, J. S.
2003-09-01
We present radio and submillimetre observations of the O4I(n)f star zeta Pup, and discuss structure in the outer region of its wind ( ~ 10-100 R_*). The properties of bremsstrahlung, the dominant emission process at these wavelengths, make it sensitive to structure and allow us to study how the amount of structure changes in the wind by comparing the fluxes at different wavelengths. Possible forms of structure at these distances include Corotating Interaction Regions (CIRs), stochastic clumping, a disk or a polar enhancement. As the CIRs are azimuthally asymmetric, they should result in variability at submillimetre or radio wavelengths. To look for this variability, we acquired 3.6 and 6 cm observations with the Australia Telescope Compact Array (ATCA), covering about two rotational periods of the star. We supplemented these with archive observations from the NRAO Very Large Array (VLA), which cover a much longer time scale. We did not find variability at more than the +/-20% level. The long integration time does allow an accurate determination of the fluxes at 3.6 and 6 cm. Converting these fluxes into a mass loss rate, we find dot {M} = 3.5 x 10-6 Msun/yr. This value confirms the significant discrepancy with the mass loss rate derived from the Hα profile, making zeta Pup an exception to the usually good agreement between the Hα and radio mass loss rates. To study the run of structure as a function of distance, we supplemented the ATCA data by observing zeta Pup at 850 mu m with the James Clerk Maxwell Telescope (JCMT) and at 20 cm with the VLA. A smooth wind model shows that the millimetre fluxes are too high compared to the radio fluxes. While recombination of helium in the outer wind cannot be discounted as an explanation, the wealth of evidence for structure strongly suggests this as the explanation for the discrepancy. Model calculations show that the structure needs to be present in the inner ~ 70 R_* of the wind, but that it decays significantly, or maybe even disappears, beyond that radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Stocke, John T.; Darling, Jeremy
2016-03-15
This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5more » and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by the RFI. Future searches for highly redshifted H i and molecular absorption can easily find more distant CSOs among bright, “blank field” radio sources, but will be severely hampered by an inability to determine accurate spectroscopic redshifts due to their lack of rest-frame UV continuum.« less
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
NASA Technical Reports Server (NTRS)
Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon
2010-01-01
The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.
Cometary compact H II regions are stellar-wind bow shocks
NASA Technical Reports Server (NTRS)
Van Buren, Dave; Mac Low, Mordecai-Mark; Wood, Douglas O. S.; Churchwell, ED
1990-01-01
Comet-shaped H II regions, like G34.3 + 0.2, are easily explained as bow shocks created by wind-blowing massive stars moving supersonically through molecular clouds. The required velocities of the stars through dense clumps are less than about 10 km/s, comparable to the velocity dispersion of stars in OB associations. An analytic model of bow shocks matches the gross characteristics seen in the radio continuum and the velocity structure inferred from hydrogen recombination and molecular line observations. The champagne flow model cannot account for these structures. VLBI observations of masers associated with the shells of cometary compact H II regions should reveal tailward proper motions predominantly parallel to the shell, rather than perpendicular. It is predicted that over a decade baseline, high signal-to-noise VLA observations of this class of objects will show headward pattern motion in the direction of the symmetry axis, but not expansion. Finally, shock-generated and coronal infrared lines are also predicted.
Matching network for RF plasma source
Pickard, Daniel S.; Leung, Ka-Ngo
2007-11-20
A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.
HST imaging of quasi-stellar objects with WFPC2
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Holtzman, Jon; Sparks, W. B.; Morris, S. C.; Hanisch, R. J.; Mo, J.
1994-01-01
Early images were taken with the optically corrected WFPC2 camera of the Hubble Space Telescope of the low-redshift quasars(QSOs) 1229+204 and 2141+175, which are radio-quiet and radio-loud, respectively. We discuss image restoration on the data. The objects were chosen on the basis of structure seen with 0.5 sec resolution with the Canada-France-Hawaii-Telescope (CFHT) high-resolution camera (HRCAM). 1229+204 was known to be a barred spiral with an asymmetrical extra blue feature: this is now resolved into a ring of knots which are probably young stellar populations in the tidal debris of a small gas-rich companion. There are also shell-like structures along the bar. 2141+175 has a faint smooth curved tidal arm without knots which extends on both sides of a compact elliptical-shaped central galaxy. There is also a short jetlike feature emerging from the nucleus. We discuss the properties and implications of these morphological details.
HIRAX: a probe of dark energy and radio transients
NASA Astrophysics Data System (ADS)
Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.
2016-08-01
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant
NASA Technical Reports Server (NTRS)
Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan;
2013-01-01
We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.
Carbon Beam Radio-Therapy and Research Activities at HIMAC
NASA Astrophysics Data System (ADS)
Kanazawa, Mitsutaka
2007-05-01
Radio-therapy with carbon ion beam has been carried out since 1994 at HIMAC (Heavy Ion Medical Accelerator in Chiba) in NIRS (National Institute of Radiological Sciences). Now, many types of tumors can be treated with carbon beam with excellent local controls of the tumors. Stimulated with good clinical results, requirement of the dedicated compact facility for carbon beam radio-therapy is increased. To realize this requirement, design study of the facility and the R&D's of the key components in this design are promoted by NIRS. According successful results of these activities, the dedicated compact facility will be realized in Gunma University. In this facility, the established irradiation method is expected to use, which is passive irradiation method with wobbler magnets and ridge filter. In this presentation, above R&D's will be presented together with clinical results and basic research activities at HIMAC.
Position and morphology of the compact non-thermal radio source at the Galactic Center
NASA Technical Reports Server (NTRS)
Marcaide, J. M.; Alberdi, A.; Bartel, N.; Clark, T. A.; Corey, B. E.; Elosegui, P.; Gorenstein, M. V.; Guirado, J. C.; Kardashev, N.; Popov, M.
1992-01-01
We have determined with VLBI the position of the compact nonthermal radio source at the Galactic Center, commonly referred to as SgrA*, in the J2000.0 reference frame of extragalactic radio sources. We have also determined the size of SgrA* at 1.3, 3.6, and 13 cm wavelengths and found that the apparent size of the source increases proportionally to the observing wavelength squared, as expected from source size broadening by interstellar scattering and as reported previously by other authors. We have also established an upper limit of about 8 mJy at 3.6 cm wavelength for any ultracompact component. The actual size of the source is less than 15 AU. Fourier analysis of our very sensitive 3.6 cm observations of this source shows no significant variations of correlated flux density on time scales from 12 to 700 s.
Blasting away a dwarf galaxy: the `tail' of ESO 324-G024
NASA Astrophysics Data System (ADS)
Johnson, Megan C.; Kamphuis, Peter; Koribalski, Bärbel S.; Wang, Jing; Oh, Se-Heon; Hill, Alex S.; O'Sullivan, Shane; Haan, Sebastian; Serra, Paolo
2015-08-01
We present Australia Telescope Compact Array radio data of the dwarf irregular galaxy ESO 324-G024 which is seen in projection against the giant, northern lobe of the radio galaxy Centaurus A (Cen A, NGC 5128). The distorted morphology and kinematics of ESO 324-G024, as observed in the 21 cm spectral line emission of neutral hydrogen, indicate disruptions by external forces. We investigate whether tidal interactions and/or ram pressure stripping are responsible for the formation of the H I tail stretching to the north-east of ESO 324-G024 with the latter being most probable. Furthermore, we closely analyse the sub-structure of Cen A's polarized radio lobes to ascertain whether ESO 324-G024 is located in front, within or behind the northern lobe. Our multiwavelength, multicomponent approach allows us to determine that ESO 324-G024 is most likely behind the northern radio lobe of Cen A. This result helps to constrain the orientation of the lobe, which is likely inclined to our line of sight by approximately 60° if NGC 5128 and ESO 324-G024 are at the same distance.
Interstellar Broadening of Images in the Gravitational Lens Pks 1830-211
NASA Technical Reports Server (NTRS)
Jones, D. L.; Preston, R. A.; Murphy, D. W.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Costa, M. E.
1996-01-01
The remarkably strong radio gravitational lens PKS 1830-211 consists of a one arcsecond diameter Einstein ring with two bright compact (milliarcsecond) components located on opposite sides of the ring. We have obtained 22 GHz VLBA data on this source to determine the intrinsic angular sizes of the compact components. Previous VLBI observations at lower frequencies indicate that the brightness temperatures of these components are significantly lower than 10(exp 10) K (Jauncey, et al. 1991), less than is typical for compact synchrotron radio sources and less than is implied by the short timescales of flux density variations. A possible explanation is that interstellar scattering is broadening the apparent angular size of the source and thereby reducing the observed brightness temperature. Our VLBA data support this hypothesis. At 22 GHz the measured brightness temperature is at least 10(exp 11) K, and the deconvolved 2 size of the core in the southwest compact component is proportional to upsilon(sup -2) between 1.7 and 22 GHz. VLBI observations at still higher frequencies should be unaffected by interstellar scattering.
New optical and radio frequency angular tropospheric refraction models for deep space applications
NASA Technical Reports Server (NTRS)
Berman, A. L.; Rockwell, S. T.
1976-01-01
The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.
High-resolution radio and X-ray observations of the supernova remnant W28
NASA Technical Reports Server (NTRS)
Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.
1983-01-01
The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.
Intrinsic, Narrow N V Absorption Reveals a Clumpy Outflow in z < 0.4 Radio-Loud Quasars
NASA Astrophysics Data System (ADS)
DeMarcy, Bryan; Serra, Viktoriah; Culliton, Chris; Ganguly, Rajib; Runnoe, Jessie; Charlton, Jane; Eracleous, Michael; Misawa, Toru; Narayanan, Anand
2018-01-01
Quasar outflows are often invoked in models for galaxy evolution to inject energy and momentum into the gas in the host galaxy and influence its star formation history. Thus, the study of quasar outflows is essential for understanding galaxy evolution. N V absorption systems within the associated region (|Δv| ≤ 5000 km s-1) of the quasar are thought to be intrinsic since many show evidence for partial covering of the quasar. A recent archival study of quasar spectra taken with COS/G130M or G160M found 39/181 radio-quiet quasars show intrinsic N V absorption, while none of the 31 radio-loud quasars have N V absorption detected (Culliton et al. 2017). Further investigation of these radio-loud quasars showed a clear bias towards compact morphologies as revealed by FIRST 1.4 GHz imaging and comparatively flat radio spectra. This suggests we are viewing more face-on orientations which prevent us from seeing absorption outflows. The cause for such bias within the HST archive is still unknown; however, it could explain the lack of radio-loud intrinsic N V absorption seen by Culliton et al. (2017). Alternatively, the quasar wind structure may be fundamentally different between radio-loud and radio-quiet objects. We used COS/G130M or G160M to obtain rest-frame UV spectra (1195 Å - 1250 Å) of 14 low-redshift SDSS radio-loud quasars which show lobe-dominated FIRST morphologies to distinguish between these possibilities. Intrinsic N V absorption was detected in 6 of our 14 quasars. This suggests the lack of detections in the archival study was a result of an orientation effect/sampling bias rather than to differences in wind structure between radio-loud and radio-quiet quasars. Interestingly, we find significant overlap in radio core fractions between quasars with and without N V detection. Quasars in our sample with N V detection span a range of core fractions from < 0.01 up to 0.89 while those without detected N V range from 0.04 up to 0.93. A laminar outflow with a small opening angle would be difficult to explain given this overlap in radio core fractions. Our observations suggest a clumpy, sporadic outflow is the more likely explanation.
Sh2-138: physical environment around a small cluster of massive stars
NASA Astrophysics Data System (ADS)
Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.
2015-12-01
We present a multiwavelength study of the Sh2-138, a Galactic compact H II region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4.6 arcmin×4.6 arcmin area of the Sh2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280 MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact H II region yields an electron density of ˜2250 ± 400 cm-3. With the aid of a wide range of spectra, from 0.5-15 μm, the central brightest source - previously hypothesized to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15 arcmin ×15 arcmin), the Herschel images (70-500 μm) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (˜3 × 1022 cm-2) and high temperature (˜35 K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ˜3770 M⊙.
STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandakumar, G.; Veena, V. S.; Vig, S.
2016-11-01
We present a multiwavelength investigation of star formation activity toward the southern H ii regions associated with IRAS 17160–3707, located at a distance of 6.2 kpc with a bolometric luminosity of 8.3 × 10{sup 5} L {sub ⊙}. The ionized gas distribution and dust clumps in the parental molecular cloud are examined in detail using measurements at infrared, submillimeter and radio wavelengths. The radio continuum images at 1280 and 610 MHz obtained using the Giant Metrewave Radio Telescope reveal the presence of multiple compact sources as well as nebulous emission. At submillimeter wavelengths, we identify seven dust clumps and estimate their physical properties suchmore » as temperature: 24–30 K, mass: 300–4800 M {sub ⊙} and luminosity: 9–317 × 10{sup 2} L {sub ⊙} using modified blackbody fits to the spectral energy distributions (SEDs) between 70 and 870 μ m. We find 24 young stellar objects (YSOs) in the mid-infrared, with a few of them coincident with the compact radio sources. The SEDs of the YSOs have been fitted by the Robitaille models and the results indicate that those having radio compact sources as counterparts host massive objects in early evolutionary stages with best fit age ≤0.2 Myr. We compare the relative evolutionary stages of clumps using various signposts such as masers, ionized gas, presence of YSOs and infrared nebulosity, and find six massive star-forming clumps and one quiescent clump. Of the former, five are in a relatively advanced stage and one in an earlier stage.« less
Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C
1983-01-07
The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.
A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240
NASA Astrophysics Data System (ADS)
Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.
1993-05-01
A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (<~ 1.5 kpc; D=100 Mpc) and of the weaker ``clumps'' of diffuse emission south and west (>~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.
Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation
NASA Astrophysics Data System (ADS)
Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.
2016-11-01
It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.
Linking Deep Astrometric Standards to the ICRF
NASA Astrophysics Data System (ADS)
Frey, S.; Platais, I.; Fey, A. L.
2007-07-01
The next-generation large aperature and large field-of-view telescopes will address fundamantal questions of astrophysica and cosmology such as the nature of dark matter and dark energy. For a variety of applications, the CCD mosaic detectors in the focal plane arrays require astronomic calibrationat the milli-arcsecond (mas) level. The existing optical reference frames are insufficient to support such calibrations. To address this problem, deep optical astronomic fields are being established near the Galactic plane. In order to achiev a 5-10-mas or better positional accuracyfor the Deepp Astrometric Standards (DAS), and to obtain bsolute stellar proper motions for the study of Galactic structure, it is crucial to link these fields to the International Celestial Reference Frame (ICRF). To this end, we selected 15 candidate compact extragalactic radio sources in the Gemini-Orion-Taurus (GOT) field. These sources were observed with the European VLBI Network (EVN) at 5 GHz in phase-reference mode. The bright compact calibrator source J0603+2159 and seven other sources were detected and imaged at the angular resolution of -1.5-8 mas. Relative astrometric positions were derived for these sources at a milli-arcsecond accuracy level. The detection of the optical counterparts of these extragalactic radio sources will allow us to establish a direct link to the ICRF locally in the GOT field.
3C 57 as an atypical radio-loud quasar: implications for the radio-loud/radio-quiet dichotomy
NASA Astrophysics Data System (ADS)
Sulentic, J. W.; Martínez-Carballo, M. A.; Marziani, P.; del Olmo, A.; Stirpe, G. M.; Zamfir, S.; Plauchu-Frayn, I.
2015-06-01
Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar `main sequence' with both extreme optical Fe II emission (R_{Fe II} ˜ 1) and a large C IV λ1549 profile blueshift (˜-1500 km s-1). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year time-scale consistent with compact steep-spectrum (or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/LEdd quasars, we suggest that 3C 57 is an evolved RL quasar (i.e. large blackhole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong Fe II emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low-redshift source and resultant unusually high Eddington ratio giving rise to the atypical C IV λ1549.
The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Sharma, Mangala
2004-04-01
The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.
A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, Simon; Marino, Sebastian; Pérez, Sebastian
2015-10-20
A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission frommore » small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.« less
The Tidbinbilla-U.K. Schmidt radio quasar identification program
NASA Technical Reports Server (NTRS)
Jauncey, D. L.; Batty, M. J.; Savage, A.; Gulkis, S.
1983-01-01
A program is under way at Tidbinbilla to measure accurate (up to 2 arcsec r.m.s) radio positions for compact sources in the Parkes 2.7 GHz survey south of declination -30 deg. Optical identifications are being made on the basis of radio-optical position coincidence alone, without regard to colour or morphology, using the U.K. Schmidt IIIa-J sky survey to a limiting magnitude of 22.5. This program is aimed at producing an evaluation of the radio quasar redshift distribution with particular emphasis on those objects with redshifts greater than 3.0.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102
NASA Astrophysics Data System (ADS)
Michilli, D.; Seymour, A.; Hessels, J. W. T.; Spitler, L. G.; Gajjar, V.; Archibald, A. M.; Bower, G. C.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Heald, G. H.; Kaspi, V. M.; Law, C. J.; Sobey, C.; Adams, E. A. K.; Bassa, C. G.; Bogdanov, S.; Brinkman, C.; Demorest, P.; Fernandez, F.; Hellbourg, G.; Lazio, T. J. W.; Lynch, R. S.; Maddox, N.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Scholz, P.; Siemion, A. P. V.; Tendulkar, S. P.; van Rooy, P.; Wharton, R. S.; Whitlow, D.
2018-01-01
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source—FRB 121102—has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 105 radians per square metre to +1.33 × 105 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102.
Michilli, D; Seymour, A; Hessels, J W T; Spitler, L G; Gajjar, V; Archibald, A M; Bower, G C; Chatterjee, S; Cordes, J M; Gourdji, K; Heald, G H; Kaspi, V M; Law, C J; Sobey, C; Adams, E A K; Bassa, C G; Bogdanov, S; Brinkman, C; Demorest, P; Fernandez, F; Hellbourg, G; Lazio, T J W; Lynch, R S; Maddox, N; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Scholz, P; Siemion, A P V; Tendulkar, S P; Van Rooy, P; Wharton, R S; Whitlow, D
2018-01-10
Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin. The only known repeating fast radio burst source-FRB 121102-has been localized to a star-forming region in a dwarf galaxy at redshift 0.193 and is spatially coincident with a compact, persistent radio source. The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from +1.46 × 10 5 radians per square metre to +1.33 × 10 5 radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole. The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula or supernova remnant surrounding a young neutron star.
NASA Astrophysics Data System (ADS)
Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.
2017-04-01
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.-Y.; Gaensler, B. M.; Chatterjee, S.
2010-03-20
We report radio polarization observations of G319.9-0.7 (MSC 319.9-0.7) at 3 and 6 cm obtained with the Australia Telescope Compact Array. The source shows a highly elongated morphology with the energetic pulsar J1509-5850 located at the tip. We found a flat radio spectrum of index alpha = -0.26 +- 0.04 and a high degree of linear polarization. These results confirm G319.9-0.7 as a bow-shock pulsar wind nebula. The polarization maps suggest a helical magnetic field trailing the pulsar, with the symmetry axis parallel to the system's inferred direction of motion. This is the first time such a field geometry hasmore » been seen in a bow-shock nebula, and it may be the result of an alignment between the pulsar spin axis and its space velocity. Compared to other bow-shock examples, G319.9-0.7 exhibits very different properties in the field structure and surface brightness distribution, illustrating the large diversity of the population.« less
Host Galaxies, Obscuration, and Nuclear Structure of Three Nearby Compact Symmetric Objects
NASA Astrophysics Data System (ADS)
Perlman, Eric S.; Stocke, John T.; Conway, John; Reynolds, Chris
2001-08-01
We present three-band Hubble Space Telescope imaging of three nearby (z<=0.1) compact symmetric objects: 4C 31.04, 1946+708, and 1146+596. These objects were chosen on the basis of proximity to Earth as well as H I 21 cm line absorption. The inner H-band isophotes of these galaxies are well fitted by Nuker models, typical of nearby elliptical galaxies. Each shows a significant flattening in the isophotal profile at radii ~0.5", as well as significant variations in ellipticity and P.A. However, as previous authors have noted, neither is uncommon for elliptical galaxies. All three objects show modest departures from Nuker law models at radii of 1-5 h-160 kpc. Each galaxy shows large well-distributed dust features, which are somewhat concentrated in the nuclear regions in features that resemble disks or tori. We find that the amount of dust in these galaxies is about 10 times higher than normal for elliptical galaxies and radio galaxy hosts. The major axes of the nuclear dust disks tend to be oriented roughly perpendicular to the radio axis. One galaxy, 4C 31.04, exhibits bright nuclear regions well aligned with the radio axis, while another, 1146+596, shows a significant near-IR excess resembling a stellar bar along its dust disk. The combination of outwardly normal isophotal profiles with significant variations in P.A. and ellipticity is consistent with the host galaxies being relatively recent merger remnants and the mergers having occurred >~108 yr ago. Such a merger could have ``triggered'' the onset of the current active phase seen in these objects, but our data require a significant time delay between the merger event and the onset of nuclear activity. However, these data are also consistent with the hypothesis that the onset of nuclear activity in radio galaxies is due to relatively minor ``feeding'' events and/or the formation of ``bars within bars,'' events which would disturb the internal kinematics only slightly.
NASA Astrophysics Data System (ADS)
Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.
2018-06-01
We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Johnston, Helen M.
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less
Mechanism of vacuum breakdown in radio-frequency accelerating structures
NASA Astrophysics Data System (ADS)
Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.
2018-06-01
It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.
Radio Galaxy Zoo: compact and extended radio source classification with deep learning
NASA Astrophysics Data System (ADS)
Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.
2018-05-01
Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers, and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple-component extended sources. We found that a three-convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4 per cent on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5 per cent. The best-performing convolutional neural network set-up has been verified against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.
Multiwavelength observations of two B-star nurseries - DR 15 and DR 20
NASA Technical Reports Server (NTRS)
Odenwald, S. F.; Campbell, M. F.; Shivanandan, K.; Schwartz, P.; Fazio, G. G.; Moseley, H.
1990-01-01
New observations of DR 15 and 20 are reported as part of a study of compact H II regions in the Cyg X region. The radio and FIR data for these objects, when combined with (C-12)O maps, IRAS imagery, and optical photographs, provide new insights into the structure of this complex region and the nature of the star-formation process there. The observations show that DR 15 may consist of one or two B0 ZAMS stars whose H I regions have formed a low-density cavity within a molecular cloud. DR 20 appears to be a young OB cluster. The cluster is dominated by an O5.5 ZAMS star and also contains an approximately 3500-yr-old B0 star appearing as a compact H II region, along with weak FIR sources that may be B0-star candidates.
The first VLBI image of an infrared-faint radio source
NASA Astrophysics Data System (ADS)
Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.
2008-11-01
Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.
Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI
NASA Astrophysics Data System (ADS)
Middelberg, E.; Roy, A. L.; Nagar, N. M.; Krichbaum, T. P.; Norris, R. P.; Wilson, A. S.; Falcke, H.; Colbert, E. J. M.; Witzel, A.; Fricke, K. J.
2004-04-01
We report EVN, MERLIN and VLBA observations at 18 cm, 6 cm and 3.6 cm of the Seyfert galaxies NGC 7674, NGC 5506, NGC 2110 and Mrk 1210 to study their structure and proper motions on pc scales and to add some constraints on the many possible causes of the radio-quietness of Seyferts. The component configurations in NGC 7674 and NGC 2110 are simple, linear structures, whereas the configurations in NGC 5506 and Mrk 1210 have multiple components with no clear axis of symmetry. We suggest that NGC 7674 is a low-luminosity compact symmetric object. Comparing the images at different epochs, we find a proper motion in NGC 7674 of (0.92±0.07) c between the two central components separated by 282 pc and, in NGC 5506, we find a 3 σ upper limit of 0.50 c for the components separated by 3.8 pc. Our results confirm and extend earlier work showing that the outward motion of radio components in Seyfert galaxies is non-relativistic on pc scales. We briefly discuss whether this non-relativistic motion is intrinsic to the jet-formation process or results from deceleration of an initially relativistic jet by interaction with the pc or sub-pc scale interstellar medium. We combined our sample with a list compiled from the literature of VLBI observations made of Seyfert galaxies, and found that most Seyfert nuclei have at least one flat-spectrum component on the VLBI scale, which was not seen in the spectral indices measured at arcsec resolution. We found also that the bimodal alignment of pc and kpc radio structures displayed by radio galaxies and quasars is not displayed by this sample of Seyferts, which shows a uniform distribution of misalignment between 0° and 90°. The frequent misalignment could result from jet precession or from deflection of the jet by interaction with gas in the interstellar medium.
Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.
Doeleman, Sheperd S; Weintroub, Jonathan; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C-J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David
2008-09-04
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Klein, U.; Trinchieri, G.; Wielebinski, R.
1987-01-01
Radioastronomy, optical and X-ray data were used to probe the cause of high X-ray luminosities of 28 radio-quiet elliptical galaxies (RQE) and S0 galaxies previously scanned by the Einstein Observatory. Comparisons were made with similar data on double-lobed 3CR galaxies. Radio luminosities were highly correlated with the X-ray luminosities, agreeing with models of radio nuclear sources in early-type galaxies as accreting compact objects. Additionally, 3CR galaxies seemed to be large-scale versions of normal RQE. The significance of interstellar medium/intracluster medium interactions for high correlations between the core and total radio power from X-ray emitting galaxies is discussed.
NASA Astrophysics Data System (ADS)
Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.
2018-03-01
We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.
High resolution radio imaging study of the Pulsar Wind Nebula MSH 15-52
NASA Astrophysics Data System (ADS)
Leung, W.-Y.; Ng, C.-Y.
2016-06-01
We present a new high-resolution radio imaging study of the pulsar wind nebula (PWN) MSH 15-52, also dubbed as "the hand of God", with the Australia Telescope Compact Array observations. The system is powered by a young and energetic radio pulsar B1509-58 with high spin down luminosity of E(dot) = 2 x 10^37 erg/s. Previous X-ray images have shown that the PWN has a complex hand-shape morphology extending over 10 pc with features like jets, arc, filaments and enhanced emission knots in the HII region RCW 89. The new 6cm and 3cm radio images show different morphology than the X-ray counterpart. No radio counterpart of the X-ray jet is detected, instead we found enhanced emission in a sheath surrounding the jet. Additional small-scale features including a polarized linear filament next to the pulsar have also been discovered. Our polarisation measurements show that the intrinsic orientation of magnetic field aligns with the sheath. Finally, spectral analysis results indicate a steep spectrum for the system, which is rather unusual among PWNe. Implications of these findings will be discussed. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is supported by an ECS grant under HKU 709713P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliori, G.; Loh, A.; Corbel, S.
We report the γ -ray detection of a young radio galaxy, PKS 1718−649, belonging to the class of compact symmetric objects (CSOs), with the Large Area Telescope (LAT) on board the Fermi satellite. The third Fermi Gamma-ray LAT catalog (3FGL) includes an unassociated γ -ray source, 3FGL J1728.0−6446, located close to PKS 1718−649. Using the latest Pass 8 calibration, we confirm that the best-fit 1 σ position of the γ -ray source is compatible with the radio location of PKS 1718−649. Cross-matching of the γ -ray source position with the positions of blazar sources from several catalogs yields negative results.more » Thus, we conclude that PKS 1718−649 is the most likely counterpart to the unassociated LAT source. We obtain a detection test statistics TS ∼ 36 (>5 σ ) with a best-fit photon spectral index Γ = 2.9 ± 0.3 and a 0.1–100 GeV photon flux density F {sub 0.1−100} {sub GeV} = (11.5 ± 0.3) × 10{sup −9} ph cm{sup −2} s{sup −1}. We argue that the linear size (∼2 pc), the kinematic age (∼100 years), and the source distance ( z = 0.014) make PKS 1718−649 an ideal candidate for γ -ray detection in the framework of the model proposing that the most compact and the youngest CSOs can efficiently produce GeV radiation via inverse-Compton scattering of the ambient photon fields by the radio lobe non-thermal electrons. Thus, our detection of the source in γ -rays establishes young radio galaxies as a distinct class of extragalactic high-energy emitters and yields a unique insight on the physical conditions in compact radio lobes interacting with the interstellar medium of the host galaxy.« less
European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz
NASA Astrophysics Data System (ADS)
Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.
2006-08-01
We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.
Deep Chandra observations of Pictor A
NASA Astrophysics Data System (ADS)
Hardcastle, M. J.; Lenc, E.; Birkinshaw, M.; Croston, J. H.; Goodger, J. L.; Marshall, H. L.; Perlman, E. S.; Siemiginowska, A.; Stawarz, Ł.; Worrall, D. M.
2016-02-01
We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor of 4 more exposure than observations previously presented and span a 15 yr time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that the bright western hotspot is also time-varying in X-rays, and we connect this to the small-scale structure in the hotspot seen in high-resolution radio observations. The new data allow us to confirm that the spectrum of the lobes is in good agreement with the predictions of an inverse-Compton model and we show that the data favour models in which the filaments seen in the radio images are predominantly the result of spatial variation of magnetic fields in the presence of a relatively uniform electron distribution.
NASA Astrophysics Data System (ADS)
Lonsdale, Carol J.; Lacy, M.; Kimball, A. E.; Blain, A.; Whittle, M.; Wilkes, B.; Stern, D.; Condon, J.; Kim, M.; Assef, R. J.; Tsai, C.-W.; Efstathiou, A.; Jones, S.; Eisenhardt, P.; Bridge, C.; Wu, J.; Lonsdale, Colin J.; Jones, K.; Jarrett, T.; Smith, R.
2015-11-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) 870 μm (345 GHz) data for 49 high-redshift (0.47 < z < 2.85), luminous (11.7\\lt {log}({L}{{bol}}/{L}⊙ )\\lt 14.2) radio-powerful active galactic nuclei (AGNs), obtained to constrain cool dust emission from starbursts concurrent with highly obscured radiative-mode black hole (BH) accretion in massive galaxies that possess a small radio jet. The sample was selected from the Wide-field Infrared Survey Explorer with extremely steep (red) mid-infrared colors and with compact radio emission from NVSS/FIRST. Twenty-six sources are detected at 870 μm, and we find that the sample has large mid- to far-infrared luminosity ratios, consistent with a dominant and highly obscured quasar. The rest-frame 3 GHz radio powers are 24.7\\lt {log}({P}\\text{3.0 GHz}/{{{W}} {Hz}}-1)\\lt 27.3, and all sources are radio-intermediate or radio-loud. BH mass estimates are 7.7 < log(MBH/M⊙) < 10.2. The rest-frame 1-5 μm spectral energy distributions are very similar to the “Hot DOGs” (hot dust-obscured galaxies), and steeper (redder) than almost any other known extragalactic sources. ISM masses estimated for the ALMA-detected sources are 9.9 < log (MISM/M⊙) < 11.75 assuming a dust temperature of 30 K. The cool dust emission is consistent with star formation rates reaching several thousand M⊙ yr-1, depending on the assumed dust temperature, but we cannot rule out the alternative that the AGN powers all the emission in some cases. Our best constrained source has radiative transfer solutions with approximately equal contributions from an obscured AGN and a young (10-15 Myr) compact starburst.
Molecular environment and X-ray study of the metal-rich thermal composite supernova remnant Kes 79
NASA Astrophysics Data System (ADS)
Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Sun, Ming
2015-08-01
Kes 79 is a thermal composite SNR hosting a central compact object (anti-magnetar) and with a transient magnetar in the south. The SNR has an intriguing double radio shell structure and the nature of the centrally-filled X-ray morphology is still unclear. We have performed 13CO 1-0, 12CO 1-0, 12CO 2-1, and 12CO 3-2 study towards this remnant to investigate the molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-120 km/s. The inner radio shell appears to be well confined by a molecular shell at VLSR˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveals many bright filamentary structures well coincident with 24 um infrared filaments and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also study the overabundant metal species Mg, Si, S and Ar, and show their asymmetric distribution across the remnant. The broadband observations suggest that the centrally filled X-ray morphology is a projection effect. Finally, we will discuss the progenitor star of Kes 79 based on the molecular line and X-ray properties.
Spectroscopic confirmation of a galaxy cluster associated with 7C 1756+6520 at z = 1.416
NASA Astrophysics Data System (ADS)
Galametz, A.; Stern, D.; Stanford, S. A.; De Breuck, C.; Vernet, J.; Griffith, R. L.; Harrison, F. A.
2010-06-01
We present spectroscopic follow-up of an overdensity of galaxies photometrically selected to be at 1.4 < z < 2.5 found in the vicinity of the radio galaxy 7C 1756+6520 at z = 1.4156. Using the DEIMOS optical multi-object spectrograph on the Keck 2 telescope, we observed a total of 129 BzK-selected sources, comprising 82 blue, star-forming galaxy candidates (sBzK) and 47 red, passively-evolving galaxy candidates (pBzK*), as well as 11 mid-infrared selected AGN candidates. We obtain robust spectroscopic redshifts for 36 blue galaxies, 7 red galaxies and 9 AGN candidates. Assuming all foreground interlopers were identified, we find that only 16% (9%) of the sBzK (pBzK*) galaxies are at z < 1.4. Therefore, the BzK criteria are shown to be relatively robust at identifying galaxies at moderate redshifts. Twenty-one galaxies, including the radio galaxy, four additional AGN candidates and three red galaxy candidates are found with 1.4156 ± 0.025, forming a large scale structure at the redshift of the radio galaxy. Of these, eight have projected offsets <2 Mpc relative to the radio galaxy position and have velocity offsets <1000 km s-1 relative to the radio galaxy redshift. This confirms that 7C 1756+6520 is associated with a high-redshift galaxy cluster. A second compact group of four galaxies is found at z ~ 1.437, forming a sub-group offset by Δv ~ 3000 km s-1 and approximately 1.'5 east of the radio galaxy.
Report for 2012 from the Bordeaux IVS Analysis Center
NASA Technical Reports Server (NTRS)
Charlot, Patrick; Bellanger, Antoine; Bouffet, Romuald; Bourda, Geraldine; Collioud, Arnaud; Baudry, Alain
2013-01-01
This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2012. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) investigation of the correlation between astrometric position instabilities and source structure variations; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the 11th European VLBI Network Symposium, which we organized last October in Bordeaux and which drew much attention from the European and International VLBI communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Pursimo, T.
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less
NASA Astrophysics Data System (ADS)
Russell, T. D.; Miller-Jones, J. C. A.; Sivakoff, G. R.; Tetarenko, A. J.; JACPOT XRB Collaboration
2018-02-01
We observed the new X-ray transient MAXI J1813-095 (ATels #11323, #11326, #11332) with the Australia Telescope Compact Array (ATCA) between 2018-02-22 20:52 UT and 2018-02-23 02:59 UT. Our observations were taken simultaneously at 5.5 and 9 GHz, with a bandwidth of 2 GHz at each frequency.
Multi-messenger studies of compact binary mergers in the in the ngVLA era
NASA Astrophysics Data System (ADS)
Corsi, Alessandra
2018-01-01
We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.
SHARP - V. Modelling gravitationally-lensed radio arcs imaged with global VLBI observations
NASA Astrophysics Data System (ADS)
Spingola, C.; McKean, J. P.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; Lagattuta, D. J.; Vegetti, S.
2018-05-01
We present milliarcsecond (mas) angular resolution observations of the gravitationally lensed radio source MG J0751+2716 (at z = 3.2) obtained with global Very Long Baseline Interferometry (VLBI) at 1.65 GHz. The background object is highly resolved in the tangential and radial directions, showing evidence of both compact and extended structure across several gravitational arcs that are 200 to 600 mas in size. By identifying compact sub-components in the multiple images, we constrain the mass distribution of the foreground z = 0.35 gravitational lens using analytic models for the main deflector [power-law elliptical mass model; ρ(r)∝r-γ, where γ = 2 corresponds to isothermal] and for the members of the galaxy group. Moreover, our mass models with and without the group find an inner mass-density slope steeper than isothermal for the main lensing galaxy, with γ1 = 2.08 ± 0.02 and γ2 = 2.16 ± 0.02 at the 4.2σ level and 6.8σ level, respectively, at the Einstein radius (b1 = 0.4025 ± 0.0008 and b2 = 0.307 ± 0.002 arcsec, respectively). We find randomly distributed image position residuals of about 3 mas, which are much larger that the measurement errors (40 μas on average). This suggests that at the mas level, the assumption of a smooth mass distribution fails, requiring additional structure in the model. However, given the environment of the lensing galaxy, it is not clear whether this extra mass is in the form of sub-haloes within the lens or along the line of sight, or from a more complex halo for the galaxy group.
Imaging the nuclear environment of NGC 1365 with the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Kristen, Helmuth; Jorsater, Steven; Lindblad, Per Olof; Boksenberg, Alec
1997-12-01
The region surrounding the active nucleus of the barred spiral galaxy NGC 1365 is observed in the [Oiii] lambda 5007 line and neighbouring continuum using the Faint Object Camera (FOC) aboard the Hubble Space Telescope (HST). In the continuum light numerous bright ``super star clusters'' (SSCs) are seen in the nuclear region. They tend to fall on an elongated ring around the nucleus and contribute about 20 % of the total continuum flux in this wavelength regime. Without applying any extinction correction the brightest SSCs have an absolute luminosity M_B=-14fm1 +/- 0fm3 and are very compact with radii R la 3 pc. Complementary ground-based spectroscopy gives an extinction estimate A_B = 2fm5 +/- 0fm5 towards these regions, indicating a true luminosity M_B = -16fm6 +/- 0fm6 . The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that it is a ``radio supernova''. The HST observations resolve the inner structure of the conical outflow previously seen in the [Oiii] lambda 5007 line in ground-based observations, and reveal a complicated structure of individual emission-line clouds, some of which gather in larger agglomerations. The total luminosity in the [Oiii] line amounts to L_[OIII] =~ 3.7x 10(40) erg s(-1) where about 40 % is emitted by the clouds. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555, and observations at the European Southern Observatory (ESO), La Silla, Chile.
A search for AGN activity in Infrared-Faint Radio Sources (IFRS)
NASA Astrophysics Data System (ADS)
Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie
2009-04-01
We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.
A search for AGN activity in Infrared-Faint Radio Sources (IFRS)
NASA Astrophysics Data System (ADS)
Lenc, Emil; Middelberg, Enno; Norris, Ray; Mao, Minnie
2010-04-01
We propose to observe a large sample of radio sources from the ATLAS (Australia Telescope Large Area Survey) source catalogue with the LBA, to determine their compactness. The sample consists of 36 sources with no counterpart in the co-located SWIRE survey (3.6 um to 160 um), carried out with the Spitzer Space Telescope. This rare class of sources, dubber Infrared-Faint Radio Sources (IFRS), is inconsistent with current galaxy evolution models. VLBI observations are an essential way to obtain further clues on what these objects are and why they are hidden from infrared observations. We will measure the flux densities on long baselines to determine their compactness. Only five IFRS have been previously targeted with VLBI observations (resulting in two detections). We propose using single baseline (Parkes-ATCA) eVLBI observations with the LBA at 1 Gbps to maximise sensitivity. With the observations proposed here we will increase the number of VLBI-observed IFRS from 5 to 36, allowing us to draw statistical conclusions about this intriguing new class of objects.
STS-35 Payload Specialist Parise sets up SAREX on OV-102's middeck
1990-12-10
STS-35 Payload Specialist Ronald A. Parise enters data into the payload and general support computer (PGSC) in preparation for Earth communication via the Shuttle Amateur Radio Experiment (SAREX) aboard Columbia, Orbiter Vehicle (OV) 102. The SAREX equipment is secured to the middeck starboard sleep station. SAREX provided radio transmissions between ground based amateur radio operators around the world and Parise, a licensed amateur radio operator. The experiment enabled students to communicate with an astronaut in space, as Parise (call-sign WA4SIR) devoted some of his off-duty time to that purpose. Displayed on the forward lockers beside Parise is a AMSAT (Amateur Radio Satellite Corporation) / ARRL (American Radio Relay League) banner. Food items and checklists are attached to the lockers. In locker position MF43G, the Development Test Objective (DTO) Trash Compaction and Retention System Demonstration extended duration orbiter (EDO) compactor is visible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schinzel, Frank K.; Petrov, Leonid; Taylor, Gregory B.
The third Fermi Large Area Telescope γ -ray source catalog (3FGL) contains over 1000 objects for which there is no known counterpart at other wavelengths. The physical origin of the γ -ray emission from those objects is unknown. Such objects are commonly referred to as unassociated and mostly do not exhibit significant γ -ray flux variability. We performed a survey of all unassociated γ -ray sources found in 3FGL using the Australia Telescope Compact Array and Very Large Array in the range 4.0–10.0 GHz. We found 2097 radio candidates for association with γ -ray sources. The follow-up with very longmore » baseline interferometry for a subset of those candidates yielded 142 new associations with active galactic nuclei that are γ -ray sources, provided alternative associations for seven objects, and improved positions for another 144 known associations to the milliarcsecond level of accuracy. In addition, for 245 unassociated γ -ray sources we did not find a single compact radio source above 2 mJy within 3 σ of their γ -ray localization. A significant fraction of these empty fields, 39%, are located away from the Galactic plane. We also found 36 extended radio sources that are candidates for association with a corresponding γ -ray object, 19 of which are most likely supernova remnants or H ii regions, whereas 17 could be radio galaxies.« less
Phenomenological model for the evolution of radio galaxies such as Cygnus A
NASA Astrophysics Data System (ADS)
Artyukh, V. S.
2015-06-01
A phenomenological model for the evolution of classical radio galaxies such as Cygnus A is presented. An activity cycle of the host galaxy in the radio begins with the birth of radio jets, which correspond to shocks on scales ˜1 pc (the radio galaxy B0108+388). In the following stage of the evolution, the radio emission comes predominantly from formations on scales of 10-100 pc, whose physical parameters are close to those of the hot spots of Cygnus A (this corresponds to GHz-peaked spectrum radio sources). Further, the hot spots create radio lobes on scales of 103-104 pc (compact steep-spectrum radio sources). The fully formed radio galaxies have radio jets, hot spots, and giant radio lobes; the direction of the jets can vary in a discrete steps with time, creating new hot spots and inflating the radio lobes (as in Cygnus A). In the final stage of the evolutionary cycle, first the radio jets disappear, then the hot spots, and finally the radio lobes (similar to the giant radio galaxies DA 240 and 3C 236). A large fraction of radio galaxies with repeating activity cycles is observed. The close connection between Cygnus A-type radio galaxies and optical quasars is noted, as well as similarity in the cosmological evolution of powerful radio galaxies and optical quasars.
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.
2017-12-01
The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.
The great galactic centre mystery
NASA Technical Reports Server (NTRS)
Riegler, G. R.
1982-01-01
Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.
Radio constraints on the mass-loss rate of the Type Ia SN 2018gv
NASA Astrophysics Data System (ADS)
Ryder, S. D.; Lundqvist, P.; Perez-Torres, M. A.; Kundu, E.; Kool, E. C.; Bjornsson, C.-I.; Fransson, C.
2018-01-01
The young Type Ia SN 2018gv (ATel #11175, #11177) in the galaxy NGC 2525 has been observed with the Australia Telescope Compact Array (ATCA) at 5.5 and 9.0 GHz on 2018 Jan 18.6 UT. No radio emission was detected at the reported location, to a 3-sigma upper limit of 120 microJy/beam (5.5 GHz) and 30 microJy/beam (9.0 GHz).
Radio Observations of Nova Muscae 2018 and Nova Carinae 2018 (ASASSN-18fv)
NASA Astrophysics Data System (ADS)
Ryder, S. D.; Kool, E. C.; Chomiuk, L.
2018-04-01
The two optically-bright Galactic novae in Musca (CBET #4473, ATel #11183, #11201, #11212, #11296) and in Carina (ATel #11454, #11456, #11457, #11460, #11468) were observed at radio wavelengths using the Australia Telescope Compact Array (ATCA) on 2018 Apr 3.3 UT. Nova Muscae 2018 has faded by a factor of 3 at 9.0 and 5.5 GHz since peaking at > 30 mJy/bm in mid-March.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cseh, David; Corbel, Stephane; Kaaret, Philip
We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebulamore » of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.« less
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2015-08-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre.
Genzel, R; Schödel, R; Ott, T; Eckart, A; Alexander, T; Lacombe, F; Rouan, D; Aschenbach, B
2003-10-30
Recent measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* (refs 4, 5) at the Galactic Centre is a 3.6-million-solar-mass black hole. Sgr A* is remarkably faint in all wavebands other than the radio region, however, which challenges current theories of matter accretion and radiation surrounding black holes. The black hole's rotation rate is not known, and therefore neither is the structure of space-time around it. Here we report high-resolution infrared observations of Sgr A* that reveal 'quiescent' emission and several flares. The infrared emission originates from within a few milliarcseconds of the black hole, and traces very energetic electrons or moderately hot gas within the innermost accretion region. Two flares exhibit a 17-minute quasi-periodic variability. If the periodicity arises from relativistic modulation of orbiting gas, the emission must come from just outside the event horizon, and the black hole must be rotating at about half of the maximum possible rate.
Accretion Signatures on Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.
2015-01-01
We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.
The radio spectral energy distribution of infrared-faint radio sources
NASA Astrophysics Data System (ADS)
Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.
2016-10-01
Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α < -0.8; %), but we also find ultra-steep SEDs (α < -1.3; %). In particular, IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength SED modelling of one IFRS shows that it is different from ordinary AGN, although it is consistent with a composite starburst-AGN model with a star formation rate of 170 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).
The Compact Radio Sources in the Nucleus of NGC 1068
NASA Astrophysics Data System (ADS)
Roy, A. L.; Colbert, E. J. M.; Wilson, A. S.; Ulvestad, J. S.
1998-09-01
We report VLBA images of the nucleus of the Seyfert galaxy NGC 1068 at 1.7, 5, and 15 GHz, with resolutions between 3 and 10 mas (0.2-0.7 pc) and a sensitivity of ~106 K at all three frequencies. Our goals are to study the morphology of the radio emission at subparsec resolution and to investigate thermal gas in the putative obscuring disk or torus and in the narrow-line region clouds through free-free absorption of the radio emission. All four known radio components in the central arcsecond (S2, S1, C, and NE, from south to north) have been detected at either 1.7 or 5 GHz, or both. No radio emission was detected at 15 GHz. Component S1 is probably associated with the active nucleus, with radio emission originating from the inner edge of the obscuring torus according to Gallimore et al. Our observed flux densities at 1.7 and 5 GHz are in agreement with their thermal bremsstrahlung emission model, and we find that the nuclear radiation may be strong enough to heat the gas in S1 to the required temperature of ~4 × 106 K. The bremsstrahlung power would be 0.15(frefl/0.01) times the bolometric luminosity of the nucleus between 1014.6 and 1018.4 Hz (where frefl is the fraction of radiation reflected into our line of sight by the electron-scattering mirror) and so the model is energetically reasonable. We also discuss two other models for S1 that also match the observed radio spectrum: electron scattering by the torus of radio emission from a compact synchrotron self-absorbed source and synchrotron radiation from the torus itself. Components NE and S2 have spectra consistent with optically thin synchrotron emission, without significant absorption. Both of these components are elongated roughly perpendicular to the larger scale radio jet, suggesting that their synchrotron emission is related to transverse shocks in the jet or to bow shocks in the external medium. Component C has a nonthermal spectrum absorbed at low frequency. This absorption is consistent with free-free absorption by plasma with conditions typical of narrow-line region clouds.
Extreme scattering events towards two young pulsars
NASA Astrophysics Data System (ADS)
Kerr, M.; Coles, W. A.; Ward, C. A.; Johnston, S.; Tuntsov, A. V.; Shannon, R. M.
2018-03-01
We have measured the scintillation properties of 151 young, energetic pulsars with the Parkes radio telescope and have identified two extreme scattering events (ESEs). Towards PSR J1057-5226, we discovered a 3 yr span of strengthened scattering during which the variability in flux density and the scintillation bandwidth decreased markedly. The transverse size of the scattering region is ˜23 au, and strong flux density enhancement before and after the ESE may arise from refractive focusing. Long observations reveal scintillation arcs characteristic of interference between rays scattered at large angles, and the clearest arcs appear during the ESE. The arcs suggest scattering by a screen 100-200 pc from the Earth, perhaps ionized filamentary structure associated with the boundary of the local bubble(s). Towards PSR J1740-3015, we observed a `double dip' in the measured flux density similar to ESEs observed towards compact extragalactic radio sources. The observed shape is consistent with that produced by a many-au scale diverging plasma lens with electron density ˜500 cm-3. The continuing ESE is at least 1500 d long, making it the longest detected event to date. These detections, with materially different observational signatures, indicate that well-calibrated pulsar monitoring is a keen tool for ESE detection and interstellar medium (ISM) diagnostics. They illustrate the strong role au-scale non-Kolmogorov density fluctuations and the local ISM structure play in such events and are key to understanding both their intrinsic physics and their impact on other phenomena, particularly fast radio bursts.
The Peculiar Light Curve of J1415+1320: A Case Study in Extreme Scattering Events
NASA Astrophysics Data System (ADS)
Vedantham, H. K.; Readhead, A. C. S.; Hovatta, T.; Koopmans, L. V. E.; Pearson, T. J.; Blandford, R. D.; Gurwell, M. A.; Lähteenmäki, A.; Max-Moerbeck, W.; Pavlidou, V.; Ravi, V.; Reeves, R. A.; Richards, J. L.; Tornikoski, M.; Zensus, J. A.
2017-08-01
The radio light curve of J1415+1320 (PKS 1413+135) shows time-symmetric and recurring U-shaped features across the centimeter-wave and millimeter-wave bands. The symmetry of these features points to lensing by an intervening object as the cause. U-shaped events in radio light curves in the centimeter-wave band have previously been attributed to Extreme scattering events (ESE). ESEs are thought to be the result of lensing by compact plasma structures in the Galactic interstellar medium, but the precise nature of these plasma structures remains unknown. Since the strength of a plasma lens evolves with wavelength λ as {λ }2, the presence of correlated variations at over a wide wavelength range casts doubt on the canonical ESE interpretation for J1415+1320. In this paper, we critically examine the evidence for plasma lensing in J1415+1320. We compute limits on the lensing strength and the associated free-free opacity of the putative plasma lenses. We compare the observed and model ESE light curves, and also derive a lower limit on the lens distance based on the effects of parallax due to the Earth’s orbit around the Sun. We conclude that plasma lensing is not a viable interpretation for J1415+1320's light curves and that symmetric U-shaped features in the radio light curves of extragalactic sources do not present prima facie evidence for ESEs. The methodology presented here is generic enough to be applicable to any plasma-lensing candidate.
A VLA gravitational lens survey
NASA Technical Reports Server (NTRS)
Hewitt, J. N.; Turner, E. L.; Burke, B. F.; Lawrence, C. R.; Bennett, C. L.
1987-01-01
A VLA survey designed to detect gravitational lensing on sub-arc second and arc second scales is described, and preliminary results of radio data are presented. In particular, it is found that the density of matter in the form of a uniform comoving number density of 10 to the 11th - 10 to the 12th solar mass compact objects, luminous or dark, must be substantially less than the critical density. Data obtained for the radio source 1042+178 are briefly examined.
X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211
NASA Technical Reports Server (NTRS)
Mathur, Smita; Nair, Sunita
1997-01-01
PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.
The Evolving Polarized Jet of Black Hole Candidate Swift J1745-26
NASA Technical Reports Server (NTRS)
Curran, P. A.; Coriat, M.; Miller-Jones, J. C. A.; Armstrong, R. P.; Edwards, P. G.; Sivakoff, G. R.; Woudt, P.; Altamirano, D.; Belloni, T. M.; Corbel, S.;
2013-01-01
Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (is approx. equal to 50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry.
First muon acceleration using a radio-frequency accelerator
NASA Astrophysics Data System (ADS)
Bae, S.; Choi, H.; Choi, S.; Fukao, Y.; Futatsukawa, K.; Hasegawa, K.; Iijima, T.; Iinuma, H.; Ishida, K.; Kawamura, N.; Kim, B.; Kitamura, R.; Ko, H. S.; Kondo, Y.; Li, S.; Mibe, T.; Miyake, Y.; Morishita, T.; Nakazawa, Y.; Otani, M.; Razuvaev, G. P.; Saito, N.; Shimomura, K.; Sue, Y.; Won, E.; Yamazaki, T.
2018-05-01
Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu- ), which are bound states of positive muons (μ+) and two electrons, are generated from μ+'s through the electron capture process in an aluminum degrader. The generated Mu- 's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu- 's are accelerated to 89 keV. The accelerated Mu- 's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.
Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella
2015-04-01
Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.
WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; Claussen, M.
2016-12-01
We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10 μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sourcesmore » associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.« less
The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.; Dickey, John M.; Jordan, C.
The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission frommore » 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.« less
Neural networks to classify speaker independent isolated words recorded in radio car environments
NASA Astrophysics Data System (ADS)
Alippi, C.; Simeoni, M.; Torri, V.
1993-02-01
Many applications, in particular the ones requiring nonlinear signal processing, have proved Artificial Neural Networks (ANN's) to be invaluable tools for model free estimation. The classifying abilities of ANN's are addressed by testing their performance in a speaker independent word recognition application. A real world case requiring implementation of compact integrated devices is taken into account: the classification of isolated words in radio car environment. A multispeaker database of isolated words was recorded in different environments. Data were first processed to determinate the boundaries of each word and then to extract speech features, the latter accomplished by using cepstral coefficient representation, log area ratios and filters bank techniques. Multilayered perceptron and adaptive vector quantization neural paradigms were tested to find a reasonable compromise between performances and network simplicity, fundamental requirement for the implementation of compact real time running neural devices.
Relativistic and Slowing Down: The Flow in the Hotspots of Powerful Radio Galaxies and Quasars
NASA Technical Reports Server (NTRS)
Kazanas, D.
2003-01-01
The 'hotspots' of powerful radio galaxies (the compact, high brightness regions, where the jet flow collides with the intergalactic medium (IGM)) have been imaged in radio, optical and recently in X-ray frequencies. We propose a scheme that unifies their, at first sight, disparate broad band (radio to X-ray) spectral properties. This scheme involves a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and it is viewed at different angles to its direction of motion, as suggested by two independent orientation estimators (the presence or not of broad emission lines in their optical spectra and the core-to-extended radio luminosity). This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.
A Turnover in the Radio Light Curve of GW170817
NASA Astrophysics Data System (ADS)
Dobie, Dougal; Kaplan, David L.; Murphy, Tara; Lenc, Emil; Mooley, Kunal P.; Lynch, Christene; Corsi, Alessandra; Frail, Dale; Kasliwal, Mansi; Hallinan, Gregg
2018-05-01
We present 2–9 GHz radio observations of GW170817 covering the period 125–200 days post-merger, taken with the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). Our observations demonstrate that the radio afterglow peaked at 149 ± 2 days post-merger and is now declining in flux density. We see no evidence for evolution in the radio-only spectral index, which remains consistent with optically thin synchrotron emission connecting the radio, optical, and X-ray regimes. The peak implies a total energy in the synchrotron-emitting component of a few × 1050 erg. The temporal decay rate is most consistent with mildly or non-relativistic material and we do not see evidence for a very energetic off-axis jet, but we cannot distinguish between a lower-energy jet and more isotropic emission.
NASA Astrophysics Data System (ADS)
Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.; Miller, Neal
2016-12-01
We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L R/L X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.
La Freccia Rossa: an IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate
NASA Astrophysics Data System (ADS)
Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl
2018-07-01
The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105 M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. Australia Telescope Compact Array constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to the Eddington luminosity ratios under the intermediate-mass black hole interpretation. A protostellar-disc scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesize that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murase, Kohta; Mészáros, Peter; Fox, Derek B.
We consider some general implications of bright γ -ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ -ray detections with current satellites (including Swift ) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ -ray energy is comparable to that of the early afterglow or extended emissionmore » of short γ -ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ -rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ -ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.« less
Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47
NASA Astrophysics Data System (ADS)
Hjellming, R. M.; Rupen, M. P.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M.; Harmon, B. A.; Buxton, M.; Sood, R.; Tzioumis, A.; Rayner, D.; Dieters, S.; Durouchoux, P.
1999-03-01
We report radio (NRAO VLA and Australia Telescope Compact Array), soft X-ray (Rossi X-Ray Timing Explorer ASM), and hard X-ray (Compton Gamma Ray Observatory BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47, where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of ~-0.8 during the rise, peak, and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared 1998 February 3 (MJD 50847), and the first radio emission was detected 1998 February 12.6 (MJD 50856.6). The rise of the radio emission probably began about 1998 February 7 (MJD 50851) when the X-rays were in a very hard fluctuating-hardness state, just before changing to a softer, more stable hardness state.
Multiwavelength observations of Active Galactic Nuclei from the radio to the hard X-rays
NASA Astrophysics Data System (ADS)
Beuchert, Tobias
2017-07-01
Active Galaxies form a peculiar type of galaxies. Their cores, the so-called "Active Galactic Nuclei" (AGN), are the most persistent luminous objects in the universe. Accretion of several solar masses per year onto black holes of Millions to Billions of solar masses drive the immense energy output of these systems, which can exceed that of the entire galaxy. The compact energy source, however, only measures about one over a Billion times that of the entire galaxy. Subject of my thesis are observations of the two main channels of energy release of selected AGN systems, both of which are encompassed by profound and yet unanswered questions. These channels are on the one hand the pronounced X-ray emission of the hot and compact accreting environment in close vicinity of the black hole, and on the other hand the radio synchrotron emission of magnetically collimated jets that are fed by portions of the accreted matter. These jets also function as effective accelerators and drive the injected matter deep into the intergalactic medium. As the circumnuclear environment of AGN is too compact to be spatially resolved in the X-rays, I show how X-ray spectroscopy can be used to: (1) understand the effects of strong gravity to trace the geometry and physics of the X-ray source and (2) more consistently quantify matter that surrounds and dynamically absorbs our direct line of sight towards the X-ray source. Second, I unveil the valuable information contained in the polarized radio light being emitted from magnetized jet outflows. In contrast to the X-ray emitting region, I am able to spatially resolve the inner parts of the jet of a prominent galaxy with help of the Very Long Baseline Array, a large network of radio telescopes. The resulting polarization maps turn out to be exceptionally promising in answering fundamental questions related to jet physics.
Imaging the Heart of Our Galaxy
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-03-01
New radio images of the center of the Milky Way are providing an unprecedented view of the structure and processes occurring in the Galactic center.JVLA images of Sgr A at 5.5 GHz. The large-scale, bright ring structure is Sgr A East, a supernova remnant. The mini-spiral structure along the lower-right edge of the ring is Sgr A West, and Sgr A* is located near the center of the mini-spiral structure. Click for a closer look! [Zhao et al. 2016]Improved Radio ViewA recent study led by Jun-Hui Zhao (Harvard-Smithsonian Center for Astrophysics) presents new images of the Galactic center using the Jansky Very Large Array (JVLA) at 5.5 GHz. The images center on the radio-bright zone at the core of our galaxy, with the field of view covering the central 13 of the Milky Way equivalent to a physical size of ~100 light-years.Due to recent hardware and software improvements in the VLA, these images are much deeper than any previously obtained of the Galactic center, reaching an unprecedented 100,000:1 dynamic range. Not only do these observations provide a detailed view of previously known structures within the Sagittarius A radio complex in the Milky Ways heart, but they also reveal new features that can help us understand the processes that formed this bright complex.Features in Sagittarius ASgr A consists of three main components nested within each other: the supernova remnant Sgr A East, the mini-spiral structure Sgr A West (located off-center within the Sgr A East structure), and the compact radio source Sgr A* (located near the center of the mini-spiral). Sgr A* is the supermassive black hole that resides at the very center of the Milky Way.The newest JVLA images reveal numerous filamentary sources that trace out two radio lobes, oriented nearly perpendicular to the Galactic plane and ~50 light-years in size. These are smaller radio counterparts to the enormous (on the scale of 30,000 light-years!) gamma-ray Fermi bubbles that have been observed to extend from the Galactic center. The bipolar radio structures appear to be due to winds emanating from Sgr A* itself, from a central cluster of massive stars, or from a combination of the two.Top: superposition of the JVLA image of Sgr A (blue) and a molecular line image (red) showingSgr A*s circumnuclear disk. Bottom left: molecular emission is shown in contours, and the Sigma Front is traced by blue lines. Bottom right: ageometrical model for the supernova explosion and resulting emission. [Zhao et al. 2016]Supernova StructuresThe outermost shape of Sgr A East which looks like an elliptical ring is thought to be an expanding spherical shell from a past supernova explosion, appearing as an ellipse because of our angle of view. In the newest JVLA images, Zhao and collaborators identify a new structure inside of the ring that they term the Sigma Front.The authors argue that this emission front which is shaped like the capital Greek letter sigma may be the reflection of the supernova blast wave bouncing off of the dense, clumpy circumnuclear molecular disk around Sgr A* (which encircles the mini-spiral, but isnt visible in radio wavelengths). Under this assumption, they use the Sigma Front to constrain the geometry of the supernova explosion.These new JVLA images contain a wealth of information in their detail, and analysis is only just beginning. Further examination of these images will continue to help us learn about the activity at the heart of our galaxy.CitationJun-Hui Zhao et al 2016 ApJ 817 171. doi:10.3847/0004-637X/817/2/171
GIANT LOBES OF CENTAURUS A RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawarz, L.; Gandhi, P.; Takahashi, T.
2013-03-20
We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photonmore » indices {Gamma} {approx} 2.0 {+-} 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to {approx}> 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT {approx} 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n{sub g} {approx} 10{sup -4} cm{sup -3}, while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma {beta} parameter around the volume-averaged equilibrium condition {beta} {approx} 1.« less
A search for long-time-scale, low-frequency radio transients
NASA Astrophysics Data System (ADS)
Murphy, Tara; Kaplan, David L.; Croft, Steve; Lynch, Christene; Callingham, J. R.; Bannister, Keith; Bell, Martin E.; Hurley-Walker, Natasha; Hancock, Paul; Line, Jack; Rowlinson, Antonia; Lenc, Emil; Intema, H. T.; Jagannathan, P.; Ekers, Ronald D.; Tingay, Steven; Yuan, Fang; Wolf, Christian; Onken, Christopher A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.
2017-04-01
We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long time-scales of 1-3 yr. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99 658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cut-off and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 ± 26 mJy at 147.5 MHz. This gives a transient surface density of ρ = (6.2 ± 6) × 10-5 deg-2. We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.
Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204
NASA Astrophysics Data System (ADS)
Bondi, M.; Pérez-Torres, M. A.; Piconcelli, E.; Fu, H.
2016-04-01
The sources SDSS J113126.08-020459.2 and SDSS J110851.04+065901.4 are two double-peaked [O III] emitting active galactic nuclei (AGNs), identified as candidate binary AGNs by optical and near infrared (NIR) observations. We observed the two sources with high resolution Very Long Baseline Interferometry (VLBI) using the European VLBI Network at 5 GHz, reduced VLA observations at three frequencies available for one of the sources, and used archival HST observations. For the source SDSS J113126.08-020459.2, the VLBI observations detected only one single compact component associated with the eastern NIR nucleus. In SDSS J110851.04+065901.4, the VLBI observations did not detect any compact components, but the VLA observations allowed us to identify a possible compact core in the region of the north-western optical/NIR nucleus. In this source we find kpc-scale extended radio emission that is spatially coincident to the ultraviolet continuum and to the extended emission narrow line region. The UV continuum is significantly obscured since the amount of extended radio emission yields a star formation rate of about 110 M⊙ yr-1, which is an order of magnitude larger than implied by the observed ultraviolet emission. Our analysis confirms the presence of only one AGN in the two candidate binary AGNs. FITS files of the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A102
Direct Evidence for Maser Emission from the 36.2 GHz Class I Transition of Methanol in NGC253
NASA Astrophysics Data System (ADS)
Chen, Xi; Ellingsen, Simon P.; Shen, Zhi-Qiang; McCarthy, Tiege P.; Zhong, Wei-Ye; Deng, Hui
2018-04-01
Observations made with the Jansky Very large Array (JVLA) at an angular resolution of ∼0.″1 have detected class I methanol maser emission from the 36.2 GHz transition toward the starburst galaxy NGC 253. The methanol emission is detected toward four sites which lie within the regions of extended methanol emission detected in previous lower angular resolution (a few arcseconds) observations. The peak flux densities of the detected compact components are in the range 3–9 mJy beam‑1. Combining the JVLA data with single-dish observations from the Shanghai Tianma Radio Telescope (TMRT) and previous interferometric observations with the Australia Telescope Compact Array (ATCA), we show that the 36.2 GHz class I methanol emission consists of both extended and compact structures, with typical scales of ∼6″ (0.1 kpc) and ∼0.″05 (1 pc), respectively. The strongest components have a brightness temperature of >103 K, much higher than the maximum kinetic temperature (∼100 K) of the thermal methanol emission from NGC 253. Therefore, these observations conclusively demonstrate for the first time the presence of maser emission from a class I methanol transition in an external galaxy.
VizieR Online Data Catalog: Broadband polarisation of radio AGN (O'Sullivan+, 2017)
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.
2017-08-01
Linear polarisation data as a function of wavelength-squared for 100 extragalactic radio sources, selected to be highly polarised at 1.4GHz. The data presented here were obtained using the Australia Telescope Compact Array (ATCA) over 1.1-3.1GHz (16cm) with 1MHz spectral resolution between 2014 April 19-28. The integrated emission from each source, imaged at 10 MHz intervals, is presented below. See Section 2 for details. (2 data files).
Package Holds Five Monolithic Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.
1996-01-01
Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.
The Orion Bullets: New GEMS MCAO images
NASA Astrophysics Data System (ADS)
Ginsburg, Adam; Bally, John; Youngblood, Allison
2013-07-01
The Orion A molecular cloud (OMC1) is the nearest site of massive star formation at a distance of 414 pc. The BN/KL region within it contains signs of a massive explosion triggered 500 years ago by decay of a non- hierarchical multiple system of massive stars. We present observations of the OMC1 core at high spatial resolution (<0.1") in narrow-band [Fe II] 1.64um and H2 S(1) 1-0 2.12um filters. The new data reveal compact (0.1" to 0.5") knots with unique excitation and chemical properties, unveiling new details about the three-dimensional structure of the explosion. Bright H2 emission from these compact, high proper-motion knots and compact [Fe II] features are consistent with scenario proposed by Bally et al. (2011) in which they are interpreted to be high density (n > 10^8 cm^{-3}) disk fragments launched from within a few AU of a massive star by a > three-body dynamical interaction that led to the ejection of the BN objects and the formation of a compact (separation < few AU) binary, most likely radio source I. The proper motions are as high as 400 km/s, hinting at the enormous energy unleashed in the explosion. The data also unveiled a population of obscured close binary systems. This new population will allow a comparison of embedded young binary systems with the older, un-obscured, visual binary population to test models of the evolution of multiplicity statistics in the Orion Nebula Cluster.
RadioAstron Science Program Five Years after Launch: Main Science Results
NASA Astrophysics Data System (ADS)
Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.
2017-12-01
The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).
Radio detections of southern ultracool dwarfs
NASA Astrophysics Data System (ADS)
Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.
2016-04-01
We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.
An 'X-banded' Tidbinbilla interferometer
NASA Technical Reports Server (NTRS)
Batty, Michael J.; Gardyne, R. G.; Gay, G. J.; Jauncy, David L.; Gulkis, S.; Kirk, A.
1986-01-01
The recent upgrading of the Tidbinbilla two-element interferometer to simultaneous S-band (2.3 GHz) and X-band (8.4 GHz) operation has provided a powerful new astronomical facility for weak radio source measurement in the Southern Hemisphere. The new X-band system has a minimum fringe spacing of 38 arcsec, and about the same positional measurement capability (approximately 2 arcsec) and sensitivity (1 s rms noise of 10 mJy) as the previous S-band system. However, the far lower confusion limit will allow detection and accurate positional measurements for sources as weak as a few millijanskys. This capability will be invaluable for observations of radio stars, X-ray sources and other weak, compact radio sources.
Compact Low Frequency Radio Antenna
Punnoose, Ratish J.
2008-11-11
An antenna is disclosed that comprises a pair of conductive, orthogonal arches and a pair of conductive annular sector plates, wherein adjacent legs of each arch are fastened to one of the annular sector plates and the opposite adjacent pair of legs is fastened to the remaining annular sector plate. The entire antenna structure is spaced apart from a conductive ground plane by a thin dielectric medium. The antenna is driven by a feed conduit passing through the conductive ground plane and dielectric medium and attached to one of the annular sector plates, wherein the two orthogonal arched act as a pair of crossed dipole elements. This arrangement of elements provides a radiation pattern that is largely omni-directional above the horizon.
Analysis of 3D vortex motion in a dusty plasma
NASA Astrophysics Data System (ADS)
Mulsow, M.; Himpel, M.; Melzer, A.
2017-12-01
Dust clusters of about 50-1000 particles have been confined near the sheath region of a gaseous radio-frequency plasma discharge. These compact clusters exhibit a vortex motion which has been reconstructed in full three dimensions from stereoscopy. Smaller clusters are found to show a competition between solid-like cluster structure and vortex motion, whereas larger clusters feature very pronounced vortices. From the three-dimensional analysis, the dust flow field has been found to be nearly incompressible. The vortices in all observed clusters are essentially poloidal. The dependence of the vorticity on the cluster size is discussed. Finally, the vortex motion has been quantitatively attributed to radial gradients of the ion drag force.
Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P
2000-12-25
We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart
We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics inmore » the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.« less
Dark matter in the Reticulum II dSph: a radio search
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio
2017-07-01
We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.
Dark matter in the Reticulum II dSph: a radio search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio, E-mail: regis@to.infn.it, E-mail: llrichter@gmail.com, E-mail: sergio.colafrancesco@wits.ac.za
2017-07-01
We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of searching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources.more » Among them, we show there are two compelling candidates for being the radio counterpart of the possible γ-ray emission reported by other groups using Fermi-LAT data.« less
Very Long Baseline Interferometry: Dependencies on Frequency Stability
NASA Astrophysics Data System (ADS)
Nothnagel, Axel; Nilsson, Tobias; Schuh, Harald
2018-04-01
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.
Formation and Destruction of Jets in X-ray Binaries
NASA Technical Reports Server (NTRS)
Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.
2011-01-01
Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.
Effelsberg Monitoring of a Sample of RadioAstron Blazars: Analysis of Intra-Day Variability
NASA Astrophysics Data System (ADS)
Liu, Jun; Bignall, Hayley; Krichbaum, Thomas; Liu, Xiang; Kraus, Alex; Kovalev, Yuri; Sokolovsky, Kirill; Angelakis, Emmanouil; Zensus, J.
2018-04-01
We present the first results of an ongoing intra-day variability (IDV) flux density monitoring program of 107 blazars, which were selected from a sample of RadioAstron space very long baseline interferometry (VLBI) targets. The~IDV observations were performed with the Effelsberg 100-m radio telescope at 4.8\\,GHz, focusing on the statistical properties of IDV in a relatively large sample of compact active galactic nuclei (AGN). We investigated the dependence of rapid ($<$3 day) variability on various source properties through a likelihood approach. We found that the IDV amplitude depends on flux density and that fainter sources vary by about a factor of 3 more than their brighter counterparts. We also found a significant difference in the variability amplitude between inverted- and flat-spectrum radio sources, with the former exhibiting stronger variations. $\\gamma$-ray loud sources were found to vary by up to a factor 4 more than $\\gamma$-ray quiet ones, with 4$\\sigma$ significance. However a galactic latitude dependence was barely observed, which suggests that it is predominantly the intrinsic properties (e.g., angular size, core-dominance) of the blazars that determine how they scintillate, rather than the directional dependence in the interstellar medium (ISM). We showed that the uncertainty in the VLBI brightness temperatures obtained from the space VLBI data of the RadioAstron satellite can be as high as $\\sim$70\\% due to the presence of the rapid flux density variations. Our statistical results support the view that IDV at centimeter wavelengths is predominantly caused by interstellar scintillation (ISS) of the emission from the most compact, core-dominant region in an AGN.
NASA Astrophysics Data System (ADS)
Maitra, C.; Acero, F.; Venter, C.
2017-01-01
Aims: PSR J0855-4644 is a fast-spinning, energetic pulsar discovered at radio wavelengths near the south-eastern rim of the supernova remnant RX J0852.0-4622. A follow-up XMM-Newton observation revealed the X-ray counterpart of the pulsar and a slightly asymmetric pulsar wind nebula, which suggests possible jet structures. Lying at a distance d ≤ 900 pc, PSR J0855-4644 is a pulsar with one of the highest Ė/d2 from which no GeV γ-ray pulsations have been detected. With a dedicated Chandra observation we aim to further resolve the possible jet structures of the nebula and study the pulsar geometry to understand the lack of γ-ray pulsations. Methods: We performed detailed spatial modelling to constrain the geometry of the pulsar wind nebula and in particular the pulsar line of sight (observer angle) ζPSR, which is defined as the angle between the direction of the observer and the pulsar spin axis. We also performed geometric radio and γ-ray light-curve modelling using a hollow-cone radio beam model together with two-pole caustic and outer gap models to further constrain ζPSR and the magnetic obliquity α defined as the angle between the magnetic and spin axes of the pulsar. Results: The Chandra observation reveals that the compact XMM source, thought to be the X-ray pulsar, can be further resolved into a point source surrounded by an elongated axisymmetric nebula with a longitudinal extent of 10''. The pulsar flux represents only 1% of the XMM compact source, and its spectrum is well described by a blackbody of temperature kT = 0.2 keV, while the surrounding nebula has a much harder spectrum (Γ = 1.1 for a power-law model). Assuming the origin of the extended emission is a double torus yields ζPSR = 32.5° ± 4.3°. The detection of thermal X-rays from the pulsar may point to a low value of | ζ-α | if this emission originates from a heated polar cap. Independent constraints from geometric light-curve modelling yield α ≲ 55° and ζ ≲ 55°, and 10° ≲ | ζ-α | ≲ 30°. A χ2 fit to the radio light curve yields a best fit at (α,ζPSR) = (22°,8°), with an alternative fit at (α,ζPSR) = (9°,25°) within 3σ. The lack of non-thermal X-ray emission from the pulsar further supports low values for α and ζ under the assumption that X-rays and γ-rays are generated in the same region of the pulsar magnetosphere. Such a geometry would explain, in the standard caustic pulsar model picture, the radio-loud and γ-ray-quiet behaviour of this high Ė/d2 pulsar.
A transient, flat spectrum radio pulsar near the Galactic Centre
NASA Astrophysics Data System (ADS)
Dexter, J.; Degenaar, N.; Kerr, M.; Deller, A.; Deneva, J.; Lazarus, P.; Kramer, M.; Champion, D.; Karuppusamy, R.
2017-06-01
Recent studies have shown possible connections between highly magnetized neutron stars ('magnetars'), whose X-ray emission is too bright to be powered by rotational energy, and ordinary radio pulsars. In addition to the magnetar SGR J1745-2900, one of the radio pulsars in the Galactic Centre (GC) region, PSR J1746-2850, had timing properties implying a large magnetic field strength and young age, as well as a flat spectrum. All characteristics are similar to those of rare, transient, radio-loud magnetars. Using several deep non-detections from the literature and two new detections, we show that this pulsar is also transient in the radio. Both the flat spectrum and large amplitude variability are inconsistent with the light curves and spectral indices of three radio pulsars with high magnetic field strengths. We further use frequent, deep archival imaging observations of the GC in the past 15 yr to rule out a possible X-ray outburst with a luminosity exceeding the rotational spin-down rate. This source, either a transient magnetar without any detected X-ray counterpart or a young, strongly magnetized radio pulsar producing magnetar-like radio emission, further blurs the line between the two categories. We discuss the implications of this object for the radio emission mechanism in magnetars and for star and compact object formation in the GC.
INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303
NASA Astrophysics Data System (ADS)
Chernyakova, Masha; Neronov, A.; Walter, R.
LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.
NASA Astrophysics Data System (ADS)
Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.
2015-03-01
High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.
Towards an Imaging Mid-Infrared Heterodyne Spectrometer
NASA Technical Reports Server (NTRS)
Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.
2012-01-01
We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.
A State Change In The Missing Link Binary Pulsar System Psr J1023+0038
Stappers, B. W.; Archibald, A. M.; Hessels, J. W. T.; ...
2014-07-01
We present radio, X-ray, and γ-ray observations which reveal that the binary millisecond pulsar / low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditionsmore » to create the γ-ray increase. The system is the first example of a transient, compact, low-mass γ-ray binary and will continue to provide an exceptional test bed for better understanding the formation of millisecond pulsars as well as accretion onto neutron stars in general.« less
JVLA Observations of Young Brown Dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx
We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLTmore » 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.« less
Foundation design for a radio telescope on the moon
NASA Astrophysics Data System (ADS)
Chua, Koon Meng; Johnson, Stewart W.; Yuan, Zehong
A foundation design for a 122 m diameter dish-type radio telescope on the moon is presented. The 1.2 m wide and 43 m diameter circular strip footing was analyzed for settlement due to compaction during installation and also for total and differential settlement under in-service laods. An axisymmetrical finite element code of the uppdated Lagrangian formulation was used. Interface slip elements were also used. The nonlinear hyperbolic stress-strain model parameters for the regolith were derived from load-deflection characteristics of astronauts' bootprints and the Rover tracks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, C.M.
1999-09-01
A Comment on the Letter by Glennys R. Farrar and Peter L. Biermann, Phys. Rev. Lett. {bold 81}, 3579 (1998). The authors of the Letter offer a Reply. {copyright} {ital 1999} {ital The American Physical Society}
Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter
NASA Astrophysics Data System (ADS)
Muñoz, Julian B.; Kovetz, Ely D.; Dai, Liang; Kamionkowski, Marc
2016-08-01
The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20 - 100 M⊙ window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ˜20 M⊙ would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass ML induces two images, separated by a typical time delay ˜few×(ML/30 M⊙) msec . Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 1 04 FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 1 04 FRBs would constrain the fraction fDM of dark matter in MACHOs to fDM≲0.08 for ML≳20 M⊙ .
RadioAstron Maser Observations: a Record in Angular Resolution
NASA Astrophysics Data System (ADS)
Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team
2017-06-01
Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.
A gravitational lens candidate with an unusually red optical counterpart
NASA Technical Reports Server (NTRS)
Hewitt, J. N.; Turner, E. L.; Lawrence, C. R.; Schneider, D. P.; Brody, J. P.
1992-01-01
The properties of the strong radio source MG0414 + 0534 are described. It is found to display many of the properties expected in a gravitational lens system. At radio wavelengths and 0.5-arcsec resolution, MG0414 + 0534 is made up of four compact components whose unusual configuration and relative flux densities are similar to those found in confirmed four-image gravitational lens systems. At optical wavelengths three objects are detected, consistent with there being optical objects at the positions of the radio components, given the lower optical resolution. The radio and optical centroid positions agree within the astrometric errors, and the relative ordering of the fluxes is the same. The colors and radiooptical spectral indices are similar, but there are differences larger than the photometric errors and the measured variability (about 30 percent). Extinction by dust might simultaneously explain the unusually red color and the absence of light from a lens.
On the radio properties of the intermediate-mass black hole candidate ESO 243-49 HLX-1
NASA Astrophysics Data System (ADS)
Cseh, D.; Webb, N. A.; Godet, O.; Barret, D.; Corbel, S.; Coriat, M.; Falcke, H.; Farrell, S. A.; Körding, E.; Lenc, E.; Wrobel, J. M.
2015-02-01
We present follow-up radio observations of ESO 243-49 HLX-1 from 2012 using the Australia Telescope Compact Array (ATCA) and the Karl G. Jansky Very Large Array (VLA). We report the detection of radio emission at the location of HLX-1 during its hard X-ray state using the ATCA. Assuming that the `Fundamental Plane' of accreting black holes is applicable, we provide an independent estimate of the black hole mass of M_{BH}≤ 2.8^{+7.5}_{-2.1} × 106 M⊙ at 90 per cent confidence. However, we argue that the detected radio emission is likely to be Doppler-boosted and our mass estimate is an upper limit. We discuss other possible origins of the radio emission such as being due to a radio nebula, star formation, or later interaction of the flares with the large-scale environment. None of these were found adequate. The VLA observations were carried out during the X-ray outburst. However, no new radio flare was detected, possibly due to a sparse time sampling. The deepest, combined VLA data suggest a variable radio source and we briefly discuss the properties of the previously detected flares and compare them with microquasars and active galactic nuclei.
Interstellar scintillation observations for PSR B0355+54
NASA Astrophysics Data System (ADS)
Xu, Y. H.; Lee, K. J.; Hao, L. F.; Wang, H. G.; Liu, Z. Y.; Yue, Y. L.; Yuan, J. P.; Li, Z. X.; Wang, M.; Dong, J.; Tan, J. J.; Chen, W.; Bai, J. M.
2018-06-01
In this paper, we report our investigation of pulsar scintillation phenomena by monitoring PSR B0355+54 at 2.25 GHz for three successive months using the Kunming 40-m radio telescope. We measured the dynamic spectrum, the two-dimensional correlation function and the secondary spectrum. These observations have a high signal-to-noise ratio (S/N ≥ 100). We detected scintillation arcs, which are rarely observable using such a small telescope. The sub-microsecond scale width of the scintillation arc indicates that the transverse scale of the structures on the scattering screen is as compact as astronomical unit size. Our monitoring shows that the scintillation bandwidth, the time-scale and the arc curvature of PSR B0355+54 were varying temporally. A plausible explanation would need to invoke a multiple-scattering-screen or multiple-scattering-structure scenario, in which different screens or ray paths dominate the scintillation process at different epochs.
Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.
2004-01-01
One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.
Radio Interferometry with the SMA: Uncovering Hidden Star Formation in Our Extreme Galactic Center
NASA Astrophysics Data System (ADS)
Gutierrez, Elizabeth; Battersby, Cara; MacGregor, Meredith Ann
2018-01-01
Radio interferometry provides the best tool to identify embedded star-forming cores in cold, dense, molecular clouds of gas and dust. Observations at long, submillimeter wavelengths can be used to investigate the physical properties in the youngest stages of star formation. Interferometers provide the resolution necessary to resolve small scale structures like dense cores where star formation is expected to occur. CMZoom is the first large area survey of the Central Molecular Zone (CMZ) at high resolution in the submillimeter, allowing us to identify early sites of star formation. The survey uses both the subcompact and compact configurations of the Submillimeter Array (SMA) interferometric radio telescope. The CMZ, or the inner 500 pc of the Milky Way Galaxy, is a high extinction region comprised of hot, dense, and turbulent molecular gas. This region is forming about an order of magnitude fewer stars than predicted based on simple star formation prescriptions. Here, we present new high resolution images of G0.068-0.075, a region from the CMZoom survey, obtained using CASA. We highlight the importance of interferometric observations of different baseline lengths by comparing the spatial information obtained through different configurations. We will use these new images, in conjunction with the rest of the CMZoom survey, to reveal the mechanisms driving star formation at the center of the galaxy.
Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae
NASA Astrophysics Data System (ADS)
Buemi, C. S.; Trigilio, C.; Leto, P.; Umana, G.; Ingallinera, A.; Cavallaro, F.; Cerrigone, L.; Agliozzo, C.; Bufano, F.; Riggi, S.; Molinari, S.; Schillirò, F.
2017-03-01
We present a multiwavelength study of the Galactic luminous blue variable HR Carinae, based on new high-resolution mid-infrared (IR) and radio images obtained with the Very Large Telescope (VLT) and the Australia Telescope Compact Array (ATCA), which have been complemented by far-infrared Herschel-Photodetector Array Camera and Spectrometer (PACS) observations and ATCA archive data. The Herschel images reveal the large-scale distribution of the dusty emitting nebula, which extends mainly to the north-east direction, up to 70 arcsec from the central star, and is oriented along the direction of the space motion of the star. In the mid-infrared images, the brightness distribution is characterized by two arc-shaped structures, tracing an inner envelope surrounding the central star more closely. At radio wavelengths, the ionized gas emission lies on the opposite side of the cold dust with respect to the position of the star, as if the ionized front were confined by the surrounding medium in the north-south direction. Comparison with previous data indicates significant changes in the radio nebula morphology and in the mass-loss rate from the central star, which has increased from 6.1 × 10-6 M⊙ yr-1 in 1994-1995 to 1.17 × 10-5 M⊙ yr-1 in 2014. We investigate possible scenarios that could have generated the complex circumstellar environment revealed by our multiwavelength data.
A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.
We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less
Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies
NASA Astrophysics Data System (ADS)
Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank
2017-04-01
Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.
NASA Astrophysics Data System (ADS)
Pushkarev, A. B.; Kovalev, Y. Y.
2015-10-01
We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.
Candidate counterparts to the soft gamma-ray flare in the direction of LS I +61 303
NASA Astrophysics Data System (ADS)
Muñoz-Arjonilla, A. J.; Martí, J.; Combi, J. A.; Luque-Escamilla, P.; Sánchez-Sutil, J. R.; Zabalza, V.; Paredes, J. M.
2009-04-01
Context: A short duration burst reminiscent of a soft gamma-ray repeater/anomalous X-ray pulsar behaviour was detected in the direction of LS I +61 303 by the Swift satellite. While the association with this well known gamma-ray binary is likely, a different origin cannot be excluded. Aims: We explore the error box of this unexpected flaring event and establish the radio, near-infrared and X-ray sources in our search for any peculiar alternative counterpart. Methods: We carried out a combined analysis of archive Very Large Array radio data of LS I +61 303 sensitive to both compact and extended emission. We also reanalysed previous near infrared observations with the 3.5 m telescope of the Centro Astronómico Hispano Alemán and X-ray observations with the Chandra satellite. Results: Our deep radio maps of the LS I +61 303 environment represent a significant advancement on previous work and 16 compact radio sources in the LS I +61 303 vicinity are detected. For some detections, we also identify near infrared and X-ray counterparts. Extended emission features in the field are also detected and confirmed. The possible connection of some of these sources with the observed flaring event is considered. Based on these data, we are unable to claim a clear association between the Swift-BAT flare and any of the sources reported here. However, this study represents the most sophisticated attempt to determine possible alternative counterparts other than LS I +61 303.
Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.
Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T
2016-02-01
A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy
NASA Astrophysics Data System (ADS)
Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.
2016-02-01
A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
G25.5 + 0.2 - A very young galactic supernova remnant
NASA Technical Reports Server (NTRS)
Cowan, John J.; Ekers, R. D.; Goss, W. M.; Sramek, R. A.; Roberts, Douglas A.
1989-01-01
Radio emission has been detected from a compact source which satisfies the criteria for a very young galactic supernova remnant. The source, G25.5 + 0.2 has a partially-filled shell structure, a total integrated flux density at 20 cm of 315 mJy, and a flat spectrum between 2 and 20 cm. Observations at 843 and 327 MHz indicate thermal absorption at low frequencies with a turnover in the spectrum near 1 GHz. It is suggested that the lower limit for the age of the supernova remnant is 25 yr, while the upper limit is about 100 yr. It is concluded that G25.5 + 0.2 could be the youngest known supernova remnant in the Galaxy.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
Persaud, A.; Ji, Q.; Feinberg, E.; ...
2017-06-08
Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
NASA Astrophysics Data System (ADS)
Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.
Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
Theory of Parabolic Arcs in Interstellar Scintillation Spectra
NASA Astrophysics Data System (ADS)
Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.
2006-01-01
Interstellar scintillation (ISS), observed as time variation in the intensity of a compact radio source, is caused by small-scale structure in the electron density of the interstellar plasma. Dynamic spectra of ISS show modulation in radio frequency and time. Here we relate the (two-dimensional) power spectrum of the dynamic spectrum-the secondary spectrum-to the scattered image of the source. Recent work has identified remarkable parabolic arcs in secondary spectra. Each point in a secondary spectrum corresponds to interference between points in the scattered image with a certain Doppler shift and a certain delay. The parabolic arc corresponds to the quadratic relation between differential Doppler shift and delay through their common dependence on scattering angle. We show that arcs will occur in all media that scatter significant power at angles larger than the rms angle. Thus, effects such as source diameter, steep spectra, and dissipation scales, which truncate high angle scattering, also truncate arcs. Arcs are equally visible in simulations of nondispersive scattering. They are enhanced by anisotropic scattering when the spatial structure is elongated perpendicular to the velocity. In weak scattering the secondary spectrum is directly mapped from the scattered image, and this mapping can be inverted. We discuss additional observed phenomena including multiple arcs and reverse arclets oriented oppositely to the main arc. These phenomena persist for many refractive scattering times, suggesting that they are due to large-scale density structures, rather than low-frequency components of Kolmogorov turbulence.
Near infrared observations of S 155. Evidence of induced star formation?
NASA Astrophysics Data System (ADS)
Hunt, L. K.; Lisi, F.; Felli, M.; Tofani, G.
In order to investigate the possible existence of embedded objects of recent formation in the area of the Cepheus B - Sh2-155 interface, the authors have observed the region of the compact radio continuum source with the new near infrared camera ARNICA and the TIRGO telescope.
Radio re-brightening of MAXI J1535-571 as it transitions back towards the hard state
NASA Astrophysics Data System (ADS)
Russell, T. D.; Altamirano, D.; Tetarenko, A. J.; Sivakoff, G. R.; Neilsen, J.; Miller-Jones, J. C. A.; van den Eijnden, J.; Jacpot Xrb Collaboration
2017-10-01
As part of an ongoing Australia Telescope Compact Array (ATCA) campaign monitoring the current outburst of MAXI J1535-571, we observed the source on 2017 October 25 between 06:09 UT and 09:24 UT (MJD 58051.32 +/- 0.07).
NASA Astrophysics Data System (ADS)
Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.
2016-11-01
Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (I) sub-relativistic merger ejecta and (II) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.
Initial Parameters of Neutron Stars
NASA Astrophysics Data System (ADS)
Popov, S. B.; Turolla, R.
2012-12-01
A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.
The multiple infrared source GL 437
NASA Technical Reports Server (NTRS)
Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.
1981-01-01
Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.
2017-06-18
iss052e002857 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
2017-06-18
iss052e004379 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
2017-06-18
iss052e002871 (6/18/2017) --- The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.
Morphology and astrometry of Infrared-Faint Radio Sources
NASA Astrophysics Data System (ADS)
Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher
2008-10-01
Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.
NASA Astrophysics Data System (ADS)
Jeyakumar, S.
2016-06-01
The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.
NASA Technical Reports Server (NTRS)
Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.;
2011-01-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
Aatrokoski, J.
2011-12-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.
A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.
NASA Astrophysics Data System (ADS)
Margon, B.
1982-01-01
A variety of recent optical, radio, and X-ray observations have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.
Electromagnetic induction imaging with a radio-frequency atomic magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah
2016-03-07
We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.
A design study of a signal detection system. [for search of extraterrestrial radio sources
NASA Technical Reports Server (NTRS)
Healy, T. J.
1980-01-01
A system is described which can aid in the search for radio signals from extraterrestrial sources, or in other applications characterized by low signal-to-noise ratios and very high data rates. The system follows a multichannel (16 million bin) spectrum analyzer, and has critical processing, system control, and memory fuctions. The design includes a moderately rich set of algorithms to be used in parallel to detect signals of unknown form. A multi-threshold approach is used to obtain high and low signal sensitivities. Relatively compact and transportable memory systems are specified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padovani, P.; Mainieri, V.; Rosati, P.
2011-10-10
We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijanskymore » radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.« less
Measuring the speed of light with ultra-compact radio quasars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shuo; Biesiada, Marek; Jackson, John
In this paper, based on a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultra-compact radio sources with 0.0035< z <3.787, we describe a method of identifying the sub-sample which can serve as individual standard rulers in cosmology. If the linear size of the compact structure is assumed to depend on source luminosity and redshift as l {sub m} = l L {sup β} (1+ z ) {sup n} , only intermediate-luminosity quasars (10{sup 27} W/Hz< L < 10{sup 28} W/Hz) show negligible dependence (| n |≅ 10{sup −3}, |β|≅ 10{sup −4}), and thus represent a population of such rulersmore » with fixed characteristic length l =11.42 pc. With a sample of 120 such sources covering the redshift range 00.46< z <2.8, we confirm the existence of dark energy in the Universe with high significance under the assumption of a flat universe, and obtain stringent constraints on both the matter density Ω {sub m} =0.323{sup +0.245}{sub −0.145} and the Hubble constant H {sub 0}=66.30{sup +7.00}{sub −8.50} km sec{sup −1} Mpc{sup −1}. Finally, with the angular diameter distances D {sub A} measured for quasars extending to high redshifts (0 z ∼ 3.), we reconstruct the D {sub A} ( z ) function using the technique of Gaussian processes. This allows us to identify the redshift corresponding to the maximum of the D {sub A} ( z ) function: 0 z {sub m} =1.7 and the corresponding angular diameter distance D {sub A} ( z {sub m} )=1719.01±43.46 Mpc. Similar reconstruction of the expansion rate function H ( z ) based on the data from cosmic chronometers and BAO gives us H ( z {sub m} )=176.77±6.11 km sec{sup −1} Mpc{sup −1}. These measurements are used to estimate the speed of light: c =3.039(±0.180)× 10{sup 5} km/s. This is the first measurement of the speed of light in a cosmological setting referring to the distant past.« less
Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink
NASA Technical Reports Server (NTRS)
Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony
2016-01-01
As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.
THE MAGNETOSPHERE OF THE ULTRACOOL DWARF DENIS 1048-3956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi, V.; Hallinan, G.; Hobbs, G.
2011-07-01
Ultracool dwarfs, the least-massive contributors to the stellar mass function, exhibit striking magnetic properties that are inconsistent with trends for more massive stars. Here, we present the widest-band radio observations to date of an ultracool dwarf, DENIS-P J104814.9-395604, in four 2 GHz bandwidths between wavelengths of 1 cm and 10 cm. These data were obtained with the Australia Telescope Compact Array using the new Compact Array Broadband Backend instrument. We detected a stable negatively sloped power-law spectrum in total intensity, with spectral index {alpha} = 1.71 {+-} 0.09. Circular polarization fractions between 0.25 and 0.4 were found at the low-frequencymore » end of our detection band. We interpret these results as indicative of gyrosynchrotron emission. We suggest that the radio emission originates from beyond the corotation radius, R{sub C} , of the star. Adopting this model, we find R{sub C} between 1.2 R{sub *} and 2.9 R{sub *}, and a non-thermal electron density and magnetic field strength between 10{sup 5} and 10{sup 7.2} cm{sup -3} and between 70 and 260 G, respectively, at R{sub C} . The model accounts for the violation of the Guedel-Benz relation between X-ray and radio luminosities of low-mass stars by DENIS-P J104814.9-395604.« less
Spatially offset AGN candidates in the CLASS survey
NASA Astrophysics Data System (ADS)
Skipper, Chris J.; Browne, Ian W. A.
2018-04-01
Prompted by a recent claim by Barrows et al. that X-ray active galactic nuclei (AGNs) are often found significantly offset from the centres of their host galaxies, we have looked for examples of compact radio sources that are offset from the optical centroids of nearby (z < 0.2) galaxies. We have selected a sample of 345 galaxies from the Sloan Digital Sky Survey (SDSS) galaxy catalogue, which have nearby compact radio sources listed in the Cosmic-Lens All Sky Survey (CLASS) catalogue. We find only three matches (˜0.87 per cent of the sample) with offsets greater than 600 milliarcsec (mas), which is considerably fewer than we would have expected from the Barrows et al. X-ray survey. We fit our histogram of offsets with a Rayleigh distribution with σ = 60.5 mas, but find that there is an excess of objects with separations greater than ˜150 mas. Assuming that this excess represents AGNs with real offsets, we place an upper limit of ˜17 per cent on the fraction of offset AGNs in our radio-selected sample. We select 38 objects with offsets greater than 150 mas, and find they have some diverse properties: Some are well known, such as Mrk 273 and Arp 220, some have dust lanes, which may have affected the optical astrometry, and a few are strong new candidates for offset AGNs.
A Repeating Fast Radio Burst: Radio and X-ray Follow-up Observations of FRB 121102
NASA Astrophysics Data System (ADS)
Scholz, Paul; Spitler, Laura; Hessels, Jason; Bogdanov, Slavko; Brazier, Adam; Camilo, Fernando; Chatterjee, Shami; Cordes, James M.; Crawford, Fronefield; Deneva, Julia S.; Ferdman, Robert; Freire, Paulo; Kaspi, Victoria M.; Lazarus, Patrick; Lynch, Ryan; Madsen, Erik; McLaughlin, Maura; Patel, Chitrang; Ransom, Scott M.; Seymour, Andrew; Stairs, Ingrid H.; Stappers, Benjamin; van Leeuwen, Joeri; Zhu, Weiwei
2016-04-01
A new phenomenon has emerged in high-energy astronomy in the past few years: the Fast Radio Burst. Fast Radio Bursts (FRBs) are millisecond-duration radio bursts whose dispersion measures imply that they originate from far outside of the Galaxy. Their origin is as yet unknown; their durations and energetics imply that they involve compact objects, such as neutron stars or black holes. Due to their extreme luminosities implied by their distances and the previous absence of any repeat burst in follow-up observations, many potential explanations involve one-time cataclysmic events. However, in our Arecibo telescope follow-up observations of FRB 121102 (discovered in the PALFA survey; Spitler et al. 2014), we find additional bursts at the same location and dispersion measure as the original burst. We also present the results of Swift and Chandra X-ray observations of the field. This result shows that, for at least a sub-set of the FRB population, the source can repeat and thus cannot be explained by a cataclysmic origin.
NASA Astrophysics Data System (ADS)
Perry, Thomas M.; Marr, J. M.; Read, J. W.; Taylor, G. B.
2011-01-01
We obtained VLBI observations at six frequencies of two Compact Symmetric Objects, 1321+410 and 0026+346. By comparing the lower frequency maps with spectral extrapolations of the higher frequency maps, we produced maps of the optical depth as a function of frequency. The optical-depth maps of 1321+410 are strikingly uniform, consistent with a foreground screen of absorbing gas; the optical depths as a function of frequency are consistent with free-free absorption; and no net polarization was detected. We conclude that the case for free-free absorption in 1321+410 is strong. The optical-depth maps of 0026+346 exhibit structure but the morphology does not correlate with that in the intensity maps, in conflict with that expected in the case of synchrotron self-absorption. No net polarization was detected. The frequency dependence of the optical depths does not fit well to a simple free-free absorption model, but this does not take into account possible structure in the absorbing gas on smaller scales. We conclude that free-free absorption by a thin amount of gas with structure on the scale of our maps and smaller is possible in 0026+346, although no definitive conclusion can be made. A compact feature between the lobes in 0026+346 has an inverted spectrum even at the highest frequencies, suggesting that this component is synchrotron self-absorbed. We infer this to be the location of the core. We estimate an upper limit to the magnetic field in the core of 50 Gauss at a radius of 1 pc. This research was supported by an award from the Research Corporation, a NASA NY Space Grant, and a Booth-Ferris Research Fellowship. The VLBA is operated by the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Razak, A. H. A.; Shamsuddin, M. I. A.; Idros, M. F. M.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2018-03-01
This project discusses the design and simulation performances of integrated loop antenna. Antenna is one of the main parts in any wireless radio frequency integrated circuit (RFIC). Naturally, antenna is the bulk in any RFIC design. Thus, this project aims to implement an integrated antenna on a single chip making the end product more compact. This project targets 5.8 GHz as the operating frequency of the integrated antenna for a transceiver module based on Silterra CMOS 180nm technology. The simulation of the antenna was done by using High Frequency Structure Simulator (HFSS). This software is industrial standard software that been used to simulate all electromagnetic effect including antenna simulation. This software has ability to simulate frequency at range of 100 MHz to 4 THz. The simulation set up in 3 dimension structure with driven terminal. The designed antenna has 1400um of diameter and placed on top metal layer. Loop configuration of the antenna has been chosen as the antenna design. From the configuration, it is able to make the chip more compact. The simulation shows that the antenna has single frequency band at center frequency 5.8 GHz with -48.93dB. The antenna radiation patterns shows, the antenna radiate at omnidirectional. From the simulation result, it could be concluded that the antenna have a good radiation pattern and propagation for wireless communication.
NASA Astrophysics Data System (ADS)
Biju, K. G.; Bagchi, Joydeep; Ishwara-Chandra, C. H.; Pandey-Pommier, M.; Jacob, Joe; Patil, M. K.; Kumar, P. Sunil; Pandge, Mahadev; Dabhade, Pratik; Gaikwad, Madhuri; Dhurde, Samir; Abraham, Sheelu; Vivek, M.; Mahabal, Ashish A.; Djorgovski, S. G.
2017-10-01
We report the results of our radio, optical and infrared studies of a peculiar radio source 4C 35.06, an extended radio-loud active galactic nucleus (AGN) at the centre of galaxy cluster Abell 407 (z = 0.047). The central region of this cluster hosts a remarkably tight ensemble of nine galaxies, the spectra of which resemble those of passive red ellipticals, embedded within a diffuse stellar halo of ˜1 arcmin size. This system (named 'Zwicky's Nonet') provides unique and compelling evidence for a multiple-nucleus cD galaxy precursor. Multifrequency radio observations of 4C 35.06 with the Giant Meterwave Radio Telescope (GMRT) at 610, 235 and 150 MHz reveal a system of 400-kpc scale helically twisted and kinked radio jets and outer diffuse lobes. The outer extremities of jets contain extremely steep-spectrum (spectral index -1.7 to -2.5) relic/fossil radio plasma with a spectral age of a few ×(107-108) yr. Such ultra-steep spectrum relic radio lobes without definitive hotspots are rare and they provide an opportunity to understand the life cycle of relativistic jets and physics of black hole mergers in dense environments. We interpret our observations of this radio source in the context of growth of its central black hole, triggering of its AGN activity and jet precession, all possibly caused by galaxy mergers in this dense galactic system. A slow conical precession of the jet axis due to gravitational perturbation between interacting black holes is invoked to explain the unusual jet morphology.
The History and Evolution of Young and Distant Radio Sources
NASA Astrophysics Data System (ADS)
Collier, Jordan
We study two classes of object to gain a better understanding of the evolution of Active Galactic Nuclei (AGN): Infrared-Faint Radio Sources (IFRSs) and Gigahertz Peaked Spectrum (GPS) / Compact Steep Spectrum (CSS) sources. IFRSs are a recently discovered rare class of object, which were found to be strong in the radio but undetectable in extremely sensitive infrared observations from the Spitzer Space Telescope, even in stacked images with sigma < 1muJy. IFRSs were found to exhibit a relatively high sky density, and were thought to represent AGN at z > 3. Therefore, IFRSs may significantly increase the number of known high-redshift galaxies. However, their non-detections in the optical and infrared prevented confirmation of their nature. Previous studies of IFRSs focused on very sensitive observations of a few small regions of the sky, and the largest sample consisted of 55 IFRSs. However, we follow the strategy of combining radio data with IR and optical data for a large region of the sky. Using these data, we discover a population of >1300 brighter IFRSs which are, for the first time, reliably detected in the infrared and optical. We present the first spectroscopic redshifts of IFRSs and show that the brightest IFRSs are at z > 2. Furthermore, we rule out that IFRSs are Star Forming Galaxies, hotspots, lobes or misidentifications. We find the first X-ray counterparts of IFRSs, and increase the number of known polarised IFRSs five-fold. We present an analysis of their radio spectra and show that IFRSs consist of GPS, CSS and ultra-steep-spectrum sources. We follow up >50 of these using VLBI observations, and confirm the AGN status of IFRSs. GPS and CSS sources are compact radio sources with a convex radio spectrum. They are widely thought to represent young and evolving radio galaxies that have recently launched their jets. However, good evidence exists in individual cases that GPS and CSS sources are one of the following: 1) frustrated by interactions with dense gas and dust in their environment; 2) prematurely dying radio sources; 3) recurrent radio galaxies. Their convex spectrum is generally thought to be caused by Synchrotron Self Absorption (SSA), an internal process in which the same population of electrons is responsible for the synchrotron emission and self-absorption. However, recent studies have shown that the convex spectrum may be caused by Free-Free Absorption (FFA), an external process in which an inhomogeneous screen absorbs the synchrotron emission. The majority of GPS and CSS samples consist of Jy-level and therefore, high-luminosity sources. VLBI images show that GPS and CSS sources typically have double-lobed, edge-brightened morphologies on mas scales, appearing as scaled down versions of Fanaroff-Riley Class II (FR II) galaxies. Recently, two low-luminosity GPS sources were found to have jet-brightened morphologies, which appeared as scaled down versions of Fanaroff-Riley Class I (FR I) galaxies. From this, it was proposed that there exists a morphology-luminosity break analogous to the FR I/II break and that low-luminosity GPS and CSS sources are the compact counterparts of FR I galaxies. However, this hypothesis remains unconfirmed, since very few samples of low-luminosity GPS and CSS sources exist. We conclude that, despite being historically favoured, single inhomogeneous SSA is not the dominant form of absorption amongst a large fraction of GPS and CSS sources. We find that FFA provides a good model for the majority of the spectra with observable turnovers, suggesting an inhomogeneous and clumpy ambient medium. Furthermore, we conclude that the majority of our GPS and CSS sources are young and evolving and may undergo recurrent activity over small time scales. We conclude that a very small fraction of GPS and CSS sources consists of frustrated, dying or restarted radio galaxies. (Abstract shortened by ProQuest.).
RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, A. T.; Moldon, J.; Patruno, A.
2015-08-10
The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. At a distance of just 1.37 kpc, PSR J1023+0038 offers an unsurpassed ability to study low-level accretion onto a highly magnetized compact object. We have monitored PSR J1023+0038 intensively using radio imaging with the Karl G. Jansky Very Large Array, the European VLBI Network and the Low Frequency Array, seeing rapidly variable, flat spectrum emission that persists over a period of six months. The flat spectrum and variability aremore » indicative of synchrotron emission originating in an outflow from the system, most likely in the form of a compact, partially self-absorbed jet, as is seen in LMXBs at higher accretion rates. The radio brightness, however, greatly exceeds extrapolations made from observations of more vigorously accreting neutron star LMXB systems. We postulate that PSR J1023+0038 is undergoing radiatively inefficient “propeller-mode” accretion, with the jet carrying away a dominant fraction of the liberated accretion luminosity. We confirm that the enhanced γ-ray emission seen in PSR J1023+0038 since it re-entered an accreting state has been maintained; the increased γ-ray emission in this state can also potentially be associated with propeller-mode accretion. Similar accretion modes can be invoked to explain the radio and X-ray properties of the other two known transitional MSP systems XSS J12270–4859 and PSR J1824–2452I (M28I), suggesting that radiatively inefficient accretion may be a ubiquitous phenomenon among (at least one class of) neutron star binaries at low accretion rates.« less
A broadband study of the emission from the composite supernova remnant MSH 11-62
Slane, Patrick; Hughes, John P.; Temim, Tea; ...
2012-03-30
MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. Our observations suggest a relatively young system expanding into a low-density region. We present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We also identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses asmore » particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify γ-ray emission originating from MSH 11-62. Furthermore, with density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the γ-ray emission.« less
La Freccia Rossa: An IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate
NASA Astrophysics Data System (ADS)
Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl
2018-05-01
The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. ATCA constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to Eddington luminosity ratios under the IMBH interpretation. A protostellar-disk scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesise that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.
A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62
NASA Technical Reports Server (NTRS)
Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.;
2012-01-01
MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.
Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter.
Muñoz, Julian B; Kovetz, Ely D; Dai, Liang; Kamionkowski, Marc
2016-08-26
The possibility that part of the dark matter is made of massive compact halo objects (MACHOs) remains poorly constrained over a wide range of masses, and especially in the 20-100 M_{⊙} window. We show that strong gravitational lensing of extragalactic fast radio bursts (FRBs) by MACHOs of masses larger than ∼20 M_{⊙} would result in repeated FRBs with an observable time delay. Strong lensing of a FRB by a lens of mass M_{L} induces two images, separated by a typical time delay ∼few×(M_{L}/30 M_{⊙}) msec. Considering the expected FRB detection rate by upcoming experiments, such as canadian hydrogen intensity mapping experiment (CHIME), of 10^{4} FRBs per year, we should observe from tens to hundreds of repeated bursts yearly, if MACHOs in this window make up all the dark matter. A null search for echoes with just 10^{4} FRBs would constrain the fraction f_{DM} of dark matter in MACHOs to f_{DM}≲0.08 for M_{L}≳20 M_{⊙}.
FRONTIER FIELDS CLUSTERS: CHANDRA AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogrean, G. A.; Weeren, R. J. van; Jones, C.
2015-10-20
Merging galaxy clusters leave long-lasting signatures on the baryonic and non-baryonic cluster constituents, including shock fronts, cold fronts, X-ray substructure, radio halos, and offsets between the dark matter (DM) and the gas components. Using observations from Chandra, the Jansky Very Large Array, the Giant Metrewave Radio Telescope, and the Hubble Space Telescope, we present a multiwavelength analysis of the merging Frontier Fields cluster MACS J0416.1-2403 (z = 0.396), which consists of NE and SW subclusters whose cores are separated on the sky by ∼250 kpc. We find that the NE subcluster has a compact core and hosts an X-ray cavity,more » yet it is not a cool core. Approximately 450 kpc south–southwest of the SW subcluster, we detect a density discontinuity that corresponds to a compression factor of ∼1.5. The discontinuity was most likely caused by the interaction of the SW subcluster with a less massive structure detected in the lensing maps SW of the subcluster's center. For both the NE and the SW subclusters, the DM and the gas components are well-aligned, suggesting that MACS J0416.1-2403 is a pre-merging system. The cluster also hosts a radio halo, which is unusual for a pre-merging system. The halo has a 1.4 GHz power of (1.3 ± 0.3) × 10{sup 24} W Hz{sup −1}, which is somewhat lower than expected based on the X-ray luminosity of the cluster if the spectrum of the halo is not ultra-steep. We suggest that we are either witnessing the birth of a radio halo, or have discovered a rare ultra-steep spectrum halo.« less
24-26 GHz radio-over-fiber and free-space optics for fifth-generation systems.
Bohata, Jan; Komanec, Matěj; Spáčil, Jan; Ghassemlooy, Zabih; Zvánovec, Stanislav; Slavík, Radan
2018-03-01
This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth. We assess the link performance by exposing the RoFSO section to atmospheric turbulence conditions. Further, we show that the measured minimum error vector magnitude (EVM) is 4.7% and also verify that the proposed system with the free-space-optics link span of 100 m under strong turbulence can deliver an acceptable EVM of <9% with signal-to-noise ratio levels of 22 dB and 10 dB with and without turbulence, respectively.
A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies
NASA Technical Reports Server (NTRS)
Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.
SN 1987A: A Unique Laboratory for Shock Physics
NASA Technical Reports Server (NTRS)
Sonneborn, George
2012-01-01
Supernova 1987 A is the brightest and nearest supernova observed since Kepler's SN1604, and is the only one close enough to resolve and directly observe the temporal growth of the ejecta. Over the past 25 years, intensive observations across the electromagnetic spectrum with observatories on the ground (Australia Telescope Compact Array, Gemini-S, Magellan, VLT) and in space (IUE, KAO, CGRO, Hubble, Chandra, Spitzer, Herschel) have given us an unprecedented view of the evolution of the debris of the supernova and of its shock interaction with circumstellar matter. The outer supernova debris, now expanding with velocities -8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss starting in 1994. The resulting shock interaction has been manifested by: rapidly brightening UV-optical "hotspots", an expanding X-ray ring. an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust. The recent evolution of these emissions reveal new details about the shock interaction, circumstellar material, and the star that exploded. Certain critical problems about SN 1987 A, such as the still undiscovered compact object formed in the explosion and the structure of the central debris, require the capabilities of JWST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; McCoy, M.
2014-12-01
We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm),more » which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.« less
rf measurements and tuning of the 750 MHz radio frequency quadrupole
NASA Astrophysics Data System (ADS)
Koubek, Benjamin; Grudiev, Alexej; Timmins, Marc
2017-08-01
In the framework of the program on medical applications a compact 750 MHz RFQ has been designed and built to be used as an injector for a hadron therapy linac. This RFQ was designed to accelerate protons to an energy of 5 MeV within only 2 m length. It is divided into four segments and equipped with 32 tuners in total. The length of the RFQ corresponds to 5 λ which is considered to be close to the limit for field adjustment using only piston tuners. Moreover the high frequency, which is about double the frequency of existing RFQs, results in a sensitive structure and requires careful tuning. In this paper we present the tuning algorithm, the tuning procedure and rf measurements of the RFQ.
Report for 2011 from the Bordeaux IVS Analysis Center
NASA Technical Reports Server (NTRS)
Charlot, Patrick; Bellanger, Antoine; Bourda, Geraldine; Collioud, Arnaud; Baudry, Alain
2012-01-01
This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2011. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) imaging of the sources observed during the 2009 International Year of Astronomy IVS observing session; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the enhancement of the IVS LiveWeb site which now comprises all IVS sessions back to 2003, allowing one to search past observations for session-specific information (e.g. sources or stations).
32 GHz Celestial Reference Frame Survey for Dec < -45 deg.
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina
2013-04-01
(We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. As it turned out ATCA had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.
Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3
NASA Astrophysics Data System (ADS)
Herenz, Edmund Christian; Wisotzki, Lutz; Roth, Martin; Anders, Friedrich
2015-04-01
We observed a small sample of five radio-quiet quasars with integral field spectroscopy to search for possible extended emission in the Lyα line. We subtracted the quasar point sources using a simple point spread function (PSF) self-calibration technique that takes advantage of the simultaneous availability of spatial and spectral information. In four of the five objects we find no significant traces of extended Lyα emission beyond the contribution of the quasar nuclei itself, while in UM 247 there is evidence for a weak and spatially quite compact excess in the Lyα line at several kpc outside the nucleus. For all objects in our sample we estimated detection limits for extended, smoothly distributed Lyα emission by adding fake nebulosities into the datacubes and trying to recover them after PSF subtraction. Our observations are consistent with other studies showing that giant Lyα nebulae such as those found recently around some quasars are very rare. Lyα fuzz around typical radio-quiet quasars is fainter and less extended and is therefore much harder to detect. The faintness of these structures is consistent with the idea that radio-quiet quasars typically reside in dark matter haloes of modest masses. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
VizieR Online Data Catalog: VLBI ICRF2 (Fey+, 2015)
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Bockmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2016-01-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. The earliest observations used are from 1979 August and the latest are from 2009 March. ICRF2 consists of accurate positions of 295 new "defining" sources and positions of 3119 additional compact radio sources to densify the frame. ICRF2 has more than 5 times as many sources as ICRF1 (Ma et al. 1997, cat. I/251), is roughly 5-6 times more accurate, and is nearly twice as stable in the orientation of its axes. (3 data files).
Radio-loudness in black hole transients: evidence for an inclination effect
NASA Astrophysics Data System (ADS)
Motta, S. E.; Casella, P.; Fender, R.
2018-06-01
Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.
Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN
NASA Astrophysics Data System (ADS)
Pasetto, Alice; Carrasco-González, Carlos; O'Sullivan, Shane; Basu, Aritra; Bruni, Gabriele; Kraus, Alex; Curiel, Salvador; Mack, Karl-Heinz
2018-06-01
We present broadband polarimetric observations of a sample of high-Faraday-rotation-measure (high-RM) active galactic nuclei (AGN) using the Karl. G. Jansky Very Large Array (JVLA) telescope from 1 to 2 GHz, and 4 to 12 GHz. The sample (14 sources) consists of very compact sources (linear resolution smaller than ≈5 kpc) that are unpolarized at 1.4 GHz in the NRAO VLA Sky Survey (NVSS). Total intensity data have been modeled using a combination of synchrotron components, revealing complex structure in their radio spectra. Depolarization modeling, through the so-called qu-fitting (the modeling of the fractional quantities of the Stokes Q and U parameters), has been performed on the polarized data using an equation that attempts to simplify the process of fitting many different depolarization models. These models can be divided into two major categories: external depolarization (ED) and internal depolarization (ID) models. Understanding which of the two mechanisms is the most representative would help the qualitative understanding of the AGN jet environment and whether it is embedded in a dense external magneto-ionic medium or if it is the jet-wind that causes the high RM and strong depolarization. This could help to probe the jet magnetic field geometry (e.g., helical or otherwise). This new high-sensitivity data shows a complicated behavior in the total intensity and polarization radio spectrum of individual sources. We observed the presence of several synchrotron components and Faraday components in their total intensity and polarized spectra. For the majority of our targets (12 sources), the depolarization seems to be caused by a turbulent magnetic field. Thus, our main selection criteria (lack of polarization at 1.4 GHz in the NVSS) result in a sample of sources with very large RMs and depolarization due to turbulent magnetic fields local to the source. These broadband JVLA data reveal the complexity of the polarization properties of this class of radio sources. We show how the new qu-fitting technique can be used to probe the magnetized radio source environment and to spectrally resolve the polarized components of unresolved radio sources.
Broad-band, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Purcell, C. R.; Anderson, C. S.; Farnes, J. S.; Sun, X. H.; Gaensler, B. M.
2017-08-01
We present the results from a broad-band (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the Australia Telescope Compact Array, selected to be highly linearly polarized at 1.4 GHz. We use a general-purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or `RM components' of a source. Overall, 37 per cent/52 per cent/11 per cent of sources are best fitted by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index and have a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.
Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81
NASA Astrophysics Data System (ADS)
Reipurth, Bo
2017-08-01
Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.
Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective
NASA Astrophysics Data System (ADS)
Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M. L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; Lähteenmäki, A.; Richards, J. L.; Ciroi, S.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.
2018-06-01
We report the first results of a survey on 74 narrow-line Seyfert 1 galaxies (NLS1s) carried out in 2015 with the Karl G. Jansky Very Large Array (JVLA) at 5 GHz in A-configuration. So far, this is the largest survey aimed to image the radio continuum of NLS1s. We produced radio maps in order to compare the general properties of three different samples of objects: radio-quiet NLS1s (RQNLS1s), steep-spectrum radio-loud NLS1s (S-NLS1s), and flat-spectrum radio-loud NLS1s (F-NLS1s). We find that the three classes correspond to different radio morphologies, with F-NLS1s being more compact, and RQNLS1s often showing diffuse emission on kpc scales. We also find that F-NLS1s might be low-luminosity and possibly young blazars, and that S-NLS1s are part of the parent population of F-NLS1s. Dedicated studies to RQNLS1s are needed to fully understand their role in the unification pictures. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A87
NASA Astrophysics Data System (ADS)
Knispel, Benjamin
2011-07-01
Neutron stars are the endpoints of stellar evolution and one of the most compact forms of matter in the universe. They can be observed as radio pulsars and are promising sources for the emission of continuous gravitational waves. Discovering new radio pulsars in tight binary orbits offers the opportunity to conduct very high precision tests of General Relativity and to further our understanding of neutron star structure and matter at super-nuclear densities. The direct detection of gravitational waves would validate Einstein's theory of Relativity and open a new window to the universe by offering a novel astronomical tool. This thesis addresses both of these scientific fields: the first fully coherent search for radio pulsars in tight, circular orbits has been planned, set up and conducted in the course of this thesis. Two unusual radio pulsars, one of them in a binary system, have been discovered. The other half of this thesis is concerned with the simulation of the Galactic neutron star population to predict their emission of continuous gravitational waves. First realistic statistical upper limits on the strongest continuous gravitational-wave signal and detection predictions for realistic all-sky blind searches have been obtained. The data from a large-scale pulsar survey with the 305-m Arecibo radio telescope were searched for signals from radio pulsars in binary orbits. The massive amount of computational work was done on hundreds of thousands of computers volunteered by members of the general public through the distributed computing project Einstein@Home. The newly developed analysis pipeline searched for pulsar spin frequencies below 250 Hz and for orbital periods as short as 11 min. The structure of the search pipeline consisting of data preparation, data analysis, result post-processing, and set-up of the pipeline components is presented in detail. The first radio pulsar, discovered with this search, PSR J2007+2722, is an isolated radio pulsar, likely from a double neutron star system disrupted by the second supernova. We present discovery and initial characterisation using observations from five of the largest radio telescopes worldwide. Only a dozen similar systems were previously known. The second discovered radio pulsar, PSR J1952+2630, is in a 9.4-hr orbit with most likely a massive white dwarf of at least 0.95 M⊙. We characterise its orbit by analysis of the apparent spin period changes. This pulsar most likely belongs to the very rare class of intermediate-mass binary pulsars, from which only five systems were previously known. It is a promising target for the future measurement of relativistic effects. In the second half of this thesis, the emission of continuous gravitational waves from a Galactic population of neutron stars is studied. For the first time, realistic estimates of the statistical upper limit of the expected gravitational wave signal are obtained, improving previous estimates by about a factor of six. The simulation is used to obtain for the first time detectability predictions for these objects with ground based gravitational wave detectors and realistic blind searches. It is also shown how to improve possible searches by maximising the number of detections for a fixed amount of computation cycles.
Japanese Ubiquotous Network Project: Ubila
NASA Astrophysics Data System (ADS)
Ohashi, Masayoshi
Recently, the advent of sophisticated technologies has stimulated ambient paradigms that may include high-performance CPU, compact real-time operating systems, a variety of devices/sensors, low power and high-speed radio communications, and in particular, third generation mobile phones. In addition, due to the spread of broadband ccess networks, various ubiquitous terminals and sensors can be connected closely.
Extragalactic Radio Sources: Rapid Variability at 90 GHz.
1983-12-15
34 Nature 269, 493-494. 37. Kellermann, K. I. (1974). "Detection of a Strong and Possibly Variable Compact Millimeter Wave Component in Centaurus A...Quasi-periodic Bursts in the Nucleus of Centaurus A at -wavelengths," Mon. Not. R. Astron. Soc. 187, 23P-28P. 40. DuPuy, D., Schmitt, J., McClure, R
NASA Astrophysics Data System (ADS)
Mao, Xin-Jie; Su, Jiang-Tao
2001-10-01
The 13CO (J=1-0) map of the molecular cloud Sgr B2 reveals that the mass center of the molecular cloud nucleus does not coincide with that of compact HII regions which are likely to be the outcome of a shock on the cloud. We find evidence of cloud contraction probably resulting from cloud-cloud collision at subsonic speed.
An Explanation of the Very Low Radio Flux of Young Planet-mass Companions
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.
2017-12-01
We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.
A Multi-Frequency Study of the Milky Way-Like Spiral Galaxy NGC 6744
NASA Astrophysics Data System (ADS)
Yew, Miranda; Filipović, Miroslav D.; Roper, Quentin; Collier, Jordan D.; Crawford, Evan J.; Jarrett, Thomas H.; Tothill, Nicholas F. H.; O'Brien, Andrew N.; Pavlović, Marko Z.; Pannuti, Thomas G.; Galvin, Timothy J.; Kapińska, Anna D.; Cluver, Michelle E.; Banfield, Julie K.; Schlegel, Eric M.; Maxted, Nigel; Grieve, Kevin R.
2018-03-01
We present a multi-frequency study of the intermediate spiral SAB(r)bc type galaxy NGC 6744, using available data from the Chandra X-Ray telescope, radio continuum data from the Australia Telescope Compact Array and Murchison Widefield Array, and Wide-field Infrared Survey Explorer infrared observations. We identify 117 X-ray sources and 280 radio sources. Of these, we find nine sources in common between the X-ray and radio catalogues, one of which is a faint central black hole with a bolometric radio luminosity similar to the Milky Way's central black hole. We classify 5 objects as supernova remnant (SNR) candidates, 2 objects as likely SNRs, 17 as H ii regions, 1 source as an AGN; the remaining 255 radio sources are categorised as background objects and one X-ray source is classified as a foreground star. We find the star-formation rate (SFR) of NGC 6744 to be in the range 2.8-4.7 M⊙ yr - 1 signifying the galaxy is still actively forming stars. The specific SFR of NGC 6744 is greater than that of late-type spirals such as the Milky Way, but considerably less that that of a typical starburst galaxy.
HIghZ: A search for HI absorption in high-redshift radio galaxies
NASA Astrophysics Data System (ADS)
Allison, J.; Callingham, J.; Sadler, E.; Wayth, R.; Curran, S.; Mahoney, E.
2017-01-01
We will use the unique low-frequency spectral capability of the MWA to carry out a pilot survey for neutral gas in the interstellar medium of the most distant (z>5) radio galaxies in the Universe. Through detection of the HI 21-cm line in absorption we aim to place stringent lower limits on the source redshift, confirming its location in the early Universe. Our sample makes use of the excellent wide-band spectral information available from the recently completed MWA GLEAM survey, from which we have selected a sample of ultra-steep peaked-spectrum radio sources that have a spectral turnover below 300 MHz. These sources should be ideal candidates for high-redshift compact radio galaxies since they have (a) spectral peaks that turnover below 1GHz and (b) very steep (alpha < -1.0) spectral indices that are consistent with the high density environments expected for radio galaxies in the early Universe. Using the MWA, we aim to verify this hypothesis through the detection of significant column densities of cold HI. This pathfinder project will provide important technical information that will inform future absorption surveys both with the MWA and, ultimately, the SKA-LOW telescope.
Detectable radio flares following gravitational waves from mergers of binary neutron stars.
Nakar, Ehud; Piran, Tsvi
2011-09-28
Mergers of neutron-star/neutron-star binaries are strong sources of gravitational waves. They can also launch subrelativistic and mildly relativistic outflows and are often assumed to be the sources of short γ-ray bursts. An electromagnetic signature that persisted for weeks to months after the event would strengthen any future claim of a detection of gravitational waves. Here we present results of calculations showing that the interaction of mildly relativistic outflows with the surrounding medium produces radio flares with peak emission at 1.4 gigahertz that persist at detectable (submillijansky) levels for weeks, out to a redshift of 0.1. Slower subrelativistic outflows produce flares detectable for years at 150 megahertz, as well as at 1.4 gigahertz, from slightly shorter distances. The radio transient RT 19870422 (ref. 11) has the properties predicted by our model, and its most probable origin is the merger of a compact neutron-star/neutron-star binary. The lack of radio detections usually associated with short γ-ray bursts does not constrain the radio transients that we discuss here (from mildly relativistic and subrelativistic outflows) because short γ-ray burst redshifts are typically >0.1 and the appropriate timescales (longer than weeks) have not been sampled.
Magnetic field analysis of the bow and terminal shock of the SS 433 jet
NASA Astrophysics Data System (ADS)
Sakemi, Haruka; Machida, Mami; Akahori, Takuya; Nakanishi, Hiroyuki; Akamatsu, Hiroki; Kurahara, Kohei; Farnes, Jamie
2018-03-01
We report a polarization analysis of the eastern region of W 50, observed with the Australia Telescope Compact Array (ATCA) at 1.4-3.0 GHz. In order to study the physical structures in the region where the SS 433 jet and W 50 interact, we obtain an intrinsic magnetic field vector map of that region. We find that the orientation of the intrinsic magnetic field vectors are aligned along the total intensity structures, and that there are characteristic, separate structures related to the jet, the bow shock, and the terminal shock. The Faraday rotation measures (RMs), and the results of Faraday tomography suggest that a high-intensity, filamentary structure in the north-south direction of the eastern-edge region can be separated into at least two parts to the north and south. The results of Faraday tomography also show that there are multiple components along the line of sight and/or within the beam area. In addition, we analyze the X-ray ring-like structure observed with XMM-Newton. While the possibility still remains that this X-ray ring is "real", it seems that the structure is not ring-like at radio wavelengths. Finally, we suggest that the structure is a part of the helical structure that coils the eastern ear of W 50.
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Vlasyuk, V. V.; Petkov, V. B.
2016-06-01
The International Workshop on Quark Phase Transition in Compact Objects and Multimessenger Astronomy: Neutrino Signals, Supernovae and Gamma-Ray Bursts (October, 7-14, 2015) was dedicated to Quantum ChromoDynamics (QCD) Phase Transitions and observational signals of these transitions related to formation of compact astrophysical objects. The aim of this workshop was to bring together researchers working on the problems of behavior of matter under critical conditions achievable in such astrophysical objects as "strange" or "hybrid" stars and in laboratories at heavy-ion collisions to discuss fundamental issues and recent developments. Topics included both observations (radio, optical and X-ray astronomy, gamma ray bursts, gravitational waves, neutrino detection, heavy-ion collisions, etc.) and theory (supernova simulations, proto-neutron and neutron stars, equation of state of dense matter, neutron star cooling, unstable modes, nucleosynthesis, explosive transitions, quark-gluon plasma).
Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources
NASA Astrophysics Data System (ADS)
Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.
2012-01-01
The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.
Cygnus X-3 Returns to an Active State
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Koljonen, Karri; Gurwell, Mark A.; Trushkin, Sergei; Pooley, Guy G.
2017-08-01
Cygnus X-3 is a well-known microquasar composed of a mass-donating Wolf-Rayet star and a compact object. Recently, Cygnus X-3 has been in a quiescent state for an extended period of time (2011-2016) but returned to an active state on two occasions during 2016/2017 including quenched/hypersoft states, gamma-ray emission, and major radio flares. During these two periods of activity, we undertook multi-wavelength observing campaigns with observations in the radio (RATAN-600, AMI-LA, Metsähovi), submillimeter (SMA, EHT), X-ray (Swift/XRT, MAXI), hard X-ray (Swift/BAT, NuSTAR), and gamma-ray (AGILE, Fermi, VERITAS). At the peak of the major radio flare in April 2017 observations were made with VERITAS (TeV), NuSTAR (hard X-ray), and the Event Horizon Telescope (submillimeter). In this presentation, I will review these observing campaigns and the insights they provide about Cygnus X-3.
32 GHz Celestial Reference Frame Survey for Dec < -45 deg.
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina
2014-04-01
(We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. During the last scheduled LBA session for this project we discovered ATCA/Mopra had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.
Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P
2017-04-17
Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.
VizieR Online Data Catalog: Infrared morphology of HII regions (Topchieva+, 2017)
NASA Astrophysics Data System (ADS)
Topchieva, A. P.; Wiebe, D. S.; Kirsanova, M. S.; Krushinskii, V. V.
2018-03-01
The 20-cm New GPS survey (http://third.ucllnl.org/gps), created using the MAGPIS database of radio images of regions with Galactic coordinates |bGal|<0.8° and 5°
INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiyama, Kazunori; Johnson, Michael D., E-mail: kazu@haystack.mit.edu
Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williamsmore » and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.« less
Spectral Index Properties of millijansky Radio Sources in ATLAS
NASA Astrophysics Data System (ADS)
Randall, Kate; Hopkins, A. M.; Norris, R. P.; Zinn, P.; Middelberg, E.; Mao, M. Y.; Sharp, R. G.
2012-01-01
At the faintest radio flux densities (S1.4GHz < 10 milliJansky (mJy)), the spectral index properties of radio sources are not well constrained. The bright radio source population (S1.4GHz > 10 mJy) is well studied and is predominantly comprised of AGN. At fainter flux densities, particularly into the microJansky regime, star-forming galaxies begin to dominate the radio source population. Understanding these faint radio source populations is essential for understanding galaxy evolution, and the link between AGN and star formation. Conflicting results have recently arisen regarding whether there is a flattening of the average spectral index between a low radio frequency (325 or 610 MHz) and 1.4 GHz at these faint flux densities. To explore this issue, we have investigated the spectral index properties of a new catalogue of 843 MHz radio sources in the ELAIS-S1 (the European Large Area ISO Survey - South 1 Region) field. Our results support previous work showing a tendency towards flatter radio spectra at fainter flux densities. This catalogue is cross-matched to the Australia Telescope Large Area Survey (ATLAS), the widest deep radio survey to date at 1.4 GHz, with complementary 2.3 GHz, optical and infrared Spitzer Wide-area Infra-Red Extragalactic data. The variation of spectral index properties have been explored as a function of redshift, luminosity and flux density. [These new measurements have been used to identify a population of faint Compact Steep Spectrum sources, thought to be one of the earliest stages of the AGN life-cycle. Exploring this population will aid us in understanding the evolution of AGN as a whole.
VLA Imaging of Protoplanetary Environments
NASA Technical Reports Server (NTRS)
Wilner, David J.
2004-01-01
We summarize the major accomplishments of our program to use high angular resolution observations at millimeter wavelengths to probe the structure of protoplanetary disks in nearby regions of star formation. The primary facilities used in this work were the Very Large Array (VLA) of the National Radio Astronomy Observatories (NRAO) located in New Mexico, and the recently upgraded Australia Telescope Compact Array (ATCA), located in Australia (to access sources in the far southern sky). We used these facilities to image thermal emission from dust particles in disks at long millimeter wavelengths, where the emission is optically thin and probes the full disk volume, including the inner regions of planet formation that remain opaque at shorter wavelengths. The best resolution obtained with the VLA is comparable to the size scales of the orbits of giant planets in our Solar System (< 10 AU).
NASA Astrophysics Data System (ADS)
Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.
2005-05-01
Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.
NASA Astrophysics Data System (ADS)
Pavolotsky, Alexey
2018-01-01
Modern and future heterodyne radio astronomy instrumentation critically depends on availability of advanced fabrication technologies and components. In Part1 of the Poster, we present the thin film fabrication process for SIS mixer receivers, utilizing either AlOx, or AlN barrier superconducting tunnel junctions developed and supported by GARD. The summary of the process design rules is presented. It is well known that performance of waveguide mixer components critically depends on accuracy of their geometrical dimensions. At GARD, all critical mechanical parts are 3D-mapped with a sub-um accuracy. Further progress of heterodyne instrumentation requires new efficient and compact sources of LO signal. We present SIS-based frequency multiplier, which could become a new option for LO source. Future radio astronomy THz receivers will need waveguide components, which fabricating due to their tiny dimensions is not feasible by traditional mechanical machining. We present the alternative micromachining technique for fabricating waveguide component for up 5 THz band and probably beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
A compact presentation of DSN array telemetry performance
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1982-01-01
The telemetry performance of an arrayed receiver system, including radio losses, is often given by a family of curves giving bit error rate vs bit SNR, with tracking loop SNR at one receiver held constant along each curve. This study shows how to process this information into a more compact, useful format in which the minimal total signal power and optimal carrier suppression, for a given fixed bit error rate, are plotted vs data rate. Examples for baseband-only combining are given. When appropriate dimensionless variables are used for plotting, receiver arrays with different numbers of antennas and different threshold tracking loop bandwidths look much alike, and a universal curve for optimal carrier suppression emerges.
NASA Astrophysics Data System (ADS)
Cesar, D.; Maxson, J.; Musumeci, P.; Sun, Y.; Harrison, J.; Frigola, P.; O'Shea, F. H.; To, H.; Alesini, D.; Li, R. K.
2016-07-01
We present the results of an experiment where a short focal length (˜1.3 cm ), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30 × were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T /m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Music Preferences in the U.S.: 1982-2002
ERIC Educational Resources Information Center
Mizell, Lee
2005-01-01
Music is everywhere. People listen to compact discs while relaxing at home, MP3s while jogging in the park, live music concerts in their free time, and internet radio on the computer. What are people listening to? Who is doing the listening? How have listening patterns changed over time? This report aims to answer those questions by using data…
Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator
NASA Astrophysics Data System (ADS)
Hamm, Robert W.
2000-12-01
Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.
Fast variability of tera-electron volt gamma rays from the radio galaxy M87.
Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M
2006-12-01
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.
High Sensitive Scintillation Observations At Very Low Frequencies
NASA Astrophysics Data System (ADS)
Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.
The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.
Spectrophotometry of 2 complete samples of flat radio spectrum quasars
NASA Technical Reports Server (NTRS)
Wampler, E. J.; Gaskell, C. M.; Burke, W. L.; Baldwin, J. A.
1983-01-01
Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given.
REVIEWS OF TOPICAL PROBLEMS: Cygnus X-3: a powerful galactic source of hard radiation
NASA Astrophysics Data System (ADS)
Vladimirskiĭ, B. M.; Gal'per, A. M.; Luchkov, B. I.; Stepanyan, A. A.
1985-02-01
A review is given of experimental and theoretical research on the galactic source Cyg X-3, whose electromagnetic spectrum extends from radio frequencies to ultrahigh-energy (Eγ ~ 1016 eV) γ-rays. Cyg X-3 also has a high x-ray luminosity (1038 erg/sec) and exhibits diversified sporadic and periodic variations, most notably occasional radio outbursts and a 4h.8 infrared, x-ray, and γ-ray cycle. Analysis of the observations indicates that Cyg X-3 is a close binary system comprising a compact relativistic object (neutron star, black hole) and a dwarf companion losing mass. Particles are accelerated to 1016 eV within the system.
Weak and Compact Radio Emission in Early High-Mass Star Forming Regions
NASA Astrophysics Data System (ADS)
Rosero, Viviana; P. Hofner, M. Claussen, S. Kurtz, R. Cesaroni, E. D. Araya, C. Carrasco-González, L. F. Rodríguez, K. M. Menten, F. Wyrowski, L. Loinard, S. P. Ellingsen
2018-01-01
High-mass protostars are difficult to detect: they have short evolutionary timescales, they tend to be located at large distances, and they are usually embedded within complicated cluster environments. In this work, we aimed to identify and analyze candidates at the earliest stages of high-mass star formation, where only low-level (< 1 mJy) radio emission is expected. We used the Karl G. Jansky Very Large Array to achieve one of the most sensitive (image RMS < 3 -- 10 μJy/beam) centimeter continuum surveys towards high-mass star forming regions to date, with observations at 1.3 and 6 cm and an angular resolution < 0.5". The sample is composed of cold molecular clumps with and without infrared sources (CMC--IRs and CMCs, respectively) and hot molecular cores (HMCs), covering a wide range of parameters such as bolometric luminosity and distance. We detected 70 radio continuum sources that are associated with dust clumps, most of which are weak and compact. We detected centimeter wavelength sources in 100% of our HMCs, which is a higher fraction than previously expected and suggests that radio continuum may be detectable at weak levels in all HMCs. The lack of radio detections for some objects in the sample (including most CMCs) contributes strong evidence that these are prestellar clumps, providing interesting constraints and ideal follow up candidates for studies of the earliest stages of high-mass stars. Our results show further evidence for an evolutionary sequence in the formation of high-mass stars, from starless cores (i.e., CMCs) to relatively more evolved ones (i.e., HMCs). Many of our detections have morphologies and other observational parameters that resemble collimated ionized jets, which is highly relevant for recent theoretical models based on core accretion that predict that the first stages of ionization from high-mass stars are in the form of jets. Additionally, we found that properties of ionized jets from low and high-mass stars are extremely well correlated; our data improves upon previous studies of this nature and provides further evidence of a common origin for jets of any luminosity.
NASA Astrophysics Data System (ADS)
Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.
2015-08-01
Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any redshift; and (d) scaled and dust-obscured radio-loud quasars or compact steep spectrum sources. We estimated upper limits on the infrared luminosity, the black hole accretion rate, and the star formation rate of IFRS, which all agreed with corresponding numbers of HzRGs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
RAiSE II: resolved spectral evolution in radio AGN
NASA Astrophysics Data System (ADS)
Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.
2018-01-01
The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.
The jet/wind outflow in Centaurus A: a local laboratory for AGN feedback
NASA Astrophysics Data System (ADS)
McKinley, B.; Tingay, S. J.; Carretti, E.; Ellis, S.; Bland-Hawthorn, J.; Morganti, R.; Line, J.; McDonald, M.; Veilleux, S.; Wahl Olsen, R.; Sidonio, M.; Ekers, R.; Offringa, A. R.; Procopio, P.; Pindor, B.; Wayth, R. B.; Hurley-Walker, N.; Bernardi, G.; Gaensler, B. M.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.
2018-03-01
We present new radio and optical images of the nearest radio galaxy Centaurus A and its host galaxy NGC 5128. We focus our investigation on the northern transition region, where energy is transported from the ˜5 kpc (˜5 arcmin) scales of the northern inner lobe (NIL) to the ˜30 kpc (˜30 arcmin) scales of the northern middle lobe (NML). Our Murchison Widefield Array observations at 154 MHz and our Parkes radio telescope observations at 2.3 GHz show diffuse radio emission connecting the NIL to the NML, in agreement with previous Australia Telescope Compact Array observations at 1.4 GHz. Comparison of these radio data with our wide-field optical emission-line images show the relationship between the NML radio emission and the ionized filaments that extend north from the NIL, and reveal a new ionized filament to the east, possibly associated with a galactic wind. Our deep optical images show clear evidence for a bipolar outflow from the central galaxy extending to intermediate scales, despite the non-detection of a southern radio counterpart to the NML. Thus, our observational overview of Centaurus A reveals a number of features proposed to be associated with active galactic nucleus feedback mechanisms, often cited as likely to have significant effects in galaxy evolution models. As one of the closest galaxies to us, Centaurus A therefore provides a unique laboratory to examine feedback mechanisms in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatta, Gopal, E-mail: gopalbhatta716@gmail.com; Mt. Suhora Observatory, Pedagogical University, ul. Podchorazych 2, 30-084 Kraków
In this work, we explore the long-term variability properties of the blazar PKS 0219−164 in the radio and the γ -ray regime, utilizing the OVRO 15 GHz and the Fermi /LAT observations from the period 2008–2017. We found that γ -ray emission is more variable than the radio emission implying that γ -ray emission possibly originated in more compact regions while the radio emission represented continuum emission from the large-scale jets. Also, in the γ -ray, the source exhibited spectral variability, characterized by the softer-when-brighter trend, a less frequently observed feature in the high-energy emission by BL Lacs. In radio,more » using Lomb–Scargle periodogram and weighted wavelet z -transform, we detected a strong signal of quasi-periodic oscillation (QPO) with a periodicity of 270 ± 26 days with possible harmonics of 550 ± 42 and 1150 ± 157 day periods. At a time when detections of QPOs in blazars are still under debate, the observed QPO with high statistical significance (∼97%–99% global significance over underlying red-noise processes) and persistent over nearly 10 oscillations could make one of the strongest cases for the detection of QPOs in blazar light curves. We discuss various blazar models that might lead to the γ -ray and radio variability, QPO, and the achromatic behavior seen in the high-energy emission from the source.« less
Radio spectra of bright compact sources at z > 4.5
NASA Astrophysics Data System (ADS)
Coppejans, Rocco; van Velzen, Sjoert; Intema, Huib T.; Müller, Cornelia; Frey, Sándor; Coppejans, Deanne L.; Cseh, Dávid; Williams, Wendy L.; Falcke, Heino; Körding, Elmar G.; Orrú, Emanuela; Paragi, Zsolt; Gabányi, Krisztina É.
2017-05-01
High-redshift quasars are important to study galaxy and active galactic nuclei evolution, test cosmological models and study supermassive black hole growth. Optical searches for high-redshift sources have been very successful, but radio searches are not hampered by dust obscuration and should be more effective at finding sources at even higher redshifts. Identifying high-redshift sources based on radio data is, however, not trivial. Here we report on new multifrequency Giant Metrewave Radio Telescope observations of eight z > 4.5 sources previously studied at high angular resolution with very long baseline interferometry (VLBI). Combining these observations with those from the literature, we construct broad-band radio spectra of all 30 z > 4.5 sources that have been observed with VLBI. In the sample we found flat, steep and peaked spectra in approximately equal proportions. Despite several selection effects, we conclude that the z > 4.5 VLBI (and likely also non-VLBI) sources have diverse spectra and that only about a quarter of the sources in the sample have flat spectra. Previously, the majority of high-redshift radio sources were identified based on their ultrasteep spectra. Recently, a new method has been proposed to identify these objects based on their megahertz-peaked spectra. No method would have identified more than 18 per cent of the high-redshift sources in this sample. More effective methods are necessary to reliably identify complete samples of high-redshift sources based on radio data.
FPGA-based RF spectrum merging and adaptive hopset selection
NASA Astrophysics Data System (ADS)
McLean, R. K.; Flatley, B. N.; Silvius, M. D.; Hopkinson, K. M.
The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this way, the radio is able to actively sense the RF spectrum, decide, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. In this paper, we present a novel solution for merging many distributed RF spectrum maps into one map and for subsequently creating an adaptive hopset. We also provide an example of our system in operation, the result of which is a pseudorandom adaptive hopset. The paper then presents a novel hardware design for the frequency merger and adaptive hopset selector, both of which are written in VHDL and implemented as a custom IP core on an FPGA-based embedded system using the Xilinx Embedded Development Kit (EDK) software tool. The design of the custom IP core is optimized for area, and it can process a high-volume digital input via a low-latency circuit architecture. The complete embedded system includes the Xilinx PowerPC microprocessor, UART serial connection, and compact flash memory card IP cores, and our custom map merging/hopset selection IP core, all of which are targeted to the Virtex IV FPGA. This system is then incorporated into a cognitive radio prototype on a Rice University Wireless Open Access Research Platform (WARP) reconfigurable radio.
ALMA finds dew drops in the dusty spider's web
NASA Astrophysics Data System (ADS)
Gullberg, Bitten; Lehnert, Matthew D.; De Breuck, Carlos; Branchu, Steve; Dannerbauer, Helmut; Drouart, Guillaume; Emonts, Bjorn; Guillard, Pierre; Hatch, Nina; Nesvadba, Nicole P. H.; Omont, Alain; Seymour, Nick; Vernet, Joël
2016-06-01
We present 0.̋5 resolution ALMA detections of the observed 246 GHz continuum, [CI] 3P2→3P1 fine structure line ([CI]2-1), CO(7-6), and H2O lines in the z = 2.161 radio galaxy MRC1138-262, the so-called Spiderweb galaxy. We detect strong [CI]2-1 emission both at the position of the radio core, and in a second component ~4 kpc away from it. The 1100 km s-1 broad [CI]2-1 line in this latter component, combined with its H2 mass of 1.6 × 1010 M⊙, implies that this emission must come from a compact region <60 pc, possibly containing a second active galactic nucleus (AGN). The combined H2 mass derived for both objects, using the [CI]2-1 emission, is 3.3 × 1010 M⊙. The total CO(7-6)/[CI]2-1 line flux ratio of 0.2 suggests a low excitation molecular gas reservoir and/or enhanced atomic carbon in cosmic ray dominated regions. We detect spatially-resolved H2O 211-202 emission - for the first time in a high-z unlensed galaxy - near the outer radio lobe to the east, and near the bend of the radio jet to the west of the radio galaxy. No underlying 246 GHz continuum emission is seen at either position. We suggest that the H2O emission is excited in the cooling region behind slow (10-40 km s-1) shocks in dense molecular gas (103-5 cm-3). The extended water emission is likely evidence of the radio jet's impact on cooling and forming molecules in the post-shocked gas in the halo and inter-cluster gas, similar to what is seen in low-z clusters and other high-z radio galaxies. These observations imply that the passage of the radio jet in the interstellar and inter-cluster medium not only heats gas to high temperatures, as is commonly assumed or found in simulations, but also induces cooling and dissipation, which can lead to substantial amounts of cold dense molecular gas. The formation of molecules and strong dissipation in the halo gas of MRC1138-262 may explain both the extended diffuse molecular gas and the young stars observed around MRC1138-262. The reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A73
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
Digging deep into the ULIRG phenomenon: When radio beats dust
NASA Astrophysics Data System (ADS)
Pérez-Torres, M. A.
2013-05-01
Luminous and Ultra-Luminous Infrared Galaxies (U/LIRGs) do also radiate copious amounts of radio emission, both thermal (free-free) and non-thermal (mainly synchrotron). This is very handy since, unlike optical and infra-red observations, radio is not obscured by the ubiquitous dust present in U/LIRGs, which allows a direct view of the ongoing activity in the hearts of those prolific star-forming galaxies. Here, I first justify the need for this high-angular resolution radio studies of local U/LIRGs, discuss the energy budget and the magnetic field, as well as IC and synchrotron losses in U/LIRGs, and present some selected results obtained by our team on high-angular resolution radio continuum studies of U/LIRGs. Among other results, I show the impressive discovery of an extremely prolific supernova factory in the central ˜150 pc of the galaxy Arp 299-A (D = 45 Mpc) and the monitoring of a large number of very compact radio sources in it, the detection and precise location of the long-sought AGN in Arp 299-A. A movie summarizing those results can be found in http://www.iaa.es/ torres/research/arp299a.html. All those results demonstrate that very-high angular resolution studies of nearby U/LIRGs are of high relevance for the comprehension of both local and high-z starbursting galaxies.
PKS 1954-388: RadioAstron Detection on 80,000 km Baselines and Multiwavelength Observations
NASA Astrophysics Data System (ADS)
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; An, H.; Bignall, H.; Carpenter, B.; Hovatta, T.; Stevens, J.; Voytsik, P.; Andrianov, A. S.; Dutka, M.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Kadler, M.; Lisakov, M.; Lovell, J. E. J.; McCallum, J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Reynolds, C.; Schulz, R.; Sokolovsky, K. V.; Tzioumis, A. K.; Zuga, V.
2017-04-01
We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed 9 months after the start of a prolonged gamma-ray high-state-a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.
Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.
Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith
2013-01-10
A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission.
A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.
2014-03-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.
The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.
Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D
2011-11-30
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.
High-energy Emission from the Composite Supernova Remnant MSH 15-56
NASA Technical Reports Server (NTRS)
Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.
2013-01-01
MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.
SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7
NASA Astrophysics Data System (ADS)
Ma, Jingzhe; Gonzalez, Anthony. H.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brandt, W. N.; de Breuck, C.; Carlstrom, J. E.; Chapman, S. C.; Gullberg, B.; Hezaveh, Y.; Litke, K.; Malkan, M.; Marrone, D. P.; McDonald, M.; Murphy, E. J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M.; Wang, S. X.
2016-12-01
We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (˜4500 M ⊙ yr-1) and SFR surface density ΣSFR (˜2000 M ⊙ yr-1 kpc-2) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 1013 L ⊙ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR of any known galaxy. This high ΣSFR, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.
NASA Astrophysics Data System (ADS)
Collier, Jordan; Filipovic, Miroslav; Norris, Ray; Chow, Kate; Huynh, Minh; Banfield, Julie; Tothill, Nick; Sirothia, Sandeep Kumar; Shabala, Stanislav
2014-04-01
This proposal is a continuation of an extensive project (the core of Collier's PhD) to explore the earliest stages of AGN formation, using Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources. Both are widely believed to represent the earliest stages of radio-loud AGN evolution, with GPS sources preceding CSS sources. In this project, we plan to (a) test this hypothesis, (b) place GPS and CSS sources into an evolutionary sequence with a number of other young AGN candidates, and (c) search for evidence of the evolving accretion mode. We will do this using high-resolution radio observations, with a number of other multiwavelength age indicators, of a carefully selected complete faint sample of 80 GPS/CSS sources. Analysis of the C2730 ELAIS-S1 data shows that we have so far met our goals, resolving the jets of 10/49 sources, and measuring accurate spectral indices from 0.843-10 GHz. This particular proposal is to almost triple the sample size by observing an additional 80 GPS/CSS sources in the Chandra Deep Field South (arguably the best-studied field) and allow a turnover frequency - linear size relation to be derived at >10-sigma. Sources found to be unresolved in our final sample will subsequently be observed with VLBI. Comparing those sources resolved with ATCA to the more compact sources resolved with VLBI will give a distribution of source sizes, helping to answer the question of whether all GPS/CSS sources grow to larger sizes.
Panchromatic Observations of SN2011dh Point to a Compact Progenitor Star
NASA Technical Reports Server (NTRS)
Soderberg, A. M.; Margutti, R.; Zauerer, B. A.; Krauss, M.; Katz, B.; Chomiuk, L.; Dittmann, J. A.; Nakar, E.; Sakamoto, T.; Kawai, N.;
2011-01-01
We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN2011dh using data from the Swift and Chandra satellites, placing it among the best studied X-ray supernovae to date. We further present millimeter and radio data obtained with the SMA, CARMA, and EVLA during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic dataset is well-described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. We derive the properties of the shockwave and the circumstellar environment and find a time-averaged shock velocity of v approximately equals 0.1c and a progenitor mass loss rate of M-dot approximately equals 6 X 10 (exp 5) Solar M/ yr (wind velocity, v(sub w) = 1000 km/s). We show that these properties are consistent with the sub-class of Type IIb supernovae characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of R(sub star) approximately equals 10(exp 11) cm, in line with the expectations for a Type cIIb supernova. Together, these diagnostics suggest that the putative yellow supergiant progenitor star identified in archival HST observations is instead a binary companion or unrelated to the supernova. Finally, we searched for the high energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the shock breakout pulse was detectable with current instruments but likely missed due to their limited temporal/ spatial coverage. Future all-sky missions will regularly detect shock breakout emission from compact SN progenitors enabling prompt follow-up observations of the shockwave with the EVLA and ALMA.
NASA Astrophysics Data System (ADS)
Djordjevic, Julie; Thompson, Mark; Urquhart, James S.
2017-01-01
We present a catalog of compact and ultracompact HII regions for all Galactocentric radii. Previous catalogs focus on the inner Galaxy (Rgal ≤ 8 kpc) but the recent SASSy 870 µm survey allows us to identify regions out to ~20 kpc. Early samples are also filled with false classifications leading to uncertainty when deriving star formation efficiencies in Galactic models. These objects have similar mid-IR colours to HII regions. Urquhart et al. (2013) found that they could use mid-IR, submm, and radio data to identify the genuine compact HII regions, avoiding confusion. They used this method on a small portion of the Galaxy (10 < l < 60), identifying 213 HII regions embedded in 170 clumps. We use ATLASGAL and SASSy, crossmatched with RMS, to sample the remaining galactic longitudes out to Rgal = 20 kpc. We derive the properties of the identified compact HII regions and their host clumps while addressing the implications for recent massive star formation in the outer Galaxy. Observations towards nearby galaxies are biased towards massive stars, affecting simulations and overestimating models for galactic evolution and star formation rates. The Milky Way provides the ideal template for studying factors affecting massive star formation rates and efficiencies at high resolution, thus fine-tuning those models. We find that there is no significant change in the rate of massive star formation in the outer vs inner Galaxy. Despite some peaks in known complexes and possible correlation with spiral arms, the outer Galaxy appears to produce massive stars as efficiently as the inner regions. However, many of the potential star forming SASSy clumps have no available radio counterpart to confirm the presence of an HII region or other star formation tracer. Follow-up observations will be required to verify this conclusion and are currently in progress.
Ain't no Crab, PWN Got a Brand New Bag: Correlated Radio and X-ray Structures in Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Roberts, M. S. E.; Lyutikov, M.; Gaensler, B. M.; Brogan, C. L.; Tam, C. R.; Romani, R. W.
2005-04-01
The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary and rapidly moving, now show clear morphological relationships between structures in the radio and X-ray with radio intensity variations on the order of unity. We present high-resolution X-ray and radio images of several PWN of both types and discuss the morphological relationships between the two wavebands.
NASA Astrophysics Data System (ADS)
Ludovici, Dominic Alesio
2017-08-01
The mysterious radio source N3 appears to be located within the vicinity of the Radio Arc region of the Galactic Center. To investigate the nature of this source, we have conducted radio observations with the VLA and the VLBA. Continuum observations between 2 and 50 GHz reveal that N3 is an extremely compact and bright source with a non-thermal spectrum. Molecular line observations with the VLA reveal a compact molecular cloud adjacent to N3 in projection. The properties of this cloud are consistent with other galactic center clouds. We are able to rule out several hypotheses for the nature of N3, though a micro-blazar origin cannot be ruled out. Robotic Telescope systems are now seeing widespread deployment as both teaching and research instruments. While these systems have traditionally been able to produce high quality images, these systems have lacked the capability to conduct spectroscopic observations. To enable spectroscopic observations on the Iowa Robotic Observatory, we have developed a low cost (˜ 500), low resolution (R ˜ 300) spectrometer which mounts inside a modified filter wheel and a moderate cost (˜ 5000), medium resolution (R ˜ 8000) fiber-fed spectrometer. Software has been developed to operate both instruments robotically and calibration pipelines are being developed to automate calibration of the data. The University of Iowa offers several introductory astronomy laboratory courses taken by many hundreds of students each semester. To improve student learning in these laboratory courses, we have worked to integrate active learning into laboratory activities. We present the pedagogical approaches used to develop and update the laboratory activities and present an inventory of the current laboratory exercises. Using the inventory, we make observations of the strengths and weaknesses of the current exercises and provide suggestions for future refinement of the astronomy laboratory curriculum.
The flaring activity of Markarian 421 during April 2000
NASA Astrophysics Data System (ADS)
Fegan, D. J.; VERITAS Collaboration
2001-08-01
Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high
NASA Astrophysics Data System (ADS)
Roper, Quentin; Filipovi, Miroslav; Allen, Glenn E.; Sano, Hidetoshi; Park, Laurence; Pannuti, Thomas G.; Sasaki, Manami; Haberl, Frank; Kavanagh, Patrick J.; Yamane, Yumiko; Yoshiike, Satoshi; Fujii, Kosuke; Fukui, Yasuo; Seitenzahl, Ivo R.
2018-05-01
Using archival Chandra data consisting of a total of 78.46 ksec over two epochs seven years apart, we have measured the expansion of the young (˜400 years old) type Ia Large Magellanic Cloud supernova remnant (SNR) J0509-6731. In addition, we use radial brightness profile matching to detect proper-motion expansion of this SNR, and estimate an speed of 7 500±1 700 km s-1. This is one of the only proper motion studies of extragalactic SNRs expansion that is able to derive an expansion velocity, and one of only two such studies of an extragalactic SNR to yield positive results in the X-rays. We find that this expansion velocity is consistent with an optical expansion study on this object. In addition, we examine the medium into which the SNR is expanding by examining the CO and neutral H I gas using radio data obtained from Mopra, the Australia Telescope Compact Array and Parkes radio telescopes. We also briefly compare this result with a recent radio survey, and find that our results predict a radio spectral index α of -0.67±0.07. This value is consistent with high frequency radio observations of MCSNR J0509-6731.
THE {gamma}-RAY EMISSION REGION IN THE FANAROFF-RILEY II RADIO GALAXY 3C 111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandi, P.; Torresi, E.; Stanghellini, C., E-mail: grandi@iasfbo.inaf.it, E-mail: torresi@iasfbo.inaf.it, E-mail: cstan@ira.inaf.it
The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). Our analysis of the 24 month {gamma}-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increase ofmore » the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. The temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the {gamma}-ray dissipative zone in an FRII jet. We argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less
The ``X component'' of the radio background
NASA Astrophysics Data System (ADS)
Semenova, T. A.; Pariiskii, Yu. N.; Bursov, N. N.
2009-01-01
The recent publication of evidence for a new mechanism producing background radio emission of the Galaxy at centimeter wavelengths (in addition to synchrotron radiation, free—free transitions in ionized gas, and the weak radio emission of standard dust) gave rise to a strong reaction among observers, and requires independent experimental verification. This signal is of special concern in connection with studies of the polarization of the cosmic microwave background (CMB) using new-generation experiments. We have derived independent estimates of the validity of the “spinning-dust” hypothesis (dipole emission of macromolecules) using multi-frequency RATAN-600 observations. Test studies in the Perseus molecular cloud show evidence for anomalous extended emission in the absence of strong radio sources (compact HII regions) that could imitate an anomalous radio spectrum in this region. A statistical analysis at centimeter wavelengths over the Ratan Zenith Field shows that the upper limit for the polarized noise from this new component in the spinning-dust hypothesis is unlikely to exceed 1 µK at wavelengths of 1 cm or shorter on the main scales of the EE mode of Sakharov oscillations. Thus, this emission should not hinder studies of this mode, at least to within several percent of the predicted level of polarization of the CMB emission.
Radio monitoring of protoplanetary discs
NASA Astrophysics Data System (ADS)
Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.
2017-04-01
Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star-forming regions was measured at 7 and 15 mm, and 3 and 6 cm. Results show that most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to centimetre-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitti, Myriam; O'Sullivan, Ewan; Giacintucci, Simona
2010-05-01
We report on the results of an analysis of Chandra, XMM-Newton, and new Giant Metrewave Radio Telescope (GMRT) data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for active galactic nucleus/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHzmore » and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity, and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of {approx}10{sup -4}, and that the radio pressure of the lobes is about 1 order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the southwest of the group center, close to the southern radio lobe, with a Mach number {approx}1.5 and a total power which is about 1 order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.« less
NASA Astrophysics Data System (ADS)
Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun
2013-02-01
For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.
Enhanced X-ray Emission from Early Universe Analog Galaxies
NASA Astrophysics Data System (ADS)
Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua
2016-04-01
X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.
First Results from the GPS Compact Total Electron Content Sensor (CTECS) on the PSSC2 Nanosat
NASA Astrophysics Data System (ADS)
Bishop, R. L.; Straus, P. R.; Hinkley, D.; Brubaker, T. R.
2011-12-01
The Compact Total Electron Content Sensor (CTECS) is a GPS radio occultation instrument designed for cubesat platforms that utilizes a COTS receiver, modified firmware, and a custom designed antenna. CTECS was placed on the Pico Satellite Solar Cell Testbed 2 (PSSC2) nanosat that was installed on the Space Shuttle Atlantis (STS-135). PSSC2 was successfully released from the shuttle on 20 July 2011. After approximately 2-4 weeks of spacecraft checkout and attitude adjustments, CTECS will be powered on and begin its mission to obtain ionospheric measurements of the total electron content and scintillation. This presentation describes the CTECS instrument, presents ground test data, initial on-orbit data, as well as future flight opportunities.
Cesar, D; Maxson, J; Musumeci, P; Sun, Y; Harrison, J; Frigola, P; O'Shea, F H; To, H; Alesini, D; Li, R K
2016-07-08
We present the results of an experiment where a short focal length (∼1.3 cm), permanent magnet electron lens is used to image micron-size features (of a metal sample) with a single shot from an ultrahigh brightness picosecond-long 4 MeV electron beam emitted by a radio-frequency photoinjector. Magnification ratios in excess of 30× were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way towards single-shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.
2017-01-01
Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.
Spectral and spatial characterisation of laser-driven positron beams
Sarri, G.; Warwick, J.; Schumaker, W.; ...
2016-10-18
The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
Schwarz, S; Bollen, G; Johnson, M; Kester, O; Kostin, M; Ottarson, J; Portillo, M; Wilson, C; López-Urrutia, J R Crespo; Dilling, J
2010-02-01
NSCL is currently constructing the ReA3 reaccelerator, which will accelerate rare isotopes obtained from gas stopping of fast-fragment beams to energies of up to 3 MeV/u for uranium and higher for lighter ions. A high-current charge breeder, based on an electron beam ion trap (EBIT), has been chosen as the first step in the acceleration process, as it has the potential to efficiently produce highly charged ions in a single charge state. These ions are fed into a compact linear accelerator consisting of a radio frequency quadrupole structure and superconducting cavities. The NSCL EBIT has been fully designed with most of the parts constructed. The design concept of the EBIT and results from initial commissioning tests of the electron gun and collector with a temporary 0.4 T magnet are presented.
Asymmetric ejecta of cool supergiants and hypergiants in the massive cluster Westerlund 1
NASA Astrophysics Data System (ADS)
Andrews, H.; Fenech, D.; Prinja, R. K.; Clark, J. S.; Hindson, L.
2018-06-01
We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine sources are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a, and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.
Bennett ion mass spectrometers on the Pioneer Venus Bus and Orbiter
NASA Technical Reports Server (NTRS)
Taylor, H. A., Jr.; Brinton, H. C.; Wagner, T. C. G.; Blackwell, B. H.; Cordier, G. R.
1980-01-01
Identical Bennett radio-frequency ion mass spectrometer instruments on the Pioneer Venus Bus and Orbiter have provided the first in-situ measurements of the detailed composition of the planet's ionosphere. The sensitivity, resolution, and dynamic range are sufficient to provide measurements of the solar-wind-induced bow-shock, the ionopause, and highly structured distributions of up to 16 thermal ion species within the ionosphere. The use of adaptive scan and detection circuits and servo-controlled logic for ion mass and energy analysis permits detection of ion concentrations as low as 5 ions/cu cm and ion flow velocities as large as 9 km/sec for O(+). A variety of commandable modes provides ion sampling rates ranging from 0.1 to 1.6 sec between measurements of a single constituent. A lightweight sensor and electronics housing are features of a compact instrument package.
NASA Technical Reports Server (NTRS)
Beck, Sara C.; Lacy, John; Neff, Susan Gale; Turner, Jean; Greathouse, Thomas; Neff, Susan
2014-01-01
NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features.We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0".18 (35 pc) and a 12.8 micron [Ne II] data cube with spectral resolution approx. 4 km/s: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.
A multifrequency study of star formation in the blue compact dwarf galaxy IZw 36
NASA Technical Reports Server (NTRS)
Viallefond, F.; Thuan, T. X.
1983-01-01
Radio, near IR, optical, and UV observations of I Zw 36 = Mrk 209 = Haro 29 are reported. The H I distribution shows a core-halo structure, the core containing half of the mass and showing systematic motions; the halo is diffuse and contains several H I clumps. The visible star formation region is associated with the core but is shifted slightly with respect to the H I peak column density; and the virial mass is 5 to 7 times the H I mass. Star formation models with an initial mass function of slope 1.5 (the Salpeter value being 1.35) and a burst age or duration of a few million years fit well the optical spectrophotometric measurements. The data also suggest that the column density of molecular hydrogen in I Zw 36 is 6 + or - 3 times that of the neutral hydrogen, about the right amount to account for the virial mass.
Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0
NASA Technical Reports Server (NTRS)
Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.
2012-01-01
We report the discovery of PSR J2022-<-3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).
NASA Astrophysics Data System (ADS)
Ivison, R. J.; Morrison, G. E.; Biggs, A. D.; Smail, Ian; Willner, S. P.; Gurwell, M. A.; Greve, T. R.; Stevens, J. A.; Ashby, M. L. N.
2008-11-01
High-resolution submillimetre (submm) imaging of the high-redshift radio galaxy (HzRG), 4C60.07, at z = 3.8, has revealed two dusty components of roughly equal integrated flux. Spitzer imaging shows that one of these components (`B') is coincident with an extremely red active galactic nucleus (AGN), offset by ~4arcsec (~30kpc) from the HzRG core. The other submm component (`A') - resolved by our synthesized beam and devoid of emission at 3.6-8.0μm - lies between `B' and the HzRG core. Since the radio galaxy was discovered via its extremely young, steep-spectrum radio lobes and the creation of these lobes was likely triggered by the interaction, we argue that we are witnessing an early-stage merger, prior to its eventual equilibrium state. The interaction is between the host galaxy of an actively fuelled black hole (BH) and a gas-rich starburst/AGN (`B') marked by the compact submm component and coincident with broad CO(4-3) emission. The second submm component (`A') is a plume of cold, dusty gas, associated with a narrow (~150kms-1) CO feature, and may represent a short-lived tidal structure. It has been claimed that HzRGs and submillimetre-selected galaxies (SMGs) differ only in the activity of their AGNs, but such complex submm morphologies are seen only rarely amongst SMGs, which are usually older, more relaxed systems. Our study has important implications: where a galaxy's gas reservoir is not aligned with its central BH, CO may be an unreliable probe of dynamical mass, affecting work on the co-assembly of BHs and host spheroids. Our data support the picture wherein close binary AGN are induced by mergers. They also raise the possibility that some supposedly jet-induced starbursts may have formed co-evally (yet independently of) the radio jets, both triggered by the same interaction. Finally, we note that the HzRG host would have gone unnoticed without its jets and its companion, so there may be many other unseen BHs at high redshift, lost in the sea of ~5 × 108 similarly bright Infrared Array Camera (IRAC) sources - sufficiently massive to drive a >1027-W radio source, yet practically invisible unless actively fuelled.
NASA Astrophysics Data System (ADS)
Ofek, Eran O.
2017-09-01
The localization of the repeating fast radio burst (FRB), FRB 121102, suggests that it is associated with a persistent radio-luminous compact source in the FRB host galaxy. Using the FIRST radio catalog, I present a search for luminous persistent sources in nearby galaxies, with radio luminosities > 10 % of the FRB 121102 persistent source luminosity. The galaxy sample contains about 30% of the total galaxy g-band luminosity within < 108 Mpc, in a footprint of 10,600 deg2. After rejecting sources likely due to active galactic nuclei activity or background sources, I am left with 11 candidates that are presumably associated with galactic disks or star-formation regions. At least some of these candidates are likely to be due to chance alignment. In addition, I find 85 sources within 1\\prime\\prime of galactic nuclei. Assuming that the radio persistent sources are not related to galactic nuclei and that they follow the galaxy g-band light, the 11 sources imply a 95% confidence upper limit on the space density of luminous persistent sources of ≲ 5× {10}-5 Mpc-3, and that at any given time only a small fraction of galaxies host a radio-luminous persistent source (≲ {10}-3 {L}* -1). Assuming a persistent source lifetime of 100 years, this implies a birth rate of ≲ 5× {10}-7 yr-1 Mpc-3. Given the FRB volumetric rate, and assuming that all FRBs repeat and are associated with persistent radio sources, this sets a lower limit on the rate of FRB events per persistent source of ≳ 0.8 yr-1. I argue that these 11 candidates are good targets for FRB searches and I estimate the FRB event rate from these candidates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeren, R. J. van; Ogrean, G. A.; Jones, C.
We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less
Weeren, R. J. van; Ogrean, G. A.; Jones, C.; ...
2016-01-27
We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less
The 3CR Chandra Snapshot Survey: Extragalactic Radio Sources with Redshifts between 1 and 1.5
NASA Astrophysics Data System (ADS)
Stuardi, C.; Missaglia, V.; Massaro, F.; Ricci, F.; Liuzzo, E.; Paggi, A.; Kraft, R. P.; Tremblay, G. R.; Baum, S. A.; O’Dea, C. P.; Wilkes, B. J.; Kuraszkiewicz, J.; Forman, W. R.; Harris, D. E.
2018-04-01
The aim of this paper is to present an analysis of newly acquired X-ray observations of 16 extragalactic radio sources listed in the Third Cambridge Revised (3CR) catalog and not previously observed by Chandra. Observations were performed during Chandra Cycle 17, extending X-ray coverage for the 3CR extragalactic catalog up to z = 1.5. Among the 16 targets, two lie at z < 0.5 (3CR 27 at z = 0.184 and 3CR 69 at z = 0.458) all of the remaining 14 have redshifts between 1.0 and 1.5. In the current sample, there are three compact steep spectrum (CSS) sources, three quasars, and an FR I radio galaxy, while the other nine are FR II radio galaxies. All radio sources have an X-ray counterpart. We measured nuclear X-ray fluxes as well as X-ray emission associated with radio jet knots, hotspots, or lobes in three energy bands: soft (0.5–1 keV), medium (1–2 keV), and hard (2–7 keV). We also performed standard X-ray spectral analysis for the four brightest nuclei. We discovered X-ray emission associated with the radio lobe of 3CR 124, a hotspot of the quasar 3CR 220.2, another hotspot of the radio galaxy 3CR 238, and the jet knot of 3CR 297. We also detected extended X-ray emission around the nuclear region of 3CR 124 and 3CR 297 on scales of several tens of kiloparsecs. Finally, we present an update on the X-ray observations performed with Chandra and XMM-Newton on the entire 3CR extragalactic catalog.
A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess
2014-06-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.
Confining hot spots in 3C 196 - Implications for QSO-companion galaxies
NASA Technical Reports Server (NTRS)
Brown, R. L.; Broderick, J. J.; Mitchell, K. J.
1986-01-01
VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions.
VLBI of supernovae and gamma-ray bursts
NASA Astrophysics Data System (ADS)
Bartel, N.; Karimi, B.; Bietenholz, M. F.
2017-04-01
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.
A search for faint high-redshift radio galaxy candidates at 150 MHz
NASA Astrophysics Data System (ADS)
Saxena, A.; Jagannathan, P.; Röttgering, H. J. A.; Best, P. N.; Intema, H. T.; Zhang, M.; Duncan, K. J.; Carilli, C. L.; Miley, G. K.
2018-04-01
Ultrasteep spectrum (USS) radio sources are good tracers of powerful radio galaxies at z > 2. Identification of even a single bright radio galaxy at z > 6 can be used to detect redshifted 21 cm absorption due to neutral hydrogen in the intervening intergalactic medium. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TIFR GMRT Sky Survey First Alternative Data Release survey at 150 MHz. We employ USS selection (α ≤ -1.3) in ˜10 000 deg2, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density (50 mJy < S150 < 200 mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of 1.3 arcsec revealed ˜ 48 per cent of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for 10 sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multiwavelength photometry and ancillary radio data are available and for one of these we find a best-fitting photo-z of 4.8 ± 2.0. The other source has zphot = 1.4 ± 0.1 and a small angular size (3.7 arcsec), which could be associated with an obscured star-forming galaxy or with a `dead' elliptical. One USS radio source not part of the HzRG sample but observed with the VLA none the less is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of 1.8 ± 0.5, indicating a size of 875 kpc.
NASA Astrophysics Data System (ADS)
Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.
2018-04-01
Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, C. S.; Gaensler, B. M.; Feain, I. J., E-mail: craiga@physics.usyd.edu.au
We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple ). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3–10 GHz. We have devised a general polarization modeling technique that allows us tomore » identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.« less
Alma Polarization Observations Of The Particle Accelerators In The Peculiar Hot Spot 3C 445 South
NASA Astrophysics Data System (ADS)
Orienti, Monica; Brunetti, G.; Mack, K.-H.; Nagai, H.; Paladino, R.; Prieto, M. A.
2017-10-01
Radio hot spots are bright and compact regions at the edges of powerful radio galaxies. In these regions the relativistic particles are reaccelerated by shocks produced by the interaction between the supersonic jets and the external environment. The discovery of synchrotron optical emission extending on kpc scale in some hot spots suggests that additional efficient and spatially distributed acceleration mechanisms must take place in order to compensate the severe radiative losses of optical emitting electrons. The key parameter to unveil the mechanism at work is the polarization intensity: high fractional polarization in the case of shocks, whereas low values or absence of polarization are expected in case of turbulence. In this contribution I will present results on full-polarization ALMA observations at 97 GHz of the hot spot 3C 445 South. This arc-shaped hot spot is characterized by two main components enshrouded by extended emission that is visible from radio to X-rays. The ALMA results, complemented by mutiband VLA, VLT, HST and Chandra data, will be used to shed a light on the complex distribution and nature of particle acceleration at the edge of powerful radio galaxies.
Discovery of a Luminous Radio Transient 460 pc from the Central Supermassive Black Hole in Cygnus A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Perley, R. A.; Dhawan, V.
2017-06-01
We report the appearance of a new radio source at a projected offset of 460 pc from the nucleus of Cygnus A. The flux density of the source (which we designate Cygnus A-2) rose from an upper limit of <0.5 mJy in 1989 to 4 mJy in 2016 ( ν = 8.5 GHz), but is currently not varying by more than a few percent per year. The radio luminosity of the source is comparable to the most luminous known supernovae, it is compact in Very Long Baseline Array observations down to a scale of 4 pc, and it is coincidentmore » with a near-infrared point source seen in pre-existing adaptive optics and HST observations. The most likely interpretation of this source is that it represents a secondary supermassive black hole in a close orbit around the Cygnus A primary, though an exotic supernova model cannot be ruled out. The gravitational influence of a secondary SMBH at this location may have played an important role in triggering the rapid accretion that has powered the Cygnus A radio jet over the past 10{sup 7} years.« less
NASA Technical Reports Server (NTRS)
Rudolph, A. L.; deGues, E. J.; Brand, J.; Wouterloot, J. G. A.; Gross, Anthony R. (Technical Monitor)
1994-01-01
We have made a multifrequency (6, 3.6, and 2 cm), high-resolution (3"-6"), radio continuum survey of IRAS selected sources from the catalogue of Wouterloot & Brand (1989) to search for and study H II regions in the far outer Galaxy. We identified 31 sources in this catalog with well determined galactocentric distances, and with R approx.. greater than 15 kpc and L(sub FIR) approx.greater than 10(exp 4) solar luminosity, indicating the presence of high-mass star-formation. We have observed 11 of these sources with the Very Large Array (VLA). We observed the sources at 6 and 2 cm using "scaled arrays", making possible a direct and reliable comparison of the data at these two wavelengths for the determination of spectral indices. We detected a total of 12 radio sources, of which 10 have spectral indices consistent with optically-thin free-free emission from H II regions. Combined with previous VLA observations by other investigators, we have data on a total of 15 H II regions at galactocentric distances of 15 to 18.2kpc, among the most remote H II regions found in our Galaxy. The sizes of the H II regions range from approx. less than 0.10 to 2.3 pc. Using the measured fluxes and sizes, we determine the electron densities, emission measures, and excitation parameters of the H II regions, as well as the fluxes of Lyman continuum photons needed to keep the nebulae ionized. The sizes and electron densities are consistent with most of the sources detected in this survey being compact or ultracompact H II regions. Seven of the fifteen H II regions have sizes approx. less than 0.20 pc. Assuming simple pressure-driven expansion of the H II regions, these sizes indicate ages approx. less than 5 x 10(exp 4) yr, or only 1% of the lifetime of an O star, which implies an unlikely overabundance of O stars in the outer Galaxy. Thus, the large number of compact H II regions suggests that the time these regions spend in a compact phase must be much longer than their dynamical expansion times. Five of the fifteen H II regions have cometary shapes; the remainder are spherical or unresolved. Comparison of the radio continuum data with molecular line maps suggests that the cometary shape of the two H II regions in S 127 may be due to pressure confinement of the expanding ionized gas, as in the "blister" or "champagne flow" models of H II regions. Comparison of the radio continuum data with the IRAS far-infrared data indicates that the five most luminous H II regions are consistent with a single 0 or B star exciting a dust-free H II region. Subject headings: stars: formation - ISM: H II regions - ISM: individual objects: S 127 radio continuum: interstellar
PKS 1954–388: RadioAstron detection on 80,000 km baselines and multiwavelength observations
Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; ...
2017-04-26
Here, we present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 10 12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for amore » jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.« less
NASA Astrophysics Data System (ADS)
Tucci, M.; Toffolatti, L.; de Zotti, G.; Martínez-González, E.
2011-09-01
We present models to predict high-frequency counts of extragalactic radio sources using physically grounded recipes to describe the complex spectral behaviour of blazars that dominate the mm-wave counts at bright flux densities. We show that simple power-law spectra are ruled out by high-frequency (ν ≥ 100 GHz) data. These data also strongly constrain models featuring the spectral breaks predicted by classical physical models for the synchrotron emission produced in jets of blazars. A model dealing with blazars as a single population is, at best, only marginally consistent with data coming from current surveys at high radio frequencies. Our most successful model assumes different distributions of break frequencies, νM, for BL Lacs and flat-spectrum radio quasars (FSRQs). The former objects have substantially higher values of νM, implying that the synchrotron emission comes from more compact regions; therefore, a substantial increase of the BL Lac fraction at high radio frequencies and at bright flux densities is predicted. Remarkably, our best model is able to give a very good fit to all the observed data on number counts and on distributions of spectral indices of extragalactic radio sources at frequencies above 5 and up to 220 GHz. Predictions for the forthcoming sub-mm blazar counts from Planck, at the highest HFI frequencies, and from Herschel surveys are also presented. Appendices are available in electronic form at http://www.aanda.org
Magnetar-like emission in different neutron star classes
NASA Astrophysics Data System (ADS)
Rea, N.
2017-10-01
I will present new results on magnetar-like transient events in neutron stars having low dipolar fields or generally catalogued as normal radio pulsars or central compact objects. I will then present simulations of magnetic field evolution that might explain the apparently puzzling behaviour of these objects. Strong surface magnetic field might be an almost ubiquitous properties of pulsars, regardless their external dipolar magnetic field measured via their spin down properties.
Redshifts for Superliminal Candidates.II.
NASA Astrophysics Data System (ADS)
Vermeulen, R. C.; Taylor, G. B.; Readhead, A. C. S.; Browne, I. W. A.
1996-03-01
Spectra are presented for 24 compact extragalactic radio sources from complete samples being studied with VLBI. New emission line redshifts are given for 21 of the objects; in 7 of these we have also identified associated or intervening absorption line systems. In 1 other source there are absorption lines which provide a lower limit to the redshift. The remaining 2 objects have strong featureless spectra and are likely to be blazars.
ERIC Educational Resources Information Center
Molara, Oyewusi Lawunmi; Joseph, Adamu Boladale
2014-01-01
When many authors were referring to radio and television as "new media" some years ago, little did they realize that a group of media, will later emerge that will sooner be termed "newer." The new development is about the adoption of mobile phones. These trends have emerged in many social contexts including participation in…
Tidal interaction, star formation and chemical evolution in blue compact dwarf galaxy Mrk 22
NASA Astrophysics Data System (ADS)
Paswan, A.; Omar, A.; Jaiswal, S.
2018-02-01
The optical spectroscopic and radio interferometric H I 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission-line features corresponding to high ionization lines of He II λ4686 and C IV λ5808 from young massive stars are detected. The ages of two prominent star-forming regions in the galaxy are estimated as ∼10 and ∼ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young starburst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission-line features. A significant N/O enrichment is seen in the fainter star-forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98±0.07 and 7.46±0.09, respectively. The galaxy has a large diffuse H I envelop. The H I images reveal disturbed gas kinematics and H I clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.
NASA Astrophysics Data System (ADS)
Vardoulaki, Eleni; Faustino Jimenez Andrade, Eric; Delvecchio, Ivan; Karim, Alexander; Smolčić, Vernesa; Magnelli, Benjamin; Bertoldi, Frank; Schinnener, Eva; Sargent, Mark; Finoguenov, Alexis; VLA COSMOS Team
2018-01-01
The radio sources associated with active galactic nuclei (AGN) can exhibit a variety of radio structures, from simple to more complex, giving rise to a variety of classification schemes. The question which still remains open, given deeper surveys revealing new populations of radio sources, is whether this plethora of radio structures can be attributed to the physical properties of the host or to the environment. Here we present an analysis on the radio structure of radio-selected AGN from the VLA-COSMOS Large Project at 3 GHz (JVLA-COSMOS; Smolčić et al.) in relation to: 1) their linear projected size, 2) the Eddington ratio, and 3) the environment their hosts lie within. We classify these as FRI (jet-like) and FRII (lobe-like) based on the FR-type classification scheme, and compare them to a sample of jet-less radio AGN in JVLA-COSMOS. We measure their linear projected sizes using a semi-automatic machine learning technique. Their Eddington ratios are calculated from X-ray data available for COSMOS. As environmental probes we take the X-ray groups (hundreds kpc) and the density fields (~Mpc-scale) in COSMOS. We find that FRII radio sources are on average larger than FRIs, which agrees with literature. But contrary to past studies, we find no dichotomy in FR objects in JVLA-COSMOS given their Eddington ratios, as on average they exhibit similar values. Furthermore our results show that the large-scale environment does not explain the observed dichotomy in lobe- and jet-like FR-type objects as both types are found on similar environments, but it does affect the shape of the radio structure introducing bents for objects closer to the centre of an X-ray group.
FR0CAT: a FIRST catalog of FR 0 radio galaxies
NASA Astrophysics Data System (ADS)
Baldi, R. D.; Capetti, A.; Massaro, F.
2018-01-01
With the aim of exploring the properties of the class of FR 0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog sources with redshift ≤0.05, with a radio size ≲5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their radio luminosities at 1.4 GHz are in the range 1038 ≲ νL1.4 ≲ 1040 erg s-1. The FR0CAT hosts are mostly (86%) luminous (-21 ≳ Mr ≳ -23) red early-type galaxies with black hole masses 108 ≲ MBH ≲ 109M⊙. These properties are similar to those seen for the hosts of FR I radio galaxies, but they are on average a factor 1.6 less massive. The number density of FR0CAT sources is 5 times higher than that of FR Is, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR 0s with respect to FR Is. An age-size scenario that considers FR 0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR 0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR 0s might be intrinsically different from those of the FR Is, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR 0s and FR I/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.
Flat-Spectrum Radio Sources as Likely Counterparts of Unidentified INTEGRAL Sources (Research Note)
NASA Technical Reports Server (NTRS)
Molina, M.; Landi, R.; Bassani, L.; Malizia, A.; Stephen, J. B.; Bazzano, A.; Bird, A. J.; Gehrels, N.
2012-01-01
Many sources in the fourth INTEGRAL/IBIS catalogue are still unidentified since they lack an optical counterpart. An important tool that can help in identifying and classifying these sources is the cross-correlation with radio catalogues, which are very sensitive and positionally accurate. Moreover, the radio properties of a source, such as the spectrum or morphology, could provide further insight into its nature. In particular, flat-spectrum radio sources at high Galactic latitudes are likely to be AGN, possibly associated to a blazar or to the compact core of a radio galaxy. Here we present a small sample of 6 sources extracted from the fourth INTEGRAL/IBIS catalogue that are still unidentified or unclassified, but which are very likely associated with a bright, flat-spectrum radio object. To confirm the association and to study the source X-ray spectral parameters, we performed X-ray follow-up observations with Swift/XRT of all objects. We report in this note the overall results obtained from this search and discuss the nature of each individual INTEGRAL source. We find that 5 of the 6 radio associations are also detected in X-rays; furthermore, in 3 cases they are the only counterpart found. More specifically, IGR J06073-0024 is a flat-spectrum radio quasar at z = 1.08, IGR J14488-4008 is a newly discovered radio galaxy, while IGR J18129-0649 is an AGN of a still unknown type. The nature of two sources (IGR J07225-3810 and IGR J19386-4653) is less well defined, since in both cases we find another X-ray source in the INTEGRAL error circle; nevertheless, the flat-spectrum radio source, likely to be a radio loud AGN, remains a viable and, in fact, a more convincing association in both cases. Only for the last object (IGR J11544-7618) could we not find any convincing counterpart since the radio association is not an X-ray emitter, while the only X-ray source seen in the field is a G star and therefore unlikely to produce the persistent emission seen by INTEGRAL.
Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-04-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has an 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has a ˜13 Gyr old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyrs ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical AGN feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot halos around such massive galaxies and the growth of super/over-massive black holes via chaotic cold accretion.
Digging for red nuggets: discovery of hot haloes surrounding massive, compact, relic galaxies
NASA Astrophysics Data System (ADS)
Werner, N.; Lakhchaura, K.; Canning, R. E. A.; Gaspari, M.; Simionescu, A.
2018-07-01
We present the results of Chandra X-ray observations of the isolated, massive, compact, relic galaxies MRK 1216 and PGC 032873. Compact massive galaxies observed at z > 2, also called red nuggets, formed in quick dissipative events and later grew by dry mergers into the local giant ellipticals. Due to the stochastic nature of mergers, a few of the primordial massive galaxies avoided the mergers and remained untouched over cosmic time. We find that the hot atmosphere surrounding MRK 1216 extends far beyond the stellar population and has a 0.5-7 keV X-ray luminosity of LX = (7.0 ± 0.2) × 1041 erg s-1, which is similar to the nearby X-ray bright giant ellipticals. The hot gas has a short central cooling time of ˜50 Myr and the galaxy has an ˜13-Gyr-old stellar population. The presence of an X-ray atmosphere with a short nominal cooling time and the lack of young stars indicate the presence of a sustained heating source, which prevented star formation since the dissipative origin of the galaxy 13 Gyr ago. The central temperature peak and the presence of radio emission in the core of the galaxy indicate that the heating source is radio-mechanical active galactic nucleus (AGN) feedback. Given that both MRK 1216 and PGC 032873 appear to have evolved in isolation, the order of magnitude difference in their current X-ray luminosity could be traced back to a difference in the ferocity of the AGN outbursts in these systems. Finally, we discuss the potential connection between the presence of hot haloes around such massive galaxies and the growth of super-/overmassive black holes via chaotic cold accretion.
Compact Binary Mergers and the Event Rate of Fast Radio Bursts
NASA Astrophysics Data System (ADS)
Cao, Xiao-Feng; Yu, Yun-Wei; Zhou, Xia
2018-05-01
Fast radio bursts (FRBs) are usually suggested to be associated with mergers of compact binaries consisting of white dwarfs (WDs), neutron stars (NSs), or black holes (BHs). We test these models by fitting the observational distributions in both redshift and isotropic energy of 22 Parkes FRBs, where, as usual, the rates of compact binary mergers (CBMs) are connected with cosmic star formation rates by a power-law distributed time delay. It is found that the observational distributions can well be produced by the CBM model with a characteristic delay time from several tens to several hundreds of megayears and an energy function index 1.2 ≲ γ ≲ 1.7, where a tentative fixed spectral index β = 0.8 is adopted for all FRBs. Correspondingly, the local event rate of FRBs is constrained to {(3{--}6)× {10}4{f}{{b}}-1({ \\mathcal T }/270{{s}})}-1{({ \\mathcal A }/2π )}-1 {Gpc}}-3 {yr}}-1 for an adopted minimum FRB energy of E min = 3 × 1039 erg, where f b is the beaming factor of the radiation, { \\mathcal T } is the duration of each pointing observation, and { \\mathcal A } is the sky area of the survey. This event rate, about an order of magnitude higher than the rates of NS–NS/NS–BH mergers, indicates that the most promising origin of FRBs in the CBM scenario could be mergers of WD–WD binaries. Here a massive WD could be produced since no FRB was found to be associated with an SN Ia. Alternatively, if all FRBs can repeat on a timescale much longer than the period of current observations, then they could also originate from a young active NS that forms from relatively rare NS–NS mergers and accretion-induced collapses of WD–WD binaries.
NASA Astrophysics Data System (ADS)
Müller, C.; Kadler, M.; Ojha, R.; Schulz, R.; Trüstedt, J.; Edwards, P. G.; Ros, E.; Carpenter, B.; Angioni, R.; Blanchard, J.; Böck, M.; Burd, P. R.; Dörr, M.; Dutka, M. S.; Eberl, T.; Gulyaev, S.; Hase, H.; Horiuchi, S.; Katz, U.; Krauß, F.; Lovell, J. E. J.; Natusch, T.; Nesci, R.; Phillips, C.; Plötz, C.; Pursimo, T.; Quick, J. F. H.; Stevens, J.; Thompson, D. J.; Tingay, S. J.; Tzioumis, A. K.; Weston, S.; Wilms, J.; Zensus, J. A.
2018-02-01
Context. TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of - 30° declination including high-resolution very long baseline interferometry (VLBI) imaging, radio, optical/UV, X-ray, and γ-ray studies. We have previously published first-epoch8.4 GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and γ-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (> 100 TeV) neutrino events have been found. Aims: We characterize the parsec-scale radio properties of the jets and compare them with the quasi-simultaneous Fermi/LAT γ-ray data. Furthermore, we study the jet properties of sources which are in positional coincidence with high-energy neutrino events compared to the full sample. We test the positional agreement of high-energy neutrino events with various AGN samples. Methods: TANAMI VLBI observations at 8.4 GHz are made with southern hemisphere radio telescopes located in Australia, Antarctica, Chile, New Zealand, and South Africa. Results: Our observations yield the first images of many jets below - 30° declination at milliarcsecond resolution. We find that γ-ray loud TANAMI sources tend to be more compact on parsec-scales and have higher core brightness temperatures than γ-ray faint jets, indicating higher Doppler factors. No significant structural difference is found between sources in positional coincidence with high-energy neutrino events and other TANAMI jets. The 22 γ-ray brightest AGN in the TANAMI sky show only a weak positional agreement with high-energy neutrinos demonstrating that the > 100 TeV IceCube signal is not simply dominated by a small number of the γ-ray brightest blazars. Instead, a larger number of sources have to contribute to the signal with each individual source having only a small Poisson probability for producing an event in multi-year integrations of current neutrino detectors. The cleaned VLBI images displayed in Figs. 1, 2 and A.1 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A1
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission.
Marinan, Anne D; Cahoy, Kerri L; Bishop, Rebecca L; Lui, Susan S; Bardeen, James R; Mulligan, Tamitha; Blackwell, William J; Leslie, R Vincent; Osaretin, Idahosa; Shields, Michael
2016-12-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K.
Assessment of Radiometer Calibration with GPS Radio Occultation for the MiRaTA CubeSat Mission
Marinan, Anne D.; Cahoy, Kerri L.; Bishop, Rebecca L.; Lui, Susan S.; Bardeen, James R.; Mulligan, Tamitha; Blackwell, William J.; Leslie, R. Vincent; Osaretin, Idahosa; Shields, Michael
2017-01-01
The Microwave Radiometer Technology Acceleration (MiRaTA) is a 3U CubeSat mission sponsored by the NASA Earth Science Technology Office (ESTO). The science payload on MiRaTA consists of a tri-band microwave radiometer and Global Positioning System (GPS) radio occultation (GPSRO) sensor. The microwave radiometer takes measurements of all-weather temperature (V-band, 50-57 GHz), water vapor (G-band, 175-191 GHz), and cloud ice (G-band, 205 GHz) to provide observations used to improve weather forecasting. The Aerospace Corporation's GPSRO experiment, called the Compact TEC (Total Electron Content) and Atmospheric GPS Sensor (CTAGS), measures profiles of temperature and pressure in the upper troposphere/lower stratosphere (∼20 km) and electron density in the ionosphere (over 100 km). The MiRaTA mission will validate new technologies in both passive microwave radiometry and GPS radio occultation: (1) new ultra-compact and low-power technology for multi-channel and multi-band passive microwave radiometers, (2) the application of a commercial off the shelf (COTS) GPS receiver and custom patch antenna array technology to obtain neutral atmospheric GPSRO retrieval from a nanosatellite, and (3) a new approach to spaceborne microwave radiometer calibration using adjacent GPSRO measurements. In this paper, we focus on objective (3), developing operational models to meet a mission goal of 100 concurrent radiometer and GPSRO measurements, and estimating the temperature measurement precision for the CTAGS instrument based on thermal noise. Based on an analysis of thermal noise of the CTAGS instrument, the expected temperature retrieval precision is between 0.17 K and 1.4 K, which supports the improvement of radiometric calibration to 0.25 K. PMID:28828144
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth A.
2009-01-01
Interstellar magnetic fields are believed to play a crucial role in the star-formation process, therefore a comprehensive study of magnetic fields is necessary in understanding the origins of stars. These projects use observational data obtained from the Very Large Array (VLA) in Socorro, NM. The data reveal interstellar magnetic field strengths via the Zeeman effect in radio frequency spectral lines. This information provides an estimate of the magnetic energy in star-forming interstellar clouds in the Galaxy, and comparisons can be made with these energies and the energies of self-gravitation and internal motions. From these comparisons, a better understanding of the role of magnetic fields in the origins of stars will emerge. NGC 6334 A is a compact HII region at the center of what is believed to be a large, rotating molecular torus (Kramer et al. (1997)). This is a continuing study based on initial measurements of the HI and OH Zeeman effect (Sarma et al. (2000)). The current study includes OH observations performed by the VLA at a higher spatial resolution than previously published data, and allows for a better analysis of the spatial variations of the magnetic field. A new model of the region is also developed based on OH opacity studies, dust continuum maps, radio spectral lines, and infrared (IR) maps. The VLA has been used to study the Zeeman effect in the 21cm HI line seen in absorption against radio sources in the Cygnus-X region. These sources are mostly galactic nebulae or HII regions, and are bright and compact in this region of the spectrum. HI absorption lines are strong against these regions and the VLA is capable of detecting the weak Zeeman effect within them. Support for this work was provided by the NSF PAARE program to South Carolina State University under award AST-0750814.
Design of a radio telescope surface segment actuator based on a form-closed eccentric cam
NASA Astrophysics Data System (ADS)
Smith, David R.
2014-07-01
As radio telescopes have reached larger diameters and higher frequencies, it is typically not possible to meet their surface accuracy specifications using passive homology-based designs. The most common solution to this problem in the current generation of large, high-frequency radio telescopes is to employ a system of linear actuators to correct the surface shape of the primary reflector. The exact specifications of active surface actuators vary with the telescope. However, they have many common features, some of which drive their design. In general, these actuators must provide precise and repeatable positioning under significant loads during operation and they must withstand even higher loads for survival conditions. For general safety, they typically must hold position in the event of a power failure and must incorporate position limits, whether electrical, mechanical, or both. Because the number of actuators is generally high for large active surfaces (hundreds or even thousands of actuators), they must also be reliable and of reasonable individual cost. Finally, for maximum flexibility in their installation, they must be compact. This paper presents a concept for an active surface actuator based on a form-closed eccentric cam (kinematically, a Scotch Yoke mechanism). Such a design is limited in stroke, but offers potential advantages in terms of manufacture, compactness, measurement, and survival loading. The paper demonstrates that some of the expected advantages cannot be practically realized, due to dimensions that are driven by survival loading conditions. As a result, this concept is likely to offer an advantage over conventional screw-type actuators only for cases where actuator runaway and stall are the driving considerations.
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Massardi, M.; Bonaldi, A.; Casasola, V.; Gregorini, L.; Trombetti, T.; Burigana, C.; Bonato, M.; De Zotti, G.; Ricci, R.; Stevens, J.; Ekers, R. D.; Bonavera, L.; di Serego Alighieri, S.; Liuzzo, E.; López-Caniego, M.; Paladino, R.; Toffolatti, L.; Tucci, M.; Callingham, J. R.
2018-03-01
We present high sensitivity (σP ≃ 0.6 mJy) polarimetric observations in seven bands, from 2.1 to 38 GHz, of a complete sample of 104 compact extragalactic radio sources brighter than 200 mJy at 20 GHz. Polarization measurements in six bands, in the range 5.5-38 GHz, for 53 of these objects were reported by Galluzzi et al. We have added new measurements in the same six bands for another 51 sources and measurements at 2.1 GHz for the full sample of 104 sources. Also, the previous measurements at 18, 24, 33, and 38 GHz were re-calibrated using the updated model for the flux density absolute calibrator, PKS1934-638, not available for the earlier analysis. The observations, carried out with the Australia Telescope Compact Array, achieved a 90 per cent detection rate (at 5σ) in polarization. 89 of our sources have a counterpart in the 72-231 MHz GLEAM (GaLactic and Extragalactic All-sky Murchison Widefield Array) survey, providing an unparalleled spectral coverage of 2.7 decades of frequency for these sources. While the total intensity data from 5.5 to 38 GHz could be interpreted in terms of single component emission, a joint analysis of more extended total intensity spectra presented here, and of the polarization spectra, reveals that over 90 per cent of our sources show clear indications of at least two emission components. We interpret this as an evidence of recurrent activity. Our high sensitivity polarimetry has allowed a 5σ detection of the weak circular polarization for ˜ 38 per cent of the data set, and a deeper estimate of 20 GHz polarization source counts than has been possible so far.
Early science with the Korean VLBI network: evaluation of system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Byun, Do-Young; Kim, Jongsoo
2014-04-01
We report the very long baseline interferometry (VLBI) observing performance of the Korean VLBI Network (KVN). The KVN is the first millimeter-dedicated VLBI network in East Asia. The KVN consists of three 21 m radio telescopes with baseline lengths in a range of 305-476 km. The quasi-optical system equipped on the antennas allows simultaneous observations at 22, 43, 86, and 129 GHz. The first fringes of the KVN were obtained at 22 GHz on 2010 June 8. Test observations at 22 and 43 GHz on 2010 September 30 and 2011 April 4 confirmed that the full cycle of VLBI observationsmore » works according to specification: scheduling, antenna control system, data recording, correlation, post-correlation data processing, astrometry, geodesy, and imaging analysis. We found that decorrelation due to instability in the hardware at times up to 600 s is negligible. The atmosphere fluctuations at KVN baseline are partly coherent, which allows us to extend integration time under good winter weather conditions up to 600 s without significant loss of coherence. The post-fit residuals at KVN baselines do not exhibit systematic patterns, and the weighted rms of the residuals is 14.8 ps. The KVN is ready to image compact radio sources both in snapshot and full-track modes with residual noise in calibrated phases of less than 2 deg at 22 and 43 GHz and with dynamic ranges of ∼300 for snapshot mode and ∼1000 for full-track mode. With simultaneous multi-frequency observations, the KVN can be used to make parsec-scale spectral index maps of compact radio sources.« less
Corona performance of a compact 230-kV line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, V.L.; Blair, D.E.; Easley, M.D.
Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitate increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less
Corona performance of a compact 230-kV line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, V.L.; Blair, D.E.; Easley, M.D.
Permitting requirements and the acquisition of new rights-of-way for transmission facilities has in recent years become increasingly difficult for most utilities, including Puget Sound Power and Light Company. In order to maintain a high degree of reliability of service while being responsive to public concerns regarding the siting of high voltage (HV) transmission facilities, Puget Power has found it necessary to more heavily rely upon the use of compact lines in franchise corridors. Compaction does, however, precipitant increased levels of audible noise (AN) and radio and TV interference (RI and TVI) due to corona on the conductors and insulator assemblies.more » Puget Power relies upon the Bonneville Power Administration (BPA) Corona and Field Effects computer program to calculate AN and RI for new lines. Since there was some question of the program`s ability to accurately represent quiet 230-kV compact designs, a joint project was undertaken with BPA to verify the program`s algorithms. Long-term measurements made on an operating Puget Power 230-kV compact line confirmed the accuracy of BPA`s AN model; however, the RI measurements were much lower than predicted by the BPA computer and other programs. This paper also describes how the BPA computer program can be used to calculate the voltage needed to expose insulator assemblies to the correct electric field in single test setups in HV laboratories.« less
The Physical Environment around IRAS 17599-2148: Infrared Dark Cloud and Bipolar Nebula
NASA Astrophysics Data System (ADS)
Dewangan, L. K.; Ojha, D. K.; Zinchenko, I.; Janardhan, P.; Ghosh, S. K.; Luna, A.
2016-12-01
We present a multiscale and multiwavelength study to investigate the star formation process around IRAS 17599-2148, which is part of an elongated filamentary structure (EFS) (extension ˜21 pc) seen in the Herschel maps. Using the Herschel data analysis, at least six massive clumps (M clump ˜ 777-7024 M ⊙) are found in the EFS with a range of temperature and column density of ˜16-39 K and ˜(0.6-11) × 1022 cm-2 (A V ˜ 7-117 mag), respectively. The EFS hosts cold gas regions (I.e., infrared dark cloud) without any radio detection and a bipolar nebula (BN) linked with the H II region IRAS 17599-2148, tracing two distinct environments inferred through the temperature distribution and ionized emission. Based on virial analysis and higher values of self-gravitating pressure, the clumps are found unstable against gravitational collapse. We find 474 young stellar objects (YSOs) in the selected region, and ˜72% of these YSOs are found in the clusters distributed mainly toward the clumps in the EFS. These YSOs might have spontaneously formed due to processes not related to the expanding H II region. At the edges of BN, four additional clumps are also associated with YSO clusters, which appear to be influenced by the expanding H II region. The most massive clump in the EFS contains two compact radio sources traced in the Giant Metre-wave Radio Telescope 1.28 GHz map and a massive protostar candidate, IRS 1, prior to an ultracompact H II phase. Using the Very Large Telescope/NACO near-infrared images, IRS 1 is resolved with a jet-like feature within a 4200 au scale.
The γ-ray emission region in the Fanaroff-Riley II radio galaxy 3C 111
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandi, P.; Torresi, E.; Stanghellini, C.
The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). In this analysis of the 24 month γ-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increasemore » of the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. Furthermore, the temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the γ-ray dissipative zone in an FRII jet. Here, we argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less
The γ-ray emission region in the Fanaroff-Riley II radio galaxy 3C 111
Grandi, P.; Torresi, E.; Stanghellini, C.
2012-04-30
The broad-line radio galaxy 3C 111, characterized by a Fanaroff-Riley II (FRII) radio morphology, is one of the sources of the misaligned active galactic nucleus sample, consisting of radio galaxies and steep spectrum radio quasars, recently detected by the Fermi Large Area Telescope (LAT). In this analysis of the 24 month γ-ray light curve shows that 3C 111 was only occasionally detected at high energies. It was bright at the end of 2008 and faint, below the Fermi-LAT sensitivity threshold, for the rest of the time. A multifrequency campaign of 3C 111, ongoing in the same period, revealed an increasemore » of the millimeter, optical, and X-ray fluxes in 2008 September-November, interpreted by Chatterjee et al. as due to the passage of a superluminal knot through the jet core. Furthermore, the temporal coincidence of the millimeter-optical-X-ray outburst with the GeV activity suggests a cospatiality of the events, allowing, for the first time, the localization of the γ-ray dissipative zone in an FRII jet. Here, we argue that the GeV photons of 3C 111 are produced in a compact region confined within 0.1 pc and at a distance of about 0.3 pc from the black hole.« less
NASA Technical Reports Server (NTRS)
Blanchard, Jay M.; Lovell, James E. J.; Ojha, Roopesh; Kadler, Matthias; Dickey, John M.; Edwards, Philip G.
2011-01-01
Context. Frequent, simultaneous observations across the electromagnetic spectrum are essential to the study of a range of astrophysical phenomena including Active Galactic Nuclei. A key tool of such studies is the ability to observe an object when it flares i.e. exhibits a rapid and significant increase in its flux density. Aims. We describe the specific observational procedures and the calibration techniques that have been developed and tested to create a single baseline radio interferometer. that can rapidly observe a flaring object. This is the only facility that is dedicated to rapid high resolution radio observations of an object south of -30 degrees declination. An immediate application is to provide rapid contemporaneous radio coverage of AGN flaring at y-ray frequencies detected by the Fermi Gamma-ray Space Telescope. Methods. A single baseline interferometer was formed with radio telescopes in Hobart, Tasmania and Ceduna, South Australia. A software correlator was set up at the University of Tasmania to correlate these data. Results. Measurements of the flux densities of flaring objects can be made using our observing strategy within half an hour of a triggering event. These observations can be calibrated with amplitude errors better than 20%. Lower limits to the brightness temperatures of the sources can also be calculated using CHI. Key words. instrumentation:interferometers - galaxies:active - galaxies:jets - galaxies:nuclei quasars:general gamma rays:galaxies- 1.
Effect of suspension property on granule morphology and compaction behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hae-Weon Lee, Guesup Song, In-Sik Suk
1995-12-31
Granule morphology is an important factor during dry pressing, since it has great influences on die flowability, compaction ratio, and resulting green microstructure. Granule morphology and packing structure of ultrafine Si{sub 3}N{sub 4} particles in the granule were optimized during spray drying by adjusting the suspension structure. The particle packing structure of spray-dried granule was investigated with suspension structure. The effects of granule morphology and its particle packing structure on compaction and resultant sintering behavior were evaluated.
Principles of control automation of soil compacting machine operating mechanism
NASA Astrophysics Data System (ADS)
Anatoly Fedorovich, Tikhonov; Drozdov, Anatoly
2018-03-01
The relevance of the qualitative compaction of soil bases in the erection of embankment and foundations in building and structure construction is given.The quality of the compactible gravel and sandy soils provides the bearing capability and, accordingly, the strength and durability of constructed buildings.It has been established that the compaction quality depends on many external actions, such as surface roughness and soil moisture; granulometry, chemical composition and degree of elasticity of originalfilled soil for compaction.The analysis of technological processes of soil bases compaction of foreign and domestic information sources showed that the solution of such important problem as a continuous monitoring of soil compaction actual degree in the process of machine operation carry out only with the use of modern means of automation. An effective vibrodynamic method of gravel and sand material sealing for the building structure foundations for various applications was justified and suggested.The method of continuous monitoring the soil compaction by measurement of the amplitudes and frequencies of harmonic oscillations on the compactible surface was determined, which allowed to determine the basic elements of facilities of soil compacting machine monitoring system of operating, etc. mechanisms: an accelerometer, a bandpass filter, a vibro-harmonics, an on-board microcontroller. Adjustable parameters have been established to improve the soil compaction degree and the soil compacting machine performance, and the adjustable parameter dependences on the overall indexhave been experimentally determined, which is the soil compaction degree.A structural scheme of automatic control of the soil compacting machine control mechanism and theoperation algorithm has been developed.
The Mpc-scale radio source associated with the GPS galaxy B1144+352
NASA Astrophysics Data System (ADS)
Schoenmakers, A. P.; de Bruyn, A. G.; Röttgering, H. J. A.; van der Laan, H.
1999-01-01
We present the results of new observations of the enigmatic radio source B1144+352 with the WSRT at 1.4 GHz. This source is hosted by an m_r = 14.3 +/- 0.1 galaxy at a redshift of z=0.063 +/- 0.002 and is one of the lowest redshift Gigahertz Peaked Spectrum (GPS) sources known. It has been known to show radio structure on pc-scale in the radio core and on 20-60 kpc-scale in two jet-like radio structures. The WENSS and NVSS surveys have now revealed faint extended radio structures on an even much larger scale. We have investiga ted these large-scale radio components with new 1.4-GHz WSRT observations. Our radio data indicate that the eastern radio structure has a leading hotspot and we conclude that this structure is a radio lobe originating in the galaxy hosting the GPS source. The western radio structure contains two separate radio sources which are superposed on the sky. The first is a low-power radio source, hosted by a m_R = 15.3 +/- 0.5 galaxy at a similar redshift (z=0.065+/-0.001) to the GPS host galaxy; the second is an extended radio lobe, which we believe is associated with the GPS host galaxy and which contains an elongated tail. The total projected linear size of the extended radio structure associated with B1144+352 is ~ 1.2 Mpc. The core of B1144+353 is a known variable radio source: its flux density at 1.4 GHz has increased continuously between 1974 and 1994. We have measured the flux density of the core in our WSRT observations (epoch 1997.7) and find a value of 541+/-10 mJy This implies that its flux density has decreased by ~ 70 mJy between 1994 and 1997. Further, we have retrieved unpublished archival ROSAT HRI data of B1144+352. The source has been detected and appears to be slightly extended in X-rays. We find a luminosity of (1.26 +/- 0.15)*E(43) erg s(-1) between 0.1 and 2.4 keV, assumin that the X-ray emission is due to an AGN with a powerlaw spectrum with photon index 1.8, or (0.95 +/- 0.11) *E(43) erg s(-1) if it is due to thermal bremsstrahlung at T=10(7) K. The detection of the X-ray source suggests that the intrinsic Hi column density cannot be much larger than a few times 10(21) cm(-2) . The non-detection of an extended X-ray halo in a radius of 250 kpc around the host galaxy limits the X-ray luminosity of an intra-cluster gas component within this radius to <~2.3 x 10(42) erg s(-1) (1sigma upper limit). This is below the luminosity of an X-ray luminous cluster and is more comparable to that of poor groups of galaxies. Also the optical data show no evidence for a rich cluster around the host galaxy. B1144+352 is the second GPS galaxy known to be associated with a Mpc-sized radio source, the other being B1245+676. We argue that the observed structure in both these GPS radio sources must be the result of an interrupted central jet-activity, and that a such they may well be the progenitors of sources belonging to the class of double-double radio galaxy.
Applications of the Strategic Defense Initiative's compact accelerators
NASA Technical Reports Server (NTRS)
Montanarelli, Nick; Lynch, Ted
1991-01-01
The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.
NASA Technical Reports Server (NTRS)
Burbidge, G. R.; Jones, T. W.; Odell, S. L.
1974-01-01
The energy content of the compact incoherent electron-synchrotron sources 3C 84, 3C 120, 3C 273, 3C 279, 3C 454.3, CTA 102, 3C 446, PKS 2134+004, VRO 42.22.01 and OJ 287 is calculated on the assumption that the low-frequency turnovers in the radio spectrum are due to self-absorption and that the electron distribution is isotropic. The dependence of the source parameters on various modifications of the standard assumptions is determined. These involve relativistic motions, alternate explanations for the low-frequency turnover, proton-synchrotron radiation, and distance to the source. The canonical interpretation is found to be accurate in many respects; some of the difficulties and ways of dealing with them are discussed in detail.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Goharji, A.; Cohen, M.
1984-01-01
Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.
Probing the Milky Way electron density using multi-messenger astronomy
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane
2015-04-01
Multi-messenger observations of ultra-compact binaries in both gravitational waves and electromagnetic radiation supply highly complementary information, providing new ways of characterizing the internal dynamics of these systems, as well as new probes of the galaxy itself. Electron density models, used in pulsar distance measurements via the electron dispersion measure, are currently not well constrained. Simultaneous radio and gravitational wave observations of pulsars in binaries provide a method of measuring the average electron density along the line of sight to the pulsar, thus giving a new method for constraining current electron density models. We present this method and assess its viability with simulations of the compact binary component of the Milky Way using the public domain binary evolution code, BSE. This work is supported by NASA Award NNX13AM10G.
Dark jets in the soft X-ray state of black hole binaries?
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.
2017-04-01
X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.
Moore, Michael D; Steinbach, Alison M; Buckner, Ira S; Wildfong, Peter L D
2009-11-01
To use advanced powder X-ray diffraction (PXRD) to characterize the structure of anhydrous theophylline following compaction, alone, and as part of a binary mixture with either alpha-lactose monohydrate or microcrystalline cellulose. Compacts formed from (1) pure theophylline and (2) each type of binary mixture were analyzed intact using PXRD. A novel mathematical technique was used to accurately separate multi-component diffraction patterns. The pair distribution function (PDF) of isolated theophylline diffraction data was employed to assess structural differences induced by consolidation and evaluated by principal components analysis (PCA). Changes induced in PXRD patterns by increasing compaction pressure were amplified by the PDF. Simulated data suggest PDF dampening is attributable to molecular deviations from average crystalline position. Samples compacted at different pressures were identified and differentiated using PCA. Samples compacted at common pressures exhibited similar inter-atomic correlations, where excipient concentration factored in the analyses involving lactose. Practical real-space structural analysis of PXRD data by PDF was accomplished for intact, compacted crystalline drug with and without excipient. PCA was used to compare multiple PDFs and successfully differentiated pattern changes consistent with compaction-induced disordering of theophylline as a single component and in the presence of another material.
Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models
NASA Astrophysics Data System (ADS)
Koerding, E. G.; Colbert, E. J. M.; Falcke, H.
2004-05-01
We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.
The radio emission from the ultraluminous far-infrared galaxy NGC 6240
NASA Technical Reports Server (NTRS)
Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan
1994-01-01
We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.
Radio Observations as a Tool to Investigate Shocks and Asymmetries in Accreting White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Weston, Jennifer Helen Seng; E-Nova Project
2017-01-01
In this dissertation, I use radio observations with the Karl G. Jansky Very Large Array (VLA) to reveal that colliding flows within the ejecta from nova explosions can lead to shocks that accelerate particles and produce radio synchrotron emission. In both novae V1723 Aql and V5589 Sgr, radio emission within the first one to two months deviated strongly from the classic thermal model for radio emission from novae. Three years of radio observations of V1723 Aql show that multiple outflows from the system collided to create non-thermal shocks with a brightness temperature of >106 K. After these shocks faded, the radio light curve became roughly consistent with an expanding thermal shell. However, resolved images of V1723 Aql show elongated material that apparently rotates its major axis over the course of 15 months. In the case of nova V5589 Sgr, I show that the early radio emission is dominated by a shock-powered non-thermal flare that produces strong (kTx > 33 keV) X-rays. These findings have important implications for understanding how normal novae generate GeV gamma-rays.Additionally, I present VLA observations of the symbiotic star CH Cyg and two small surveys of symbiotic binaries. Radio observations of CH Cyg tie the ejection of a collimated jet to a change of state in the accretion disk, strengthening the link between bipolar outflows from accreting white dwarfs and other types of accreting compact objects. Next, I use a survey of eleven accretion-driven symbiotic binaries to determine that the radio brightness of a symbiotic system could potentially be used as an indicator of whether it is powered predominantly by shell burning on the surface of the white dwarf or by accretion. This survey also produces the first radio detections of seven of the target systems. In the second survey of seventeen symbiotic binaries, I spatially resolve extended radio emission in several systems for the first time. The results from these surveys provide some support for the model of radio emission where the red giant wind is photoionized by the white dwarf, and suggest that there may be a greater population of radio faint, accretion driven symbiotic systems.
Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2016-01-01
This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.
Grand unification of neutron stars
Kaspi, Victoria M.
2010-01-01
The last decade has shown us that the observational properties of neutron stars are remarkably diverse. From magnetars to rotating radio transients, from radio pulsars to isolated neutron stars, from central compact objects to millisecond pulsars, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to establish an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I survey the disparate neutron stars classes, describe their properties, and highlight results made possible by the Chandra X-Ray Observatory, in celebration of its 10th anniversary. Finally, I describe the current status of efforts at physical “grand unification” of this wealth of observational phenomena, and comment on possibilities for Chandra’s next decade in this field. PMID:20404205
NASA Astrophysics Data System (ADS)
Morgan, J. S.; Macquart, J. P.; Ekers, R.; Bisi, M. M.; Jackson, B. V.; Tokumaru, M.; Manoharan, P. K.; Chhetri, R.
2016-12-01
Interplanetary scintillation (IPS) is a phenomenon which can be used to probe both the heliospheric plasma and the structure of compact astrophysical radio sources. It is a vital tool for near-real-time monitoring of space weather. Previous IPS studies have generally relied on single concentrated collecting areas (either phased arrays or dishes). The Murchison Widefield Array (MWA) by contrast is a new-generation instrument consisting of a 128-element interferometer with an extremely wide field of view, and outstanding instantaneous imaging capability. This enables IPS studies of 1000 sources simultaneously, increasing the number of daily measurements that can be made by a factor of two or more. Here we report on progress from an ongoing IPS survey with the MWA where observations are made simultaneously at 80MHz and 150MHz. Dual-frequency observations allow solar wind velocities to be determined even with a single station, more accurately than from the analyses of a single-frequency IPS spectrum alone. Furthermore, the different refractive indices at different wavelengths leads to a lag in the cross correlation of the two frequency bands. This allows the bulk density of the outer solar corona to be probed along multiple lines of sight. We will discuss recent results and how they might be integrated into international Space Weather Prediction efforts such as the Worldwide IPS Stations (WIPSS) Network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.
The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability onmore » timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.« less
NASA Astrophysics Data System (ADS)
O'Sullivan, S. P.; Lenc, E.; Anderson, C. S.; Gaensler, B. M.; Murphy, T.
2018-04-01
We present a low-frequency, broad-band polarization study of the FRII radio galaxy PKS J0636-2036 (z = 0.0551), using the Murchison Widefield Array (MWA) from 70 to 230 MHz. The northern and southern hotspots (separated by ˜14.5 arcmin on the sky) are resolved by the MWA (3.3 arcmin resolution) and both are detected in linear polarization across the full frequency range. A combination of Faraday rotation measure (RM) synthesis and broad-band polarization model fitting is used to constrain the Faraday depolarization properties of the source. For the integrated southern hotspot emission, two-RM-component models are strongly favoured over a single RM component, and the best-fitting model requires Faraday dispersions of approximately 0.7 and 1.2 rad m-2 (with a mean RM of ˜50 rad m-2). High-resolution imaging at 5 arcsec with the Australia Telescope Compact Array shows significant sub-structure in the southern hotspot and highlights some of the limitations in the polarization modelling of the MWA data. Based on the observed depolarization, combined with extrapolations of gas density scaling relations for group environments, we estimate magnetic field strengths in the intergalactic medium between ˜0.04 and 0.5 μG. We also comment on future prospects of detecting more polarized sources at low frequencies.
Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER
NASA Astrophysics Data System (ADS)
Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.
2018-05-01
We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.
NASA Astrophysics Data System (ADS)
Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip
2018-01-01
We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.
Digital Audio Radio Broadcast Systems Laboratory Testing Nearly Complete
NASA Technical Reports Server (NTRS)
2005-01-01
Radio history continues to be made at the NASA Lewis Research Center with the completion of phase one of the digital audio radio (DAR) testing conducted by the Consumer Electronics Group of the Electronic Industries Association. This satellite, satellite/terrestrial, and terrestrial digital technology will open up new audio broadcasting opportunities both domestically and worldwide. It will significantly improve the current quality of amplitude-modulated/frequency-modulated (AM/FM) radio with a new digitally modulated radio signal and will introduce true compact-disc-quality (CD-quality) sound for the first time. Lewis is hosting the laboratory testing of seven proposed digital audio radio systems and modes. Two of the proposed systems operate in two modes each, making a total of nine systems being tested. The nine systems are divided into the following types of transmission: in-band on-channel (IBOC), in-band adjacent-channel (IBAC), and new bands. The laboratory testing was conducted by the Consumer Electronics Group of the Electronic Industries Association. Subjective assessments of the audio recordings for each of the nine systems was conducted by the Communications Research Center in Ottawa, Canada, under contract to the Electronic Industries Association. The Communications Research Center has the only CCIR-qualified (Consultative Committee for International Radio) audio testing facility in North America. The main goals of the U.S. testing process are to (1) provide technical data to the Federal Communication Commission (FCC) so that it can establish a standard for digital audio receivers and transmitters and (2) provide the receiver and transmitter industries with the proper standards upon which to build their equipment. In addition, the data will be forwarded to the International Telecommunications Union to help in the establishment of international standards for digital audio receivers and transmitters, thus allowing U.S. manufacturers to compete in the world market.
NASA Astrophysics Data System (ADS)
Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.
2008-06-01
We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.
Identification of 1.4 Million Active Galactic Nuclei In the Mid-Infrared Using WISE Data
2015-11-01
galaxies – infrared: stars – galaxies : active – quasars: general Supporting material: machine-readable table 1. INTRODUCTION The International Celestial...AGN-dominated galaxies , optical emission is thought to originate from the compact accretion disk surrounding the supermassive black hole (SMBH), while... galaxies , an optical centroid can be shifted relative to the radio position because of contamination from the host galaxy . Depending on the distance to
Radio variability and structure of T Tauri stars
NASA Technical Reports Server (NTRS)
Cohen, Martin; Bieging, John H.
1986-01-01
Observations of radio variability in V410 Tau and in HP Tau/G2 and /G3, and striking variations in the radio structure of DG Tau, are reported. The position of the radio peak of DG Tau has shown apparent motion between 1982 and 1985 along the flow axis from this star, while its morphology has varied from point-like to bipolar. These changes and the spectral index of 0.6 at high frequencies are interpreted as indicative of a variable, freely expanding radio jet in DG Tau.
Very-long-baseline radio interferometry observations of low power radio galaxies.
Giovannini, G; Cotton, W D; Feretti, L; Lara, L; Venturi, T; Marcaide, J M
1995-01-01
The parsec scale properties of low power radio galaxies are reviewed here, using the available data on 12 Fanaroff-Riley type I galaxies. The most frequent radio structure is an asymmetric parsec-scale morphology--i.e., core and one-sided jet. It is shared by 9 (possibly 10) of the 12 mapped radio galaxies. One (possibly 2) of the other galaxies has a two-sided jet emission. Two sources are known from published data to show a proper motion; we present here evidence for proper motion in two more galaxies. Therefore, in the present sample we have 4 radio galaxies with a measured proper motion. One of these has a very symmetric structure and therefore should be in the plane of the sky. The results discussed here are in agreement with the predictions of the unified scheme models. Moreover, the present data indicate that the parsec scale structure in low and high power radio galaxies is essentially the same. PMID:11607596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; Funk, S.; D'Abrusco, R.
2013-11-01
Nearly one-third of the γ-ray sources detected by Fermi are still unidentified, despite significant recent progress in this area. However, all of the γ-ray extragalactic sources associated in the second Fermi-LAT catalog have a radio counterpart. Motivated by this observational evidence, we investigate all the radio sources of the major radio surveys that lie within the positional uncertainty region of the unidentified γ-ray sources (UGSs) at a 95% level of confidence. First, we search for their infrared counterparts in the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) and then we analyze their IR colors in comparison withmore » those of the known γ-ray blazars. We propose a new approach, on the basis of a two-dimensional kernel density estimation technique in the single [3.4] – [4.6] – [12] μm WISE color-color plot, replacing the constraint imposed in our previous investigations on the detection at 22 μm of each potential IR counterpart of the UGSs with associated radio emission. The main goal of this analysis is to find distant γ-ray blazar candidates that, being too faint at 22 μm, are not detected by WISE and thus are not selected by our purely IR-based methods. We find 55 UGSs that likely correspond to radio sources with blazar-like IR signatures. An additional 11 UGSs that have blazar-like IR colors have been found within the sample of sources found with deep recent Australia Telescope Compact Array observations.« less
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts
NASA Astrophysics Data System (ADS)
Li, C. Y.; Chen, Y.; Wang, B.; Ruan, G. P.; Feng, S. W.; Du, G. H.; Kong, X. L.
2017-06-01
Type-I bursts ( i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7 - 0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. ( Solar Phys. 193, 227, 2000).
Sequence Determinants of Compaction in Intrinsically Disordered Proteins
Marsh, Joseph A.; Forman-Kay, Julie D.
2010-01-01
Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348
47 CFR 17.57 - Report of radio transmitting antenna construction, alteration, and/or removal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Report of radio transmitting antenna... COMMISSION GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.57 Report of radio transmitting antenna construction...
47 CFR 17.57 - Report of radio transmitting antenna construction, alteration, and/or removal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Report of radio transmitting antenna... COMMISSION GENERAL CONSTRUCTION, MARKING, AND LIGHTING OF ANTENNA STRUCTURES Specifications for Obstruction Marking and Lighting of Antenna Structures § 17.57 Report of radio transmitting antenna construction...
The Ionization Fraction in the Obscuring ``Torus'' of an Active Galactic Nucleus
NASA Astrophysics Data System (ADS)
Wilson, A. S.; Roy, A. L.; Ulvestad, J. S.; Colbert, E. J. M.; Weaver, K. A.; Braatz, J. A.; Henkel, C.; Matsuoka, M.; Xue, S.; Iyomoto, N.; Okada, K.
1998-10-01
The LINER galaxy NGC 2639 contains a water vapor megamaser, suggesting the presence of a nuclear accretion disk or torus viewed close to edge-on. This galaxy is thus a good candidate for revealing absorption by the torus of any compact nuclear continuum emission. In this paper, we report VLBA radio maps at three frequencies and an ASCA X-ray spectrum obtained to search for free-free and photoelectric absorptions, respectively. The radio observations reveal a compact (<0.2 pc) nuclear source with a spectrum that turns over sharply near 5 GHz. This turnover may reflect either synchrotron self-absorption or free-free absorption. The galaxy is detected by ASCA with an observed luminosity of 1.4 × 1041 ergs s-1 in the 0.6-10 keV band. The X-ray spectrum shows emission in excess of a power-law model at energies greater than 4 keV; we interpret this excess as compact, nuclear, hard X-ray emission with the lower energies photoelectrically absorbed by an equivalent hydrogen column of ~= 5 × 1023 cm-2. If we assume that the turnover in the radio spectrum is caused by free-free absorption and that both the free-free and photoelectric absorptions are produced by the same gaseous component, the ratio n2edl/nHdl may be determined. If the masing molecular gas is responsible for both absorptions, the required ionization fraction is >~1.3 × 10-5, which is comparable to the theoretical upper limit derived by Neufeld, Maloney, and Conger for X-ray heated molecular gas. The two values may be reconciled if the molecular gas is very dense: nH2>~109 cm-3. The measured ionization fraction is also consistent with the idea that both absorptions occur in a hot (~6000 K), weakly ionized (ionization fraction a few times 10-2) atomic region that may coexist with the warm molecular gas. If this is the case, the absorbing gas is ~1 pc from the nucleus. We rule out the possibility that both absorptions occur in a fully ionized gas near 104 K. If our line of sight passes through more than one phase, the atomic gas probably dominates the free-free absorption, while the molecular gas may dominate the photoelectric absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moin, A.; Wang, Z.; Chandra, P.
We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-termmore » monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.« less
Color Composite Image of the Supernova Remnant
NASA Technical Reports Server (NTRS)
2000-01-01
This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)
Investigating the temporal domain of massive ionized jets - I. A pilot study
NASA Astrophysics Data System (ADS)
Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Cunningham, N.
2018-03-01
We present sensitive (σ < 10 μJy beam- 1), radio continuum observations using the Australian Telescope Compact Array at frequencies of 6 and 9 GHz towards four massive young stellar objects (MYSOs). From a previous, less sensitive work, these objects are known to harbour ionized jets associated with radio lobes, which result from shock processes. In comparison with that work, further emission components are detected towards each MYSO. These include extended, direct, thermal emission from the ionized jet's stream, new radio lobes indicative of shocks close (<105 au) to the MYSO, three radio Herbig-Haro objects separated by up to 3.8 pc from the jet's launching site, and an IR-dark source coincident with CH3OH maser emission. No significant, integrated flux variability is detected towards any jets or shocked lobes, and only one proper motion is observed (1806± 596{{ km}{ s}^{-1}{ }} parallel to the jet axis of G310.1420+00.7583A). Evidence for precession is detected in all four MYSOs with precession periods and angles within the ranges 66-15 480 yr and 6°-36°, respectively. Should precession be the result of the influence from a binary companion, we infer orbital radii of 30-1800 au.
History of Chandra X-Ray Observatory
2000-11-01
This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have "cooled" to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)
Water masers in NGC7538 region
NASA Astrophysics Data System (ADS)
Kameya, Osamu
We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.
Accreting Compact Object at the Center of the Supernova Remnant RCW 103.
NASA Astrophysics Data System (ADS)
Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.
2002-05-01
We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.
Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range
NASA Astrophysics Data System (ADS)
Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.
2017-06-01
Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.
NASA Astrophysics Data System (ADS)
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
ATLASGAL - towards a complete sample of massive star forming clumps
NASA Astrophysics Data System (ADS)
Urquhart, J. S.; Moore, T. J. T.; Csengeri, T.; Wyrowski, F.; Schuller, F.; Hoare, M. G.; Lumsden, S. L.; Mottram, J. C.; Thompson, M. A.; Menten, K. M.; Walmsley, C. M.; Bronfman, L.; Pfalzner, S.; König, C.; Wienen, M.
2014-09-01
By matching infrared-selected, massive young stellar objects (MYSOs) and compact H II regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ˜1000 embedded young massive stars between 280° < ℓ < 350° and 10° < ℓ < 60° with | b | < 1.5°. Combined with an existing sample of radio-selected methanol masers and compact H II regions, the result is a catalogue of ˜1700 massive stars embedded within ˜1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and H II-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and H II-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources.
Laboratory evaluation of friction loss and compactability of asphalt mixtures.
DOT National Transportation Integrated Search
2012-04-01
This study aimed to develop prediction models for friction loss and laboratory compaction of asphalt : mixtures. In addition, the study evaluated the effect of compaction level and compaction method of skid : resistance and the internal structure of ...
GMRT discovery of PSR J1544+4937: An eclipsing black-widow pulsar identified with a Fermi-LAT source
Bhattacharyya, B.; Roy, J.; Ray, P. S.; ...
2013-07-29
Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope γ-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged γ-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (Mc > 0.017M ⊙). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingressmore » phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Finally, using the radio timing ephemeris we were able to detect γ-ray pulsations from this pulsar, confirming it as the source powering the γ-ray emission.« less
IS IGR J11014-6103 A PULSAR WITH THE HIGHEST KNOWN KICK VELOCITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsick, John A.; Bodaghee, Arash; Fornasini, Francesca
2012-05-10
We report on Chandra X-ray and Parkes radio observations of IGR J11014-6103, which is a possible pulsar wind nebula with a complex X-ray morphology and a likely radio counterpart. With the superb angular resolution of Chandra, we find evidence that a portion of the extended emission may be related to a bow shock due to the putative pulsar moving through the interstellar medium. The inferred direction of motion is consistent with IGR J11014-6103 having been born in the event that produced the supernova remnant (SNR) MSH 11-61A. If this association is correct, then previous constraints on the expansion of MSHmore » 11-61A imply a transverse velocity for IGR J11014-6103 of 2400-2900 km s{sup -1}, depending on the SNR model used. This would surpass the kick velocities of any known pulsars and rival or surpass the velocities of any compact objects that are associated with SNRs. While it is important to confirm the nature of the source, our radio pulsation search did not yield a detection.« less
GMRT DISCOVERY OF PSR J1544+4937: AN ECLIPSING BLACK-WIDOW PULSAR IDENTIFIED WITH A FERMI-LAT SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, B.; Roy, J.; Gupta, Y.
2013-08-10
Using the Giant Metrewave Radio Telescope, we performed deep observations to search for radio pulsations in the directions of unidentified Fermi-Large Area Telescope {gamma}-ray sources. We report the discovery of an eclipsing black-widow millisecond pulsar, PSR J1544+4937, identified with the uncataloged {gamma}-ray source FERMI J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hr compact circular orbit with a very low mass companion (M{sub c} > 0.017M{sub Sun }). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in themore » eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect {gamma}-ray pulsations from this pulsar, confirming it as the source powering the {gamma}-ray emission.« less
Detection of a Double Relic in the Torpedo Cluster: SPT-CL J0245-5302
NASA Astrophysics Data System (ADS)
Zheng, Q.; Johnston-Hollitt, M.; Duchesne, S. W.; Li, W. T.
2018-06-01
The Torpedo cluster, SPT-CL J0245-5302 (S0295) is a massive, merging cluster at a redshift of z = 0.300, which exhibits a strikingly similar morphology to the Bullet cluster 1E 0657-55.8 (z = 0.296), including a classic bow shock in the cluster's intra-cluster medium revealed by Chandra X-ray observations. We present Australia Telescope Compact Array data centred at 2.1 GHz and Murchison Widefield Array data at frequencies between 72 MHz and 231 MHz which we use to study the properties of the cluster. We characterise a number of discrete and diffuse radio sources in the cluster, including the detection of two previously unknown radio relics on the cluster periphery. The average spectral index of the diffuse emission between 70 MHz and 3.1 GHz is α =-1.63_{-0.10}^{+0.10} and a radio-derived Mach number for the shock in the west of the cluster is calculated as M = 2.04. The Torpedo cluster is thus a double relic system at moderate redshift.
X-rays from the radio halo of Virgo A = M87
NASA Technical Reports Server (NTRS)
1985-01-01
The purpose of this study is to investigate in more detail the associated X-ray and radio emission in the Virgo A halo discovered by SGF. Improved Einstein HRI data and new radio maps obtained with the Very Large Array are described and the relation between the X-ray and radio structures is carefully examined. Several possible explanations are presented for the X-ray emission. The inverse compton model is found to be viable only if the magnetic field is variable and substantially weaker than the equipartition value. The principal alternative is excess thermal X-rays due to compression of the intracluster medium by the radio lobe. In either case, the association of such prominent radio and X-ray structures is unique among known radio galaxies.
DECONVOLUTION OF IMAGES FROM BLAST 2005: INSIGHT INTO THE K3-50 AND IC 5146 STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Arabindo; Netterfield, Calvin B.; Ade, Peter A. R.
2011-04-01
We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed itsmore » performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and {sup 12}CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below {approx} 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.« less
Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions
NASA Astrophysics Data System (ADS)
Roy, Arabindo; Ade, Peter A. R.; Bock, James J.; Brunt, Christopher M.; Chapin, Edward L.; Devlin, Mark J.; Dicker, Simon R.; France, Kevin; Gibb, Andrew G.; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Martin, Peter G.; Mauskopf, Philip; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Viero, Marco P.; Wiebe, Donald V.
2011-04-01
We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4farcm5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and 12CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.
The Remarkable Synchrotron Nebula Associated with PSR J1015-5719
NASA Astrophysics Data System (ADS)
Ng, Chi Yung; Bandiera, Rino; Hunstead, Richard; Johnston, Simon
2017-08-01
We report the discovery of a synchrotron nebula G283.1-0.59 associated with the young and energetic pulsar J1015-5719. Radio observations using the Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) at 36, 16, 6, and 3 cm reveal a complex morphology for the source. The pulsar is embedded in the "head" of the nebula with fan-shaped diffuse emission. This is connected to a circular bubble structure of 20" radius and followed by a collimated tail extending over 1'. Polarization measurements show a highly ordered magnetic field in the nebula. The intrinsic B-field wraps around the edge of the head and shows an azimuthal configuration near the pulsar, then switches direction quasi-periodically near the bubble and in the tail. Together with the flat radio spectrum observed, we suggest that this system is most plausibly a pulsar wind nebula (PWN), with the head as a bow shock that has a low Mach number and the bubble as a shell expanding in a dense environment, possibly due to flow instabilities. In addition, the bubble could act as a magnetic bottle trapping the relativistic particles. A comparison with other bow-shock PWNe with higher Mach numbers shows similar structure and B-field geometry, implying that pulsar velocity may not be the most critical factor in determining the properties of these systems.ATCA is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. MOST is operated by The University of Sydney with support from the Australian Research Council and the Science Foundation for Physics within the University of Sydney. This work is supported by an ECS grant under HKU 709713P.
Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, J.; Del Zanna, G.; Mason, H. E.
2014-04-01
We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less
Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior
NASA Astrophysics Data System (ADS)
Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.
2018-03-01
Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.
Energy Use of Home Audio Products in the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, K.B.; Meier, A.K.
1999-12-01
We conducted a bottom-up analysis using stock and usage estimates from secondary sources, and our own power measurements. We measured power levels of the most common audio products in their most commonly used operating modes. We found that the combined energy consumption of standby, idle, and play modes of clock radios, portable stereos, compact stereos, and component stereos was 20 TWh/yr, representing about 1.8% of the 1998 national residential electricity consumption.
2013-01-01
Conwy G. Infection prevention and treatment in patients with major burn injuries . Nurs Stand 2010; 25(7):51-2, 54, 56-8. 39. Butler KL, Goverman J...14. ABSTRACT This literature review provides a relatively compact summary of research efforts on diagnosing, managing, and treating injuries caused...difference between RF- induced injuries and ordinary burns is the location of the damage. A unique characteristic of RF energy is its ability to penetrate
Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants
NASA Technical Reports Server (NTRS)
Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)
2000-01-01
Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.
NASA Astrophysics Data System (ADS)
Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.
2014-01-01
Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.
Imaging spectroscopy of solar radio burst fine structures.
Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P
2017-11-15
Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.
Method of bonding metals with a radio-opaque adhesive/sealant for void detection and product made
NASA Technical Reports Server (NTRS)
Hermansen, Ralph D. (Inventor); Sutherland, Thomas H. (Inventor); Predmore, Roamer (Inventor)
1990-01-01
A method and structure for providing radio-opaque polymer compounds for use in metal bonding and sealing. A powder filler comprising a high atomic number metal or compound thereof is incorporated into a polymer compound to render it more radio-opaque than the surrounding metal structures. Voids or other discontinuities in the radio-opaque polymer compound can then be detected by x-ray inspection or other non-destructive radiographic procedure.
NASA Astrophysics Data System (ADS)
Titov, O. A.; Lopez, Yu. R.
2018-03-01
We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of 0.5 mas in the north-south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.
Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity
NASA Astrophysics Data System (ADS)
Turimov, Bobur; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Bambi, Cosimo
2018-06-01
In this paper we investigate the exterior vacuum electromagnetic fields of slow-rotating magnetized compact stars in conformal gravity. Assuming the dipolar magnetic field configuration, we obtain an analytical solution of the Maxwell equations for the magnetic and the electric fields outside a slowly rotating magnetized star in conformal gravity. Furthermore, we study the dipolar electromagnetic radiation and energy losses from a rotating magnetized star in conformal gravity. In order to get constraints on the L parameter of conformal gravity, the theoretical results for the magnetic field of a magnetized star in conformal gravity are combined with the precise observational data of radio pulsar period slowdown, and it is found that the maximum value of the parameter of conformal gravity is less than L ≲9.5 ×105 cm (L /M ≲5 ).
Multiphoton amplitude in a constant background field
NASA Astrophysics Data System (ADS)
Ahmad, Aftab; Ahmadiniaz, Naser; Corradini, Olindo; Kim, Sang Pyo; Schubert, Christian
2018-01-01
In this contribution, we present our recent compact master formulas for the multiphoton amplitudes of a scalar propagator in a constant background field using the worldline fomulation of quantum field theory. The constant field has been included nonperturbatively, which is crucial for strong external fields. A possible application is the scattering of photons by electrons in a strong magnetic field, a process that has been a subject of great interest since the discovery of astrophysical objects like radio pulsars, which provide evidence that magnetic fields of the order of 1012G are present in nature. The presence of a strong external field leads to a strong deviation from the classical scattering amplitudes. We explicitly work out the Compton scattering amplitude in a magnetic field, which is a process of potential relevance for astrophysics. Our final result is compact and suitable for numerical integration.
NASA Astrophysics Data System (ADS)
Stockton, Alan; Canalizo, Gabriela; Nelan, E. P.; Ridgway, Susan E.
2004-01-01
The z=1.786 radio galaxy 3C 294 lies < 10" from a 12 mag star and has been the target of at least three previous investigations using adaptive optics (AO) imaging. A major problem in interpreting these results is the uncertainty in the precise alignment of the radio structure with the H- or K-band AO imaging. Here we report observations of the position of the AO guide star with the Hubble Space Telescope Fine Guidance Sensor, which, together with positions from the second United States Naval Observatory's CCD Astrograph Catalog (UCAC2), allow us to register the infrared and radio frames to an accuracy of better than 0.1". The result is that the nuclear compact radio source is not coincident with the brightest discrete object in the AO image, an essentially unresolved source on the eastern side of the light distribution, as Quirrenbach and coworkers had suggested. Instead, the radio source is centered about 0.9" to the west of this object, on one of the two apparently real peaks in a region of diffuse emission. Nevertheless, the conclusion of Quirrenbach and coworkers that 3C 294 involves an ongoing merger appears to be correct: analysis of a recent deep Chandra image of 3C 294 obtained from the archive shows that the nucleus comprises two X-ray sources, which are coincident with the radio nucleus and the eastern stellar object. The X-ray/optical flux ratio of the latter makes it extremely unlikely that it is a foreground Galactic star. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. These observations are associated with proposal 08315. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the data were also obtained from the Chandra Data Archive, part of the Chandra X-Ray Observatory Science Center, which is operated for NASA by the Smithsonian Astrophysical Observatory.
Coma cluster ultradiffuse galaxies are not standard radio galaxies
NASA Astrophysics Data System (ADS)
Struble, Mitchell F.
2018-02-01
Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.
New Az/El mount for Haystack Observatory's Small Radio Telescope kit
NASA Astrophysics Data System (ADS)
Cobb, M. L.
2005-12-01
The Small Radio Telescope (SRT) kit was designed by Haystack Observatory as part of their educational outreach effort. The SRT uses a custom designed FFT based radio spectrometer receiver with a controller to position a 2.3m dish to make various radio astronomy observations including the 21 cm spin flip line of atomic hydrogen. Because there is no sizable commercial market for a two dimensional mount for dishes of this size, finding an appropriate provider as been a recurring problem for the project. Originally, the kit used a modified motor mount from Kaultronics called the H180. Two of these motors were combined by a specially designed adaptor to allow motion in azimuth and elevation. When Kaultronics was bought out by California Amplifier they discontinued production of the H180. The next iteration used a compact unit called the alfa-spid which was made in Germany and imported through Canada. The alfa-spid was designed to point various ham radio antennas and proved problematic with 2.3m dishes. Most recently the CASSI (Custom Astronomical Support Services, Inc.) corporation has designed and certified a robust Az/El mount capable of supporting dishes up to 12 feet (3.6m) with 100 MPH wind loads. This paper presents the design and operating characteristics of the new CASSI mount. The CASSI mount is now shipped with the SRT kit and should serve the project well for the foreseeable future.
High-energy neutrinos from FR0 radio galaxies?
NASA Astrophysics Data System (ADS)
Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.
2018-04-01
The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.
Another Shock for the Bullet Cluster, and the Source of Seed Electrons for Radio Relics
NASA Technical Reports Server (NTRS)
Shimwell, Timothy W,; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav
2015-01-01
With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2:30:11025 WHz(exp -1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94% of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re- )acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.
NASA Astrophysics Data System (ADS)
Geach, J. E.; More, A.; Verma, A.; Marshall, P. J.; Jackson, N.; Belles, P.-E.; Beswick, R.; Baeten, E.; Chavez, M.; Cornen, C.; Cox, B. E.; Erben, T.; Erickson, N. J.; Garrington, S.; Harrison, P. A.; Harrington, K.; Hughes, D. H.; Ivison, R. J.; Jordan, C.; Lin, Y.-T.; Leauthaud, A.; Lintott, C.; Lynn, S.; Kapadia, A.; Kneib, J.-P.; Macmillan, C.; Makler, M.; Miller, G.; Montaña, A.; Mujica, R.; Muxlow, T.; Narayanan, G.; O'Briain, D.; O'Brien, T.; Oguri, M.; Paget, E.; Parrish, M.; Ross, N. P.; Rozo, E.; Rusu, Cristian E.; Rykoff, E. S.; Sanchez-Argüelles, D.; Simpson, R.; Snyder, C.; Schloerb, F. P.; Tecza, M.; Wang, W.-H.; Van Waerbeke, L.; Wilcox, J.; Viero, M.; Wilson, G. W.; Yun, M. S.; Zeballos, M.
2015-09-01
We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz-1) at z = 2.553. The source was identified in the citizen science project SPACE WARPS through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O III] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300-400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.
A Reverse Shock and Unusual Radio Properties in GRB 160625B
NASA Astrophysics Data System (ADS)
Alexander, K. D.; Laskar, T.; Berger, E.; Guidorzi, C.; Dichiara, S.; Fong, W.; Gomboc, A.; Kobayashi, S.; Kopac, D.; Mundell, C. G.; Tanvir, N. R.; Williams, P. K. G.
2017-10-01
We present multi-wavelength observations and modeling of the exceptionally bright long γ-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of {θ }j≈ 3\\buildrel{\\circ}\\over{.} 6 and kinetic energy of {E}K≈ 2× {10}51 erg, propagating into a low-density (n≈ 5× {10}-5 cm-3) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of {{{Γ }}}0≳ 100 and an ejecta magnetization of {R}B≈ 1{--}100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly.
Minimal measures on surfaces of higher genus
NASA Astrophysics Data System (ADS)
Wang, Fang
We study the minimal measures for positive definite autonomous Lagrangian systems defined on the tangent bundles of compact surfaces with genus greater than one. We present some results on the structure of minimal measures on compact surfaces. Specifically, we give a finer description of the structure of minimal measures with rational rotation vectors for geodesic flows on compact surfaces.
[CII] emission from NGC 4258 with SOFIA/FIFI-LS
NASA Astrophysics Data System (ADS)
Fadda, Dario; Appleton, Philip N.; Diaz Santos, Tanio; Togi, Aditya; Ogle, Patrick
2018-06-01
We present the [CII]157.7μm map of the NGC 4258 (M106) galaxy obtained with the FIFI-LS spectrometer onboard SOFIA.M106 contains an active nucleus classified as type 1.9 Seyfert with a warped inner rotating disk of water-vapor masers which allowed for the first high accuracy measurements of the mass of a supermassive black hole in any galaxy. A relativistic jet is thought to be responsible for anomalous radio-continuum spiral arms, which appear several kpc from the center, and extend outwards through the outer disk. These arms do not correlate with the galaxy's underlying stellar spiral structure, and their presence suggest that in the past, the jet has strongly interacted with the galaxy's outer disk , exciting synchrotron radiation. Since that time, a new burst of activity seems to have occurred, creating a compact jet at the core of the galaxy, and two radio hotspots further out associated with optical "bow-shocks". The position angle of this new "active" jet is different from that needed to excited the outer radio arms, presumably because the jet has precessed, perhaps as a result of precession of the axis of the inner warped accretion disk.Our observations reveal three main sources of [CII] emission: two associated with large regions of gas at the ends of the active jet, and a third minor axis filament associated with linear clumps of star formation and dust seen in HST images offset from the nucleus. We combine the SOFIA observations with previous Spitzer mid-IR, Chandra X-ray and VLA radio observations to explore the nature of the detected [CII] emission. In regions along the northern active jet, we see a significant deficiency in the [CII]/FIR ratio, and higher ratios near the ends of the jet. This implies that the jet has changed the conditions of the gas along its length. In several places near the jet, the [CII] emission shows very broad lines, suggestive of enhanced turbulence. Additionally, the minor-axis filament we discovered may represent gas in-falling towards the nucleus perpendicular to the jet. The results provide clues about how radio jets in active galaxies can influence the star formation properties of their host galaxies.
NASA Astrophysics Data System (ADS)
Gabányi, K. É.; Frey, S.; An, T.
2018-05-01
Context. The Fermi Large Area Telescope revealed that the extragalactic γ-ray sky is dominated by blazars, active galactic nuclei (AGN) whose jet is seen at very small angle to the line of sight. To associate and then classify the γ-ray sources, data have been collected from lower frequency surveys and observations. Since those have superior angular resolution and positional accuracy compared to the γ-ray observations, some associations are not straightforward. Aims: The γ-ray source 3FGL J1323.0+2942 is associated with the radio source 4C+29.48 and classified as a blazar of unknown type, lacking optical spectrum and redshift. The higher-resolution radio data showed that 4C+29.48 comprises three bright radio-emitting features located within a 1'-diameter area. We aim to reveal their nature and pinpoint the origin of the γ-ray emission. Methods: We (re-)analyzed archival Very Large Array (VLA) and unpublished very long baseline interferometry (VLBI) observations conducted by the Very Long Baseline Array (VLBA) and the European VLBI Network of 4C+29.48. We also collected data form optical, infrared and X-ray surveys. Results: According to the VLBI data, the northernmost complex of 4C+29.48 contains a blazar with a high brightness temperature compact core and a steep-spectrum jet feature. The blazar is positionally coincident with an optical source at a redshift of 1.142. Its mid-infrared colors also support its association with a γ-ray emitting blazar. The two other radio complexes have steep radio spectra similar to AGN-related lobes and do not have optical or infrared counterparts in currently available surveys. Based on the radio morphology, they are unlikely to be related to the blazar. There is an optical source between the two radio features, also detected in infrared wavebands. We discuss the possibilities whether the two radio features are lobes of a radio galaxy, or gravitationally lensed images of a background source. Conclusions: We propose to associate the γ-ray source 3FGL J1323.0+2942 in subsequent versions of the Fermi catalog with the blazar residing in northernmost complex. We suggest naming this radio source J1323+2941A to avoid misinterpretation arising from the fact that the coordinates of the currently listed radio counterpart 4C+29.48 is closer to a most probably unrelated radio source.
ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtinen, K.; Muinonen, K.; Poutanen, M.
Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth.more » The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.« less
INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. Naval ...
INTERIOR; DETAIL OF ROOF FRAMING STRUCTURE, LOOKING SOUTHWEST. - Naval Computer & Telecommunications Area Master Station, Eastern Pacific, Radio Transmitter Facility Lualualei, Helix House No. 2, Base of Radio Antenna Structure No. 427, Makaha, Honolulu County, HI
Mystery solved: discovery of extended radio emission in the merging galaxy cluster Abell 2146
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Gendron-Marsolais, M.-L.; Fecteau-Beaucage, D.; van Weeren, R. J.; Russell, H. R.; Edge, A.; Olamaie, M.; Rumsey, C.; King, L.; Fabian, A. C.; McNamara, B.; Hogan, M.; Mezcua, M.; Taylor, G.
2018-04-01
Abell 2146 (z = 0.232) is a massive galaxy cluster currently undergoing a spectacular merger in the plane of the sky with a bullet-like morphology. It was the first system in which both the bow and upstream shock fronts were detected at X-ray wavelengths (Mach ˜2), yet deep Giant MetreWave Telescope 325 MHz observations failed to detect extended radio emission associated with the cluster as is typically seen in such systems. We present new, multiconfiguration 1-2 GHz Karl G. Jansky Very Large Array (VLA) observations of Abell 2146 totalling 16 h of observations. These data reveal for the first time the presence of an extended (≈850 kpc), faint radio structure associated with Abell 2146. The structure appears to harbour multiple components, one associated with the upstream shock that we classify as a radio relic and one associated with the subcluster core that is consisted as being a radio halo bounded by the bow shock. The newly detected structures have some of the lowest radio powers detected thus far in any cluster (P1.4 GHz, halo = 2.4 ± 0.2 × 1023 W Hz-1 and P1.4 GHz, relic = 2.2 ± 0.2 × 1023 W Hz-1). The flux measurement of the halo, as well as its morphology, also suggests that the halo was recently created (≈0.3 Gyr after core passage), consistent with the dynamical state of the cluster. These observations demonstrate the capacity of the upgraded VLA to detect extremely faint and extended radio structures. Based on these observations, we predict that many more radio relics and radio haloes in merging clusters should be detected by future radio facilities such as the Square Kilometre Array.
Radio observations of globulettes in the Carina nebula
NASA Astrophysics Data System (ADS)
Haikala, L. K.; Gahm, G. F.; Grenman, T.; Mäkelä, M. M.; Persson, C. M.
2017-06-01
Context. The Carina nebula hosts a large number of globulettes. An optical study of these tiny molecular clouds shows that the majority are of planetary mass, but there are also those with masses of several tens up to a few hundred Jupiter masses. Aims: We seek to search for, and hopefully detect, molecular line emission from some of the more massive objects; in case of successful detection we aim to map their motion in the Carina nebula complex and derive certain physical properties. Methods: We carried out radio observations of molecular line emission in 12CO and 13CO (2-1) and (3-2) of 12 globulettes in addition to positions in adjacent shell structures using APEX. Results: All selected objects were detected with radial velocities shifted relative to the emission from related shell structures and background molecular clouds. Globulettes along the western part of an extended dust shell show a small spread in velocity with small velocity shifts relative to the shell. This system of globulettes and shell structures in the foreground of the bright nebulosity surrounding the cluster Trumpler 14 is expanding with a few km s-1 relative to the cluster. A couple of isolated globulettes in the area move at similar speed. Compared to similar studies of the molecular line emission from globulettes in the Rosette nebula, we find that the integrated line intensity ratios and line widths are very different. The results show that the Carina objects have a different density/temperature structure than those in the Rosette nebula. In comparison the apparent size of the Carina globulettes is smaller, owing to the larger distance, and the corresponding beam filling factors are small. For this reason we were unable to carry out a more detailed modelling of the structure of the Carina objects in the way as performed for the Rosette objects. Conclusions: The Carina globulettes observed are compact and denser than objects of similar mass in the Rosette nebula. The distribution and velocities of these globulettes suggest that they have originated from eroding shells and elephant trunks. Some globulettes in the Trumpler 14 region are quite isolated and located far from any shell structures. These objects move at a similar speed as the globulettes along the shell, suggesting that they once formed from cloud fragments related to the same foreground shell. Based on observations collected with the Atacama Pathfinder Experiment (APEX), Llano Chajnantor, Chile (O-091.F-9316A and O-094.F-9312A).The final reduced radio data (FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A61
A Radio Study of the Seyfert Galaxy Markarian 6: Implications for Seyfert Life Cycles
NASA Astrophysics Data System (ADS)
Kharb, P.; O'Dea, C. P.; Baum, S. A.; Colbert, E. J. M.; Xu, C.
2006-11-01
We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales: ~7.5 kpc bubbles, ~1.5 kpc bubbles lying nearly orthogonal to them, and a ~1 kpc radio jet lying orthogonal to the kiloparsec-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 Msolar yr-1, an estimate much lower than the SFR of ~33 Msolar yr-1 derived assuming that the bubbles are a result of starburst winds energized by supernova explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We then present an energetically plausible model wherein the bubbles are a result of energy deposited by the kiloparsec-scale jet as it plows into the interstellar medium. Finally, we consider a model in which the complex radio structure is a result of an episodically powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology and is consistent with the energetics, the spectral index, and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy, which results from an accretion event.
The Southern HII Region Discovery Survey: The Bright Catalog
NASA Astrophysics Data System (ADS)
Wenger, Trey V.; Dickey, John M.; Jordan, Christopher H.; Balser, Dana; Armentrout, William Paul; Anderson, Loren; Bania, Thomas; Dawson, Joanne; McClure-Griffiths, Naomi M.; Shea, Jeanine
2018-01-01
HII regions, the zones of ionized gas surrounding recently formed high-mass stars, are the archetypical tracers of Galactic structure. The census of Galactic HII regions in the Southern sky is vastly incomplete due to a lack of sensitive radio recombination line (RRL) surveys. The Southern HII Region Discovery Survey (SHRDS) is a 900-hour Australia Telescope Compact Array cm-wavelength RRL and continuum emission survey of hundreds of third and fourth quadrant Galactic HII region candidates. These candidates are identified in the Widefield Infrared Survey Explorer (WISE) Catalog of Galactic HII Regions based on coincident 10 micron (WISE) and 20 cm (Southern Galactic Plane Survey) emission. The SHRDS is an extension of HII Region Discovery Surveys in the Northern sky with the Green Bank Telescope and Arecibo Telescope which discovered ~800 new HII regions. In the first 500 hours of the SHRDS, we targeted the 249 brightest HII region candidates and 33 previously known HII regions. We discuss the data reduction, analysis, and preliminary results from this first stage of the survey.
NASA Technical Reports Server (NTRS)
Vandenberg, N. R.
1974-01-01
The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.
NASA Tech Briefs, February 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images.
NASA Astrophysics Data System (ADS)
Abdalla, M. A.; Choudhary, D. Kumar; Chaudhary, R. Kumar
2018-02-01
This paper presents the design of two reduced size dual-band metamaterial bandpass filters and its simulation followed by measurements of proposed filters. These filters are supporting different frequency bands and primarily could be utilize in radio frequency identification (RFID) application. The filter includes three cells in which two are symmetrical and both inductively coupled with the third cell which is present in between them. In the proposed designs, three different metamaterial composite right/left handed (CRLH) cell resonators have been analysed for compactness. The CRLH cell consists of an interdigital capacitor, a stub/meander line/spiral inductor and a via to connect the top of the structure and ground plane. Finally, the proposed dual band bandpass filters (using meander line and spiral inductor) are showing size reduction by 65% and 50% (with 25% operating frequency reduction), respectively, in comparison with reference filter using stub inductor. More than 30 dB attenuation has been achieved between the two passbands.
Application of active quenching of second generation wire for current limiting
Solovyov, Vyacheslav F.; Li, Qiang
2015-10-19
Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less
The Potential for a Ka-band (32 GHz) Worldwide VLBI Network
NASA Astrophysics Data System (ADS)
Jacobs, C. S.; Bach, U.; Colomer, F.; Garcá-Miró, C.; Gómez-González, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; López-Fernández, J. A.; Lovell, J.; Majid, W.; T; Natusch; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; de Vincente, P.; Zharov, V.
2012-12-01
Ka-band (32 GHz, 9 mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level (100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years.
Analysis and Design of a Long Range PTFE Substrate UHF RFID Tag for Cargo Container Identification
NASA Astrophysics Data System (ADS)
Petrariu, Adrian-Ioan; Popa, Valentin
2016-01-01
In this paper, a high-performances microstrip antenna for UHF (ultra high frequency) RFID (radio frequency identification) tag is designed, prototyped and tested. The antenna consists of two main components: a 1.52 mm RT/duroid 5880 laminate substrate on which the antenna is designed and a 10 mm polytetrafluoroethylene (PTFE) dielectric material placed as a separator between the antenna and the reference ground plane for the microstrip antenna. With this structure, the RFID tag can reach a maximum reading distance of 19 m, although the antenna has a compact size of 80 mm × 50 mm. The long reading distance is obtained by attaching to the antenna an RFID chip that can provide a reading sensitivity of -20.5 dBm. The high bandwidth from 677 MHz to 947 MHz measured at -10 dB, makes the tag being usable worldwide especially for cargo container identification, the main purpose of this research.
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
The Potential for a Ka-band (32 GHz) Worldwide VLBI Network
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.;
2012-01-01
Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!
A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404
NASA Astrophysics Data System (ADS)
Nyland, Kristina; Davis, Timothy A.; Nguyen, Dieu D.; Seth, Anil; Wrobel, Joan M.; Kamble, Atish; Lacy, Mark; Alatalo, Katherine; Karovska, Margarita; Maksym, W. Peter; Mukherjee, Dipanjan; Young, Lisa M.
2017-08-01
The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M ⊙) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12-18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2-1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked, extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2-1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.
Constraints On the Emission Geometries and Spin Evolution Of Gamma-Ray Millisecond Pulsars
NASA Technical Reports Server (NTRS)
Johnson, T. J.; Venter, C.; Harding, A. K.; Guillemot, L.; Smith, D. A.; Kramer, M.; Celik, O.; den Hartog, P. R.; Ferrara, E. C.; Hou, X.;
2014-01-01
Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic field. We modeled the radio profiles using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-ray and radio light curve peaks occurring at nearly the same rotational phase, we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best-fit parameters and confidence intervals are determined using amaximum likelihood technique.We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II), or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best fit roughly equal numbers of Class I and II, while Class III are exclusively fit with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is difficult. We explore the evolution of the magnetic inclination angle with period and spin-down power, finding possible correlations. While the presence of significant off-peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.
A Multi-wavelength Study of the Turbulent Central Engine of the Low-mass AGN Hosted by NGC 404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Lacy, Mark; Davis, Timothy A.
The nearby dwarf galaxy NGC 404 harbors a low-luminosity active galactic nucleus powered by the lowest-mass (<150,000 M {sub ⊙}) central massive black hole (MBH), with a dynamical mass constraint, currently known, thus providing a rare low-redshift analog to the MBH “seeds” that formed in the early universe. Here, we present new imaging of the nucleus of NGC 404 at 12–18 GHz with the Karl G. Jansky Very Large Array (VLA) and observations of the CO(2–1) line with the Atacama Large Millimeter/Submillimeter Array (ALMA). For the first time, we have successfully resolved the nuclear radio emission, revealing a centrally peaked,more » extended source spanning 17 pc. Combined with previous VLA observations, our new data place a tight constraint on the radio spectral index and indicate an optically thin synchrotron origin for the emission. The peak of the resolved radio source coincides with the dynamical center of NGC 404, the center of a rotating disk of molecular gas, and the position of a compact, hard X-ray source. We also present evidence for shocks in the NGC 404 nucleus from archival narrowband HST imaging, Chandra X-ray data, and Spitzer mid-infrared spectroscopy, and discuss possible origins for the shock excitation. Given the morphology, location, and steep spectral index of the resolved radio source, as well as constraints on nuclear star formation from the ALMA CO(2–1) data, we find the most likely scenario for the origin of the radio source in the center of NGC 404 to be a radio outflow associated with a confined jet driven by the active nucleus.« less
Constraints On The Emission Geometries And Spin Evolution Of Gamma-Ray Millisecond Pulsars
Johnson, T. J.; Venter, C.; Harding, A. K.; ...
2014-06-18
Millisecond pulsars (MSPs) are a growing class of gamma-ray emitters. Pulsed gamma-ray signals have been detected from more than 40 MSPs with the Fermi Large Area Telescope (LAT). The wider radio beams and more compact magnetospheres of MSPs enable studies of emission geometries over a broader range of phase space than non-recycled radio-loud gamma-ray pulsars. We have modeled the gamma-ray light curves of 40 LAT-detected MSPs using geometric emission models assuming a vacuum retarded-dipole magnetic eld. We modeled the radio pro les using a single-altitude hollow-cone beam, with a core component when indicated by polarimetry; however, for MSPs with gamma-raymore » and radio light curve peaks occurring at nearly the same rotational phase we assume that the radio emission is co-located with the gamma rays and caustic in nature. The best- t parameters and con dence intervals are determined using a maximum likelihood technique. We divide the light curves into three model classes, with gamma-ray peaks trailing (Class I), aligned (Class II) or leading (Class III) the radio peaks. Outer gap and slot gap (two-pole caustic) models best t roughly equal numbers of Class I and II, while Class III are exclusively t with pair-starved polar cap models. Distinguishing between the model classes based on typical derived parameters is diffcult. We explore the evolution of magnetic inclination angle with period and spin-down power, nding possible correlations. While the presence of signi cant off- peak emission can often be used as a discriminator between outer gap and slot gap models, a hybrid model may be needed.« less
NASA Astrophysics Data System (ADS)
Baldi, R. D.; Williams, D. R. A.; McHardy, I. M.; Beswick, R. J.; Argo, M. K.; Dullo, B. T.; Knapen, J. H.; Brinks, E.; Muxlow, T. W. B.; Aalto, S.; Alberdi, A.; Bendo, G. J.; Corbel, S.; Evans, R.; Fenech, D. M.; Green, D. A.; Klöckner, H.-R.; Körding, E.; Kharb, P.; Maccarone, T. J.; Martí-Vidal, I.; Mundell, C. G.; Panessa, F.; Peck, A. B.; Pérez-Torres, M. A.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Westcott, J.
2018-05-01
We present the first data release of high-resolution (≤0.2 arcsec) 1.5-GHz radio images of 103 nearby galaxies from the Palomar sample, observed with the eMERLIN array, as part of the LeMMINGs survey. This sample includes galaxies which are active (low-ionization nuclear emission-line regions [LINER] and Seyfert) and quiescent (H II galaxies and absorption line galaxies, ALGs), which are reclassified based upon revised emission-line diagrams. We detect radio emission ≳0.2 mJy for 47/103 galaxies (22/34 for LINERS, 4/4 for Seyferts, 16/51 for H II galaxies, and 5/14 for ALGs) with radio sizes typically of ≲100 pc. We identify the radio core position within the radio structures for 41 sources. Half of the sample shows jetted morphologies. The remaining half shows single radio cores or complex morphologies. LINERs show radio structures more core-brightened than Seyferts. Radio luminosities of the sample range from 1032 to 1040 erg s-1: LINERs and H II galaxies show the highest and lowest radio powers, respectively, while ALGs and Seyferts have intermediate luminosities. We find that radio core luminosities correlate with black hole (BH) mass down to ˜107 M⊙, but a break emerges at lower masses. Using [O III] line luminosity as a proxy for the accretion luminosity, active nuclei and jetted H II galaxies follow an optical Fundamental Plane of BH activity, suggesting a common disc-jet relationship. In conclusion, LINER nuclei are the scaled-down version of FR I radio galaxies; Seyferts show less collimated jets; H II galaxies may host weak active BHs and/or nuclear star-forming cores; and recurrent BH activity may account for ALG properties.
DOT National Transportation Integrated Search
1982-03-01
The purpose of the research program on the mechanics of ballast compaction is to determine the influence of mechanical compaction on the ballast physical state and its consequence on the performance of the track structure. This report, which is one o...