Sample records for compact readout system

  1. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures

    NASA Astrophysics Data System (ADS)

    Paulsen, Moritz; Jahns, Sabrina; Gerken, Martina

    2017-09-01

    Resonant waveguide gratings (RWG) - also called photonic crystal slabs (PCS) - have been established as reliable optical transducers for label-free biochemical assays as well as for cell-based assays. Current readout systems are based on mechanical scanning and spectrometric measurements with system sizes suitable for laboratory equipment. Here, we review recent progress in compact intensity-based readout systems for point-of-care (POC) applications. We briefly introduce PCSs as sensitive optical transducers and introduce different approaches for intensity-based readout systems. Photometric measurements have been realized with a simple combination of a light source and a photodetector. Recently a 96-channel, intensity-based readout system for both biochemical interaction analyses as well as cellular assays was presented employing the intensity change of a near cut-off mode. As an alternative for multiparametric detection, a camera system for imaging detection has been implemented. A portable, camera-based system of size 13 cm × 4.9 cm × 3.5 cm with six detection areas on an RWG surface area of 11 mm × 7 mm has been demonstrated for the parallel detection of six protein binding kinetics. The signal-to-noise ratio of this system corresponds to a limit of detection of 168 M (24 ng/ml). To further improve the signal-to-noise ratio advanced nanostructure designs are investigated for RWGs. Here, results on multiperiodic and deterministic aperiodic nanostructures are presented. These advanced nanostructures allow for the design of the number and wavelengths of the RWG resonances. In the context of intensity-based readout systems they are particularly interesting for the realization of multi-LED systems. These recent trends suggest that compact point-of-care systems employing disposable test chips with RWG functional areas may reach market in the near future.

  2. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  3. Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator

    NASA Astrophysics Data System (ADS)

    Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.

    2016-12-01

    We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.

  4. Analog electro-optical readout of SiPMs achieves fast timing required for time-of-flight PET/MR

    PubMed Central

    Bieniosek, MF

    2015-01-01

    The design of combined positron emission tomography/magnetic resonance (PET/MR) systems presents a number of challenges to engineers, as it forces the PET system to acquire data in space constrained environment that is sensitive to electro-magnetic interference and contains high static, radio frequency (RF) and gradient fields. In this work we validate fast timing performance of a PET scintillation detector using a potentially very compact, very low power, and MR compatible readout method in which analog silicon photomultipliers (SiPM) signals are transmitted optically away from the MR bore with little or even no additional readout electronics. This analog ‘electro-optial’ method could reduce the entire PET readout in the MR bore to two compact, low power components (SiPMs and lasers). Our experiments show fast timing performance from analog electro-optical readout with and without pre-amplification. With 3mm × 3mm × 20mm lutetium-yttrium oxyorthosilicate (LYSO) crystals and Excelitas SiPMs the best two-sided fwhm coincident timing resolution achieved was 220 +/- 3ps in electrical mode, 230 +/- 2ps in electro-optical with preamp mode, and 253 +/- 2ps in electro-optical without preamp mode. Timing measurements were also performed with Hamamatsu SiPMs and 3mm × 3mm × 5mm crystals. In the future the timing degradation seen can be further reduced with lower laser noise or improvements SiPM rise time or gain. PMID:25905626

  5. Compact 3D quantum memory

    NASA Astrophysics Data System (ADS)

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  6. Development of 3He LPSDs and read-out system for the SANS spectrometer at CPHS

    NASA Astrophysics Data System (ADS)

    Huang, T. C.; Gong, H.; Shao, B. B.; Wang, X. W.; Zhang, Y.; Pang, B. B.

    2014-01-01

    The Compact Pulsed Hadron Source (CPHS) is a 13-MeV proton-linac-driven neutron source under construction in Tsinghua University. Time-of-flight (TOF) small-angle neutron scattering (SANS) spectrometer is one of the first instruments to be built. It is designed to use linear position-sensitive detectors (LPSDs) of 3He gas proportional counters to cover a 1 m×1 m area. Prototypical LPSDs (Φ = 12 mm, L=1 m) have been made and read-out system is developed based on charge division. This work describes the in-house fabrication of the prototypical LPSDs and design of the read-out system including front-end electronics and data acquisition (DAQ) system. Key factors of the front-end electronics are studied and optimized with PSPICE simulation. DAQ system is designed based on VME bus architecture and FPGA Mezzanine Card (FMC) standard with high flexibility and extendibility. Preliminary experiments are carried out and the results are present and discussed.

  7. Development of a front-end analog circuit for multi-channel SiPM readout and performance verification for various PET detector designs

    NASA Astrophysics Data System (ADS)

    Ko, Guen Bae; Yoon, Hyun Suk; Kwon, Sun Il; Lee, Chan Mi; Ito, Mikiko; Hong, Seong Jong; Lee, Dong Soo; Lee, Jae Sung

    2013-03-01

    Silicon photomultipliers (SiPMs) are outstanding photosensors for the development of compact imaging devices and hybrid imaging systems such as positron emission tomography (PET)/ magnetic resonance (MR) scanners because of their small size and MR compatibility. The wide use of this sensor for various types of scintillation detector modules is being accelerated by recent developments in tileable multichannel SiPM arrays. In this work, we present the development of a front-end readout module for multi-channel SiPMs. This readout module is easily extendable to yield a wider detection area by the use of a resistive charge division network (RCN). We applied this readout module to various PET detectors designed for use in small animal PET/MR, optical fiber PET/MR, and double layer depth of interaction (DOI) PET. The basic characteristics of these detector modules were also investigated. The results demonstrate that the PET block detectors developed using the readout module and tileable multi-channel SiPMs had reasonable performance.

  8. RF Single Electron Transistor Readout Amplifiers for Superconducting Astronomical Detectors for X-Ray to Sub-mm Wavelengths

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas; Aassime, Abdelhanin; Delsing, Per; Frunzio, Luigi; Li, Li-Qun; Prober, Daniel; Schoelkopf, Robert; Segall, Ken; Wilson, Chris; Stahle, Carl

    2000-01-01

    We report progress on using a new type of amplifier, the Radio-Frequency Single-Electron Transistor (RF-SET), to develop multi-channel sensor readout systems for fast and sensitive readout of high impedance cryogenic photodetectors such as Superconducting Tunnel Junctions and Single Quasiparticle Photon Counters. Although cryogenic, these detectors are desirable because of capabilities not other-wise attainable. However, high impedances and low output levels make low-noise, high-speed readouts challenging, and large format arrays would be facilitated by compact, low-power, on-chip integrated amplifiers. Well-suited for this application are RF-SETs, very high performance electrometers which use an rf readout technique to provide 100 MHz bandwidth. Small size, low power, and cryogenic operation allow direct integration with detectors, and using multiple rf carrier frequencies permits simultaneous readout of 20-50 amplifiers with a common electrical connection. We describe both the first 2-channel demonstration of this wavelength division multiplexing technique for RF-SETs, and Charge-Locked-Loop operation with 100 kHz of closed-loop bandwidth.

  9. Compact pulse width modulation circuitry for silicon photomultiplier readout.

    PubMed

    Bieniosek, M F; Olcott, P D; Levin, C S

    2013-08-07

    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger multiplexing ratios are possible, limited only by count rate issues.

  10. Development towards compact nitrocellulose interferometric biochips for dry eye diagnosis based on MMP9, S100A6 and CST4 biomarkers using a Point-of-Care device

    NASA Astrophysics Data System (ADS)

    Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.

    2018-02-01

    A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.

  11. CMOS Integrated Lock-in Readout Circuit for FET Terahertz Detectors

    NASA Astrophysics Data System (ADS)

    Domingues, Suzana; Perenzoni, Daniele; Perenzoni, Matteo; Stoppa, David

    2017-06-01

    In this paper, a switched-capacitor readout circuit topology integrated with a THz antenna and field-effect transistor detector is analyzed, designed, and fabricated in a 0.13-μm standard CMOS technology. The main objective is to perform amplification and filtering of the signal, as well as subtraction of background in case of modulated source, in order to avoid the need for an external lock-in amplifier, in a compact implementation. A maximum responsivity of 139.7 kV/W, and a corresponding minimum NEP of 2.2 nW/√Hz, was obtained with a two-stage readout circuit at 1 kHz modulation frequency. The presented switched-capacitor circuit is suitable for implementation in pixel arrays due to its compact size and power consumption (0.014 mm2 and 36 μW).

  12. MO-G-17A-01: Innovative High-Performance PET Imaging System for Preclinical Imaging and Translational Researches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, X; Lou, K; Rice University, Houston, TX

    Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less

  13. Tunable mechanical monolithic sensor with interferometric readout for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, F.; De Rosa, R.; Giordano, G.; Romano, R.; Barone, F.

    2008-03-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve both for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result, for example, is that the measured natural resonance frequency of the instrument is 70 mHz with a Q = 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of mHz with a more refined mechanical tuning. Results on the readout system based on polarimetric homodyne Michelson interferometer is discussed.

  14. The Level 0 Pixel Trigger system for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Aglieri Rinella, G.; Kluge, A.; Krivda, M.; ALICE Silicon Pixel Detector project

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper.

  15. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    NASA Astrophysics Data System (ADS)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  16. Reusable conductimetric array of interdigitated microelectrodes for the readout of low-density microarrays.

    PubMed

    Mallén, Maria; Díaz-González, María; Bonilla, Diana; Salvador, Juan P; Marco, María P; Baldi, Antoni; Fernández-Sánchez, César

    2014-06-17

    Low-density protein microarrays are emerging tools in diagnostics whose deployment could be primarily limited by the cost of fluorescence detection schemes. This paper describes an electrical readout system of microarrays comprising an array of gold interdigitated microelectrodes and an array of polydimethylsiloxane microwells, which enabled multiplexed detection of up to thirty six biological events on the same substrate. Similarly to fluorescent readout counterparts, the microarray can be developed on disposable glass slide substrates. However, unlike them, the presented approach is compact and requires a simple and inexpensive instrumentation. The system makes use of urease labeled affinity reagents for developing the microarrays and is based on detection of conductivity changes taking place when ionic species are generated in solution due to the catalytic hydrolysis of urea. The use of a polydimethylsiloxane microwell array facilitates the positioning of the measurement solution on every spot of the microarray. Also, it ensures the liquid tightness and isolation from the surrounding ones during the microarray readout process, thereby avoiding evaporation and chemical cross-talk effects that were shown to affect the sensitivity and reliability of the system. The performance of the system is demonstrated by carrying out the readout of a microarray for boldenone anabolic androgenic steroid hormone. Analytical results are comparable to those obtained by fluorescent scanner detection approaches. The estimated detection limit is 4.0 ng mL(-1), this being below the threshold value set by the World Anti-Doping Agency and the European Community. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A compact, large-range interferometer for precision measurement and inertial sensing

    NASA Astrophysics Data System (ADS)

    Cooper, S. J.; Collins, C. J.; Green, A. C.; Hoyland, D.; Speake, C. C.; Freise, A.; Mow-Lowry, C. M.

    2018-05-01

    We present a compact, fibre-coupled interferometer with high sensitivity and a large working range. We propose to use this interferometer as a readout mechanism for future inertial sensors, removing a major limiting noise source, and in precision positioning systems. The interferometer’s peak sensitivity is 2 × 10-{14} m \\sqrt{Hz-1} at 70 Hz and 7 × 10-{11} m \\sqrt{Hz-1} at 10 mHz. If deployed on a GS-13 geophone, the resulting inertial sensing output will be limited by the suspension thermal noise of the reference mass from 10 mHz to 2 Hz.

  18. Read-only high accuracy volume holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Zhao, Tian; Li, Jingming; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2011-10-01

    A read-only volume holographic correlator (VHC) is proposed. After the recording of all of the correlation database pages by angular multiplexing, a stand-alone read-only high accuracy VHC will be separated from the VHC recording facilities which include the high-power laser and the angular multiplexing system. The stand-alone VHC has its own low power readout laser and very compact and simple structure. Since there are two lasers that are employed for recording and readout, respectively, the optical alignment tolerance of the laser illumination on the SLM is very sensitive. The twodimensional angular tolerance is analyzed based on the theoretical model of the volume holographic correlator. The experimental demonstration of the proposed read-only VHC is introduced and discussed.

  19. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  20. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit Ethernet links, and in addition provides the slow and fast control for the chip.

  1. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Claus, R.

    2015-10-23

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQmore » building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. Furthermore, the full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.« less

  2. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Claus, R.; ATLAS Collaboration

    2016-07-01

    The ATLAS muon Cathode Strip Chamber (CSC) back-end readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run 2 luminosity. The readout design is based on the Reconfiguration Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the ATCA platform. The RCE design is based on the new System on Chip Xilinx Zynq series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources together with auxiliary memories to form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the Zynq for G-link, S-link and TTC allowed the full system of 320 G-links from the 32 chambers to be processed by 6 COBs in one ATCA shelf through software waveform feature extraction to output 32 S-links. The full system was installed in Sept. 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning towards LHC Run 2.

  3. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    NASA Astrophysics Data System (ADS)

    Bartoldus, R.; Claus, R.; Garelli, N.; Herbst, R. T.; Huffer, M.; Iakovidis, G.; Iordanidou, K.; Kwan, K.; Kocian, M.; Lankford, A. J.; Moschovakos, P.; Nelson, A.; Ntekas, K.; Ruckman, L.; Russell, J.; Schernau, M.; Schlenker, S.; Su, D.; Valderanis, C.; Wittgen, M.; Yildiz, S. C.

    2016-01-01

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. We will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.

  4. A new ATLAS muon CSC readout system with system on chip technology on ATCA platform

    DOE PAGES

    Bartoldus, R.; Claus, R.; Garelli, N.; ...

    2016-01-25

    The ATLAS muon Cathode Strip Chamber (CSC) backend readout system has been upgraded during the LHC 2013-2015 shutdown to be able to handle the higher Level-1 trigger rate of 100 kHz and the higher occupancy at Run-2 luminosity. The readout design is based on the Reconfigurable Cluster Element (RCE) concept for high bandwidth generic DAQ implemented on the Advanced Telecommunication Computing Architecture (ATCA) platform. The RCE design is based on the new System on Chip XILINX ZYNQ series with a processor-centric architecture with ARM processor embedded in FPGA fabric and high speed I/O resources. Together with auxiliary memories, all ofmore » these components form a versatile DAQ building block that can host applications tapping into both software and firmware resources. The Cluster on Board (COB) ATCA carrier hosts RCE mezzanines and an embedded Fulcrum network switch to form an online DAQ processing cluster. More compact firmware solutions on the ZYNQ for high speed input and output fiberoptic links and TTC allowed the full system of 320 input links from the 32 chambers to be processed by 6 COBs in one ATCA shelf. The full system was installed in September 2014. In conclusion, we will present the RCE/COB design concept, the firmware and software processing architecture, and the experience from the intense commissioning for LHC Run 2.« less

  5. Optical information-processing systems and architectures II; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram

    The present conference discusses topics in the fields of neural networks, acoustooptic signal processing, pattern recognition, phase-only processing, nonlinear signal processing, image processing, optical computing, and optical information processing. Attention is given to the optical implementation of an inner-product neural associative memory, optoelectronic associative recall via motionless-head/parallel-readout optical disk, a compact real-time acoustooptic image correlator, a multidimensional synthetic estimation filter, and a light-efficient joint transform optical correlator. Also discussed are a high-resolution spatial light modulator, compact real-time interferometric Fourier-transform processors, a fast decorrelation algorithm for permutation arrays, the optical interconnection of optical modules, and carry-free optical binary adders.

  6. Design of the ANTARES LCM-DAQ board test bench using a FPGA-based system-on-chip approach

    NASA Astrophysics Data System (ADS)

    Anvar, S.; Kestener, P.; Le Provost, H.

    2006-11-01

    The System-on-Chip (SoC) approach consists in using state-of-the-art FPGA devices with embedded RISC processor cores, high-speed differential LVDS links and ready-to-use multi-gigabit transceivers allowing development of compact systems with substantial number of IO channels. Required performances are obtained through a subtle separation of tasks between closely cooperating programmable hardware logic and user-friendly software environment. We report about our experience in using the SoC approach for designing the production test bench of the off-shore readout system for the ANTARES neutrino experiment.

  7. Development of a high-resolution automatic digital (urine/electrolytes) flow volume and rate measurement system of miniature size

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1975-01-01

    To aid in the quantitative analysis of man's physiological rhythms, a flowmeter to measure circadian patterns of electrolyte excretion during various environmental stresses was developed. One initial flowmeter was designed and fabricated, the sensor of which is the approximate size of a wristwatch. The detector section includes a special type of dielectric integrating type sensor which automatically controls, activates, and deactivates the flow sensor data output by determining the presence or absence of fluid flow in the system, including operation under zero-G conditions. The detector also provides qualitative data on the composition of the fluid. A compact electronic system was developed to indicate flow rate as well as total volume per release or the cumulative volume of several releases in digital/analog forms suitable for readout or telemetry. A suitable data readout instrument is also provided. Calibration and statistical analyses of the performance functions required of the flowmeter were also conducted.

  8. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazififard, Mohammad, E-mail: nazifi@kashanu.ac.ir; Mahmoudieh, Afshin; Suh, Kune Y.

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty.more » Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.« less

  9. A multichannel compact readout system for single photon detection: Design and performances

    NASA Astrophysics Data System (ADS)

    Argentieri, A. G.; Cisbani, E.; Colilli, S.; Cusanno, F.; De Leo, R.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Marra, M.; Musico, Paolo; Santavenere, F.; Torrioli, S.

    2010-05-01

    Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested [1,2]. The system can handle up to 4096 independent channels, covering an area of about 20×20 cm2 with pixel size of 3×3 mm2, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3×3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.

  10. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  11. A Discrete Component Low-Noise Preamplifier Readout for a Linear (1x16) SiC Photodiode Array

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Frederico A.; Waczynski, Augustyn

    2016-01-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1x16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analogue signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  12. Microlaser-based compact optical neuro-processors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Paek, Eung Gi; Chan, Winston K.; Zah, Chung-En; Cheung, Kwok-wai; Curtis, L.; Chang-Hasnain, Constance J.

    1992-10-01

    This paper reviews the recent progress in the development of holographic neural networks using surface-emitting laser diode arrays (SELDAs). Since the previous work on ultrafast holographic memory readout system and a robust incoherent correlator, progress has been made in several areas: the use of an array of monolithic `neurons' to reconstruct holographic memories; two-dimensional (2-D) wavelength-division multiplexing (WDM) for image transmission through a single-mode fiber; and finally, an associative memory using time- division multiplexing (TDM). Experimental demonstrations on these are presented.

  13. Compact laser interferometer for translation and tilt measurement as optical readout for the LISA inertial sensor

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2007-10-01

    The space mission LISA (Laser Interferometer Space Antenna) aims at detecting gravitational waves in the frequency range 30 μ Hz to 1Hz. Free flying proof masses inside the satellites act as inertial sensors and represent the end mirrors of the interferometer. In the current baseline design, LISA utilizes an optical readout of the position and tilt of the proof mass with respect to the satellite housing. This readout must have ~ 5pm/√Hz sensitivity for the translation measurement (for frequencies above 2.8mHz with an ƒ -2 relaxation down to 30 μHz) and ~ 10 nrad/√Hz sensitivity for the tilt measurement (for frequencies above 0.1mHz with an ƒ -1 relaxation down to 30 μHz). The University of Applied Sciences Konstanz (HTWG) - in collaboration with Astrium GmbH, Friedrichshafen, and the Humboldt-University Berlin - therefore develops a highly symmetric heterodyne interferometer implementing differential wavefront sensing for the tilt measurement. We realized a mechanically highly stable and compact setup. In a second, improved setup we measured initial noise levels below 5 pm/√Hz and 10 nrad/√Hz, respectively, for frequencies above 10mHz.

  14. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  15. Compact handheld low-cost biosensor platform for remote health monitoring

    NASA Astrophysics Data System (ADS)

    Hastanin, J.; Lenaerts, C.; Gailly, P.; Jans, H.; Huang, C.; Lagae, L.; Kokkinos, D.; Fleury-Frenette, K.

    2016-04-01

    In this paper, we present an original concept of plasmonic-related instrumentation platform dedicated to diagnostic biosensing tests out of the laboratory. The developed instrumental platform includes both disposable one-use microfluidic affinity biochip and compact optical readout device for biochip monitoring involving mobile Internet devices for data processing and communication. The biochip includes both microfluidic and optical coupling structures formed into a single plastic slab. The microfluidic path of the biochip operates in passive capillary pumping mode. In the proof-of-concept prototype, we address specifically the sensing format involving Surface Plasmon Resonance phenomenon. The biochip is plugged in the readout device without the use of an index matching fluid. An essential advantage of the developed biochip is that its implementation involves conventional hot embossing and thin film deposition process, perfectly suited for mass production of low-cost microfluidic biochip for biochemical applications.

  16. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70mHz with a Q =140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  17. Mechanical monolithic sensor for low frequency seismic noise measurement

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; De Rosa, Rosario; Giordano, Gerardo; Romano, Rocco; Barone, Fabrizio

    2007-10-01

    This paper describes a mechanical monolithic sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric-discharge-machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation make it a very compact instrument, very sensitive in the low-frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2006), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a new laser optical lever and laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, calculated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is that the measured natural resonance frequency of the instrument is ~ 70mHz with a Q ~ 140 in air without thermal stabilization, demonstrating the feasibility of a monolithic FP sensor with a natural resonance frequency of the order of 5 mHz with a more refined mechanical tuning.

  18. Mechanical monolithic horizontal sensor for low frequency seismic noise measurement.

    PubMed

    Acernese, Fausto; Giordano, Gerardo; Romano, Rocco; De Rosa, Rosario; Barone, Fabrizio

    2008-07-01

    This paper describes a mechanical monolithic horizontal sensor for geophysical applications developed at the University of Salerno. The instrument is basically a monolithic tunable folded pendulum, shaped with precision machining and electric discharge machining, that can be used both as seismometer and, in a force-feedback configuration, as accelerometer. The monolithic mechanical design and the introduction of laser interferometric techniques for the readout implementation makes it a very compact instrument, very sensitive in the low frequency seismic noise band, with a very good immunity to environmental noises. Many changes have been produced since last version (2007), mainly aimed to the improvement of the mechanics and of the optical readout of the instrument. In fact, we have developed and tested a prototype with elliptical hinges and mechanical tuning of the resonance frequency together with a laser optical lever and a new laser interferometer readout system. The theoretical sensitivity curve for both laser optical lever and laser interferometric readouts, evaluated on the basis of suitable theoretical models, shows a very good agreement with the experimental measurements. Very interesting scientific result is the measured natural resonance frequency of the instrument of 70 mHz with a Q=140 in air without thermal stabilization. This result demonstrates the feasibility of a monolithic folded pendulum sensor with a natural resonance frequency of the order of millihertz with a more refined mechanical tuning.

  19. A Ulexite-based animation recording system by random reference patterns

    NASA Astrophysics Data System (ADS)

    Ishii, Yuko; Irisawa, Misako; Takayama, Yoshihisa; Watanabe, Eriko; Kodate, Kashiko

    2006-02-01

    We propose a simple, compact and high-security holographic optical memory system using Ulexite in order to produce random patterns of reference beam. 100 hologram multiplexing was achieved by multiplexing exposure, rotating Ulexite by 0.2 degrees every time with LiNbO 3 crystal as a recording medium. Moreover, with this system, animation readout images can play for approximately 8 seconds by continuous rotation of Ulexite. As a natural stone, the exactly same Ulexite is very difficult to be found or replicated. Basic experimental results show that Ulexite can be used as a security key for its image-reproducibility and BER calculations.

  20. All-optical animation projection system with rotating fieldstone.

    PubMed

    Ishii, Yuko; Takayama, Yoshihisa; Kodate, Kashiko

    2007-06-11

    A simple and compact rewritable holographic memory system using a fieldstone of Ulexite is proposed. The role of the fieldstone is to impose random patterns on the reference beam to record plural images with the random-reference multiplexing scheme. The operations for writing and reading holograms are carried out by simply rotating the fieldstone in one direction. One of the features of this approach is found in a way to generate random patterns without computer drawings. The experimental study confirms that our system enables the smooth readout of the stored images one after another so that the series of reproduced images are projected as an animation.

  1. All-optical animation projection system with rotating fieldstone

    NASA Astrophysics Data System (ADS)

    Ishii, Yuko; Takayama, Yoshihisa; Kodate, Kashiko

    2007-06-01

    A simple and compact rewritable holographic memory system using a fieldstone of Ulexite is proposed. The role of the fieldstone is to impose random patterns on the reference beam to record plural images with the random-reference multiplexing scheme. The operations for writing and reading holograms are carried out by simply rotating the fieldstone in one direction. One of the features of this approach is found in a way to generate random patterns without computer drawings. The experimental study confirms that our system enables the smooth readout of the stored images one after another so that the series of reproduced images are projected as an animation.

  2. Multi-element germanium detectors for synchrotron applications

    NASA Astrophysics Data System (ADS)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; Vernon, E.; Pinelli, D.; Dooryhee, E.; Ghose, S.; Caswell, T.; Siddons, D. P.; Miceli, A.; Baldwin, J.; Almer, J.; Okasinski, J.; Quaranta, O.; Woods, R.; Krings, T.; Stock, S.

    2018-04-01

    We have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. We will discuss the technical details of the systems, and present some of the results from them.

  3. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; hide

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  4. Data Acquisition Backbone Core DABC release v1.0

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.

    2010-04-01

    The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.

  5. Consumer holographic read-only memory reader with mastering and replication technology.

    PubMed

    Chuang, Ernest; Curtis, Kevin; Yang, Yunping; Hill, Adrian

    2006-04-15

    What is believed to be a novel holographic design for read-only memory systems allows a compact low-cost consumer drive within a 10 mm drive height, using a lensless phase conjugate readout and a combination of polytopic and angle multiplexing. A two-step mastering method enables production of high-efficiency holographic masters, and fast replication is possible by using only a series of plane-wave illuminations. Mastering and replication techniques are verified experimentally with an array of 125 holograms with no measured bit errors.

  6. A Data Acquisition System (DAS) for marine and ecological research from aerospace technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1972-01-01

    The efforts of researchers at Mississippi State University to utilize space-age technology in the development of a self-contained, portable data acquisition system for use in marine and ecological research are presented. The compact, lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing.

  7. Method and apparatus for optical encoding with compressible imaging

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2006-01-01

    The present invention presents an optical encoder with increased conversion rates. Improvement in the conversion rate is a result of combining changes in the pattern recognition encoder's scale pattern with an image sensor readout technique which takes full advantage of those changes, and lends itself to operation by modern, high-speed, ultra-compact microprocessors and digital signal processors (DSP) or field programmable gate array (FPGA) logic elements which can process encoder scale images at the highest speeds. Through these improvements, all three components of conversion time (reciprocal conversion rate)--namely exposure time, image readout time, and image processing time--are minimized.

  8. Compact endocavity diagnostic probes for nuclear radiation detection

    DOEpatents

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  9. ePix100 camera: Use and applications at LCLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, G. A., E-mail: carini@slac.stanford.edu; Alonso-Mori, R.; Blaj, G.

    2016-07-27

    The ePix100 x-ray camera is a new system designed and built at SLAC for experiments at the Linac Coherent Light Source (LCLS). The camera is the first member of a family of detectors built around a single hardware and software platform, supporting a variety of front-end chips. With a readout speed of 120 Hz, matching the LCLS repetition rate, a noise lower than 80 e-rms and pixels of 50 µm × 50 µm, this camera offers a viable alternative to fast readout, direct conversion, scientific CCDs in imaging mode. The detector, designed for applications such as X-ray Photon Correlation Spectroscopymore » (XPCS) and wavelength dispersive X-ray Emission Spectroscopy (XES) in the energy range from 2 to 10 keV and above, comprises up to 0.5 Mpixels in a very compact form factor. In this paper, we report the performance of the camera during its first use at LCLS.« less

  10. Physical measurement with in-line fiber Mach-Zehnder interferometer using differential phase white light interferometry

    NASA Astrophysics Data System (ADS)

    Aref, Seyed Hashem

    2017-11-01

    In this letter, the sensitivity to strain, curvature, and temperature of a sensor based on in-line fiber Mach-Zahnder interferometer (IFMZI) is studied and experimentally demonstrated. The sensing structure is simply a section of single mode fiber sandwiched between two abrupt tapers to achieve a compact IFMZI. The phase of interferometer changes with the measurand interaction, which is the basis for considering this structure for sensing. The physical parameter sensitivity of IFMZI sensor has been evaluated using differential white light interferometry (DWLI) technique as a phase read-out system. The differential configuration of the IFMZI sensor is used to achieve a high phase resolving power of ±0.062° for read-out interferometer by means of omission of phase noise of environment perturbations. The sensitivity of the sensor to the strain, curvature, and temperature has been measured 0.0199 degree/με, 757.00 degree/m-1, and 3.25 degree/°C, respectively.

  11. A data acquisition system for marine and ecological research.

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1971-01-01

    Description of a self-contained portable data acquisition system for use in marine and ecological research. The compact lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing. Currently undergoing component performance upgrading, the prototype system has been utilized in several environmental science investigations associated with air pollution investigations and weather modification and is currently being used for marine data acquisition.

  12. Multi-element germanium detectors for synchrotron applications

    DOE PAGES

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.; ...

    2018-04-27

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  13. Multi-element germanium detectors for synchrotron applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, A. K.; Kuczewski, A. J.; Mead, J.

    In this paper, we have developed a series of monolithic multi-element germanium detectors, based on sensor arrays produced by the Forschungzentrum Julich, and on Application-specific integrated circuits (ASICs) developed at Brookhaven. Devices have been made with element counts ranging from 64 to 384. These detectors are being used at NSLS-II and APS for a range of diffraction experiments, both monochromatic and energy-dispersive. Compact and powerful readout systems have been developed, based on the new generation of FPGA system-on-chip devices, which provide closely coupled multi-core processors embedded in large gate arrays. Finally, we will discuss the technical details of the systems,more » and present some of the results from them.« less

  14. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    DOE PAGES

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; ...

    2015-06-10

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  15. Handheld readout electronics to fully exploit the particle discrimination capabilities of elpasolite scintillators

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.; Michel, J.; Storms, S.; Dallmann, N.; Coupland, D. D. S.; Stein, P.; Weller, S.; Borges, L.; Proicou, M.; Duran, G.; Kamto, J.

    2015-09-01

    A new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurable to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.

  16. A heterodyne interferometer for high resolution translation and tilt measurement as optical readout for the LISA inertial sensor

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Kraus, Hans-Jürgen; Weise, Dennis; Braxmaier, Claus; Peters, Achim; Johann, Ulrich

    2017-11-01

    The space-based gravitational wave detector LISA (Laser Interferometer Space Antenna) requires a high performance position sensor in order to measure the translation and tilt of the free flying test mass with respect to the LISA optical bench. Here, we present a mechanically highly stable and compact setup of a heterodyne interferometer combined with differential wavefront sensing for the tilt measurement which serves as a demonstrator for an optical readout of the LISA test mass position. First results show noise levels below 1 nm/√Hz and 1 μrad/√Hz, respectively, for frequencies < 10-3 Hz.

  17. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kryemadhi, A.; Barner, L.; Grove, A.

    Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less

  18. A LYSO crystal array readout by silicon photomultipliers as compact detector for space applications

    DOE PAGES

    Kryemadhi, A.; Barner, L.; Grove, A.; ...

    2017-10-31

    Precise measurements of GeV range gamma rays help narrow down among var- ious gamma emission models and increase sensitivity for dark matter searches. Construction of precise as well as compact instruments requires detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled with small foot- print photo-detectors are suitable candidates. We prototyped a detector array consisting of four LYSO crystals where each crystal is read out by a 2x2 SensL ArrayJ60035 silicon photomultipliers. The LYSO crystals were chosen because of their good light yield, fast decay time, demonstrated radiation hardness,more » and small radiation length. Here, we used the silicon photomultiplier arrays as photo- detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic elds. We also studied the detector performance in the energy range of interest by exposing it to 2-16 GeV particles produced at the Test Beam Facility of Fermi National Accelerator Laboratory.« less

  19. Readout characteristics of a minute aperture-mounted optical head slider flying above a submicron wide metal patterned medium track

    NASA Astrophysics Data System (ADS)

    Ohkubo, Toshifumi; Hirota, Terunao; Oumi, Manabu; Hirata, Masakazu; Nakajima, Kunio

    2004-10-01

    Advances in a digital network society require both higher densities and higher transfer rates in all sorts of storage devices. In optical recording, the trend toward higher recording density and larger storage capacity requires novel surface recording technologies that would drastically improve recording density. To satisfy these severe requirements, we have already proposed a compact integrated optical head slider assembly for proximity optical recording based on the "near field principle". Using the optical head slider, we have successfully demonstrated readout signals from 200 to 150-nm-long bit patterns at frequency bands up to approximately 10 MHz. However, from the practical point of view, it is quite necessary to evaluate readout signals from patterns of smaller (sub-micron to sub-sub-micron) track width in order to prove high-density recording potential. In this paper, we have investigated tracking accuracy characteristics utilizing sub-micron sized alternate patterns of 1-mm length formed in a straight line in the circumferential direction of the medium. Arranging precisely the head's relative position to these recorded patterns, we have successfully obtained readout signals just crossing the sub-micron line-and-space pattern's boundaries. Assuming that an aperture runs along an accurate trajectory of the arc of a circle, readout signal amplitude variations when crossing the pattern edge at a right angle have precisely predicted. Also, the influences of track width on maximum readout signal intensity and tracking sensitivity are discussed in detail.

  20. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    NASA Astrophysics Data System (ADS)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  1. Stacked color image sensor using wavelength-selective organic photoconductive films with zinc-oxide thin film transistors as a signal readout circuit

    NASA Astrophysics Data System (ADS)

    Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi

    2010-01-01

    Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.

  2. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers.

    PubMed

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M

    2012-05-08

    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  3. Temperature Control and Noise Reduction in our Compact ADR System for TES Microcalorimeter Operation

    NASA Astrophysics Data System (ADS)

    Hishi, U.; Fujimoto, R.; Kamiya, K.; Kotake, M.; Ito, H.; Kaido, T.; Tanaka, K.; Hattori, K.

    2016-08-01

    We have been developing a compact adiabatic demagnetization refrigerator, keeping ground application and future missions in mind. A salt pill fabricated in-house, a superconducting magnet with a passive magnetic shield around it, and a mechanical heat switch are mounted in a dedicated helium cryostat. The detector stage temperature is regulated by PID control of the magnet current, with a dI/dt term added to compensate the temperature rise due to parasitic heat. The temperature fluctuation of the detector stage is 1-2 \\upmu Krms, and the hold time was extended by about 15 % thanks to the dI/dt term. Bundle shields of the harnesses between the cryostat and the analog electronics boxes were connected to the chassis at both ends, and the analog electronics boxes were grounded to the cryostat through the bundle shields. This reduced the readout noise to 16 pA/√{Hz} in the 10-60 kHz range. Using this system, an energy resolution of 3.8 ± 0.2 eV (FWHM) was achieved at 5.9 keV.

  4. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  5. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  6. A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

    NASA Astrophysics Data System (ADS)

    Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans

    2011-10-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

  7. The single mirror small sized telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Heller, M.; Schioppa, E., Jr.; Porcelli, A.; Pujadas, I. Troyano; Ziętara, K.; Della Volpe, D.; Montaruli, T.; Cadoux, F.; Favre, Y.; Aguilar, J. A.; Christov, A.; Prandini, E.; Rajda, P.; Rameez, M.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Frankowski, A.; Grudzińska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Miranda, L. D. Medina; Michałowski, J.; Moderski, R.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Sliusar, V.; Skowron, K.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Walter, R.; Więcek, M.; Zagdański, A.; CTA Consortium

    2017-01-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). About 70 SST telescopes will be part the CTA southern array which will also include Medium Sized Telescopes (MST) in its threshold configuration. Optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV, the SST-1M uses a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light resulting from the interaction of the gamma-rays in the atmosphere is focused onto a 88 cm side-to-side hexagonal photo-detection plane. The latter is composed of 1296 hollow light guides coupled to large area hexagonal silicon photomultipliers (SiPM). The SiPM readout is fully digital readout as for the trigger system. The compact and lightweight design of the SST-1M camera offiers very high performance ideal for gamma-ray observation requirement. In this contribution, the concept, design, performance and status of the first telescope prototype are presented.

  8. CELiS (Compact Eyesafe Lidar System), a portable 1.5 μm elastic lidar system for rapid aerosol concentration measurement: Part 1, Instrument Design and Operation

    NASA Astrophysics Data System (ADS)

    Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.

    2014-12-01

    CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations. Retrieval of particulate matter concentration is presented in companion poster by K. Moore.

  9. Multicolor Detectors for Ultrasensitive Long-Wave Imaging Cameras

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Benford, Dominic; Chervenak, James; Wollack, Edward

    2012-01-01

    A document describes a zeptobolometer for ultrasensitive, long-wavelength sensors. GSFC is developing pixels based on the zeptobolometer design that sense three THz wavelengths simultaneously. Two innovations are described in the document: (1) a quasiparticle (QO) filter arrangement that enables a compact multicolor spectrum at the focal plane, and (2) a THz antenna readout by up to three bolometers. The innovations enable high efficiency by greatly reducing high, frequency-dependent microstrip losses, and pixel compactness by eliminating the need for bulky filters in the focal plane. The zeptobolometer is a small TES bolometer, on the scale of a few microns, which can be readily coupled through an impedance-matching resistor to a metal or dielectric antenna. The bolometer is voltage-biased in its superconducting transition, allowing the use of superconducting RF multiplexers to read out large arrays. The antenna is geometrically tapped at three locations so as to efficiently couple radiation of three distinct wavelengths to the individual TESs. The transition edge hot electrons in metals offer a simple, compact arrangement for antenna readout, which can be crucial in the THz where line losses at high frequencies can be substantial. A metallic grill filter acts as a high-pass filter and directs the low-frequency components to a location where they will be absorbed. The absorption spectrum shows that three well-separated THz bands are feasible. The filters can be made from high-purity dielectrics such as float zone silicon or sapphire.

  10. Prospects for a precision timing upgrade of the CMS PbWO crystal electromagnetic calorimeter for the HL-LHC

    NASA Astrophysics Data System (ADS)

    Massironi, A.

    2018-04-01

    The upgrade of the Compact Muon Solenoid (CMS) crystal electromagnetic calorimeter (ECAL), which will operate at the High Luminosity Large Hadron Collider (HL-LHC), will achieve a timing resolution of around 30 ps for high energy photons and electrons. In this talk we will discuss the benefits of precision timing for the ECAL event reconstruction at HL-LHC. Simulation studies focused on the timing properties of PbWO4 crystals, as well as the impact of the photosensors and the readout electronics on the timing performance, will be presented. Test beam studies intended to measure the timing performance of the PbWO4 crystals with different photosensors and readout electronics will be shown.

  11. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  12. Performance study of large area encoding readout MRPC

    NASA Astrophysics Data System (ADS)

    Chen, X. L.; Wang, Y.; Chen, G.; Han, D.; Wang, X.; Zeng, M.; Zeng, Z.; Zhao, Z.; Guo, B.

    2018-02-01

    Muon tomography system built by the 2-D readout high spatial resolution Multi-gap Resistive Plate Chamber (MRPC) detector is a project of Tsinghua University. An encoding readout method based on the fine-fine configuration has been used to minimize the number of the readout electronic channels resulting in reducing the complexity and the cost of the system. In this paper, we provide a systematic comparison of the MRPC detector performance with and without fine-fine encoding readout. Our results suggest that the application of the fine-fine encoding readout leads us to achieve a detecting system with slightly worse spatial resolution but dramatically reduce the number of electronic channels.

  13. A compact 16-module camera using 64-pixel CsI(Tl)/Si p-i-n photodiode imaging modules

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Gruber, G. J.; Moses, W. W.; Derenzo, S. E.; Holland, S. E.; Pedrali-Noy, M.; Krieger, B.; Mandelli, E.; Meddeler, G.; Wang, N. W.; Witt, E. K.

    2002-10-01

    We present a compact, configurable scintillation camera employing a maximum of 16 individual 64-pixel imaging modules resulting in a 1024-pixel camera covering an area of 9.6 cm/spl times/9.6 cm. The 64-pixel imaging module consists of optically isolated 3 mm/spl times/3 mm/spl times/5 mm CsI(Tl) crystals coupled to a custom array of Si p-i-n photodiodes read out by a custom integrated circuit (IC). Each imaging module plugs into a readout motherboard that controls the modules and interfaces with a data acquisition card inside a computer. For a given event, the motherboard employs a custom winner-take-all IC to identify the module with the largest analog output and to enable the output address bits of the corresponding module's readout IC. These address bits identify the "winner" pixel within the "winner" module. The peak of the largest analog signal is found and held using a peak detect circuit, after which it is acquired by an analog-to-digital converter on the data acquisition card. The camera is currently operated with four imaging modules in order to characterize its performance. At room temperature, the camera demonstrates an average energy resolution of 13.4% full-width at half-maximum (FWHM) for the 140-keV emissions of /sup 99m/Tc. The system spatial resolution is measured using a capillary tube with an inner diameter of 0.7 mm and located 10 cm from the face of the collimator. Images of the line source in air exhibit average system spatial resolutions of 8.7- and 11.2-mm FWHM when using an all-purpose and high-sensitivity parallel hexagonal holes collimator, respectively. These values do not change significantly when an acrylic scattering block is placed between the line source and the camera.

  14. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  15. 3D imaging LADAR with linear array devices: laser, detector and ROIC

    NASA Astrophysics Data System (ADS)

    Kameyama, Shumpei; Imaki, Masaharu; Tamagawa, Yasuhisa; Akino, Yosuke; Hirai, Akihito; Ishimura, Eitaro; Hirano, Yoshihito

    2009-07-01

    This paper introduces the recent development of 3D imaging LADAR (LAser Detection And Ranging) in Mitsubishi Electric Corporation. The system consists of in-house-made key devices which are linear array: the laser, the detector and the ROIC (Read-Out Integrated Circuit). The laser transmitter is the high power and compact planar waveguide array laser at the wavelength of 1.5 micron. The detector array consists of the low excess noise Avalanche Photo Diode (APD) using the InAlAs multiplication layer. The analog ROIC array, which is fabricated in the SiGe- BiCMOS process, includes the Trans-Impedance Amplifiers (TIA), the peak intensity detectors, the Time-Of-Flight (TOF) detectors, and the multiplexers for read-out. This device has the feature in its detection ability for the small signal by optimizing the peak intensity detection circuit. By combining these devices with the one dimensional fast scanner, the real-time 3D range image can be obtained. After the explanations about the key devices, some 3D imaging results are demonstrated using the single element key devices. The imaging using the developed array devices is planned in the near future.

  16. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays.

    PubMed

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-26

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

  17. Extended SWIR imaging sensors for hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  18. Absolute Position Encoders With Vertical Image Binning

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2005-01-01

    Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.

  19. Triroc: A Multi-Channel SiPM Read-Out ASIC for PET/PET-ToF Application

    NASA Astrophysics Data System (ADS)

    Ahmad, Salleh; Fleury, Julien; de la Taille, Christophe; Seguin-Moreau, Nathalie; Dulucq, Frederic; Martin-Chassard, Gisele; Callier, Stephane; Thienpont, Damien; Raux, Ludovic

    2015-06-01

    Triroc is the latest addition to SiPM readout ASICs family developed at Weeroc, a start-up company from the Omega microelectronics group of IN2P3/CNRS. This chip is developed under the framework TRIMAGE European project which is aimed for building a cost effective tri-modal PET/MR/EEG brain scan. To ensure the flexibility and compatibility with any SiPM in the market, the ASIC is designed to be capable of accepting negative and positive polarity input signals. This 64-channel ASIC, is suitable for SiPM readout which requires high accuracy timing and charge measurements. Targeted applications would be PET prototyping with time-of-flight capability. Main features of Triroc includes high dynamic range ADC up to 2500 photoelectrons and TDC fine time binning of 40 ps. Triroc requires very minimal external components which means it is a good contender for compact multichannel PET prototyping. Triroc is designed by using AMS 0.35 μm SiGe technology and it was submitted in March 2014. The detail design of this chip will be presented.

  20. Optical elements design of optical pick-up with characteristics of read-out spot for high density optical storage

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Ma, Jianshe; Liu, Lin; Pan, Longfa; Zhang, Jianyong; Lu, Junhui

    2005-09-01

    It is well known that the optical pick-up (OPU) plays a very important role in optical storage system. And the quality of OPU can be measured by the characteristics of OPU read-out spot for high density optical storage. Therefore this paper mainly designs an OPU model for high density optical storage to study the characteristics of OPU read-out spot. Firstly it analyses the optical read-out principle in OPU and contrives an optical read-out system based on the hereinbefore theory. In this step it chiefly designs the grating, splitter, collimator lens and objective lens. Secondly based on the aberrations analysis and theory involved by the splitter, the collimator lens and the optical lens, the paper uses the software CODE V to calculate the aberrations and to optimize the optical read-out system. Then the author can receive an ideal OPU read-out spot for high density optical storage and obtain the characteristics of the ideal OPU read-out spot. At the same time this paper analyses some influence factors which can directly affect the characteristics of the OPU read-out spot. Thirdly according to the up data the author practically manufactures a real optical pick-up to validate the hereinbefore designed optical read-out system. And it uses the Optical Spot Analyzer to get the image of the read-out spot. Comparing the ideal image to the actual image of the designed optical read-out system, the author finds out that the upwards analyses and design is suitable for high density storage and can be used in the actual production. And the author also receives the conclusion that the mostly influences on characteristics of OPU read-out spot for high density optical storage factors is not only the process of designing the grating, splitter, collimator lens and objective lens, but also the assembling work precision

  1. An optical fiber-based flexible readout system for micro-pattern gas detectors

    NASA Astrophysics Data System (ADS)

    Li, C.; Feng, C. Q.; Zhu, D. Y.; Liu, S. B.; An, Q.

    2018-04-01

    This paper presents an optical fiber-based readout system that is intended to provide a general purpose multi-channel readout solution for various Micro-Pattern Gas Detectors (MPGDs). The proposed readout system is composed of several front-end cards (FECs) and a data collection module (DCM). The FEC exploits the capability of an existing 64-channel generic TPC readout ASIC chip, named AGET, to implement 256 channels readout. AGET offers FEC a large flexibility in gain range (4 options from 120 fC to 10 pC), peaking time (16 options from 50 ns to 1 us) and sampling freqency (100 MHz max.). The DCM contains multiple 1 Gbps optical fiber serial link interfaces that allow the system scaling up to 1536 channels with 6 FECs and 1 DCM. Further scaling up is possible through cascading of multiple DCMs, by configuring one DCM as a master while other DCMs in slave mode. This design offers a rapid readout solution for different application senario. Tests indicate that the nonlinearity of each channel is less than 1%, and the equivalent input noise charge is typically around 0.7 fC in RMS (root mean square), with a noise slope of about 0.01 fC/pF. The system level trigger rate limit is about 700 Hz in all channel readout mode. When in hit channel readout mode, supposing that typically 10 percent of channels are fired, trigger rate can go up to about 7 kHz. This system has been tested with Micromegas detector and GEM detector, confirming its capability in MPGD readout. Details of hardware and FPGA firmware design, as well as system performances, are described in the paper.

  2. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  3. Compact and portable X-ray imager system using Medipix3RX

    NASA Astrophysics Data System (ADS)

    Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.

    2017-10-01

    In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.

  4. A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilms, Andrea

    2005-10-26

    In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.

  5. LSST camera readout chip ASPIC: test tools

    NASA Astrophysics Data System (ADS)

    Antilogus, P.; Bailly, Ph; Jeglot, J.; Juramy, C.; Lebbolo, H.; Martin, D.; Moniez, M.; Tocut, V.; Wicek, F.

    2012-02-01

    The LSST camera will have more than 3000 video-processing channels. The readout of this large focal plane requires a very compact readout chain. The correlated ''Double Sampling technique'', which is generally used for the signal readout of CCDs, is also adopted for this application and implemented with the so called ''Dual Slope integrator'' method. We have designed and implemented an ASIC for LSST: the Analog Signal Processing asIC (ASPIC). The goal is to amplify the signal close to the output, in order to maximize signal to noise ratio, and to send differential outputs to the digitization. Others requirements are that each chip should process the output of half a CCD, that is 8 channels and should operate at 173 K. A specific Back End board has been designed especially for lab test purposes. It manages the clock signals, digitizes the analog differentials outputs of ASPIC and stores data into a memory. It contains 8 ADCs (18 bits), 512 kwords memory and an USB interface. An FPGA manages all signals from/to all components on board and generates the timing sequence for ASPIC. Its firmware is written in Verilog and VHDL languages. Internals registers permit to define various tests parameters of the ASPIC. A Labview GUI allows to load or update these registers and to check a proper operation. Several series of tests, including linearity, noise and crosstalk, have been performed over the past year to characterize the ASPIC at room and cold temperature. At present, the ASPIC, Back-End board and CCD detectors are being integrated to perform a characterization of the whole readout chain.

  6. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    PubMed

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  7. Conceptual design of the SMART dosimeter

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Vogel, Sam; Frank, Rebecca; Stoddard, Graham; Vera, Alonzo; Alexander, David; Christian, James

    2017-08-01

    Active dosimeters for astronauts and space weather monitors are critical tools for mitigating radiation induced health issues or system failure on capital equipment. Commercial spaceflight, deep space flight, and satellites require smarter, smaller, and lower power dosimeters. There are a number of instruments with flight heritage, yet as identified in NASA's roadmaps, these technologies do not lend themselves to a viable solution for active dosimetry for an astronaut, particularly for deep space missions. For future missions, nano- and micro-satellites will require compact instruments that will accurately assess the radiation hazard without consuming major resources on the spacecraft. RMD has developed the methods for growing an advanced scintillation material called phenylcarbazole, which provides pulse shape discrimination between protons and electrons. When used in combination with an anti-coincidence detector system, an assessment of the dose from charged ions and neutral particles can be determined. This is valuable as damage on a system (such as silicon or tissue) is dependent on the particle species. Using this crystal with readout electronics developed in partnership with COSMIAC at the University of New Mexico, the design of the Small Mixed field Autonomous Radiation Tracker (SMART) Dosimeter consists of a low-power analog to digital conversion scheme with low-power digital signal processing algorithms, which are to be implemented within a compact system on a chip, such as the Xilinx Zynq series. A review of the conceptual design is presented.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budden, B. S.; Stonehill, L. C.; Warniment, A.

    In this study, a new class of elpasolite scintillators has garnered recent attention due to the ability to perform as simultaneous gamma spectrometers and thermal neutron detectors. Such a dual-mode capability is made possible by pulse-shape discrimination (PSD), whereby the emission waveform profiles of gamma and neutron events are fundamentally unique. To take full advantage of these materials, we have developed the Compact Advanced Readout Electronics for Elpasolites (CAREE). This handheld instrument employs a multi-channel PSD-capable ASIC, custom micro-processor board, front-end electronics, power supplies, and a 2 in. photomultiplier tube for readout of the scintillator. The unit is highly configurablemore » to allow for performance optimization amongst a wide sample of elpasolites which provide PSD in fundamentally different ways. We herein provide an introduction to elpasolites, then describe the motivation for the work, mechanical and electronic design, and preliminary performance results.« less

  9. The IBL readout system

    NASA Astrophysics Data System (ADS)

    Dopke, J.; Falchieri, D.; Flick, T.; Gabrielli, A.; Kugel, A.; Mättig, P.; Morettini, P.; Polini, A.; Schroer, N.

    2011-01-01

    The first upgrade for the ATLAS Pixel Detector will be an additional layer, which is called IBL (Insertable B-Layer). To readout this new layer, built from new electronics, an update of the readout electronics is necessary. The aim is to develop a system which is capable to read out at a higher bandwidth, but also compatible with the existing system to be integrated into it. This paper describes the necessary development to reach a new readout system, concentrating on the requirements of a newly designed Back of Crate card as the optical interface in the counting room.

  10. Recent developments for the upgrade of the LHCb readout system

    NASA Astrophysics Data System (ADS)

    Cachemiche, J. P.; Y Duval, P.; Hachon, F.; Le Gac, R.; Réthoré, F.

    2013-02-01

    The upgraded LHCb readout system aims at a trigger-free readout of the entire detector at the bunch-crossing rate. This implies a major architectural change for the readout system that must capture the data at 40 MHz instead of 1 MHz. One of the key components of this upgrade system is the readout board. The LHCb collaboration has chosen to evaluate the ATCA architecture as form-factor for the readout board. The readout system architecture relies on a unique board able to satisfy all the requirements for data transmission, timing and fast control as well as experiment control system. A generic ATCA carrier board has been developped. It is equipped with four dense AMC mezzanines able to interface a total of 144 bidirectional optical links at up to 10 Gbits/s. This board embeds 4 high end Stratix V GX devices for data processing and a programmable set of commutation functions allowing to reconfigure the connectivity of the system in a flexible way. The overall architecture will be presented and how the cards map over each functionality. First results and measurements will be described in particular those related to the use of new highly integrated optical devices. At last we will present the incremental development methodology used in this project.

  11. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  12. ALICE inner tracking system readout electronics prototype testing with the CERN "Giga Bit Transceiver''

    DOE PAGES

    Schambach, Joachim; Rossewij, M. J.; Sielewicz, K. M.; ...

    2016-12-28

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. Furthermore, this contribution describes laboratory and radiation testing results with this prototype board set.

  13. ALICE inner tracking system readout electronics prototype testing with the CERN ``Giga Bit Transceiver''

    NASA Astrophysics Data System (ADS)

    Schambach, J.; Rossewij, M. J.; Sielewicz, K. M.; Aglieri Rinella, G.; Bonora, M.; Ferencei, J.; Giubilato, P.; Vanat, T.

    2016-12-01

    The ALICE Collaboration is preparing a major detector upgrade for the LHC Run 3, which includes the construction of a new silicon pixel based Inner Tracking System (ITS). The ITS readout system consists of 192 readout boards to control the sensors and their power system, receive triggers, and deliver sensor data to the DAQ. To prototype various aspects of this readout system, an FPGA based carrier board and an associated FMC daughter card containing the CERN Gigabit Transceiver (GBT) chipset have been developed. This contribution describes laboratory and radiation testing results with this prototype board set.

  14. A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors

    NASA Astrophysics Data System (ADS)

    Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.

    2016-07-01

    A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.

  15. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  16. Digitally controlled high-performance dc SQUID readout electronics for a 304-channel vector magnetometer

    NASA Astrophysics Data System (ADS)

    Bechstein, S.; Petsche, F.; Scheiner, M.; Drung, D.; Thiel, F.; Schnabel, A.; Schurig, Th

    2006-06-01

    Recently, we have developed a family of dc superconducting quantum interference device (SQUID) readout electronics for several applications. These electronics comprise a low-noise preamplifier followed by an integrator, and an analog SQUID bias circuit. A highly-compact low-power version with a flux-locked loop bandwidth of 0.3 MHz and a white noise level of 1 nV/√Hz was specially designed for a 304-channel low-Tc dc SQUID vector magnetometer, intended to operate in the new Berlin Magnetically Shielded Room (BMSR-2). In order to minimize the space needed to mount the electronics on top of the dewar and to minimize the power consumption, we have integrated four electronics channels on one 3 cm × 10 cm sized board. Furthermore we embedded the analog components of these four channels into a digitally controlled system including an in-system programmable microcontroller. Four of these integrated boards were combined to one module with a size of 4 cm × 4 cm × 16 cm. 19 of these modules were implemented, resulting in a total power consumption of about 61 W. To initialize the 304 channels and to service the system we have developed software tools running on a laptop computer. By means of these software tools the microcontrollers are fed with all required data such as the working points, the characteristic parameters of the sensors (noise, voltage swing), or the sensor position inside of the vector magnetometer system. In this paper, the developed electronics including the software tools are described, and first results are presented.

  17. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.

    PubMed

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-08-24

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases).

  18. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    PubMed Central

    Herrera-May, Agustín Leobardo; Soler-Balcazar, Juan Carlos; Vázquez-Leal, Héctor; Martínez-Castillo, Jaime; Vigueras-Zuñiga, Marco Osvaldo; Aguilera-Cortés, Luz Antonio

    2016-01-01

    Microelectromechanical systems (MEMS) resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases). PMID:27563912

  19. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  20. Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout

    NASA Astrophysics Data System (ADS)

    Yang, H.; Menaa, N.; Bronson, F.; Kastner, M.; Venkataraman, R.; Mueller, W. F.

    2011-10-01

    Previous work showed that enriched 6Li halide scintillation crystal is a good candidate for portable neutron-sensitive detectors. Photodiode readout is a good alternative to PMT in compact devices. These detectors are often required to work in presence of a strong gamma background. Therefore, great discrimination against gamma rays is crucial. Because of the high Q-value of the 6Li(n,α) 3H reaction, the light yield of a neutron capture signal corresponds to 3-4 MeV gamma equivalent in spite of the quenching effect of heavily charged particles. As a result, energy discrimination is quite effective against gamma signals generated in thin crystals. However, direct gamma interactions inside the photodiode can create pulses whose amplitude is large enough to interfere with thermal neutron peak. This study shows an innovative design based on coincident readout to solve this problem. In this design, two photodiodes are attached on both sides of the LiI crystal. The output signal is only accepted when both photodiodes give out coincident output. The method is proved to effectively suppress background in the neutron window in a 420 mR/h 137Cs field down to the level of natural background.

  1. FITPix COMBO—Timepix detector with integrated analog signal spectrometric readout

    NASA Astrophysics Data System (ADS)

    Holik, M.; Kraus, V.; Georgiev, V.; Granja, C.

    2016-02-01

    The hybrid semiconductor pixel detector Timepix has proven a powerful tool in radiation detection and imaging. Energy loss and directional sensitivity as well as particle type resolving power are possible by high resolution particle tracking and per-pixel energy and quantum-counting capability. The spectrometric resolving power of the detector can be further enhanced by analyzing the analog signal of the detector common sensor electrode (also called back-side pulse). In this work we present a new compact readout interface, based on the FITPix readout architecture, extended with integrated analog electronics for the detector's common sensor signal. Integrating simultaneous operation of the digital per-pixel information with the common sensor (called also back-side electrode) analog pulse processing circuitry into one device enhances the detector capabilities and opens new applications. Thanks to noise suppression and built-in electromagnetic interference shielding the common hardware platform enables parallel analog signal spectroscopy on the back side pulse signal with full operation and read-out of the pixelated digital part, the noise level is 600 keV and spectrometric resolution around 100 keV for 5.5 MeV alpha particles. Self-triggering is implemented with delay of few tens of ns making use of adjustable low-energy threshold of the particle analog signal amplitude. The digital pixelated full frame can be thus triggered and recorded together with the common sensor analog signal. The waveform, which is sampled with frequency 100 MHz, can be recorded in adjustable time window including time prior to the trigger level. An integrated software tool provides control, on-line display and read-out of both analog and digital channels. Both the pixelated digital record and the analog waveform are synchronized and written out by common time stamp.

  2. Registration procedure for spatial correlation of physical energy deposition of particle irradiation and cellular response utilizing cell-fluorescent ion track hybrid detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Zimmermann, F.; Schlegel, J.; Schwager, C.; Debus, J.; Jäkel, O.; Abdollahi, A.; Greilich, S.

    2016-09-01

    The hybrid technology cell-fluorescent ion track hybrid detector (Cell-Fit-HD) enables the investigation of radiation-related cellular events along single ion tracks on the subcellular scale in clinical ion beams. The Cell-Fit-HD comprises a fluorescent nuclear track detector (FNTD, the physical compartment), a device for individual particle detection and a substrate for viable cell-coating, i.e. the biological compartment. To date both compartments have been imaged sequentially in situ by confocal laser scanning microscopy (CLSM). This is yet in conflict with a functional read-out of the Cell-Fit-HD utilizing a fast live-cell imaging of the biological compartment with low phototoxicity on greater time scales. The read-out of the biological from the physical compartment was uncoupled. A read-out procedure was developed to image the cell layer by conventional widefield microscopy whereas the FNTD was imaged by CLSM. Point mapping registration of the confocal and widefield imaging data was performed. Non-fluorescent crystal defects (spinels) visible in both read-outs were used as control point pairs. The accuracy achieved was on the sub-µm scale. The read-out procedure by widefield microscopy does not impair the unique ability of spatial correlation by the Cell-Fit-HD. The uncoupling will enlarge the application potential of the hybrid technology significantly. The registration allows for an ultimate correlation of microscopic physical beam parameters and cell kinetics on greater time scales. The method reported herein will be instrumental for the introduction of a novel generation of compact detectors facilitating biodosimetric research towards high-throughput analysis.

  3. Readout systems for inner detectors at the LHC and SLHC

    NASA Astrophysics Data System (ADS)

    Issever, Cigdem

    2006-12-01

    A general overview of the optoelectronic readout and control systems of the ATLAS and CMS inner detectors is given. The talk will also cover challenges and issues of future optoelectronic readout systems at the upgraded LHC (SLHC). First results of radiation tests of VCSELs and optical fibres which were irradiated up to SLHC fluences will be presented.

  4. High-Accuracy, Compact Scanning Method and Circuit for Resistive Sensor Arrays

    PubMed Central

    Kim, Jong-Seok; Kwon, Dae-Yong; Choi, Byong-Deok

    2016-01-01

    The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart. PMID:26821029

  5. Cellular telephone-based radiation sensor and wide-area detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  6. Performance evaluation for different sensing surface of BICELLs bio-transducers for dry eye biomarkers

    NASA Astrophysics Data System (ADS)

    Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.

    2015-03-01

    Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.

  7. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    NASA Astrophysics Data System (ADS)

    Tamborini, D.; Portaluppi, D.; Villa, F.; Tisa, S.; Tosi, A.

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  8. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs.

    PubMed

    Tamborini, D; Portaluppi, D; Villa, F; Tisa, S; Tosi, A

    2014-11-01

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically useful for time-correlated single-photon counting application) through an independent serial link.

  9. Cellular telephone-based radiation detection instrument

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  10. Cellular telephone-based wide-area radiation detection network

    DOEpatents

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  11. An online proton beam monitor for cancer therapy based on ionization chambers with micro pattern readout

    NASA Astrophysics Data System (ADS)

    Basile, E.; Carloni, A.; Castelluccio, D. M.; Cisbani, E.; Colilli, S.; De Angelis, G.; Fratoni, R.; Frullani, S.; Giuliani, F.; Gricia, M.; Lucentini, M.; Santavenere, F.; Vacca, G.

    2012-03-01

    A unique compact LINAC accelerator for proton therapy is under development in Italy within the TOP-IMPLART project. The proton beam will reach the kinetic energy of 230 MeV, it will have a widely variable current intensity (0.1-10 μA, with average up to 3.5 nA) associated with a high pulse repetition frequency (1-3.5 μs long pulses at 10-100 Hz). The TOP-IMPLART system will provide a fully active 3+1D dose delivery, that is longitudinal (energy modulation), transverse active spot scanning, and current intensity modulation. These accelerator features will permit a highly conformational dose distribution, which therefore requires an effective, online, beam monitor system with wide dynamic range, good sensitivity, adequate spatial resolution and rapid response. In order to fulfill these requisites a new device is under development for the monitoring of the beam intensity profile, its centroid and direction; it is based on transmission, segmented, ionization chambers with typical active area of 100 × 100 mm2. Micro pattern x/y pad like design has been used for the readout plane in order to maximize the field uniformity, reduce the chamber thickness and obtain both beam coordinates on a single chamber. The chamber prototype operates in ionization region to minimize saturation and discharge effects. Simulations (based on FLUKA) have been carried on to study the perturbation of the chamber on the beam parameters and the effects on the delivered dose (on a water phantom). The charge collected in each channel is integrated by dedicated auto-ranging readout electronics: an original scheme has been developed in order to have an input dynamic range greater than 104 with sensitivity better than 3%. This is achieved by a dynamical adjustment of the integrating capacitance to the signal intensity.

  12. A radiation-tolerant electronic readout system for portal imaging

    NASA Astrophysics Data System (ADS)

    Östling, J.; Brahme, A.; Danielsson, M.; Iacobaeus, C.; Peskov, V.

    2004-06-01

    A new electronic portal imaging device, EPID, is under development at the Karolinska Institutet and the Royal Institute of Technology. Due to considerable demands on radiation tolerance in the radiotherapy environment, a dedicated electronic readout system has been designed. The most interesting aspect of the readout system is that it allows to read out ˜1000 pixels in parallel, with all electronics placed outside the radiation beam—making the detector more radiation resistant. In this work we are presenting the function of a small prototype (6×100 pixels) of the electronic readout board that has been tested. Tests were made with continuous X-rays (10-60 keV) and with α particles. The results show that, without using an optimised gas mixture and with an early prototype only, the electronic readout system still works very well.

  13. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  14. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells.

    PubMed

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Jahangiri, Akbar J; Shaffer, James P

    2017-04-17

    Rydberg atom-based electrometry enables traceable electric field measurements with high sensitivity over a large frequency range, from gigahertz to terahertz. Such measurements are particularly useful for the calibration of radio frequency and terahertz devices, as well as other applications like near field imaging of electric fields. We utilize frequency modulated spectroscopy with active control of residual amplitude modulation to improve the signal to noise ratio of the optical readout of Rydberg atom-based radio frequency electrometry. Matched filtering of the signal is also implemented. Although we have reached similarly, high sensitivity with other read-out methods, frequency modulated spectroscopy is advantageous because it is well-suited for building a compact, portable sensor. In the current experiment, ∼3 µV cm-1 Hz-1/2 sensitivity is achieved and is found to be photon shot noise limited.

  15. Digitized molecular diagnostics: reading disk-based bioassays with standard computer drives.

    PubMed

    Li, Yunchao; Ou, Lily M L; Yu, Hua-Zhong

    2008-11-01

    We report herein a digital signal readout protocol for screening disk-based bioassays with standard optical drives of ordinary desktop/notebook computers. Three different types of biochemical recognition reactions (biotin-streptavidin binding, DNA hybridization, and protein-protein interaction) were performed directly on a compact disk in a line array format with the help of microfluidic channel plates. Being well-correlated with the optical darkness of the binding sites (after signal enhancement by gold nanoparticle-promoted autometallography), the reading error levels of prerecorded audio files can serve as a quantitative measure of biochemical interaction. This novel readout protocol is about 1 order of magnitude more sensitive than fluorescence labeling/scanning and has the capability of examining multiplex microassays on the same disk. Because no modification to either hardware or software is needed, it promises a platform technology for rapid, low-cost, and high-throughput point-of-care biomedical diagnostics.

  16. Performance of μ-RWELL detector vs resistivity of the resistive stage

    NASA Astrophysics Data System (ADS)

    Bencivenni, G.; De Oliveira, R.; Felici, G.; Gatta, M.; Morello, G.; Ochi, A.; Lener, M. Poli; Tskhadadze, E.

    2018-04-01

    The μ-RWELL is a compact spark-protected single amplification stage Micro-Pattern-Gaseous-Detector (MPGD). The detector amplification stage is realized with a polyimide structure, micro-patterned with a dense matrix of blind-holes, integrated into the readout structure. The anode is formed by a thin Diamond Like Carbon (DLC) resistive layer separated by an insulating glue layer from the readout strips. The introduction of the resistive layer strongly suppressing the transition from streamer to spark gives the possibility to achieve large gains (> 104), without significantly affecting the capability to be efficiently operated in high particle fluxes. In this work we present the results of a systematic study of the μ-RWELL performance as a function of the DLC resistivity. The tests have been performed either with collimated 5.9 keV X-rays or with pion and muon beams at the SPS Secondary Beamline H4 and H8 at CERN.

  17. Splitter board for steamer tube readout at the SLD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchetta, N.; Bisello, D.; Castro, A.

    1989-10-01

    This paper presents a controller board designed as a part of the data acquisition system for the readout of limited streamer tube strips in the warm iron calorimeter for the SLD detector. The board controls the data readout and allows for remote setting and diagnostic of the system.

  18. A feasibility study of a data acquisition system for a silicon strip detector with a digital readout scheme

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirokazu; Ikeda, Mitsuo; Inaba, Susumu; Tanaka, Manobu

    1993-06-01

    We describe a prototype data acquisition system for a silicon strip detector, which has been developed in terms of a digital readout scheme. The system consists of a master timing generator, readout controller, and a detector emulator card on which we use custom VLSI shift registers with operating clock frequency of 30 MHz.

  19. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  20. Development of compact particle detectors for space based instruments

    NASA Astrophysics Data System (ADS)

    Barner, Lindsey; Grove, Andrew; Mohler, Jacob; Sisson, Caleb; Roth, Alex; Kryemadhi, Abaz

    2017-01-01

    The Silicon Photomultipliers (SiPMs) are new photon-detectors which have been increasingly used in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers benefits compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high stopping power, very good light yield and fast decay time. The response of these detectors to low energy gamma rays will be presented. NASA Pennsylvania Space Grant Consortium.

  1. Design and performance of a high spatial resolution, time-of-flight PET detector

    PubMed Central

    Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman

    2014-01-01

    This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711

  2. Prototype readout electronics and silicon strip detector study for the silicon tracking system at compressed baryonic matter experiment

    NASA Astrophysics Data System (ADS)

    Kasiński, Krzysztof; Szczygieł, Robert; Gryboś, Paweł

    2011-10-01

    This paper presents the prototype detector readout electronics for the STS (Silicon Tracking System) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The emphasis has been put on the strip detector readout chip and its interconnectivity with detector. Paper discusses the impact of the silicon strip detector and interconnection cable construction on the overall noise of the system and architecture of the TOT02 readout ASIC. The idea and problems of the double-sided silicon detector usage are also presented.

  3. A compact muon tracking system for didactic and outreach activities

    NASA Astrophysics Data System (ADS)

    Antolini, R.; Candela, A.; Conicella, V.; De Deo, M.; D` Incecco, M.; Sablone, D.; Arneodo, F.; Benabderrahmane, M. L.; Di Giovanni, A.; Pazos Clemens, L.; Franchi, G.; d`Inzeo, M.

    2016-07-01

    We present a cosmic ray telescope based on the use of plastic scintillator bars coupled to ASD-RGB1S-M Advansid Silicon Photomultipliers (SiPM) through wavelength shifter fibers. The system is comprised of 200 electronic channels organized into 10 couples of orthogonal planes allowing the 3D reconstruction of crossing muons. Two monolithic PCB boards have been designed to bias, readout all the SiPMs enclosed in the system, to monitor the working parameters and to remotely connect the detector. To make easier the display of muon tracks to non-expert users, two LED matrices, triggered by particle interactions, have been implemented. To improve the usability of the muon telescope, a controller board unit permits to select different levels of trigger and allows data acquisition for refined analyses for the more proficient user. A first prototype, funded by INFN and deployed in collaboration with NYUAD, is operating at the Toledo Metro station of Naples, while two further detectors will be developed and installed in Abu Dhabi in the next few months.

  4. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Delgado, Jesus; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, pressure range from 3.5 to 14.7 psi, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under liquid water saturation. This paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a spacesuit portable Life support system and the analytical characterization of the optical sensors interrogated by the novel optoelectronic system. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the spacesuit, which may interfere with gas sensor readings. The paper also presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in spacesuits. The studies were conducted with the spacecraft maximum allowable concentrations for those trace gases and the calculated 8-hr. concentrations resulting from having no trace contaminant control system in the ventilation loop. Finally, a profile of temperature, pressure, humidity, and gas composition for a typical EVA mission has been defined, and the performance of sensors operated repeatedly under simulated EVA mission conditions has been studied.

  5. Read-out electronics for DC squid magnetic measurements

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-01-01

    Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.

  6. Photonic content-addressable memory system that uses a parallel-readout optical disk

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Ashok V.; Marchand, Philippe J.; Yayla, Gökçe; Esener, Sadik C.

    1995-11-01

    We describe a high-performance associative-memory system that can be implemented by means of an optical disk modified for parallel readout and a custom-designed silicon integrated circuit with parallel optical input. The system can achieve associative recall on 128 \\times 128 bit images and also on variable-size subimages. The system's behavior and performance are evaluated on the basis of experimental results on a motionless-head parallel-readout optical-disk system, logic simulations of the very-large-scale integrated chip, and a software emulation of the overall system.

  7. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  8. An application specific integrated circuit based multi-anode microchannel array readout system

    NASA Technical Reports Server (NTRS)

    Smeins, Larry G.; Stechman, John M.; Cole, Edward H.

    1991-01-01

    Size reduction of two new multi-anode microchannel array (MAMA) readout systems is described. The systems are based on two analog and one digital application specific integrated circuits (ASICs). The new readout systems reduce volume over previous discrete designs by 80 percent while improving electrical performance on virtually every significant parameter. Emphasis is made on the packaging used to achieve the volume reduction. Surface mount technology (SMT) is combined with modular construction for the analog portion of the readout. SMT reliability concerns and the board area impact of MIL SPEC SMT components is addressed. Package selection for the analog ASIC is discussed. Future sytems will require even denser packaging and the volume reduction progression is shown.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent; Beghuin, Didier

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALMmore » ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.« less

  10. Multichannel low power time-to-digital converter card with 21 ps precision and full scale range up to 10 μs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamborini, D., E-mail: davide.tamborini@polimi.it; Portaluppi, D.; Villa, F.

    We present a Time-to-Digital Converter (TDC) card with a compact form factor, suitable for multichannel timing instruments or for integration into more complex systems. The TDC Card provides 10 ps timing resolution over the whole measurement range, which is selectable from 160 ns up to 10 μs, reaching 21 ps rms precision, 1.25% LSB rms differential nonlinearity, up to 3 Mconversion/s with 400 mW power consumption. The I/O edge card connector provides timing data readout through either a parallel bus or a 100 MHz serial interface and further measurement information like input signal rate and valid conversion rate (typically usefulmore » for time-correlated single-photon counting application) through an independent serial link.« less

  11. Modularized compact positron emission tomography detector for rapid system development

    PubMed Central

    Xi, Daoming; Liu, Xiang; Zeng, Chen; Liu, Wei; Li, Yanzhao; Hua, Yuexuan; Mei, Xiongze; Kim, Heejong; Xiao, Peng; Kao, Chien-Min; Xie, Qingguo

    2016-01-01

    Abstract. We report the development of a modularized compact positron emission tomography (PET) detector that outputs serial streams of digital samples of PET event pulses via an Ethernet interface using the UDP/IP protocol to enable rapid configuration of a PET system by connecting multiple such detectors via a network switch to a computer. Presently, the detector is 76  mm×50  mm×55  mm in extent (excluding I/O connectors) and contains an 18×12 array of 4.2×4.2×20  mm3 one-to-one coupled lutetium-yttrium oxyorthosilicate/silicon photomultiplier pixels. It employs cross-wire and stripline readouts to merge the outputs of the 216 detector pixels to 24 channels. Signals at these channels are sampled using a built-in 24-ch, 4-level field programmable gate arrays-only multivoltage threshold digitizer. In the computer, software programs are implemented to analyze the digital samples to extract event information and to perform energy qualification and coincidence filtering. We have developed two such detectors. We show that all their pixels can be accurately discriminated and measure a crystal-level energy resolution of 14.4% to 19.4% and a detector-level coincidence time resolution of 1.67 ns FWHM. Preliminary imaging results suggests that a PET system based on the detectors can achieve an image resolution of ∼1.6  mm. PMID:28018941

  12. Compact Multi-Gas Monitor for Life Support Systems Control in Space: Evaluation Under Realistic Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Alonso, Jesus Delgado; Phillips, Straun; Chullen, Cinda; Mendoza, Edgar

    2014-01-01

    Advanced space life support systems require lightweight, low-power, durable sensors for monitoring critical gas components. A luminescence-based optical flow-through cell to monitor carbon dioxide, oxygen, and humidity has been developed and was demonstrated using bench-top instrumentation under environmental conditions relevant to portable life support systems, including initially pure oxygen atmosphere, temperature range from 50 F to 150 F, and humidity from dry to 100% RH and under conditions of water condensation. This paper presents the most recent progress in the development of this sensor technology. Trace gas contaminants in a space suit, originating from hardware and material off-gassing and crew member metabolism, are from many chemical families. The result is a gas mix much more complex than the pure oxygen fed into the space suit, and this complexity may interfere with gas sensor readings. This paper presents an evaluation of optical sensor performance when exposed to the most significant trace gases reported to be found in space suits. A study of the calibration stability of the sensors is also presented. For that purpose, a profile of temperature, pressure, humidity, and gas composition for the duration of an EVA has been defined, and the performance of sensors operated repeatedly under those conditions has been studied. Finally, this paper presents the first compact readout unit for these optical sensors, designed for the volume, power, and weight restrictions of a PLSS.

  13. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  14. Strontium Iodide Radiation Instrumentation (SIRI)

    NASA Astrophysics Data System (ADS)

    Mitchell, Lee J.; Phlips, Bernard F.; Woolf, Richard S.; Finne, Theodore T.; Johnson, W. Neil; Jackson, Emily G.

    2017-08-01

    The Strontium Iodide Radiation Instrumentation (SIRI) is designed to space-qualify new gamma-ray detector technology for space-based astrophysical and defense applications. This new technology offers improved energy resolution, lower power consumption and reduced size compared to similar systems. The SIRI instrument consists of a single europiumdoped strontium iodide (SrI2:Eu) scintillation detector. The crystal has an energy resolution of 3% at 662 keV compared to the 6.5% of traditional sodium iodide and was developed for terrestrial-based weapons of mass destruction (WMD) detection. SIRI's objective is to study the internal activation of the SrI2:Eu material and measure the performance of the silicon photomultiplier (SiPM) readouts over a 1-year mission. The combined detector and readout measure the gammaray spectrum over the energy range of 0.04 - 4 MeV. The SIRI mission payoff is a space-qualified compact, highsensitivity gamma-ray spectrometer with improved energy resolution relative to previous sensors. Scientific applications in solar physics and astrophysics include solar flares, Gamma Ray Bursts, novae, supernovae, and the synthesis of the elements. Department of Defense (DoD) and security applications are also possible. Construction of the SIRI instrument has been completed, and it is currently awaiting integration onto the spacecraft. The expected launch date is May 2018 onboard STPSat-5. This work discusses the objectives, design details and the STPSat-5 mission concept of operations of the SIRI spectrometer.

  15. The TT-PET project: a thin TOF-PET scanner based on fast novel silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Bandi, Y.; Benoit, M.; Cadoux, F. R.; Forshaw, D. C.; Hänni, R.; Hayakawa, D.; Iacobucci, G.; Michal, S.; Miucci, A.; Paolozzi, L.; Ratib, O.; Ripiccini, E.; Tognina, C.; Valerio, P.; Weber, M.

    2018-01-01

    The TT-PET project aims at developing a compact Time-of-flight PET scanner with 30ps time resolution, capable of withstanding high magnetic fields and allowing for integration in a traditional MRI scanner, providing complimentary real-time PET images. The very high timing resolution of the TT-PET scanner is achieved thanks to a new generation of Silicon-Germanium (Si-Ge) amplifiers, which are embedded in monolithic pixel sensors. The scanner is composed of 16 detection towers as well as cooling blocks, arranged in a ring structure. The towers are composed of multiple ultra-thin pixel modules stacked on top of each other. Making it possible to perform depth of interaction measurements and maximize the spatial resolution along the line of flight of the two photons emitted within a patient. This will result in improved image quality, contrast, and uniformity while drastically reducing backgrounds within the scanner. Allowing for a reduction in the amount of radioactivity delivered to the patient. Due to an expected data rate of about 250 MB/s a custom readout system for high data throughput has been developed, which includes noise filtering and reduced data pressure. The realisation of a first scanner prototype for small animals is foreseen by 2019. A general overview of the scanner will be given including, technical details concerning the detection elements, mechanics, DAQ readout, simulation and results.

  16. Superconducting thin-film gyroscope readout for Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Lockhart, James M.; Cheung, W. Stephen; Gill, Dale K.

    1987-01-01

    The high-resolution gyroscope readout system for the Stanford Gravity Probe-B experiment, whose purpose is to measure two general relativistic precessions of gyroscopes in earth orbit, is described. In order to achieve the required resolution in angle (0.001 arcsec), the readout system combines high-precision mechanical fabrication and measurement techniques with superconducting thin-film technology, ultralow magnetic fields, and SQUID detectors. The system design, performance limits achievable with current technology, and the results of fabrication and laboratory testing to date are discussed.

  17. A high-sensitivity magnetocardiography system with a divided gradiometer array inside a low boil-off Dewar

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Yu, K. K.; Kim, J. M.; Kwon, H.; Kim, K.

    2009-11-01

    We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fTrms Hz-1/2 at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical image of the torso.

  18. Optoelectronic associative recall using motionless-head parallel readout optical disk

    NASA Astrophysics Data System (ADS)

    Marchand, P. J.; Krishnamoorthy, A. V.; Ambs, P.; Esener, S. C.

    1990-12-01

    High data rates, low retrieval times, and simple implementation are presently shown to be obtainable by means of a motionless-head 2D parallel-readout system for optical disks. Since the optical disk obviates mechanical head motions for access, focusing, and tracking, addressing is performed exclusively through the disk's rotation. Attention is given to a high-performance associative memory system configuration which employs a parallel readout disk.

  19. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    NASA Astrophysics Data System (ADS)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  20. Frequency division multiplexed readout of TES detectors with baseband feedback

    NASA Astrophysics Data System (ADS)

    den Hartog, R.; Audley, M. D.; Beyer, J.; Bruijn, M. P.; de Korte, P.; Gottardi, L.; Hijmering, R.; Jackson, B.; Nieuwenhuizen, A.; van der Kuur, J.; van Leeuwen, B.-J.; Van Loon, D.

    2012-09-01

    SRON is developing an electronic system for the multiplexed read-out of an array of transition edge sensors (TES) by combining the techniques of frequency domain multiplexing (FDM) with base-band feedback (BBFB). The astronomical applications are the read-out of soft X-ray microcalorimeters and the far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In this paper we derive the requirements for the read-out system regarding noise and dynamic range in the context of the SAFARI instrument, and demonstrate that the current experimental prototype is capable of simultaneously locking 57 channels and complies with these requirements.

  1. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    NASA Astrophysics Data System (ADS)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  2. Data acquisition and processing in the ATLAS tile calorimeter phase-II upgrade demonstrator

    NASA Astrophysics Data System (ADS)

    Valero, A.; Tile Calorimeter System, ATLAS

    2017-10-01

    The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run 2 value. The ATLAS Tile Calorimeter will undergo an upgrade to accommodate the HL-LHC parameters. The TileCal readout electronics will be redesigned, introducing a new readout strategy. A Demonstrator program has been developed to evaluate the new proposed readout architecture and prototypes of all the components. In the Demonstrator, the detector data received in the Tile PreProcessors (PPr) are stored in pipeline buffers and upon the reception of an external trigger signal the data events are processed, packed and readout in parallel through the legacy ROD system, the new Front-End Link eXchange system and an ethernet connection for monitoring purposes. This contribution describes in detail the data processing and the hardware, firmware and software components of the TileCal Demonstrator readout system.

  3. Enhancements to a Superconducting Quantum Interference Device (SQUID) Multiplexer Readout and Control System

    NASA Technical Reports Server (NTRS)

    Forgione, J.; Benford, D. J.; Buchanan, E. D.; Moseley, S. H.; Rebar, J.; Shafer, R. A.

    2004-01-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA s Goddard Space Flight Center acquired a Mark 111 system and subsequently designed upgrades to suit our and our collaborators purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided hooks in the Mark III system to allow readout of signals from outside the Mark 111 system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  4. Enhancements to a superconducting quantum interference device (SQUID) multiplexer readout and control system

    NASA Astrophysics Data System (ADS)

    Forgione, Joshua B.; Benford, Dominic J.; Buchanan, Ernest D.; Moseley, S. H., Jr.; Rebar, Joyce; Shafer, Richard A.

    2004-10-01

    Far-infrared detector arrays such as the 16x32 superconducting bolometer array for the SAFIRE instrument (flying on the SOFIA airborne observatory) require systems of readout and control electronics to provide translation between a user-driven, digital PC and the cold, analog world of the cryogenic detector. In 2001, the National Institute of Standards and Technology (NIST) developed their Mark III electronics for purposes of control and readout of their 1x32 SQUID Multiplexer chips. We at NASA's Goddard Space Flight Center acquired a Mark III system and subsequently designed upgrades to suit our and our collaborators' purposes. We developed an arbitrary, programmable multiplexing system that allows the user to cycle through rows in a SQUID array in an infinite number of combinations. We provided 'hooks' in the Mark III system to allow readout of signals from outside the Mark III system, such as telescope status information. Finally, we augmented the heart of the system with a new feedback algorithm implementation, flexible diagnostic tools, and informative telemetry.

  5. Proposal to upgrade the MIPP data acquisition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, W.; Carey, D.; Johnstone, C.

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  6. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement

    NASA Astrophysics Data System (ADS)

    Blankenhorn, M.; Heintze, E.; Slota, M.; van Slageren, J.; Moores, B. A.; Degen, C. L.; Bogani, L.; Dressel, M.

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  7. Membrane-based torque magnetometer: Enhanced sensitivity by optical readout of the membrane displacement.

    PubMed

    Blankenhorn, M; Heintze, E; Slota, M; van Slageren, J; Moores, B A; Degen, C L; Bogani, L; Dressel, M

    2017-09-01

    The design and realization of a torque magnetometer is reported that reads the deflection of a membrane by optical interferometry. The compact instrument allows for low-temperature measurements of tiny crystals less than a microgram with a significant improvement in sensitivity, signal-to-noise ratio as well as data acquisition time compared with conventional magnetometry and offers an enormous potential for further improvements and future applications in different fields. Magnetic measurements on single-molecule magnets demonstrate the applicability of the membrane-based torque magnetometer.

  8. Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Editor)

    1992-01-01

    The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.

  9. Optimal CCD readout by digital correlated double sampling

    NASA Astrophysics Data System (ADS)

    Alessandri, C.; Abusleme, A.; Guzman, D.; Passalacqua, I.; Alvarez-Fontecilla, E.; Guarini, M.

    2016-01-01

    Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices (CCD), is gaining popularity in astronomical applications. By using an oversampling ADC and a digital filter, a DCDS system can achieve a better performance than traditional analogue readout techniques at the expense of a more complex system analysis. Several attempts to analyse and optimize a DCDS system have been reported, but most of the work presented in the literature has been experimental. Some approximate analytical tools have been presented for independent parameters of the system, but the overall performance and trade-offs have not been yet modelled. Furthermore, there is disagreement among experimental results that cannot be explained by the analytical tools available. In this work, a theoretical analysis of a generic DCDS readout system is presented, including key aspects such as the signal conditioning stage, the ADC resolution, the sampling frequency and the digital filter implementation. By using a time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time process, thus avoiding the imprecision of continuous-time approximations that have been used so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the output of the readout system is reached. This expression can be easily optimized in order to meet a set of specifications for a given CCD, thus providing a systematic design methodology for an optimal readout system. Simulated results are presented to validate the theory, obtained with both time- and frequency-domain noise generation models for completeness.

  10. Electronic readout system for the Belle II imaging Time-Of-Propagation detector

    NASA Astrophysics Data System (ADS)

    Kotchetkov, Dmitri

    2017-07-01

    The imaging Time-Of-Propagation (iTOP) detector, constructed for the Belle II experiment at the SuperKEKB e+e- collider, is an 8192-channel high precision Cherenkov particle identification detector with timing resolution below 50 ps. To acquire data from the iTOP, a novel front-end electronic readout system was designed, built, and integrated. Switched-capacitor array application-specific integrated circuits are used to sample analog signals. Triggering, digitization, readout, and data transfer are controlled by Xilinx Zynq-7000 system on a chip devices.

  11. A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS

    PubMed Central

    Hall, Drew A.; Gaster, Richard S.; Makinwa, Kofi; Wang, Shan X.; Murmann, Boris

    2014-01-01

    Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) sensors coupled with magnetic nanotags (MNTs) possess great promise as ultra-sensitive biosensors for diagnostics. We report an integrated sensor interface for an array of 256 GMR SV biosensors designed in 0.18 μm CMOS. Arranged like an imager, each of the 16 column level readout channels contains an analog front- end and a compact ΣΔ modulator (0.054 mm2) with 84 dB of dynamic range and an input referred noise of 49 nT/√Hz. Performance is demonstrated through detection of an ovarian cancer biomarker, secretory leukocyte peptidase inhibitor (SLPI), spiked at concentrations as low as 10 fM. This system is designed as a replacement for optical protein microarrays while also providing real-time kinetics monitoring. PMID:24761029

  12. Degradation of optical components in space

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    This report concerns two types of optical components: multilayer filters and mirrors, and self-scanned imaging arrays using charge coupled device (CCD) readouts. For the filters and mirrors, contamination produces a strong reduction in transmittance in the ultraviolet spectral region, but has little or no effect in the visible and infrared spectral regions. Soft substrates containing halides are unsatisfactory as windows or substrates. Materials choice for dielectric layers should also reflect such considerations. Best performance is also found for the harder materials. Compaction of the layers and interlayer diffusion causes a blue shift in center wavelength and loss of throughput. For sensors using CCD's, shifts in gate voltage and reductions in transfer efficiency occur. Such effects in CCD's are in accord with expectations of the effects of the radiation dose on the device. Except for optical fiber, degradation of CCD's represents the only ionizing-radiation induced effect on the Long Duration Exposure Facility (LDEF) optical systems components that has been observed.

  13. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Masahiro; Nakano, Toshiyuki; Komatani, Ryosuke; Kawahara, Hiroaki

    2017-10-01

    Automatic nuclear emulsion readout systems have seen remarkable progress since the original idea was developed almost 40 years ago. After the success of its full application to a large-scale neutrino experiment, OPERA, a much faster readout system, the hyper-track selector (HTS), has been developed. HTS, which has an extremely wide-field objective lens, reached a scanning speed of 4700 cm^2/h, which is nearly 100 times faster than the previous system and therefore strongly promotes many new experimental projects. We will describe the concept, specifications, system structure, and achieved performance in this paper.

  14. CCDiode: an optimal detector for laser confocal microscopes

    NASA Astrophysics Data System (ADS)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often < 20 photons/pixel (from the specimen, assuming a standard 512 X 768, 1 sec. scan). Although this data rate limits the speed at which information can be derived from the specimen, saturation of the fluorophor, photobleaching of the dye, and phototoxicity prevent it being increased. Currently, most LCMs use photomultiplier tubes (PMT, QE equals 1 - 30% 400 - 900 nm). By contrast, rear-illuminated, scientific charge-coupled devices (CCD) now routinely readout the signal from square sensors approximately 30 micrometers on a side with a QE of 80 - 90%, a noise of only +/- 3 e-/pix and with no multiplicative noise. For this reason, in 1989, one of us (JJ) developed a rear-illuminated, single-channel Si sensor, called the Turbodiode, employing some of the sophisticated readout techniques used to measure charge in a scientific CCD. We are now extending this work to a device in which a single 36 X 36 micrometers sensor is read out through a low-noise FET charge amplifier with a reset circuit and then passed to a correlated, double-sampling digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  15. Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.

    2006-01-01

    The figure depicts a unit that contains a rotary-position or a rotary-speed sensor, plus electronic circuitry necessary for its operation, all enclosed in a single housing with a shaft for coupling to an external rotary machine. This rotation sensor unit is complete: when its shaft is mechanically connected to that of the rotary machine and it is supplied with electric power, it generates an output signal directly indicative of the rotary position or speed, without need for additional processing by other circuitry. The incorporation of all of the necessary excitatory and readout circuitry into the housing (in contradistinction to using externally located excitatory and/or readout circuitry) in a compact arrangement is the major difference between this unit and prior rotation-sensor units. The sensor assembly inside the housing includes excitatory and readout integrated circuits mounted on a circular printed-circuit board. In a typical case in which the angle or speed transducer(s) utilize electromagnetic induction, the assembly also includes another circular printed-circuit board on which the transducer windings are mounted. A sheet of high-magnetic permeability metal ("mu metal") is placed between the winding board and the electronic-circuit board to prevent spurious coupling of excitatory signals from the transducer windings to the readout circuits. The housing and most of the other mechanical hardware can be common to a variety of different sensor designs. Hence, the unit can be configured to generate any of variety of outputs by changing the interior sensor assembly. For example, the sensor assembly could contain an analog tachometer circuit that generates an output proportional (in both magnitude and sign or in magnitude only) to the speed of rotation.

  16. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  17. High-efficiency dynamic routing architecture for the readout of single photon avalanche diode arrays in time-correlated measurements

    NASA Astrophysics Data System (ADS)

    Cominelli, A.; Acconcia, G.; Peronio, P.; Rech, I.; Ghioni, M.

    2017-05-01

    In recent years, the Time-Correlated Single Photon Counting (TCSPC) technique has gained a prominent role in many fields, where the analysis of extremely fast and faint luminous signals is required. In the life science, for instance, the estimation of fluorescence time-constants with picosecond accuracy has been leading to a deeper insight into many biological processes. Although the many advantages provided by TCSPC-based techniques, their intrinsically repetitive nature leads to a relatively long acquisition time, especially when time-resolved images are obtained by means of a single detector, along with a scanning point system. In the last decade, TCSPC acquisition systems have been subjected to a fast trend towards the parallelization of many independent channels, in order to speed up the measure. On one hand, some high-performance multi-module systems have been already made commercially available, but high area and power consumption of each module have limited the number of channels to only some units. On the other hand, many compact systems based on Single Photon Avalanche Diodes (SPAD) have been proposed in literature, featuring thousands of independent acquisition chains on a single chip. The integration of both detectors and conversion electronic in the same pixel area, though, has imposed tight constraints on power dissipation and area occupation of the electronics, resulting in a tradeoff with performance, both in terms of differential nonlinearity and timing jitter. Furthermore, in the ideal case of simultaneous readout of a huge number of channels, the overall data rate can be as high as 100 Gbit/s, which is nowadays too high to be easily processed in real time by a PC. Typical adopted solutions involve an arbitrary dwell time, followed by a sequential readout of the converters, thus limiting the maximum operating frequency of each channel and impairing the measurement speed, which still lies well below the limit imposed by the saturation of the transfer rate towards the elaboration unit. We developed a novel readout architecture, starting from a completely different perspective: considering the maximum data rate we can manage with a PC, a limited set of conversion data is selected and transferred to the elaboration unit during each excitation period, in order to take full advantage of the bus bandwidth toward the PC. In particular, we introduce a smart routing logic, able to dynamically connect a large number of SPAD detectors to a limited set of high-performance external acquisition chains, paving the way for a more efficient use of resources and allowing us to effectively break the tradeoff between integration and performance, which affects the solutions proposed so far. The routing electronic features a pixelated architecture, while 3D-stacking techniques are exploited to connect each SPAD to its dedicated electronic, leading to a minimization of the overall number of interconnections crossing the integrated system, which is one of the main issues in high-density arrays.

  18. Study of spacecraft direct readout meteorological systems

    NASA Technical Reports Server (NTRS)

    Bartlett, R.; Elam, W.; Hoedemaker, R.

    1973-01-01

    Characteristics are defined of the next generation direct readout meteorological satellite system with particular application to Tiros N. Both space and ground systems are included. The recommended space system is composed of four geosynchronous satellites and two low altitude satellites in sun-synchronous orbit. The goesynchronous satellites transmit to direct readout ground stations via a shared S-band link, relayed FOFAX satellite cloud cover pictures (visible and infrared) and weather charts (WEFAX). Basic sensor data is transmitted to regional Data Utilization Stations via the same S-band link. Basic sensor data consists of 0.5 n.m. sub-point resolution data in the 0.55 - 0.7 micron spectral region, and 4.0 n.m. resolution data in the 10.5 - 12.6 micron spectral region. The two low altitude satellites in sun-synchronous orbit provide data to direct readout ground stations via a 137 MHz link, a 400 Mhz link, and an S-band link.

  19. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  20. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  1. Invited review article: Advanced light microscopy for biological space research.

    PubMed

    De Vos, Winnok H; Beghuin, Didier; Schwarz, Christian J; Jones, David B; van Loon, Jack J W A; Bereiter-Hahn, Juergen; Stelzer, Ernst H K

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  2. Invited Review Article: Advanced light microscopy for biological space research

    NASA Astrophysics Data System (ADS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  3. A multiball read-out for the spherical proportional counter

    NASA Astrophysics Data System (ADS)

    Giganon, A.; Giomataris, I.; Gros, M.; Katsioulas, I.; Navick, X. F.; Tsiledakis, G.; Savvidis, I.; Dastgheibi-Fard, A.; Brossard, A.

    2017-12-01

    We present a novel concept of proportional gas amplification for the read-out of the spherical proportional counter. The standard single-ball read-out presents limitations for large diameter spherical detectors and high-pressure operations. We have developed a multi-ball read-out system which consists of several balls placed at a fixed distance from the center of the spherical vessel. Such a module can tune the volume electric field at the desired value and can also provide detector segmentation with individual ball read-out. In the latter case, the large volume of the vessel becomes a spherical time projection chamber with 3D capabilities.

  4. Spectral contents readout of birefringent sensor

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1989-01-01

    The technical objective of this research program was to develop a birefringent sensor, capable of measuring strain/stress up to 2000 F and a readout system based on Spectral Contents analysis. As a result of the research work, a data acquisition system was developed, capable of measuring strain birefringence in a sensor at 2000 F, with multi-point static and dynamic capabilities. The system uses a dedicated spectral analyzer for evaluation of stress-birefringence and a PC-based readout. Several sensor methods were evaluated. Fused silica was found most satisfactory. In the final evaluation, measurements were performed up to 2000 F and the system performance exceeded expectations.

  5. Data management software concept for WEST plasma measurement system

    NASA Astrophysics Data System (ADS)

    Zienkiewicz, P.; Kasprowicz, G.; Byszuk, A.; Wojeński, A.; Kolasinski, P.; Cieszewski, R.; Czarski, T.; Chernyshova, M.; Pozniak, K.; Zabolotny, W.; Juszczyk, B.; Mazon, D.; Malard, P.

    2014-11-01

    This paper describes the concept of data management software for the multichannel readout system for the GEM detector used in WEST Plasma experiment. The proposed system consists of three separate communication channels: fast data channel, diagnostics channel, slow data channel. Fast data channel is provided by the FPGA with integrated ARM cores providing direct readout data from Analog Front Ends through 10GbE with short, guaranteed intervals. Slow data channel is provided by multiple, fast CPUs after data processing with detailed readout data with use of GNU/Linux OS and appropriate software. Diagnostic channel provides detailed feedback for control purposes.

  6. Fabrication techniques for superconducting readout loops

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    Procedures for the fabrication of superconducting readout loops out of niobium on glass substrates were developed. A computer program for an existing fabrication system was developed. Both positive and negative resist procedures for the production of the readout loops were investigated. Methods used to produce satisfactory loops are described and the various parameters affecting the performance of the loops are analyzed.

  7. Hard x-ray and gamma-ray imaging and spectroscopy using scintillators coupled to silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.

    2008-07-01

    Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.

  8. Hyperspectral fluorescence imaging with multi wavelength LED excitation

    NASA Astrophysics Data System (ADS)

    Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.

    2016-04-01

    Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.

  9. Design and Performance Testing of a Linear Array of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors for Uranium Enrichment Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Luis

    Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we describe the design of the array, the results from detailed laboratory tests, and preliminary results from measurements taken during a field test.« less

  10. Embedded controller for GEM detector readout system

    NASA Astrophysics Data System (ADS)

    Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dominik, Wojciech; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek

    2013-10-01

    This paper describes the embedded controller used for the multichannel readout system for the GEM detector. The controller is based on the embedded Mini ITX mainboard, running the GNU/Linux operating system. The controller offers two interfaces to communicate with the FPGA based readout system. FPGA configuration and diagnostics is controlled via low speed USB based interface, while high-speed setup of the readout parameters and reception of the measured data is handled by the PCI Express (PCIe) interface. Hardware access is synchronized by the dedicated server written in C. Multiple clients may connect to this server via TCP/IP network, and different priority is assigned to individual clients. Specialized protocols have been implemented both for low level access on register level and for high level access with transfer of structured data with "msgpack" protocol. High level functionalities have been split between multiple TCP/IP servers for parallel operation. Status of the system may be checked, and basic maintenance may be performed via web interface, while the expert access is possible via SSH server. System was designed with reliability and flexibility in mind.

  11. Skeletal status and soft tissue composition in astronauts. Tissue and fluid changes by radionuclide absorptiometry in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Mazess, R. B.; Wilson, C. R.

    1973-01-01

    A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.

  12. A pixelated charge readout for Liquid Argon Time Projection Chambers

    NASA Astrophysics Data System (ADS)

    Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.

    2018-02-01

    Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.

  13. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    NASA Astrophysics Data System (ADS)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  14. Implementation of a Readout Circuit on SOI Technology for the Signal Conditioning of a Neutron Detector in Harsh Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Krit, S.; Coulie-Castellani, K.; Rahajandraibe, W.

    2015-07-01

    A transistor level implementation of the analog block of a readout system on SOI process is presented here. This system is dedicated to the signal conditioning of a neutron detector in harsh environment. The different parts of the readout circuits are defined. The harsh environment constraints (crossing particle effect, high temperatures) are also detailed and modeled in the circuit in order to test and evaluate the characteristics of the designed block when working under these conditions. (authors)

  15. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  16. Fast Low-Cost Multiple Sensor Readout System

    DOEpatents

    Carter-Lewis, David; Krennich, Frank; Le Bohec, Stephane; Petry, Dirk; Sleege, Gary

    2004-04-06

    A low resolution data acquisition system is presented. The data acquisition system has a plurality of readout modules serially connected to a controller. Each readout module has a FPGA in communication with analog to digital (A/D) converters, which are connected to sensors. The A/D converter has eight bit or lower resolution. The FPGA detects when a command is addressed to it and commands the A/D converters to convert analog sensor data into digital data. The digital data is sent on a high speed serial communication bus to the controller. A graphical display is used in one embodiment to indicate if a sensor reading is outside of a predetermined range.

  17. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Rangelow, Ivo W.; Gotszalk, Teodor

    2017-03-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation.

  18. Silicon pixel R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Munker, M.

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+ e- Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2% X0 per layer in the vertex detector and 1-2% X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25×25 μm2 and 55×55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm-500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  19. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    PubMed

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  20. Progress on the FDM Development at SRON: Toward 160 Pixels

    NASA Astrophysics Data System (ADS)

    den Hartog, R. H.; Bruijn, M. P.; Clenet, A.; Gottardi, L.; Hijmering, R.; Jackson, B. D.; van der Kuur, J.; van Leeuwen, B. J.; van der Linden, A. J.; van Loon, D.; Nieuwenhuizen, A.; Ridder, M.; van Winden, P.

    2014-08-01

    SRON is developing the electronic read-out for arrays of transition edge sensors using frequency domain multiplexing in combination with base-band feedback. The astronomical applications of this system are the read-out of soft X-ray micro-calorimeters in a potential instrument on the European X-ray mission-under-study Athena+ and far-IR bolometers for the Safari instrument on the Japanese mission SPICA. In this paper we demonstrate the simultaneous read-out of 38 bolometer pixels at a 12 aW/Hz dark NEP level. The stability of the read-out is assessed over 400 s. time spans. Although some 1/f noise is present, there are several bolometers for which 1/f-free read-out can be demonstrated.

  1. Preparations for the Advanced Scintillator Compton Telescope (ASCOT) balloon flight

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; McConnell, M. L.; Ryan, J. M.; Wright, A. M.

    2017-08-01

    We describe our ongoing work to develop a new medium-energy gamma-ray Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts and fly it on a scientific balloon. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Cerium Bromide (CeBr3) and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We are now constructing an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies from a high-altitude balloon flight. We expect a 4-sigma detection at 1 MeV in a single transit. We present calibration results of the detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the medium-energy gamma-ray band, were it to be applied to a 1 cubic meter instrument on a long-duration balloon or Explorer platform.

  2. A prototype detection system for atmospheric monitoring of xenon radioisotopes

    NASA Astrophysics Data System (ADS)

    Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily

    2018-03-01

    The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.

  3. 75 FR 82372 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-30

    ..., Argonne LLC, 9700 South Cass Ave., Lemont, IL 60439. Instrument: Pilatus 100K Pixel Detector System... efficiency (no readout noise and direct detection scheme), high dynamic range (20-bits), and fast readout.... Instrument: Pilatus 300K Pixel Detector System. Manufacturer: Dectris Ltd., Switzerland. Intended Use: The...

  4. Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics

    NASA Astrophysics Data System (ADS)

    Shalaginov, Mikhail Y.

    Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.

  5. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  7. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  8. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  9. Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow

    PubMed Central

    Dragojević, Tanja; Hollmann, Joseph L.; Tamborini, Davide; Portaluppi, Davide; Buttafava, Mauro; Culver, Joseph P.; Villa, Federica; Durduran, Turgut

    2017-01-01

    Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multi-exposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables. PMID:29359106

  10. Fast-Neutron Survey With Compact Plastic Scintillation Detectors.

    PubMed

    Preston, Rhys M; Tickner, James R

    2017-07-01

    With the rise of the Silicon Photomultiplier (SiPM), it is now practical to build compact scintillation detectors well suited to portable use. A prototype survey meter for fast-neutrons and gamma-rays, based around an EJ-299-34 plastic scintillator with SiPM readout, has been developed and tested. A custom digital pulse processor was used to perform pulse shape discrimination on-the-fly. Ambient dose equivalent H*(10) was calculated by means of two energy-dependent 'G-functions'. The sensitivity was calculated to be between 0.10 and 0.22 cps/(µSv/hr) for fast-neutrons with energies above 2.5 MeV. The prototype was used to survey various laboratory radiation fields, with the readings compared with commercial survey meters. The high sensitivity and lightweight nature of this detector makes it promising for rapid survey of the mixed neutron/gamma-ray fields encountered in industry and homeland security. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography

    NASA Astrophysics Data System (ADS)

    Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.

    2014-09-01

    A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.

  12. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    PubMed Central

    Gabrielli, A.

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588

  13. Proposed differential-frequency-readout system by hysteretic Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.Z.; Duncan, R.V.

    1992-10-01

    The Josephson relation {ital V}={ital nh}{nu}/2{ital e} has been verified experimentally to 3 parts in 10{sup 19} (A. K. Jain, J. E. Lukens, and J.-S. Tsai, Phys. Rev. Lett. 58, 1165 (1987)). Motivated by this result, we propose a differential-frequency-readout system by two sets of hysteretic Josephson junctions rf biased at millimeter wavelengths. Because of the Josephson relation, the proposed differential-frequency-readout system is not limited by photon fluctuation, which limits most photon-detection schemes. In the context of the Stewart-McCumber model (W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968); D. E. McCumber, J. Appl. Phys. 39, 3113 (1968)) of Josephsonmore » junctions, we show theoretically that the differential frequency of the two milliwave biases can be read out by the proposed system to unprecedented accuracy. The stability of the readout scheme is also discussed. The measurement uncertainty of the readout system resulting from the intrinsic thermal noise in the hysteretic junctions is shown to be insignificant. The study of two single junctions can be extended to two sets of Josephson junctions connected in series (series array) in this measurement scheme provided that junctions are separated by at least 10 {mu}m (D. W. Jillie, J. E. Lukens, and Y. H. Kao, Phys. Rev. Lett. 38, 915 (1977)). The sensitivity for the differential frequency detection may be increased by biasing both series arrays to a higher constant-voltage step.« less

  14. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  15. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  16. A Charge Sensitive Pre-Amplifier for Smart Point-of-Care Devices Employing Polymer Based Lab-on-a-Chip

    DOE PAGES

    Wang, Hanfeng; Britton, Charles; Quaiyum, Farhan; ...

    2018-01-01

    With increasing emphasis on implantable and portable medical devices, low-power, small-chip-area sensor readout system realized in lab-on-a-chip (LOC) platform is gaining more and more importance these days. The main building blocks of the LOC system include a front-end transducer that generates an electrical signal in response to the presence of an analyte of interest, signal processing electronics to process the signal to comply with a specific transmission protocol and a low-power transmitter, all realized in a single integrated circuit platform. Low power consumption and compactness of the components are essential requirements of the LOC system. This paper presents a novelmore » charge sensitive pre-amplifier developed in a standard 180-nm CMOS process suitable for implementing in an LOC platform. The pre-amplifier converts the charge generated by a pyroelectric transducer into a voltage signal, which provides a measurement of the temperature variation in biological fluids. The proposed design is capable of providing 0.8-mV/pC gain while consuming only 2.1 μW of power. Finally, the pre-amplifier composed of integrated components occupies an area of 0.038 mm 2.« less

  17. Readout of the upgraded ALICE-ITS

    NASA Astrophysics Data System (ADS)

    Szczepankiewicz, A.; ALICE Collaboration

    2016-07-01

    The ALICE experiment will undergo a major upgrade during the second long shutdown of the CERN LHC. As part of this program, the present Inner Tracking System (ITS), which employs different layers of hybrid pixels, silicon drift and strip detectors, will be replaced by a completely new tracker composed of seven layers of monolithic active pixel sensors. The upgraded ITS will have more than twelve billion pixels in total, producing 300 Gbit/s of data when tracking 50 kHz Pb-Pb events. Two families of pixel chips realized with the TowerJazz CMOS imaging process have been developed as candidate sensors: the ALPIDE, which uses a proprietary readout and sparsification mechanism and the MISTRAL-O, based on a proven rolling shutter architecture. Both chips can operate in continuous mode, with the ALPIDE also supporting triggered operations. As the communication IP blocks are shared among the two chip families, it has been possible to develop a common Readout Electronics. All the sensor components (analog stages, state machines, buffers, FIFOs, etc.) have been modelled in a system level simulation, which has been extensively used to optimize both the sensor and the whole readout chain design in an iterative process. This contribution covers the progress of the R&D efforts and the overall expected performance of the ALICE-ITS readout system.

  18. Design issues of a low cost lock-in amplifier readout circuit for an infrared detector

    NASA Astrophysics Data System (ADS)

    Scheepers, L.; Schoeman, J.

    2014-06-01

    In the past, high resolution thermal sensors required expensive cooling techniques making the early thermal imagers expensive to operate and cumbersome to transport, limiting them mainly to military applications. However, the introduction of uncooled microbolometers has overcome many of earlier problems and now shows great potential for commercial optoelectric applications. The structure of uncooled microbolometer sensors, especially their smaller size, makes them attractive in low cost commercial applications requiring high production numbers with relatively low performance requirements. However, the biasing requirements of these microbolometers cause these sensors to generate a substantial amount of noise on the output measurements due to self-heating. Different techniques to reduce this noise component have been attempted, such as pulsed biasing currents and the use of blind bolometers as common mode reference. These techniques proved to either limit the performance of the microbolometer or increase the cost of their implementation. The development of a low cost lock-in amplifier provides a readout technique to potentially overcome these challenges. High performance commercial lock-in amplifiers are very expensive. Using this as a readout circuit for a microbolometer will take away from the low manufacturing cost of the detector array. Thus, the purpose of this work was to develop a low cost readout circuit using the technique of phase sensitive detection and customizing this as a readout circuit for microbolometers. The hardware and software of the readout circuit was designed and tested for improvement of the signal-to-noise ratio (SNR) of the microbolometer signal. An optical modulation system was also developed in order to effectively identify the desired signal from the noise with the use of the readout circuit. A data acquisition and graphical user interface sub system was added in order to display the signal recovered by the readout circuit. The readout circuit was able to enhance the SNR of the microbolometer signal significantly. It was shown that the quality of the phase sensitive detector plays a significant role in the effectiveness of the readout circuit to improve the SNR.

  19. Detection of the ODMR signal of a nitrogen vacancy centre in nanodiamond in propagating surface plasmons

    NASA Astrophysics Data System (ADS)

    Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min

    2018-02-01

    We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.

  20. Digital signal processing for the ATLAS/LUCID detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-07-01

    Both the detector and the associated read-out electronics have been improved in order to cope with the LHC luminosity increase foreseen for RUN 2 and RUN 3. The new operating conditions require a careful tuning of the read-out electronics in order to optimize the signal-to-noise ratio. The new read-out electronics will allow the use of digital filtering of the photo multiplier tube signals. In this talk, we will present the first results that we obtained in the optimization of the signal-to-noise ratio. In addition, we will introduce the next steps to adapt this system to high performance read-out chains formore » low energy gamma rays. Such systems are based, for instance, on Silicon Drift Detector devices and can be used in applications at Free-Electron-Laser facilities such as the XFEL under construction at DESY. (authors)« less

  1. Multichannel FPGA-Based Data-Acquisition-System for Time-Resolved Synchrotron Radiation Experiments

    NASA Astrophysics Data System (ADS)

    Choe, Hyeokmin; Gorfman, Semen; Heidbrink, Stefan; Pietsch, Ullrich; Vogt, Marco; Winter, Jens; Ziolkowski, Michael

    2017-06-01

    The aim of this contribution is to describe our recent development of a novel compact field-programmable gatearray (FPGA)-based data acquisition (DAQ) system for use with multichannel X-ray detectors at synchrotron radiation facilities. The system is designed for time resolved counting of single photons arriving from several-currently 12-independent detector channels simultaneously. Detector signals of at least 2.8 ns duration are latched by asynchronous logic and then synchronized with the system clock of 100 MHz. The incoming signals are subsequently sorted out into 10 000 time-bins where they are counted. This occurs according to the arrival time of photons with respect to the trigger signal. Repeatable mode of triggered operation is used to achieve high statistic of accumulated counts. The time-bin width is adjustable from 10 ns to 1 ms. In addition, a special mode of operation with 2 ns time resolution is provided for two detector channels. The system is implemented in a pocketsize FPGA-based hardware of 10 cm × 10 cm × 3 cm and thus can easily be transported between synchrotron radiation facilities. For setup of operation and data read-out, the hardware is connected via USB interface to a portable control computer. DAQ applications are provided in both LabVIEW and MATLAB environments.

  2. The Electromagnetic Calorimeter of the future PANDA Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, Rainer

    2006-10-27

    Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.

  3. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Bo; Wei, Tingcun; Gao, Wu

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power consumption of 8 mW per channel. The linearity error is lower than 1% and the overall gain of the readout channel is 165 V/pC. The crosstalk between the channels is less than 3%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 5.1% at the 59.5-keV line of {sup 241}Am source. (authors)« less

  4. Prototype readout system for a multi Mpixels UV single-photon imaging detector capable of space flight operation

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2018-02-01

    Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.

  5. A real-time spectrum acquisition system design based on quantum dots-quantum well detector

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Guo, F. M.

    2016-01-01

    In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.

  6. A reconfigurable image tube using an external electronic image readout

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Howorth, J. R.; Milnes, J. S.

    2005-08-01

    We have designed and built a sealed tube microchannel plate (MCP) intensifier for optical/NUV photon counting applications suitable for 18, 25 and 40 mm diameter formats. The intensifier uses an electronic image readout to provide direct conversion of event position into electronic signals, without the drawbacks associated with phosphor screens and subsequent optical detection. The Image Charge technique is used to remove the readout from the intensifier vacuum enclosure, obviating the requirement for additional electrical vacuum feedthroughs and for the readout pattern to be UHV compatible. The charge signal from an MCP intensifier is capacitively coupled via a thin dielectric vacuum window to the electronic image readout, which is external to the sealed intensifier tube. The readout pattern is a separate item held in proximity to the dielectric window and can be easily detached, making the system easily reconfigurable. Since the readout pattern detects induced charge and is external to the tube, it can be constructed as a multilayer, eliminating the requirement for narrow insulator gaps and allowing it to be constructed using standard PCB manufacturing tolerances. We describe two readout patterns, the tetra wedge anode (TWA), an optimized 4 electrode device similar to the wedge and strip anode (WSA) but with a factor 2 improvement in resolution, and an 8 channel high speed 50 ohm device, both manufactured as multilayer PCBs. We present results of the detector imaging performance, image resolution, linearity and stability, and discuss the development of an integrated readout and electronics device based on these designs.

  7. Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-06-01

    Active Pixel Sensors used in High Energy Particle Physics require low power consumption to reduce the detector material budget, low integration time to reduce the possibilities of pile-up and fast readout to improve the detector data capability. To satisfy these requirements, a novel Address-Encoder and Reset-Decoder (AERD) asynchronous circuit for a fast readout of a pixel matrix has been developed. The AERD data-driven readout architecture operates the address encoding and reset decoding based on an arbitration tree, and allows us to readout only the hit pixels. Compared to the traditional readout structure of the rolling shutter scheme in Monolithic Active Pixel Sensors (MAPS), AERD can achieve a low readout time and a low power consumption especially for low hit occupancies. The readout is controlled at the chip periphery with a signal synchronous with the clock, allows a good digital and analogue signal separation in the matrix and a reduction of the power consumption. The AERD circuit has been implemented in the TowerJazz 180 nm CMOS Imaging Sensor (CIS) process with full complementary CMOS logic in the pixel. It works at 10 MHz with a matrix height of 15 mm. The energy consumed to read out one pixel is around 72 pJ. A scheme to boost the readout speed to 40 MHz is also discussed. The sensor chip equipped with AERD has been produced and characterised. Test results including electrical beam measurement are presented.

  8. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  9. Hyper Suprime-Cam: development of the CCD readout electronics

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Uchida, Tomohisa; Miyatake, Hironao; Fujimori, Hiroki; Mineo, Sogo; Aihara, Hiroaki; Furusawa, Hisanori; Kamata, Yukiko; Karoji, Hiroshi; Kawanomoto, Satoshi; Komiyama, Yutaka; Miyazaki, Satoshi; Morokuma, Tomoki; Obuchi, Yoshiyuki; Okura, Yuki; Tanaka, Manobu; Tanaka, Yoko; Uraguchi, Fumihiro; Utsumi, Yosuke

    2010-07-01

    Hyper Suprime-Cam (HSC) employs 116 of 2k×4k CCDs with 464 signal outputs in total. The image size exceeds 2 GBytes, and the data can be readout every 10 seconds which results in the data rate of 210 Mbytes / sec. The data is digitized to 16-bit. The readout noise of the electronics at the readout time of 20 seconds is ~0.9 ADU, and the one with CCD is ~1.5 ADU which corresponds to ~4.5 e. The linearity error fits within +/- 0.5 % up to 150,000 e. The CCD readout electronics for HSC was newly developed based on the electronics for Suprime-Cam. The frontend electronics (FEE) is placed in the vacuum dewar, and the backend electronics (BEE) is mounted on the outside of the dewar on the prime focus unit. The FEE boards were designed to minimize the outgas and to maximize the heat transfer efficiency to keep the vacuum of the dewar. The BEE boards were designed to be simple and small as long as to achieve the readout time within 10 seconds. The production of the system has been finished, and the full set of the boards are being tested with several CCDs installed in the HSC dewar. We will show the system design, performance, and the current status of the development.

  10. The readout system for the ArTeMis camera

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.; Dumaye, L.; Hamon, G.

    2014-07-01

    During ArTeMiS observations at the APEX telescope (Chajnantor, Chile), 5760 bolometric pixels from 20 arrays at 300mK, corresponding to 3 submillimeter focal planes at 450μm, 350μm and 200μm, have to be read out simultaneously at 40Hz. The read out system, made of electronics and software, is the full chain from the cryostat to the telescope. The readout electronics consists of cryogenic buffers at 4K (NABU), based on CMOS technology, and of warm electronic acquisition systems called BOLERO. The bolometric signal given by each pixel has to be amplified, sampled, converted, time stamped and formatted in data packets by the BOLERO electronics. The time stamping is obtained by the decoding of an IRIG-B signal given by APEX and is key to ensure the synchronization of the data with the telescope. Specifically developed for ArTeMiS, BOLERO is an assembly of analogue and digital FPGA boards connected directly on the top of the cryostat. Two detectors arrays (18*16 pixels), one NABU and one BOLERO interconnected by ribbon cables constitute the unit of the electronic architecture of ArTeMiS. In total, the 20 detectors for the tree focal planes are read by 10 BOLEROs. The software is working on a Linux operating system, it runs on 2 back-end computers (called BEAR) which are small and robust PCs with solid state disks. They gather the 10 BOLEROs data fluxes, and reconstruct the focal planes images. When the telescope scans the sky, the acquisitions are triggered thanks to a specific network protocol. This interface with APEX enables to synchronize the acquisition with the observations on sky: the time stamped data packets are sent during the scans to the APEX software that builds the observation FITS files. A graphical user interface enables the setting of the camera and the real time display of the focal plane images, which is essential in laboratory and commissioning phases. The software is a set of C++, Labview and Python, the qualities of which are respectively used for rapidity, powerful graphic interfacing and scripting. The commands to the camera can be sequenced in Python scripts. The paper describes the whole electronic and software readout chain designed to fulfill the specificities of ArTeMiS and its performances. The specific options used are explained, for example, the limited room in the Cassegrain cabin of APEX has led us to a quite compact design. This system was successfully used in summer 2013 for the commissioning and the first scientific observations with a preliminary set of 4 detectors at 350μm.

  11. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    NASA Astrophysics Data System (ADS)

    Koestner, Stefan

    2009-09-01

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  12. Implementation of the Timepix ASIC in the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Lupberger, M.; Desch, K.; Kaminski, J.

    2016-09-01

    We report on the development of electronics hardware, FPGA firmware and software to provide a flexible multi-chip readout of the Timepix ASIC within the framework of the Scalable Readout System (SRS). The system features FPGA-based zero-suppression and the possibility to read out up to 4×8 chips with a single Front End Concentrator (FEC). By operating several FECs in parallel, in principle an arbitrary number of chips can be read out, exploiting the scaling features of SRS. Specifically, we tested the system with a setup consisting of 160 Timepix ASICs, operated as GridPix devices in a large TPC field cage in a 1 T magnetic field at a DESY test beam facility providing an electron beam of up to 6 GeV. We discuss the design choices, the dedicated hardware components, the FPGA firmware as well as the performance of the system in the test beam.

  13. Image sensor with high dynamic range linear output

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly (Inventor); Fossum, Eric R. (Inventor)

    2007-01-01

    Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.

  14. A smartphone controlled handheld microfluidic liquid handling system.

    PubMed

    Li, Baichen; Li, Lin; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-10-21

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based HIV1 p24 sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 × 10.5 × 16.5 cm, and the total weight is 829 g including battery. Powered by a 12.8 V 1500 mAh Li battery, the system consumed 2.2 W on average during the immunoassay and lasted for 8.7 h. This handheld microfluidic liquid handling platform is generally applicable to many biochemical and cell-based assays requiring complex liquid manipulation and sample preparation steps such as FISH, PCR, flow cytometry and nucleic acid sequencing. In particular, the integration of this technology with read-out biosensors may help enable the realization of the long-sought Tricorder-like handheld in vitro diagnostic (IVD) systems.

  15. The BELLE DAQ system

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh Yamagata; Yamauchi, Masanori; Nakao, Mikihiko; Itoh, Ryosuke; Fujii, Hirofumi

    2000-10-01

    We built a data acquisition system for the BELLE experiment. The system was designed to cope with the average trigger rate up to 500 Hz at the typical event size of 30 kB. This system has five components: (1) the readout sequence controller, (2) the FASTBUS-TDC readout systems using charge-to-time conversion, (3) the barrel shifter event builder, (4) the parallel online computing farm, and (5) the data transfer system to the mass storage. This system has been in operation for physics data taking since June 1999 without serious problems.

  16. Monitoring the variability of active galactic nuclei from a space-based platform

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.; Atwood, Bruce; Byard, Paul L.

    1994-01-01

    Detailed monitoring of AGN's with FRESIP can provide well-sampled light curves for a large number of AGN's. Such data are completely unprecedented in this field, and will provide powerful new constraints on the origin of the UV/optical continuum in AGN's. The FRESIP baseline design will allow 1 percent photometry on sources brighter than V approximately equals 19.6 mag, and we estimate that over 300 sources can be studied. We point out that digitization effects will have a significant negative impact on the faint limit and the number of detectable sources will decrease dramatically if a fixed gain setting (estimated to be nominally 25 e(-) per ADU) is used for all read-outs. We note that the primary limitation to studying AGN's is background (sky and read-out noise) rather than source/background contrast with a focused telescope and by longer integrations. While we believe that it may be possible to achieve the AGN-monitoring science goals with a more compact and much less expensive telescope, the proposed FRESIP satellite affords an excellent opportunity to attain the required data at essentially zero cost as a secondary goal of a more complex mission.

  17. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    NASA Astrophysics Data System (ADS)

    Xi, Wenze; McKisson, J. E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over 29% of the modulator's switching voltage range. Optical spectrum analysis revealed less than -14 dB crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  18. A data transmission method for particle physics experiments based on Ethernet physical layer

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  19. Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-06-01

    We have realized a frequency-domain multiplexing technique for the readout of large metallic magnetic calorimeter detector arrays. It is based on non-hysteretic single-junction SQUIDs and allows for a simultaneous readout of hundreds or thousands of detectors by using a single cryogenic high electron mobility transistor amplifier and two coaxial cables that are routed from room-temperature to the detector array. We discuss the working principle of the multiplexer and present details about our prototype multiplexer design. We show that fabricated devices are fully operational and that characteristic SQUID parameters such as the input sensitivity of the SQUID or the resonance frequency of the readout circuit can be predicted with confidence. Our best device so far has shown a magnetic flux white noise level of 1.4 m which can in future be reduced by an optimization of the fabrication processes as well as an improved microwave readout system.

  20. A PCIe Gen3 based readout for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Bellato, M.; Collazuol, G.; D'Antone, I.; Durante, P.; Galli, D.; Jost, B.; Lax, I.; Liu, G.; Marconi, U.; Neufeld, N.; Schwemmer, R.; Vagnoni, V.

    2014-06-01

    The architecture of the data acquisition system foreseen for the LHCb upgrade, to be installed by 2018, is devised to readout events trigger-less, synchronously with the LHC bunch crossing rate at 40 MHz. Within this approach the readout boards act as a bridge between the front-end electronics and the High Level Trigger (HLT) computing farm. The baseline design for the LHCb readout is an ATCA board requiring dedicated crates. A local area standard network protocol is implemented in the on-board FPGAs to read out the data. The alternative solution proposed here consists in building the readout boards as PCIe peripherals of the event-builder servers. The main architectural advantage is that protocol and link-technology of the event-builder can be left open until very late, to profit from the most cost-effective industry technology available at the time of the LHC LS2.

  1. Reliable and redundant FPGA based read-out design in the ATLAS TileCal Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerstedt, Henrik; Muschter, Steffen; Drake, Gary

    The Tile Calorimeter at ATLAS [1] is a hadron calorimeter based on steel plates and scintillating tiles read out by PMTs. The current read-out system uses standard ADCs and custom ASICs to digitize and temporarily store the data on the detector. However, only a subset of the data is actually read out to the counting room. The on-detector electronics will be replaced around 2023. To achieve the required reliability the upgraded system will be highly redundant. Here the ASICs will be replaced with Kintex-7 FPGAs from Xilinx. This, in addition to the use of multiple 10 Gbps optical read-out links,more » will allow a full read-out of all detector data. Due to the higher radiation levels expected when the beam luminosity is increased, opportunities for repairs will be less frequent. The circuitry and firmware must therefore be designed for sufficiently high reliability using redundancy and radiation tolerant components. Within a year, a hybrid demonstrator including the new readout system will be installed in one slice of the ATLAS Tile Calorimeter. This will allow the proposed upgrade to be thoroughly evaluated well before the planned 2023 deployment in all slices, especially with regard to long term reliability. Different firmware strategies alongside with their integration in the demonstrator are presented in the context of high reliability protection against hardware malfunction and radiation induced errors.« less

  2. High-performance dual-speed CCD camera system for scientific imaging

    NASA Astrophysics Data System (ADS)

    Simpson, Raymond W.

    1996-03-01

    Traditionally, scientific camera systems were partitioned with a `camera head' containing the CCD and its support circuitry and a camera controller, which provided analog to digital conversion, timing, control, computer interfacing, and power. A new, unitized high performance scientific CCD camera with dual speed readout at 1 X 106 or 5 X 106 pixels per second, 12 bit digital gray scale, high performance thermoelectric cooling, and built in composite video output is described. This camera provides all digital, analog, and cooling functions in a single compact unit. The new system incorporates the A/C converter, timing, control and computer interfacing in the camera, with the power supply remaining a separate remote unit. A 100 Mbyte/second serial link transfers data over copper or fiber media to a variety of host computers, including Sun, SGI, SCSI, PCI, EISA, and Apple Macintosh. Having all the digital and analog functions in the camera made it possible to modify this system for the Woods Hole Oceanographic Institution for use on a remote controlled submersible vehicle. The oceanographic version achieves 16 bit dynamic range at 1.5 X 105 pixels/second, can be operated at depths of 3 kilometers, and transfers data to the surface via a real time fiber optic link.

  3. Development of a Crosstalk Suppression Algorithm for KID Readout

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmin; Ishitsuka, H.; Oguri, S.; Suzuki, J.; Tajima, O.; Tomita, N.; Won, Eunil; Yoshida, M.

    2018-06-01

    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.

  4. Tunneling Statistics for Analysis of Spin-Readout Fidelity

    NASA Astrophysics Data System (ADS)

    Gorman, S. K.; He, Y.; House, M. G.; Keizer, J. G.; Keith, D.; Fricke, L.; Hile, S. J.; Broome, M. A.; Simmons, M. Y.

    2017-09-01

    We investigate spin and charge dynamics of a quantum dot of phosphorus atoms coupled to a radio-frequency single-electron transistor (SET) using full counting statistics. We show how the magnetic field plays a role in determining the bunching or antibunching tunneling statistics of the donor dot and SET system. Using the counting statistics, we show how to determine the lowest magnetic field where spin readout is possible. We then show how such a measurement can be used to investigate and optimize single-electron spin-readout fidelity.

  5. Dispersive Readout of Adiabatic Phases

    NASA Astrophysics Data System (ADS)

    Kohler, Sigmund

    2017-11-01

    We propose a protocol for the measurement of adiabatic phases of periodically driven quantum systems coupled to an open cavity that enables dispersive readout. It turns out that the cavity transmission exhibits peaks at frequencies determined by a resonance condition that involves the dynamical and the geometric phase. Since these phases scale differently with the driving frequency, one can determine them by fitting the peak positions to the theoretically expected behavior. For the derivation of the resonance condition and for a numerical study, we develop a Floquet theory for the dispersive readout of ac driven quantum systems. The feasibility is demonstrated for two test cases that generalize Landau-Zener-Stückelberg-Majorana interference to two-parameter driving.

  6. Drift chamber readout system of the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Afanasyev, L.; Karpukhin, V.

    2002-10-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  7. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  8. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures

    PubMed Central

    Zhang, Feng; Gradinaru, Viviana; Adamantidis, Antoine R; Durand, Remy; Airan, Raag D; de Lecea, Luis; Deisseroth, Karl

    2015-01-01

    Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4–5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease. PMID:20203662

  9. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  10. Ionization Readout Electronics for SuperCDMS SNOLAB Employing a HEMT Front-End

    NASA Astrophysics Data System (ADS)

    Partridge, R.

    2014-09-01

    The SuperCDMS SNOLAB experiment seeks to deploy 200 kg of cryogenic Ge detectors employing phonon and ionization readout to identify dark matter interactions. One of the design challenges for the experiment is to provide amplification of the high impedance ionization signal while minimizing power dissipation and noise. This paper describes the design and expected performance of the ionization readout being developed for an engineering model of the SuperCDMS SNOLAB Ge Tower System. The readout features the use of a low-noise HEMT front end transistor operating at 4 K to achieve a power dissipation of 100 W per channel, local grounding to minimize noise injection, and biasing circuitry that allows precise control of the HEMT operating point.

  11. A front-end readout mixed chip for high-efficiency small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Ollivier-Henry, N.; Berst, J. D.; Colledani, C.; Hu-Guo, Ch.; Mbow, N. A.; Staub, D.; Guyonnet, J. L.; Hu, Y.

    2007-02-01

    Today, the main challenge of Positron Emission Tomography (PET) systems dedicated to small animal imaging is to obtain high detection efficiency and a highly accurate localization of radioisotopes. If we focus only on the PET characteristics such as the spatial resolution, its accuracy depends on the design of detector and on the electronics readout system as well. In this paper, we present a new design of such readout system with full custom submicrometer CMOS implementation. The front end chip consists of two main blocks from which the energy information and the time stamp with subnanosecond resolution can be obtained. In our A Multi-Modality Imaging System for Small Animal (AMISSA) PET system design, a matrix of LYSO crystals has to be read at each end by a 64 channels multianode photomultiplier tube. A specific readout electronic has been developed at the Hubert Curien Multidisciplinary Institute (IPHC, France). The architecture of this readout for the energy information detection is composed of a low-noise preamplifier, a CR-RC shaper and an analogue memory. In order to obtain the required dynamic range from 15 to 650 photoelectrons with good linearity, a current mode approach has been chosen for the preamplifier. To detect the signal with a temporal resolution of 1 ns, a comparator with a very low threshold (˜0.3 photoelectron) has been implemented. It gives the time reference of arrival signal coming from the detector. In order to obtain the time coincidence with a temporal resolution of 1 ns, a Time-to-Digital Converter (TDC) based on a Delay-Locked-Loop (DLL) has been designed. The chip is fabricated with AMS 0.35 μm process. The ASIC architecture and some simulation results will be presented in the paper.

  12. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  13. Strategic options towards an affordable high-performance infrared camera

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise (<50e-), high dynamic range (100 dB), high-frame rates (> 500 frames per second (FPS)) at full resolution, and low power consumption (< 1 W) in a compact system. This camera paves the way towards mass market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  14. Biosensors and bioelectronics on smartphone for portable biochemical detection.

    PubMed

    Zhang, Diming; Liu, Qingjun

    2016-01-15

    Smartphone has been widely integrated with sensors, such as test strips, sensor chips, and hand-held detectors, for biochemical detections due to its portability and ubiquitous availability. Utilizing built-in function modules, smartphone is often employed as controller, analyzer, and displayer for rapid, real-time, and point-of-care monitoring, which can significantly simplify design and reduce cost of the detecting systems. This paper presents a review of biosensors and bioelectronics on smartphone for portable biochemical detections. The biosensors and bioelectronics based on smartphone can mainly be classified into biosensors using optics, surface plasmon resonance, electrochemistry, and near-field communication. The developments of these biosensors and bioelectronics on smartphone are reviewed along with typical biochemical detecting cases. Sensor strategies, detector attachments, and coupling methods are highlighted to show designs of the compact, lightweight, and low-cost sensor systems. The performances and advantages of these designs are introduced with their applications in healthcare diagnosis, environment monitoring, and food evaluation. With advances in micro-manufacture, sensor technology, and miniaturized electronics, biosensor and bioelectronic devices on smartphone can be used to perform biochemical detections as common and convenient as electronic tag readout in foreseeable future. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A novel approach to Hough Transform for implementation in fast triggers

    NASA Astrophysics Data System (ADS)

    Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi

    2016-10-01

    Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.

  16. Latest generation of ASICs for photodetector readout

    NASA Astrophysics Data System (ADS)

    Seguin-Moreau, N.

    2013-08-01

    The OMEGA microelectronics group has designed a new generation of multichannel integrated circuits, the "ROC" family, in AustrianMicroSystem (AMS) SiGe 0.35 μm technology to read out signals from various families of photodetectors. The chip named MAROC (standing for Multi Anode ReadOut Chip) has been designed to read out MultiAnode Photomultipliers (MAPMT), Photomultiplier ARray In SiGe ReadOut Chip (PARISROC) to read out Photomultipliers (PMTs) and SiPM Integrated ReadOut Chip (SPIROC) to readout Silicon PhotoMultiplier (SiPM) detectors and which was the first ASIC to do so. The three of them fulfill the stringent requirements of the future photodetectors, in particular in terms of low noise, radiation hardness, large dynamic range, high density and high speed while keeping low power thanks to the SiGe technology. These multi-channel ASICs are real System on Chip (SoC) as they provide charge, time and photon-counting information which are digitized internally. Their complexity and versatility enable innovative frontier detectors and also cover spin off of these detectors in adjacent fields such as medical or material imaging as well as smart detectors. In this presentation, the three ASIC architectures and test results will be described to give a general panorama of the "ROC" chips.

  17. The ArDM experiment

    DOE PAGES

    Harańczyk, M.; Amsler, C.; Badertscher, A.; ...

    2010-08-24

    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R & D program, including a 3 l prototype developed to test the charge readout system.

  18. Readout Circuits for Noise Compensation in ISFET Sensory System

    NASA Astrophysics Data System (ADS)

    Das, M. P.; Bhuyan, M.; Talukdar, C.

    2015-12-01

    This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/ f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

  19. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    PubMed

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  20. A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array

    NASA Astrophysics Data System (ADS)

    Urban, Matthias; Möller, Robert; Fritzsche, Wolfgang

    2003-02-01

    DNA analytics is a growing field based on the increasing knowledge about the genome with special implications for the understanding of molecular bases for diseases. Driven by the need for cost-effective and high-throughput methods for molecular detection, DNA chips are an interesting alternative to more traditional analytical methods in this field. The standard readout principle for DNA chips is fluorescence based. Fluorescence is highly sensitive and broadly established, but shows limitations regarding quantification (due to signal and/or dye instability) and the need for sophisticated (and therefore high-cost) equipment. This article introduces a readout system for an alternative detection scheme based on electrical detection of nanoparticle-labeled DNA. If labeled DNA is present in the analyte solution, it will bind on complementary capture DNA immobilized in a microelectrode gap. A subsequent metal enhancement step leads to a deposition of conductive material on the nanoparticles, and finally an electrical contact between the electrodes. This detection scheme offers the potential for a simple (low-cost as well as robust) and highly miniaturizable method, which could be well-suited for point-of-care applications in the context of lab-on-a-chip technologies. The demonstrated apparatus allows a parallel readout of an entire array of microstructured measurement sites. The readout is combined with data-processing by an embedded personal computer, resulting in an autonomous instrument that measures and presents the results. The design and realization of such a system is described, and first measurements are presented.

  1. A cylindrical SPECT camera with de-centralized readout scheme

    NASA Astrophysics Data System (ADS)

    Habte, F.; Stenström, P.; Rillbert, A.; Bousselham, A.; Bohm, C.; Larsson, S. A.

    2001-09-01

    An optimized brain single photon emission computed tomograph (SPECT) camera is being designed at Stockholm University and Karolinska Hospital. The design goal is to achieve high sensitivity, high-count rate and high spatial resolution. The sensitivity is achieved by using a cylindrical crystal, which gives a closed geometry with large solid angles. A de-centralized readout scheme where only a local environment around the light excitation is readout supports high-count rates. The high resolution is achieved by using an optimized crystal configuration. A 12 mm crystal plus 12 mm light guide combination gave an intrinsic spatial resolution better than 3.5 mm (140 keV) in a prototype system. Simulations show that a modified configuration can improve this value. A cylindrical configuration with a rotating collimator significantly simplifies the mechanical design of the gantry. The data acquisition and control system uses early digitization and subsequent digital signal processing to extract timing and amplitude information, and monitors the position of the collimator. The readout system consists of 12 or more modules each based on programmable logic and a digital signal processor. The modules send data to a PC file server-reconstruction engine via a Firewire (IEEE-1394) network.

  2. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  3. Digital frequency domain multiplexing readout electronics for the next generation of millimeter telescopes

    NASA Astrophysics Data System (ADS)

    Bender, Amy N.; Cliche, Jean-François; de Haan, Tijmen; Dobbs, Matt A.; Gilbert, Adam J.; Montgomery, Joshua; Rowlands, Neil; Smecher, Graeme M.; Smith, Ken; Wilson, Andrew

    2014-07-01

    Frequency domain multiplexing (fMux) is an established technique for the readout of transition-edge sensor (TES) bolometers in millimeter-wavelength astrophysical instrumentation. In fMux, the signals from multiple detectors are read out on a single pair of wires reducing the total cryogenic thermal loading as well as the cold component complexity and cost of a system. The current digital fMux system, in use by POLARBEAR, EBEX, and the South Pole Telescope, is limited to a multiplexing factor of 16 by the dynamic range of the Superconducting Quantum Interference Device pre-amplifier and the total system bandwidth. Increased multiplexing is key for the next generation of large format TES cameras, such as SPT-3G and POLARBEAR2, which plan to have on the of order 15,000 detectors. Here, we present the next generation fMux readout, focusing on the warm electronics. In this system, the multiplexing factor increases to 64 channels per module (2 wires) while maintaining low noise levels and detector stability. This is achieved by increasing the system bandwidth, reducing the dynamic range requirements though active feedback, and digital synthesis of voltage biases with a novel polyphase filter algorithm. In addition, a version of the new fMux readout includes features such as low power consumption and radiation-hard components making it viable for future space-based millimeter telescopes such as the LiteBIRD satellite.

  4. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  5. Ultraefficient Cap-Exchange Protocol To Compact Biofunctional Quantum Dots for Sensitive Ratiometric Biosensing and Cell Imaging

    PubMed Central

    2017-01-01

    An ultraefficient cap-exchange protocol (UCEP) that can convert hydrophobic quantum dots (QDs) into stable, biocompatible, and aggregation-free water-dispersed ones at a ligand:QD molar ratio (LQMR) as low as 500, some 20–200-fold less than most literature methods, has been developed. The UCEP works conveniently with air-stable lipoic acid (LA)-based ligands by exploiting tris(2-carboxylethyl phosphine)-based rapid in situ reduction. The resulting QDs are compact (hydrodynamic radius, Rh, < 4.5 nm) and bright (retaining > 90% of original fluorescence), resist nonspecific adsorption of proteins, and display good stability in biological buffers even with high salt content (e.g., 2 M NaCl). These advantageous properties make them well suited for cellular imaging and ratiometric biosensing applications. The QDs prepared by UCEP using dihydrolipoic acid (DHLA)-zwitterion ligand can be readily conjugated with octa-histidine (His8)-tagged antibody mimetic proteins (known as Affimers). These QDs allow rapid, ratiometric detection of the Affimer target protein down to 10 pM via a QD-sensitized Förster resonance energy transfer (FRET) readout signal. Moreover, compact biotinylated QDs can be readily prepared by UCEP in a facile, one-step process. The resulting QDs have been further employed for ratiometric detection of protein, exemplified by neutravidin, down to 5 pM, as well as for fluorescence imaging of target cancer cells. PMID:28421739

  6. Performance of 20:1 multiplexer for large area charge readouts in directional dark matter TPC detectors

    NASA Astrophysics Data System (ADS)

    Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.

    2018-02-01

    More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.

  7. Frequency-Domain Multiplexing Readout with a Self-Trigger System for Pulse Signals from Kinetic Inductance Detectors

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Ishino, H.; Kibayashi, A.; Kida, Y.; Hidehira, N.; Komatsu, K.; Hazumi, M.; Sato, N.; Sakai, K.; Yamamori, H.; Hirayama, F.; Kohjiro, S.

    2018-04-01

    We present the development of a frequency-domain multiplexing readout of kinetic inductance detectors (KIDs) for pulse signals with a self-trigger system. The KIDs consist of an array of superconducting resonators that have different resonant frequencies individually, allowing us to read out multiple channels in the frequency domain with a single wire using a microwave-frequency comb. The energy deposited to the resonators break Cooper pairs, changing the kinetic inductance and, hence, the amplitude and the phase of the probing microwaves. For some applications such as X-ray detections, the deposited energy is detected as a pulse signal shaped by the time constants of the quasiparticle lifetime, the resonator quality factor, and the ballistic phonon lifetime in the substrate, ranging from microseconds to milliseconds. A readout system commonly used converts the frequency-domain data to the time-domain data. For the short pulse signals, the data rate may exceed the data transfer bandwidth, as the short time constant pulses require us to have a high sampling rate. In order to overcome this circumstance, we have developed a KID readout system that contains a self-trigger system to extract relevant signal data and reduces the total data rate with a commercial off-the-shelf FPGA board. We have demonstrated that the system can read out pulse signals of 15 resonators simultaneously with about 10 Hz event rate by irradiating α particles from ^{241} Am to the silicon substrate on whose surface aluminum KID resonators are formed.

  8. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  9. An integrated wire harp and readout electronics inside vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Mou; Nabhiraj, P. Y.

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beammore » current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.« less

  10. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  11. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  12. An integrated wire harp and readout electronics inside vacuum

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  13. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  14. A high-speed pnCCD detector system for optical applications

    NASA Astrophysics Data System (ADS)

    Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.

    2006-11-01

    Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.

  15. The single mirror small size telescope (SST-1M) of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Borkowski, J.; Cadoux, F.; Christov, A.; della Volpe, D.; Favre, Y.; Heller, M.; Kasperek, J.; Lyard, E.; Marszałek, A.; Moderski, R.; Montaruli, T.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Troyano Pujadas, I.; Zietara, K.; Blocki, J.; Bogacz, L.; Bulik, T.; Frankowski, A.; Grudzinska, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Lalik, K.; Mach, E.; Mandat, D.; Michałowski, J.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Stawarz, L.; Stodulska, M.; Stodulski, M.; Toscano, S.; Walter, R.; WiÈ©cek, M.; Zagdański, A.

    2016-07-01

    The Small Size Telescope with Single Mirror (SST-1M) is one of the proposed types of Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA). The CTA south array will be composed of about 100 telescopes, out of which about 70 are of SST class, which are optimized for the detection of gamma rays in the energy range from 5 TeV to 300 TeV. The SST-1M implements a Davies-Cotton optics with a 4 m dish diameter with a field of view of 9°. The Cherenkov light produced in atmospheric showers is focused onto a 88 cm wide hexagonal photo-detection plane, composed of 1296 custom designed large area hexagonal silicon photomultipliers (SiPM) and a fully digital readout and trigger system. The SST-1M camera has been designed to provide high performance in a robust as well as compact and lightweight design. In this contribution, we review the different steps that led to the realization of the telescope prototype and its innovative camera.

  16. One Year of FOS Measurements in CMS Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Szillási, Zoltán; Buontempo, Salvatore; Béni, Noémi; Breglio, Giovanni; Cusano, Andrea; Laudati, Armando; Giordano, Michele; Saccomanno, Andrea; Druzhkin, Dmitry; Tsirou, Andromachi

    Results are presented on the activity carried out by our research group, in collaboration with the SME Optosmart s.r.l. (an Italian spin-off company), on the application of Fiber Optic Sensor (FOS) techniques to monitor high-energy physics (HEP) detectors. Assuming that Fiber Bragg Grating sensors (FBGs) radiation hardness has been deeply studied for other field of application, we have applied the FBG technology to the HEP research domain. We present here the experimental evidences of the solid possibility to use such a class of sensors also in HEP detector very complex environmental side conditions. In particular we present more than one year data results of FBG measurements in the Compact Muon Solenoid (CMS) experiment set up at the CERN, where we have monitored temperatures (within CMS core) and strains in different locations by using FBG sensors during the detector operation with the Large Hadron Collider (LHC) collisions and high magnetic field. FOS data and FOS readout system stability and reliability is demonstrated, with continuous 24/24 h 7/7d data taking under severe and complex side conditions.

  17. Robustifying twist-and-turn entanglement with interaction-based readout

    NASA Astrophysics Data System (ADS)

    Mirkhalaf, Safoura S.; Nolan, Samuel P.; Haine, Simon A.

    2018-05-01

    The use of multiparticle entangled states has the potential to drastically increase the sensitivity of atom interferometers and atomic clocks. The twist-and-turn (TNT) Hamiltonian can create multiparticle entanglement much more rapidly than the ubiquitous one-axis twisting Hamiltonian in the same spin system. In this paper, we consider the effects of detection noise—a key limitation in current experiments—on the metrological usefulness of nonclassical states generated under TNT dynamics. We also consider a variety of interaction-based readouts to maximize their performance. Interestingly, the optimum interaction-based readout is not the obvious case of perfect time reversal.

  18. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  19. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  20. Towards an Electrochemical Immunosensor System with Temperature Control for Cytokine Detection.

    PubMed

    Metzner, Julia; Luckert, Katrin; Lemuth, Karin; Hämmerle, Martin; Moos, Ralf

    2018-04-24

    The cytokine interleukin-13 (IL-13) plays a major role in airway inflammation and is a target of new anti-asthmatic drugs. Hence, IL-13 determination could be interesting in assessing therapy success. Thus, in this work an electrochemical immunosensor for IL-13 was developed and integrated into a fluidic system with temperature control for read-out. Therefore, two sets of results are presented. First, the sensor was set up in sandwich format on single-walled carbon nanotube electrodes and was read out by applying the hydrogen peroxide⁻hydroquinone⁻horseradish peroxidase (HRP) system. Second, a fluidic system was built up with an integrated heating function realized by Peltier elements that allowed a temperature-controlled read-out of the immunosensor in order to study the influence of temperature on the amperometric read-out. The sensor was characterized at the temperature optimum of HRP at 30 °C and at 12 °C as a reference for lower performance. These results were compared to a measurement without temperature control. At the optimum operation temperature of 30 °C, the highest sensitivity (slope) was obtained compared to lower temperatures and a limit of detection of 5.4 ng/mL of IL-13 was calculated. Taken together, this approach is a first step towards an automated electrochemical immunosensor platform and shows the potential of a temperature-controlled read-out.

  1. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 KΩ), a high TCR value (≥ 2.5 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). The ROIC uses a single 3.3 V supply voltage and dissipates less than 75 mW in the 1-output mode at 60 fps. MT3250BA is fabricated using a mixed-signal CMOS process on 200 mm CMOS wafers, and tested wafers are available with test data and wafer map. A USB based compact test electronics and software are available for quick evaluation of this new microbolometer ROIC.

  2. NIR camera and spectrograph SWIMS for TAO 6.5m telescope: array control system and its performance

    NASA Astrophysics Data System (ADS)

    Terao, Yasunori; Motohara, Kentaro; Konishi, Masahiro; Takahashi, Hidenori; Kato, Natsuko M.; Kitagawa, Yutaro; Kobayakawa, Yutaka; Ohashi, Hirofumi; Tateuchi, Ken; Todo, Soya

    2016-08-01

    SWIMS (Simultaneous-color Wide-field Infrared Multi-object Spectrograph) is a near-infrared imager and multi-object spectrograph as one of the first generation instruments for the University of Tokyo Atacama Observatory (TAO) 6.5m telescope. In this paper, we describe an array control system of SWIMS and results of detector noise performance evaluation. SWIMS incorporates four (and eight in future) HAWAII-2RG focal plane arrays for detectors, each driven by readout electronics components: a SIDECAR ASIC and a JADE2 Card. The readout components are controlled by a HAWAII-2RG Testing Software running on a virtual Windows machine on a Linux PC called array control PC. All of those array control PCs are then supervised by a SWIMS control PC. We have developed an "array control software system", which runs on the array control PC to control the HAWAII-2RG Testing Software, and consists of a socket client and a dedicated server called device manager. The client runs on the SWIMS control PC, and the device manager runs on the array control PC. An exposure command, issued by the client on the SWIMS control PC, is sent to the multiple device managers on the array control PCs, and then multiple HAWAII-2RGs are driven simultaneously. Using this system, we evaluate readout noise performances of the detectors, both in a test dewar and in a SWIMS main dewar. In the test dewar, we confirm the readout noise to be 4.3 e- r.m.s. by 32 times multiple sampling when we operate only a single HAWAII-2RG, whereas in the case of simultaneous driving of two HAWAII-2RGs, we still obtain sufficiently low readout noise of 10 e- r.m.s. In the SWIMS main dewar, although there are some differences between the detectors, the readout noise is measured to be 4:1-4:6 e- r.m.s. with simultaneous driving by 64 times multiple sampling, which meets the requirement for background-limited observations in J band of 14 e- r.m.s..

  3. WE-C-217BCD-10: Development of High Performance PET for Animal Imaging and Therapy Applications.

    PubMed

    Shao, Y; Sun, X; Lan, K; Bircher, C

    2012-06-01

    A prototype small animal PET is developed with several novel technologies to measure 3D gamma-interaction positions and to substantially improve imaging performance. Each new detector has an 8×8 array of 1.95×1.95×30 mm̂3 LYSO scintillators, with each end optically connected to a solid-state photo multiplier (SSPM) array through a light guide. This dual-ended-readout enables the depth-of-interaction (DOI) measurement. Each SSPM array has 16 SSPMs arranged in a 4×4 matrix. Each SSPM has active area about 3×3 mm̂2, with its output read by an ASIC electronics that directly converts analog signals to digital timing pulses which encode the interaction information for energy, timing, crystal of interaction, and DOI calculations. These digital pulses are transferred to and decoded by FPGA-based TDC for coincident event selection and data acquisition. This independent readout of each SSPM and parallel signal process significantly improve signal-to-noise ratio and permit applying flexible data processing algorithms. The current prototype system consists of two rotating detector panels on a portable gantry, with 4 detectors linearly packed together in each panel to provide ∼16 mm axial and variable trans- axial FOV with adjustable panel-to-panel distance. List-mode OSEM-based image reconstruction with resolution modeling was implemented. Both Na- 22 point source and phantom were used to evaluate the system performance. The measured energy, timing, spatial and DOI resolutions for each crystal were around 16%, 2.6 ns, 2.0 mm and 5.0 mm, respectively. The measured spatial resolutions with DOI were ∼1.7 mm across the entire FOV in all direction, while those without DOI were much worse and non-uniform across the FOV, in the range predominately around 3.0 to 4.0 mm. In addition, images from a F-18 hot-rod phantom with DOI show significantly improved quality compared to those without DOI. DOI- measurable PET shows substantially improved image performance for a compact system. National Institute of Health. University of Texas MD Anderson Cancer Center. © 2012 American Association of Physicists in Medicine.

  4. Silicon micro sensors as integrated readout platform for colorimetric and fluorescence based opto-chemical transducers

    NASA Astrophysics Data System (ADS)

    Will, Matthias; Martan, Tomas; Brodersen, Olaf

    2011-09-01

    Opto-chemical transducer almost offers unlimited possibilities for detection of physical quantities. New technologies and research show a steady increasing of publications in the area of sensoric principles. For transfer to real world applications the optical response has to be converted into an electrical signal. An exceptional opto chemical transducer loses the attraction if complex and expensive instruments for analysis are requires. Therefore, the readout system must be very compact and producible for low cost. In this presentation, the technology platform as a solution for these problems will be presented. We combine micro structuring of silicon, photodiode fabrication, chip in chip mounting and novel assembly technologies for creation of a flexible sensor platform. This flexible combination of technologies allows fabricating a family of planar optical remission sensors. With variation of design and modifications, we are able to detect colorimetric, fluorescent properties of an sensitive layer attached on the sensor surface. In our sensor with typical size of 6mm x 6mm x 1mm different emitting sources based on LED's or laser diodes, multiple detection cannels for the remitted light and also measurement of temperature are included. Based on these sensors we proof the concept by demonstrating sensors for oxygen, carbon dioxide and ammonia based on colorimetric and fluorescent changes in the transducer layer. In both configurations, LED's irradiated the sensitive polymer layer through a transparent substrate. The absorption or fluorescence properties of dyed polymer are changed by the chemical reaction and light response is detected by PIN diodes. The signal shift is analyzed by using a computer controlled evaluation board of own construction. Accuracy and reliability of the remission sensor system were verified and the whole sensor system was experimentally tested in the range of concentrations from 50 ppm up to 100 000 ppm for CO2 and O2 Furthermore, we develop concepts to use the sensor also for interferometric detection of layer properties and the combination with capacitive structures on the surface. This allows detecting of thickness or refractive index variation of layers in future.

  5. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  6. Holographic Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    For the last two decades adaptive optics has been used as a technique for correcting imaging applications and directed energy/laser targeting and laser communications systems affected by atmospheric turbulence. Typically these systems are bulky and limited to <10 kHz due to large computing overhead and limited photon efficiencies. Moreover most use zonal wavefront sensors which cannot easily handle extreme scintillation or unexpected obscuration of a pre-set aperture. Here we present a compact, lightweight adaptive optics system with the potential to operate at speeds of MHz. The system utilizes a hologram to perform an all-optical wavefront analysis that removes the need for any computer. Finally, the sensing is made on a modal basis so it is largely insensitive to scintillation and obscuration. We have constructed a prototype device and will present experimental results from our research. The holographic adaptive optics system begins with the creation of a multiplexed hologram. This hologram is created by recording the maximum and minimum response functions of every actuator in the deformable mirror against a unique focused reference beam. When a wavefront of some arbitrary phase is incident on the processed hologram, a number of focal spots are created -- one pair for each actuator in the DM. The absolute phase error at each particular actuator location is simply related to the ratio of the intensity of each pair of spots. In this way we can use an array of photodetectors to give a direct readout of phase error without the need for any calculations. The advantages of holographic adaptive optics are many. To begin with, the measurement of phase error is made all optically, so the wavefront sensor directly controls the actuators in the DM without any computers. Using fast, photon counting photodetectors allows for closed loop correction limited only by the speed of the deformable mirror which in the case of MEMS devices can be 100 kHz or more. All this can be achieved in an extremely compact and lightweight package making it perfectly suited to applications such as UAV surveillance imagery and free space optical communications systems. Lastly, since the correction is made on a modal basis instead of zonal, it is virtually insensitive to scintillation and obscuration.

  7. Dual-Readout Immunochromatographic Assay by Utilizing MnO 2 Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Hui; Lu, Qian; Wang, Wenwen

    Manganese dioxide nanoflowers (MnO2 NFs) were synthesized and utilized as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10-min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen on test line in the test strip, resulting in the accumulation of MnO2 NFs. The accumulation of MnO2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye asmore » a qualitative readout. Moreover, MnO2 NFs showed a remarkably enhancing effect on the luminol-H2O2 chemiluminescent (CL) system. Unlike peroxidase-like nanomaterials, the enhancing mechanism of MnO2 NFs was based on its oxidant activity to decompose H2O2 for forming reactive oxygen species. After initiating the CL system in the test zone, strong CL signal was collected as a quantitative readout to sensitively detect chlorpyrifos. Under optimal conditions, the linear range of chlorpyrifos was 0.1–50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring, food safety and point-of-care testing.« less

  8. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  9. Development of readout electronics for POLARBEAR-2 cosmic microwave background experiment

    DOE PAGES

    Hattori, K.; Akiba, Y.; Arnold, K.; ...

    2016-01-06

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  10. The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    NASA Astrophysics Data System (ADS)

    Ressler, M. E.; Sukhatme, K. G.; Franklin, B. R.; Mahoney, J. C.; Thelen, M. P.; Bouchet, P.; Colbert, J. W.; Cracraft, Misty; Dicken, D.; Gastaud, R.; Goodson, G. B.; Eccleston, Paul; Moreau, V.; Rieke, G. H.; Schneider, Analyn

    2015-07-01

    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline.

  11. An ultraviolet imager to study bright UV sources

    NASA Astrophysics Data System (ADS)

    Mathew, Joice; Prakash, Ajin; Sarpotdar, Mayuresh; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We have designed and developed a compact ultraviolet imaging payload to y on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and electrical design of the instrument. We have adopted an all spherical optical design which would make the system less complex to realize and a cost effective solution compared to other telescope configuration. The structural design has been chosen in such a way that it will ensure that the instrument could withstand all the launch load vibrations. An FPGA based electronics board is used for the data acquisition, processing and CCD control. We will also brie y discuss about the hardware implementation of the detector interface and algorithms for the detector readout and data processing.

  12. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    NASA Astrophysics Data System (ADS)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  13. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    PubMed

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  14. Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry

    NASA Astrophysics Data System (ADS)

    Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand

    Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.

  15. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-01-01

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments. PMID:27213373

  16. A fast, low power and low noise charge sensitive amplifier ASIC for a UV imaging single photon detector

    NASA Astrophysics Data System (ADS)

    Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.

    2017-04-01

    NASA has funded, through their Strategic Astrophysics Technology (SAT) program, the development of a cross strip (XS) microchannel plate (MCP) detector with the intention to increase its technology readiness level (TRL), enabling prototyping for future NASA missions. One aspect of the development is to convert the large and high powered laboratory Parallel Cross Strip (PXS) readout electronics into application specific integrated circuits (ASICs) to decrease their mass, volume, and power consumption (all limited resources in space) and to make them more robust to the environments of rocket launch and space. The redesign also foresees to increase the overall readout event rate, and decrease the noise contribution of the readout system. This work presents the design and verification of the first stage for the new readout system, the 16 channel charge sensitive amplifier ASIC, called the CSAv3. The single channel amplifier is composed of a charge sensitive amplifier (pre-amplifier), a pole zero cancellation circuit and a shaping amplifier. An additional output stage buffer allows polarity selection of the output analog signal. The operation of the amplifier is programmable via serial bus. It provides an equivalent noise charge (ENC) of around 600 e^- and a baseline gain of 10 mV/fC. The full scale pulse shaped output signal is confined within 100 ns, without long recovery tails, enabling up to 10 MHz periodic event rates without signal pile up. This ASIC was designed and fabricated in 130 nm, TSMC CMOS 1.2 V technology. In addition, we briefly discuss the construction of the readout system and plans for the future work.

  17. Wireless data transmission for high energy physics applications

    NASA Astrophysics Data System (ADS)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  18. Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cardoso, S.; Leitao, D. C.; Dias, T. M.; Valadeiro, J.; Silva, M. D.; Chicharo, A.; Silverio, V.; Gaspar, J.; Freitas, P. P.

    2017-06-01

    Magnetoresistive (MR) sensors have been successfully applied in many technologies, in particular readout electronics and smart systems for multiple signal addressing and readout. When single sensors are used, the requirements relate to spatial resolution and localized field sources. The integration of MR sensors in adaptable media (e.g. flexible, stretchable substrates) offers the possibility to merge the magnetic detection with mechanical functionalities. In addition, the precision of a micrometric needle can benefit greatly from the integration of MR sensors with submicrometric resolution. In this paper, we demonstrate through several detailed examples how advanced MR sensors can be integrated with the systems described above, and also with microfluidic technologies. Here, the challenges of handling liquids over a chip combine with those for miniaturization of microelectronics for MR readout. However, when these are overcome, the result is an integrated system with added functionalities, capable of answering the demand in biomedicine and biochemistry for lab-on-a-chip devices.

  19. Interface and protocol development for STS read-out ASIC in the CBM experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Zabolotny, Wojciech; Szczygiel, Robert

    2014-11-01

    This paper presents a proposal of a protocol for communication between the read-out integrated circuit for the STS (Silicon Tracking System) and the Data Processing Board (DPB) at CBM (Compressed Baryonic Matter) experiment at FAIR, GSI (Helmholtzzentrum fuer Schwerionenforschung GmbH) in Germany. The application background, objectives and proposed solution is presented.

  20. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  1. Optimization of the microcable and detector parameters towards low noise in the STS readout system

    NASA Astrophysics Data System (ADS)

    Kasinski, Krzysztof; Kleczek, Rafal; Schmidt, Christian J.

    2015-09-01

    Successful operation of the Silicon Tracking System requires charge measurement of each hit with equivalent noise charge lower than 1000 e- rms. Detector channels will not be identical, they will be constructed accordingly to the estimated occupancy, therefore for the readout electronics, detector system will exhibit various parameters. This paper presents the simulation-based study on the required microcable (trace width, dielectric material), detector (aluminum strip resistance) and external passives' (decoupling capacitors) parameters in the Silicon Tracking System. Studies will be performed using a front-end electronics (charge sensitive amplifier with shaper) designed for the power budget of 10 mA/channel.

  2. Semi-automatic aircraft control system

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D. (Inventor)

    1978-01-01

    A flight control type system which provides a tactile readout to the hand of a pilot for directing elevator control during both approach to flare-out and departure maneuvers. For altitudes above flare-out, the system sums the instantaneous coefficient of lift signals of a lift transducer with a generated signal representing ideal coefficient of lift for approach to flare-out, i.e., a value of about 30% below stall. Error signals resulting from the summation are read out by the noted tactile device. Below flare altitude, an altitude responsive variation is summed with the signal representing ideal coefficient of lift to provide error signal readout.

  3. A Medipix3 readout system based on the National Instruments FlexRIO card and using the LabVIEW programming environment

    NASA Astrophysics Data System (ADS)

    Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.

    2011-01-01

    Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.

  4. Portable Fourier Transform Spectroscopy for Analysis of Surface Contamination and Quality Control

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2012-01-01

    Progress has been made into adapting and enhancing a commercially available infrared spectrometer for the development of a handheld device for in-field measurements of the chemical composition of various samples of materials. The intent is to duplicate the functionality of a benchtop Fourier transform infrared spectrometer (FTIR) within the compactness of a handheld instrument with significantly improved spectral responsivity. Existing commercial technology, like the deuterated L-alanine triglycine sulfide detectors (DLATGS), is capable of sensitive in-field chemical analysis. This proposed approach compares several subsystem elements of the FTIR inside of the commercial, non-benchtop system to the commercial benchtop systems. These subsystem elements are the detector, the preamplifier and associated electronics of the detector, the interferometer, associated readout parameters, and cooling. This effort will examine these different detector subsystem elements to look for limitations in each. These limitations will be explored collaboratively with the commercial provider, and will be prioritized to meet the deliverable objectives. The tool design will be that of a handheld gun containing the IR filament source and associated optics. It will operate in a point-and-shoot manner, pointing the source and optics at the sample under test and capturing the reflected response of the material in the same handheld gun. Data will be captured via the gun and ported to a laptop.

  5. New Fast Beam Conditions Monitoring (BCM1F) system for CMS

    NASA Astrophysics Data System (ADS)

    Zagozdzinska, A. A.; Bell, A. J.; Dabrowski, A. E.; Hempel, M.; Henschel, H. M.; Karacheban, O.; Przyborowski, D.; Leonard, J. L.; Penno, M.; Pozniak, K. T.; Miraglia, M.; Lange, W.; Lohmann, W.; Ryjov, V.; Lokhovitskiy, A.; Stickland, D.; Walsh, R.

    2016-01-01

    The CMS Beam Radiation Instrumentation and Luminosity (BRIL) project is composed of several systems providing the experiment protection from adverse beam conditions while also measuring the online luminosity and beam background. Although the readout bandwidth of the Fast Beam Conditions Monitoring system (BCM1F—one of the faster monitoring systems of the CMS BRIL), was sufficient for the initial LHC conditions, the foreseen enhancement of the beams parameters after the LHC Long Shutdown-1 (LS1) imposed the upgrade of the system. This paper presents the new BCM1F, which is designed to provide real-time fast diagnosis of beam conditions and instantaneous luminosity with readout able to resolve the 25 ns bunch structure.

  6. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems

    PubMed Central

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-01-01

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors. PMID:28368355

  7. A Reconfigurable Readout Integrated Circuit for Heterogeneous Display-Based Multi-Sensor Systems.

    PubMed

    Park, Kyeonghwan; Kim, Seung Mok; Eom, Won-Jin; Kim, Jae Joon

    2017-04-03

    This paper presents a reconfigurable multi-sensor interface and its readout integrated circuit (ROIC) for display-based multi-sensor systems, which builds up multi-sensor functions by utilizing touch screen panels. In addition to inherent touch detection, physiological and environmental sensor interfaces are incorporated. The reconfigurable feature is effectively implemented by proposing two basis readout topologies of amplifier-based and oscillator-based circuits. For noise-immune design against various noises from inherent human-touch operations, an alternate-sampling error-correction scheme is proposed and integrated inside the ROIC, achieving a 12-bit resolution of successive approximation register (SAR) of analog-to-digital conversion without additional calibrations. A ROIC prototype that includes the whole proposed functions and data converters was fabricated in a 0.18 μm complementary metal oxide semiconductor (CMOS) process, and its feasibility was experimentally verified to support multiple heterogeneous sensing functions of touch, electrocardiogram, body impedance, and environmental sensors.

  8. The electronics readout and data acquisition system of the KM3NeT neutrino telescope node

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Real, Diego; Collaboration: KM3NeT Collaboration

    2014-11-18

    The KM3NeT neutrino telescope will be composed by tens of thousands of glass spheres, called Digital Optical Module (DOM), each of them containing 31 PMTs of small photocathode area (3'). The readout and data acquisition system of KM3NeT have to collect, treat and send to shore, in an economic way, the enormous amount of data produced by the photomultipliers and at the same time to provide time synchronization between each DOM at the level of 1 ns. It is described in the present article the Central Logic Board, that integrates the Time to Digital Converters and the White Rabbit protocolmore » used for the DOM synchronization in a transparent way, the Power Board used in the DOM, the PMT base to readout the photomultipliers and the respective collecting boards, the so called Octopus Board.« less

  9. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  10. Common Readout Unit (CRU) - A new readout architecture for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Mitra, J.; Khan, S. A.; Mukherjee, S.; Paul, R.

    2016-03-01

    The ALICE experiment at the CERN Large Hadron Collider (LHC) is presently going for a major upgrade in order to fully exploit the scientific potential of the upcoming high luminosity run, scheduled to start in the year 2021. The high interaction rate and the large event size will result in an experimental data flow of about 1 TB/s from the detectors, which need to be processed before sending to the online computing system and data storage. This processing is done in a dedicated Common Readout Unit (CRU), proposed for data aggregation, trigger and timing distribution and control moderation. It act as common interface between sub-detector electronic systems, computing system and trigger processors. The interface links include GBT, TTC-PON and PCIe. GBT (Gigabit transceiver) is used for detector data payload transmission and fixed latency path for trigger distribution between CRU and detector readout electronics. TTC-PON (Timing, Trigger and Control via Passive Optical Network) is employed for time multiplex trigger distribution between CRU and Central Trigger Processor (CTP). PCIe (Peripheral Component Interconnect Express) is the high-speed serial computer expansion bus standard for bulk data transport between CRU boards and processors. In this article, we give an overview of CRU architecture in ALICE, discuss the different interfaces, along with the firmware design and implementation of CRU on the LHCb PCIe40 board.

  11. High speed optical wireless data transmission system for particle sensors in high energy physics

    NASA Astrophysics Data System (ADS)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  12. Evaluation of Light Collection System for Pion and Kaon Experiments in Hall C at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Roustom, Salim

    2017-09-01

    The neutral pion and the kaon are opportune to study the hadron structure through General Parton Distributions, which can be viewed as spatial densities at different momenta of the quarks inside the proton. To study hadron structure with pion or kaon experiments in Hall C at 12 GeV Jefferson Lab, one must analyze the final state neutral pions and kaons and their decay products. For the analysis of these particles, dedicated detectors based on the Cherenkov or scintillation mechanism are used, e.g. the HMS and SHMS aerogel detectors and the PbWO4-based Neutral Particle Spectrometer. A critical part of these detectors is the light collection system. Photomultiplier Tubes (PMTs) have many advantages, however, they are sensitive to magnetic fields and can get damaged by elevated helium levels in the atmosphere. An alternative to PMTs are Avalanche Photodiodes (APDs). APDs are sensitive to background noise, temperature, and radiation. It is thus important to evaluate the benefits of each light collection system and optimize operating conditions to ensure performance over a reasonably long time. I will present a performance study of PMTs exposed to elevated levels of helium and a comparison of APDs as alternatives, as well as new, compact readout methods. Supported in part by NSF Grants PHY-1714133, PHY-1530874, PHY-1306227 and PHY-1306418.

  13. An investigation of a PRESAGE® in-vivo dosimeter for brachytherapy

    PubMed Central

    Vidovic, A K; Juang, T; Meltsner, S; Adamovics, J; Chino, J; Steffey, B; Craciunescu, O; Oldham, M

    2014-01-01

    Determining accurate in-vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in-vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm x 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® In-Vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0–15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy·cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (~1mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in-vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout. PMID:24957850

  14. An investigation of a PRESAGE® in vivo dosimeter for brachytherapy

    NASA Astrophysics Data System (ADS)

    Vidovic, A. K.; Juang, T.; Meltsner, S.; Adamovics, J.; Chino, J.; Steffey, B.; Craciunescu, O.; Oldham, M.

    2014-07-01

    Determining accurate in vivo dosimetry in brachytherapy treatment with high dose gradients is challenging. Here we introduce, investigate, and characterize a novel in vivo dosimeter and readout technique with the potential to address this problem. A cylindrical (4 mm × 20 mm) tissue equivalent radiochromic dosimeter PRESAGE® in vivo (PRESAGE®-IV) is investigated. Two readout methods of the radiation induced change in optical density (OD) were investigated: (i) volume-averaged readout by spectrophotometer, and (ii) a line profile readout by 2D projection imaging utilizing a high-resolution (50 micron) telecentric optical system. Method (i) is considered the gold standard when applied to PRESAGE® in optical cuvettes. The feasibility of both methods was evaluated by comparison to standard measurements on PRESAGE® in optical cuvettes via spectrophotometer. An end-to-end feasibility study was performed by a side-by-side comparison with TLDs in an 192Ir HDR delivery. 7 and 8 Gy was delivered to PRESAGE®-IV and TLDs attached to the surface of a vaginal cylinder. Known geometry enabled direct comparison of measured dose with a commissioned treatment planning system. A high-resolution readout study under a steep dose gradient region showed 98.9% (5%/1 mm) agreement between PRESAGE®-IV and Gafchromic® EBT2 Film. Spectrometer measurements exhibited a linear dose response between 0-15 Gy with sensitivity of 0.0133 ± 0.0007 ΔOD/(Gy ṡ cm) at the 95% confidence interval. Method (ii) yielded a linear response with sensitivity of 0.0132 ± 0.0006 (ΔOD/Gy), within 2% of method (i). Method (i) has poor spatial resolution due to volume averaging. Method (ii) has higher resolution (˜1 mm) without loss of sensitivity or increased noise. Both readout methods are shown to be feasible. The end-to-end comparison revealed a 2.5% agreement between PRESAGE®-IV and treatment plan in regions of uniform high dose. PRESAGE®-IV shows promise for in vivo dose verification, although improved sensitivity would be desirable. Advantages include high-resolution, convenience and fast, low-cost readout.

  15. A frequency-sensing readout using piezoelectric sensors for sensing of physiological signals.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Together with a charge or voltage amplifier, piezoelectric sensors are commonly used to pick up physiological vibrations from the body. As an alternative to chopper or auto-zero amplifiers, frequency sensing is known in literature to provide advantages of noise immunity, interfacing to digital readout systems as well as tunable range of sensing. A frequency-sensing readout circuit for sensing low voltage signals from piezoelectric sensors is successfully developed and tested in this work. The output voltage of a piezoelectric sensor is fed to a varactor, which is part of an Colpitts LC oscillator. The oscillation frequency is converted into a voltage using a phase locked loop. The circuit is compared to a reference design in terms of linearity, noise and transfer function. The readout has a input-referred noise voltage of 2.24μV/√Hz and consumes 15 mA at 5V supply. Arterial pulse wave signals and the cardiac vibrations from the chest are measured from one subject to show the proof of concept of the proposed readout. The results of this work are intended to contribute towards alternative low noise analog front end designs for piezoelectric sensors.

  16. Resistive-strips micromegas detectors with two-dimensional readout

    NASA Astrophysics Data System (ADS)

    Byszewski, M.; Wotschack, J.

    2012-02-01

    Micromegas detectors show very good performance for charged particle tracking in high rate environments as for example at the LHC. It is shown that two coordinates can be extracted from a single gas gap in these detectors. Several micromegas chambers with spark protection by resistive strips and two-dimensional readout have been tested in the context of the R&D work for the ATLAS Muon System upgrade.

  17. Ultra-low magnetic field apparatus for a cryogenic gyroscope

    NASA Technical Reports Server (NTRS)

    Cabrera, B.; Van Kann, F. J.

    1978-01-01

    An ultralow magnetic field apparatus for earth-based testing of a cryogenic gyroscope system designed for a satellite test of general relativity is described. The magnetic field apparatus makes use of a superconducting lead shield while also maintaining sufficient mechanical stability to obtain a gyroscope readout sensitivity of one arcsec over a limited range. A gyroscope environment of 2.3 times 10 to the minus seventh power gauss has been attained with the magnetic field shielding technique. The magnetic field apparatus is to be used with a three-axis London moment readout system.

  18. Laser marking of contrast images for optical read-out systems

    NASA Astrophysics Data System (ADS)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  19. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  20. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  1. Central FPGA-based destination and load control in the LHCb MHz event readout

    NASA Astrophysics Data System (ADS)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  2. Test of GET Electronics for the CHIMERA and FARCOS multi-detectors

    NASA Astrophysics Data System (ADS)

    De Luca, S.; Acosta, L.; Auditore, L.; Boiano, C.; Cardella, G.; Castoldi, A.; D'Andrea, M.; De Filippo, E.; Dell'Aquila, D.; Fichera, F.; Gnoffo, B.; Guazzoni, C.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Saccà, G.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    In this paper we present the results of the tests on the new digital electronics GET (General Electronics for Tpc), which will be used for the readout of the CsI(Tl) detectors of CHIMERA (Charged Heavy Ion Mass and Energy Resolving Array) and for the new correlator FARCOS (Femtoscope ARray for COrrelations and Spectroscopy). The new electronics allows us to digitize the full waveform of the signals produced by the detector. Among its features it is worth noticing the compactness and low power consumption (5W for 256 channels). Tests have been performed with pulsers, radioactive sources and ion beams. With such electronics very good results in energy resolution and isotope separation of the detected fragments were obtained, by using both hardware and software filters.

  3. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  4. Monte Carlo code G3sim for simulation of plastic scintillator detectors with wavelength shifter fiber readout.

    PubMed

    Mohanty, P K; Dugad, S R; Gupta, S K

    2012-04-01

    A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics

  5. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  6. The TOTEM DAQ based on the Scalable Readout System (SRS)

    NASA Astrophysics Data System (ADS)

    Quinto, Michele; Cafagna, Francesco S.; Fiergolski, Adrian; Radicioni, Emilio

    2018-02-01

    The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC) experiment at LHC, has been designed to measure the total proton-proton cross-section and study the elastic and diffractive scattering at the LHC energies. In order to cope with the increased machine luminosity and the higher statistic required by the extension of the TOTEM physics program, approved for the LHC's Run Two phase, the previous VME based data acquisition system has been replaced with a new one based on the Scalable Readout System. The system features an aggregated data throughput of 2GB / s towards the online storage system. This makes it possible to sustain a maximum trigger rate of ˜ 24kHz, to be compared with the 1KHz rate of the previous system. The trigger rate is further improved by implementing zero-suppression and second-level hardware algorithms in the Scalable Readout System. The new system fulfils the requirements for an increased efficiency, providing higher bandwidth, and increasing the purity of the data recorded. Moreover full compatibility has been guaranteed with the legacy front-end hardware, as well as with the DAQ interface of the CMS experiment and with the LHC's Timing, Trigger and Control distribution system. In this contribution we describe in detail the architecture of full system and its performance measured during the commissioning phase at the LHC Interaction Point.

  7. Zero suppression logic of the ALICE muon forward tracker pixel chip prototype PIXAM and associated readout electronics development

    NASA Astrophysics Data System (ADS)

    Flouzat, C.; Değerli, Y.; Guilloux, F.; Orsini, F.; Venault, P.

    2015-05-01

    In the framework of the ALICE experiment upgrade at HL-LHC, a new forward tracking detector, the Muon Forward Tracker (MFT), is foreseen to overcome the intrinsic limitations of the present Muon Spectrometer and will perform new measurements of general interest for the whole ALICE physics. To fulfill the new detector requirements, CMOS Monolithic Active Pixel Sensors (MAPS) provide an attractive trade-off between readout speed, spatial resolution, radiation hardness, granularity, power consumption and material budget. This technology has been chosen to equip the Muon Forward Tracker and also the vertex detector: the Inner Tracking System (ITS). Since few years, an intensive R&D program has been performed on the design of MAPS in the 0.18 μ m CMOS Image Sensor (CIS) process. In order to avoid pile up effects in the experiment, the classical rolling shutter readout system of MAPS has been improved to overcome the readout speed limitation. A zero suppression algorithm, based on a 3 by 3 cluster finding (position and data), has been chosen for the MFT. This algorithm allows adequate data compression for the sensor. This paper presents the large size prototype PIXAM, which represents 1/3 of the final chip, and will focus specially on the zero suppression block architecture. This chip is designed and under fabrication in the 0.18 μ m CIS process. Finally, the readout electronics principle to send out the compressed data flow is also presented taking into account the cluster occupancy per MFT plane for a single central Pb-Pb collision.

  8. Preliminary Assessment of Microwave Readout Multiplexing Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less

  9. Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

    NASA Astrophysics Data System (ADS)

    Bender, A. N.; Ade, P. A. R.; Anderson, A. J.; Avva, J.; Ahmed, Z.; Arnold, K.; Austermann, J. E.; Basu Thakur, R.; Benson, B. A.; Bleem, L. E.; Byrum, K.; Carlstrom, J. E.; Carter, F. W.; Chang, C. L.; Cho, H. M.; Cliche, J. F.; Crawford, T. M.; Cukierman, A.; Czaplewski, D. A.; Ding, J.; Divan, R.; de Haan, T.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Gilbert, A.; Groh, J. C.; Guyser, R.; Halverson, N. W.; Harke-Hosemann, A.; Harrington, N. L.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O.; Khaire, T.; Korman, M.; Kubik, D.; Kuo, C. L.; Lee, A. T.; Leitch, E. M.; Lendinez, S.; Meyer, S. S.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Shariff, J. A.; Shirley, Ian; Shirokoff, E.; Smecher, G.; Sobrin, J.; Stan, L.; Stark, A. A.; Story, K.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.

    2016-07-01

    The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of 16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.

  10. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  11. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  12. On-ground characterization of the Euclid's CCD273-based readout chain

    NASA Astrophysics Data System (ADS)

    Szafraniec, Magdalena; Azzollini, R.; Cropper, M.; Pottinger, S.; Khalil, A.; Hailey, M.; Hu, D.; Plana, C.; Cutts, A.; Hunt, T.; Kohley, R.; Walton, D.; Theobald, C.; Sharples, R.; Schmoll, J.; Ferrando, P.

    2016-07-01

    Euclid is a medium class European Space Agency mission scheduled for launch in 2020. The goal of the survey is to examine the nature of Dark Matter and Dark Energy in the Universe. One of the cosmological probes used to analyze Euclid's data, the weak lensing technique, measures the distortions of galaxy shapes and this requires very accurate knowledge of the system point spread function (PSF). Therefore, to ensure that the galaxy shape is not affected, the detector chain of the telescope's VISible Instrument (VIS) needs to meet specific performance performance requirements. Each of the 12 VIS readout chains consisting of 3 CCDs, readout electronics (ROE) and a power supply unit (RPSU) will undergo a rigorous on-ground testing to ensure that these requirements are met. This paper reports on the current status of the warm and cold testing of the VIS Engineering Model readout chain. Additionally, an early insight to the commissioning of the Flight Model calibration facility and program is provided.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, K.; Akiba, Y.; Arnold, K.

    The readout of transition-edge sensor (TES) bolometers with a large multiplexing factor is key for the next generation cosmic microwave background (CMB) experiment, Polarbear-2, having 7588 TES bolometers. To enable the large arrays, we have been developing a readout system with a multiplexing factor of 40 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics, above 4 MHz. This paper focuses on cryogenic readout and shows how it affects cross talk and the responsivity of the TES bolometers. A series resistance, such as equivalent series resistance of capacitors formore » LC filters, leads to non-linear response of the bolometers. A wiring inductance modulates a voltage across the bolometers and causes cross talk. They should be controlled well to reduce systematic errors in CMB observations. As a result, we have been developing a cryogenic readout with a low series impedance and have tuned bolometers in the middle of their transition at a high frequency (>3 MHz).« less

  14. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    NASA Technical Reports Server (NTRS)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to couple to the detector equally. A stepped impedance resonator was used that allows the incident power absorbed in the detecting membrane area to be uniformly distributed in the detector's transmission line at the RF readout frequency. This maximizes the sensitivity of the detector. The signal is read out via a frequency multiplexing technique that requires a minimum number of interface transmission lines for readout. This reduces the packaging complexity and coupling to the device's thermal environment.

  15. PKU-PET-II: A novel SiPM-based PET imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoheng; Li, Suying; Zhou, Kun; Vuletic, Ivan; Meng, Xiangxi; Zhu, Sihao; Xu, Huan; Yang, Kun; Xu, Baixuan; Zhang, Jinming; Ren, Qiushi

    2018-01-01

    The objective of this study was to introduce, describe, and validate the performance of a novel preclinical silicon photomultiplier (SiPM)-based PET system (PKU-PET-II). Briefly, the detector assembly consisted of cerium-doped lutetium-yttrium oxyorthosilicate (LYSO) crystals, with dimensions of 2 ×2 ×15 mm3, that offered a 60 mm transaxial field of view (FOV) and 32 mm axial FOV, respectively. The compact front-end electronics readout and digital controller implemented architecture in the FPGA were noteworthy improvements in PKU-PET-II over its predecessor (PKU-PET-I). Based on the National Electrical Manufacturers Association (NEMA) NU 04-2008 standards, the design of the PKU-PET-II system was validated by a phantom experiment. The results presented spatial resolution (evaluated as full width at half maximum) with a system range from 1.68 ±0.07 to 2.31 ±0.03 mm at the FOV center and from 1.43 ±0.02 to 2.10 ±0.10 mm at the 1/4th axial FOV, respectively. The system's absolute sensitivity at the center position was 1.35% with the coincidence window of 6 ns and energy window of 300-700 keV. In addition, the NEMA image quality phantom and an animal study results validated the system imaging performance in preclinical imaging application. In conclusion, this SiPM-based, small-animal PET system (PKU-PET-II) provided higher-resolution, adequate sensitivity, and excellent image quality and has potential as a useful tool for real-time imaging of disease progression and development in vivo.

  16. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  17. Test beam studies of the light yield, time and coordinate resolutions of scintillator strips with WLS fibers and SiPM readout

    DOE PAGES

    Denisov, Dmitri; Evdokimov, Valery; Lukic, Strahinja; ...

    2016-12-24

    Prototype scintilator+WLS strips with SiPM readout for large muon detection systems were tested in the muon beam of the Fermilab Test Beam Facility. Furthermore, light yield of up to 137 photoelectrons per muon per strip has been observed, as well as time resolution of 330 ps and position resolution along the strip of 5.4 cm.

  18. IRAC test report. Gallium doped silicon band 2: Read noise and dark current

    NASA Technical Reports Server (NTRS)

    Lamb, Gerald; Shu, Peter; Mather, John; Ewin, Audrey; Bowser, Jeffrey

    1987-01-01

    A direct readout infrared detector array, a candidate for the Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC), has been tested. The array has a detector surface of gallium doped silicon, bump bonded to a 58x62 pixel MOSFET multiplexer on a separate chip. Although this chip and system do not meet all the SIRTF requirements, the critically important read noise is within a factor of 3 of the requirement. Significant accomplishments of this study include: (1) development of a low noise correlated double sampling readout system with a readout noise of 127 to 164 electrons (based on the detector integrator capacitance of 0.1 pF); (2) measurement of the readout noise of the detector itself, ranging from 123 to 214 electrons with bias only (best to worst pixel), and 256 to 424 electrons with full clocking in normal operation at 5.4 K where dark current is small. Thirty percent smaller read noises are obtained at a temperature of 15K; (3) measurement of the detector response versus integration time, showing significant nonlinear behavior for large signals, well below the saturation level; and (4) development of a custom computer interface and suitable software for collection, analysis and display of data.

  19. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  20. Innovative multi-cantilever array sensor system with MOEMS read-out

    NASA Astrophysics Data System (ADS)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  1. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  2. Front-end electronics development for TPC detector in the MPD/NICA project

    NASA Astrophysics Data System (ADS)

    Cheremukhina, G.; Movchan, S.; Vereschagin, S.; Zaporozhets, S.

    2017-06-01

    The article is aimed at describing the development status, measuring results and design changes of the TPC front-end electronics. The TPC is placed in the middle of Multi-Purpose Detector (MPD) and provides tracing and identifying of charged particles in the pseudorapidity range |η| < 1.2. The readout system is one of the most complex parts of the TPC. The electronics of each readout chamber is an independent system. The whole system contains 95232 channels, 1488 64-channel—front-end cards (FEC), 24 readout control units (RCU). The front-end electronics (FEE) is based on ASICs, FPGAs and high-speed serial links. The concept of the TPC front-end electronics has been motivated from one side—by the requirements concerning the NICA accelerator complex which will operate at the luminosity up to 1027 cm-2 s-1 for Au79+ ions over the energy range of 4 < √SNN < 11 GeV with the trigger rate up to 7 kHz and from the other side—by the requirements of the 4-π geometry to minimize the substance on the end-caps of the TPC.

  3. A highly miniaturized and sensitive thermal neutron detector for space applications

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Holik, Michael; Kraus, Vaclav; Pospisil, Stanislav; Solc, Jaroslav; Turecek, Daniel

    2012-02-01

    Devices from the Medipix family prove to be an excellent tool for the measurement and characterization of complex radiation fields including neutrons. The use of a neutron detector in planetary remote sensing is an essential tool in the search for hydrogenous materials and specifically the presence of water which is the essential ingredient in the search for extraterrestrial life. In addition, high sensitivity neutron measurements used in combination with X-ray and gamma-ray measurements, improves the analysis of the atomic composition of regolith, which in turn, is used to interpret surface geology and ultimately planetary evolution. The high spatial resolution (a matrix of 256 × 256 pixels of 55 μm x 55 μm pitch) and sensitivity of the Medipix detector allows the direct visualization of the energy loss and charge collection processes in the sensor material (300 μm thick silicon in this case). The charge patterns of different radiation types have different characteristic shapes and it is possible to use this information for very effective background suppression. Since silicon itself is insensitive to thermal neutrons a thin 6Li layer in the form of 6LiF powder was used to convert thermal neutrons into alpha particles via the 6Li+n→α+3H reaction. The detection efficiency for thermal neutrons is 1.4%. In order to meet ESA communication standards for space equipment we have developed a compact, low power and lightweight FPGA based readout system, communicating via a SpaceWire interface. The dimension of the whole device including Medipix chipboard is 160 × 75 × 15 mm3 and its total weight is 70 g. The power consumption of the device is 1.4 W during measurement and 0.75 W when the detector is switched off. The readout speed is 7 fps with a single Medipix device which is sufficient for the target application. The whole detection system is very mass and power efficient in comparison with the gas proportional detectors which are commonly used in space applications for thermal neutron detection.

  4. Upgrade of the TOTEM DAQ using the Scalable Readout System (SRS)

    NASA Astrophysics Data System (ADS)

    Quinto, M.; Cafagna, F.; Fiergolski, A.; Radicioni, E.

    2013-11-01

    The main goals of the TOTEM Experiment at the LHC are the measurements of the elastic and total p-p cross sections and the studies of the diffractive dissociation processes. At LHC, collisions are produced at a rate of 40 MHz, imposing strong requirements for the Data Acquisition Systems (DAQ) in terms of trigger rate and data throughput. The TOTEM DAQ adopts a modular approach that, in standalone mode, is based on VME bus system. The VME based Front End Driver (FED) modules, host mezzanines that receive data through optical fibres directly from the detectors. After data checks and formatting are applied in the mezzanine, data is retransmitted to the VME interface and to another mezzanine card plugged in the FED module. The VME bus maximum bandwidth limits the maximum first level trigger (L1A) to 1 kHz rate. In order to get rid of the VME bottleneck and improve scalability and the overall capabilities of the DAQ, a new system was designed and constructed based on the Scalable Readout System (SRS), developed in the framework of the RD51 Collaboration. The project aims to increase the efficiency of the actual readout system providing higher bandwidth, and increasing data filtering, implementing a second-level trigger event selection based on hardware pattern recognition algorithms. This goal is to be achieved preserving the maximum back compatibility with the LHC Timing, Trigger and Control (TTC) system as well as with the CMS DAQ. The obtained results and the perspectives of the project are reported. In particular, we describe the system architecture and the new Opto-FEC adapter card developed to connect the SRS with the FED mezzanine modules. A first test bench was built and validated during the last TOTEM data taking period (February 2013). Readout of a set of 3 TOTEM Roman Pot silicon detectors was carried out to verify performance in the real LHC environment. In addition, the test allowed a check of data consistency and quality.

  5. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  6. The HADES-RICH upgrade using Hamamatsu H12700 MAPMTs with DiRICH FEE + Readout

    NASA Astrophysics Data System (ADS)

    Patel, V.; Traxler, M.

    2018-03-01

    The High Acceptance Di-Electron Spectrometer (HADES) is operational since the year 2000 and uses a hadron blind RICH detector for electron identification. The RICH photon detector is currently replaced by Hamamatsu H12700 MAPMTs with a readout system based on the DiRICH front-end module. The electronic readout chain is being developed as a joint effort of the HADES-, CBM- and PANDA collaborations and will also be used in the photon detectors for the upcoming Compressed Baryonic Matter (CBM) and PANDA experiments at FAIR . This article gives a brief overview on the photomultipliers and their quality assurance test measurements, as well as first measurements of the new DiRICH front-end module in final configurations.

  7. Flash LIDAR Systems for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

    2009-01-01

    Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

  8. Processing inferences derived from event-related potential measures in a monitoring task

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1985-01-01

    Event-related potentials (ERPs) were recorded from the scalp of subjects as they monitored changing digital readouts for values that went 'out-of-bounds'. Workload was manipulated by varying the number of readouts that were monitored concurrently. The ERPs elicited by changes in the readouts showed long latency positivities that increased in amplitude, not only with the number of readouts monitored, but also with the number of monitored readouts that were 'in danger' of going out-of-bounds. No effects were found due to the number of nonmonitored readouts 'in danger'. This evidence indicates that subjects (1) selectively attended to the monitored readouts and (2) processed the monitored readouts differently as the readouts approached the out-of-bounds levels to which an overt response was required.

  9. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  10. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †

    PubMed Central

    Ni, Yang

    2018-01-01

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903

  11. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.

    PubMed

    Ni, Yang

    2018-02-14

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.

  12. Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost.

    PubMed

    Pierce, Mark C; Weigum, Shannon E; Jaslove, Jacob M; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S

    2014-01-01

    One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact "hybrid" objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 μm. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation.

  13. Development of low-cost high-performance multispectral camera system at Banpil

    NASA Astrophysics Data System (ADS)

    Oduor, Patrick; Mizuno, Genki; Olah, Robert; Dutta, Achyut K.

    2014-05-01

    Banpil Photonics (Banpil) has developed a low-cost high-performance multispectral camera system for Visible to Short- Wave Infrared (VIS-SWIR) imaging for the most demanding high-sensitivity and high-speed military, commercial and industrial applications. The 640x512 pixel InGaAs uncooled camera system is designed to provide a compact, smallform factor to within a cubic inch, high sensitivity needing less than 100 electrons, high dynamic range exceeding 190 dB, high-frame rates greater than 1000 frames per second (FPS) at full resolution, and low power consumption below 1W. This is practically all the feature benefits highly desirable in military imaging applications to expand deployment to every warfighter, while also maintaining a low-cost structure demanded for scaling into commercial markets. This paper describes Banpil's development of the camera system including the features of the image sensor with an innovation integrating advanced digital electronics functionality, which has made the confluence of high-performance capabilities on the same imaging platform practical at low cost. It discusses the strategies employed including innovations of the key components (e.g. focal plane array (FPA) and Read-Out Integrated Circuitry (ROIC)) within our control while maintaining a fabless model, and strategic collaboration with partners to attain additional cost reductions on optics, electronics, and packaging. We highlight the challenges and potential opportunities for further cost reductions to achieve a goal of a sub-$1000 uncooled high-performance camera system. Finally, a brief overview of emerging military, commercial and industrial applications that will benefit from this high performance imaging system and their forecast cost structure is presented.

  14. Readout for phase qubits without Josephson junctions

    NASA Astrophysics Data System (ADS)

    Steffen, Matthias; Kumar, Shwetank; DiVincenzo, David; Keefe, George; Ketchen, Mark; Rothwell, Mary Beth; Rozen, Jim

    2010-03-01

    We present a readout scheme for phase qubits which eliminates the read-out superconducting quantum interference device so that the entire qubit and measurement circuitry only require a single Josephson junction. Our scheme capacitively couples the phase qubit directly to a transmission line and detects its state after the measurement pulse by determining a frequency shift observable in the forward scattering parameter of the readout microwaves. This readout is extendable to multiple phase qubits coupled to a common readout line and can in principle be used for other flux biased qubits having two quasistable readout configurations.

  15. Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kim, J. E.; Lim, H.; Nam, J. W.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chen, P.; Choi, H. S.; Grossan, B.; Huang, M. A.; Jeong, S.; Jung, A.; Kim, M. B.; Kim, S.-W.; Lee, J.; Linder, E. V.; Liu, T.-C.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Ripa, J.; Reglero, V.; Smoot, G. F.; Svertilov, S.; Vedenkin, N.; Yashin, I.

    2013-07-01

    The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chrètien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/optical photons of 200-650 nm in wavelength by using a UV-enhanced S20 photocathode and amplifies photoelectrons at a gain of 104-106 in double Micro-Channel Plates. These photons are read out by a Kodak KAI-0340 interline CCD sensor and a CCD Signal Processor with 10-bit Analog-to-Digital Converter. Various control clocks for CCD readout are implemented using a Field Programmable Gate Array (FPGA). The SMT readout is in charge of not only data acquisition, storage and transfer, but also control of the slewing mirror, the ICCD high voltage adjustments, power distribution, and system monitoring by interfacing to the UFFO-pathfinder. These functions are realized in the FPGA to minimize power consumption and to enhance processing time. The SMT readout electronics are designed and built to meet the spacecraft's constraints of power consumption, mass, and volume. The entire system is integrated with the SMT optics, as is the UFFO-pathfinder. The system has been tested and satisfies the conditions of launch and those of operation in space: those associated with shock and vibration and those associated with thermal and vacuum, respectively. In this paper, we present the SMT readout electronics: the design, construction, and performance, as well as the results of space environment test.

  16. Silicon photonics for neuromorphic information processing

    NASA Astrophysics Data System (ADS)

    Bienstman, Peter; Dambre, Joni; Katumba, Andrew; Freiberger, Matthias; Laporte, Floris; Lugnan, Alessio

    2018-02-01

    We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.

  17. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Lin, Z. R.; Inomata, K.; Koshino, K.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2014-07-01

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  18. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle

    2014-03-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.

  19. DART -- Data acquisition for the next generation of Fermilab fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Anderson, J.; Appleton, L.

    1994-02-01

    DART is the name of the data acquisition effort for Fermilab experiments taking data in the '94--'95 time frame and beyond. Its charge is to provide a common system of hardware and software, which can be easily configured and extended to meet the wide range of data acquisition requirements of the experiments. Its strategy is to provide incrementally functional data acquisition systems to the experiments at frequent intervals to support the ongoing DA activities of the experiments. DART is a collaborative development effort between the experimenters and the Fermilab Computing Division. Experiments collaborating in DART cover a range of requirementsmore » from 400 Kbytes/sec event readout using a single DA processor, to 200 Mbytes/sec event readout involving 10 parallel readout streams, 10 VME event building planes and greater than 1,000 MIPs of event filter processing. The authors describe the requirements, architecture, and plans for the project and report on its current status.« less

  20. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.

    2017-04-01

    Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.

  1. A prototype optical-CT system for PRESAGE 3D dosimeter readout

    NASA Astrophysics Data System (ADS)

    Miles, Devin; Yoon, Paul; Kodra, Jacob; Adamovics, John; Oldham, Mark

    2017-05-01

    This work introduces the Duke Integrated-lens Optical Scanner (DIOS), a prototype optical-CT system designed for convenient and low-cost readout of PRESAGE 3D dosimeters. A key novelty of the DIOS is the incorporation of a multi-purpose light-collimating tank (the LC-tank). The LC-tank collimates light from a point source, maintains parallel ray geometry through a dosimeter mounted inside the tank, and refocuses emergent light onto a CCD detector. A second purpose is to dramatically reduce the amount of refractive matched fluid required in prior optical-CT scanners. This is achieved by substituting large quantities of refractive-matched fluid with solid RI-matched polyurethane. The advantages of DIOS include eliminating the need for expensive telecentric lenses, and eliminating the impracticality of large volumes of RI matched fluid. The DIOS is potentially more susceptible to stray-light artifacts. Preliminary phantom testing shows promising agreement between PRESAGE/DIOS readout and prior commissioned optical-CT scanners, as well as with Eclipse dose calculations.

  2. A noninterference blade vibration measurement system for gas turbine engines

    NASA Astrophysics Data System (ADS)

    Watkins, William B.; Chi, Ray M.

    1987-06-01

    A noninterfering blade vibration system has been demonstrated in tests of a gas turbine first stage fan. Conceptual design of the system, including its theory, design of case mounted probes, and data acquisition and signal processing hardware was done in a previous effort. The current effort involved instrumentation of an engine fan stage with strain gages; data acquisition using shaft-mounted reference and case-mounted optical probes; recording of data on a wideband tape recorder; and posttest processing using off-line analysis in a facility computer and a minicomputer-based readout system designed for near- real-time readout. Results are presented in terms of true blade vibration frequencies, time and frequency dependent vibration amplitudes and comparison of the optical noninterference results with strain gage readings.

  3. The NT digital micro tape recorder

    NASA Technical Reports Server (NTRS)

    Sasaki, Toshikazu; Alstad, John; Younker, Mike

    1993-01-01

    The description of an audio recorder may at first glance seem out of place in a conference which has been dedicated to the discussion of the technology and requirements of mass data storage. However, there are several advanced features of the NT system which will be of interest to the mass storage technologist. Moreover, there are a sufficient number of data storage formats in current use which have evolved from their audio counterparts to recommend a close attention to major innovative introductions of audio storage formats. While the existing analog micro-cassette recorder has been (and will continue to be) adequate for various uses, there are significant benefits to be gained through the application of digital technology. The elimination of background tape hiss and the availability of two relatively wide band channels (for stereo recording), for example, would greatly enhance listenability and speech intelligibility. And with the use of advanced high-density recording and LSI circuit technologies, a digital micro recorder can realize unprecedented compactness with excellent energy efficiency. This is what was accomplished with the NT-1 Digital Micro Recorder. Its remarkably compact size contributes to its portability. The high-density NT format enables up to two hours of low-noise digital stereo recording on a cassette the size of a postage stamp. Its highly energy-efficient mechanical and electrical design results in low power consumption; the unit can be operated up to 7 hours (for continuous recording) on a single AA alkaline battery. Advanced user conveniences include a multifunction LCD readout. The unit's compactness and energy-efficiency, in particular, are attributes that cannot be matched by existing analog and digital audio formats. The size, performance, and features of the NT format are of benefit primarily to those who desire improved portability and audio quality in a personal memo product. The NT Recorder is the result of over ten years of intensive, multi-disciplinary research and development. What follows is a discussion of the technologies that have made the NT possible: (1) NT format mechanics, (2) NT media, (3) NT circuitry and board.

  4. Monitoring the CMS strip tracker readout system

    NASA Astrophysics Data System (ADS)

    Mersi, S.; Bainbridge, R.; Baulieu, G.; Bel, S.; Cole, J.; Cripps, N.; Delaere, C.; Drouhin, F.; Fulcher, J.; Giassi, A.; Gross, L.; Hahn, K.; Mirabito, L.; Nikolic, M.; Tkaczyk, S.; Wingham, M.

    2008-07-01

    The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system.

  5. Towards simultaneous single emission microscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cai, Liang

    In recent years, the combined nuclear imaging and magnetic resonance imaging (MRI) has drawn extensive research effort. They can provide simultaneously acquired anatomical and functional information inside the human/small animal body in vivo. In this dissertation, the development of an ultrahigh resolution MR-compatible SPECT (Single Photon Emission Computed Tomography) system that can be operated inside a pre-existing clinical MR scanner for simultaneous dual-modality imaging of small animals will be discussed. This system is constructed with 40 small pixel CdTe detector modules assembled in a fully stationary ring SPECT geometry. Series of experiments have demonstrated that this system is capable of providing an imaging resolution of <500?m, when operated inside MR scanners. The ultrahigh resolution MR-compatible SPECT system is built around a small pixel CdTe detector module that we recently developed. Each module consists of CdTe detectors having an overall size of 2.2 cm x 1.1 cm, divided into 64 x 32 pixels of 350 mum in size. A novel hybrid pixel-waveform (HPWF) readout system is also designed to alleviate several challenges for using small-pixel CdTe detectors in ultrahigh-resolution SPECT imaging applications. The HPWF system utilizes a modified version of a 2048-channel 2-D CMOS ASIC to readout the anode pixel, and a digitizing circuitry to sample the signal waveform induced on the cathode. The cathode waveform acquired with the HPWF circuitry offers excellent spatial resolution, energy resolution and depth of interaction (DOI) information, even with the presence of excessive charge-sharing/charge-loss between the small anode pixels. The HPWF CdTe detector is designed and constructed with a minimum amount of ferromagnetic materials, to ensure the MR-compatibility. To achieve sub-500?m imaging resolution, two special designed SPECT apertures have been constructed with different pinhole sizes of 300?m and 500?m respectively. It has 40 pinhole inserts that are made of cast platinum (90%)-iridium (10%) alloy, which provides the maximum stopping power and are compatible with MR scanners. The SPECT system is installed on a non-metal gantry constructed with 3-D printing using nylon powder material. This compact system can work as a "low-cost" desktop ultrahigh resolution SPECT system. It can also be directly operated inside an MR scanner. Accurate system geometrical calibration and corresponding image reconstruction methods for the MRC-SPECT system is developed. In order to account for the magnetic field induced distortion in the SPECT image, a comprehensive charge collection model inside strong magnetic field is adopted to produce high resolution SPECT image inside MR scanner.

  6. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    NASA Astrophysics Data System (ADS)

    Hagemann, M.; Bassini, R.; van den Berg, A. M.; Ellinghaus, F.; Frekers, D.; Hannen, V. M.; Häupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Krüsemann, B.; Rakers, S.; Sohlbach, H.; Wörtche, H. J.

    1999-11-01

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0°. For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  7. Design and test of data acquisition systems for the Medipix2 chip based on PC standard interfaces

    NASA Astrophysics Data System (ADS)

    Fanti, Viviana; Marzeddu, Roberto; Piredda, Giuseppina; Randaccio, Paolo

    2005-07-01

    We describe two readout systems for hybrid detectors using the Medipix2 single photon counting chip, developed within the Medipix Collaboration. The Medipix2 chip (256×256 pixels, 55 μm pitch) has an active area of about 2 cm 2 and is bump-bonded to a pixel semiconductor array of silicon or other semiconductor material. The readout systems we are developing are based on two widespread standard PC interfaces: parallel port and USB (Universal Serial Bus) version 1.1. The parallel port is the simplest PC interface even if slow and the USB is a serial bus interface present nowadays on all PCs and offering good performances.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore themore » architecture of larger systems such as those currently in use at LHC experiments.« less

  9. Late Quaternary to Holocene Geology, Geomorphology and Glacial History of Dawson Creek and Surrounding area, Northeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Henry, Edward Trowbridge

    Semiconductor quantum dots in silicon demonstrate exceptionally long spin lifetimes as qubits and are therefore promising candidates for quantum information processing. However, control and readout techniques for these devices have thus far employed low frequency electrons, in contrast to high speed temperature readout techniques used in other qubit architectures, and coupling between multiple quantum dot qubits has not been satisfactorily addressed. This dissertation presents the design and characterization of a semiconductor charge qubit based on double quantum dot in silicon with an integrated microwave resonator for control and readout. The 6 GHz resonator is designed to achieve strong coupling with the quantum dot qubit, allowing the use of circuit QED control and readout techniques which have not previously been applicable to semiconductor qubits. To achieve this coupling, this document demonstrates successful operation of a novel silicon double quantum dot design with a single active metallic layer and a coplanar stripline resonator with a bias tee for dc excitation. Experiments presented here demonstrate quantum localization and measurement of both electrons on the quantum dot and photons in the resonator. Further, it is shown that the resonator-qubit coupling in these devices is sufficient to reach the strong coupling regime of circuit QED. The details of a measurement setup capable of performing simultaneous low noise measurements of the resonator and quantum dot structure are also presented here. The ultimate aim of this research is to integrate the long coherence times observed in electron spins in silicon with the sophisticated readout architectures available in circuit QED based quantum information systems. This would allow superconducting qubits to be coupled directly to semiconductor qubits to create hybrid quantum systems with separate quantum memory and processing components.

  10. Highly multiplexed signal readout for a time-of-flight positron emission tomography detector based on silicon photomultipliers.

    PubMed

    Cates, Joshua W; Bieniosek, Matthew F; Levin, Craig S

    2017-01-01

    Maintaining excellent timing resolution in the generation of silicon photomultiplier (SiPM)-based time-of-flight positron emission tomography (TOF-PET) systems requires a large number of high-speed, high-bandwidth electronic channels and components. To minimize the cost and complexity of a system's back-end architecture and data acquisition, many analog signals are often multiplexed to fewer channels using techniques that encode timing, energy, and position information. With progress in the development SiPMs having lower dark noise, after pulsing, and cross talk along with higher photodetection efficiency, a coincidence timing resolution (CTR) well below 200 ps FWHM is now easily achievable in single pixel, bench-top setups using 20-mm length, lutetium-based inorganic scintillators. However, multiplexing the output of many SiPMs to a single channel will significantly degrade CTR without appropriate signal processing. We test the performance of a PET detector readout concept that multiplexes 16 SiPMs to two channels. One channel provides timing information with fast comparators, and the second channel encodes both position and energy information in a time-over-threshold-based pulse sequence. This multiplexing readout concept was constructed with discrete components to process signals from a [Formula: see text] array of SensL MicroFC-30035 SiPMs coupled to [Formula: see text] Lu 1.8 Gd 0.2 SiO 5 (LGSO):Ce (0.025 mol. %) scintillators. This readout method yielded a calibrated, global energy resolution of 15.3% FWHM at 511 keV with a CTR of [Formula: see text] FWHM between the 16-pixel multiplexed detector array and a [Formula: see text] LGSO-SiPM reference detector. In summary, results indicate this multiplexing scheme is a scalable readout technique that provides excellent coincidence timing performance.

  11. A versatile localization system for microscopic multiparametric analysis of cells.

    PubMed

    Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P

    1983-03-01

    A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.

  12. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in paper, one may choose optimally the incident radiation wavelength, as well as the angle of incidence of X-ray micro beams, appropriate for proposed digital data read-out procedure.

  13. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  14. On readout of vibrational qubits using quantum beats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo

    2014-12-14

    Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less

  15. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  16. Data Collection and Recording on the Wisconsin/GSFC X-ray Quantum Calorimeter

    NASA Astrophysics Data System (ADS)

    O'Neill, Laura; X-ray Astrophysics Group at the University of Wisconsin-Madison

    2016-01-01

    The Wisconsin/GSFC X-ray Quantum Calorimeter (XQC) is an astronomical X-ray sounding rocket payload which uses a micro-calorimeter array to detect low (less than1keV) X-rays. Three different devices were evaluated to upgrade XQC's data collection and recording system. The system takes incoming data from XQC's pixel sensors and stores it to a memory card. The upgrade is a much smaller board and much more compact storage device. The Terasic DE0-Nano, Terasic DE0-Nano SoC, and the BeagleBone Black were tested to determine which would suit the needs of XQC best. The device needed to take incoming data, store it to an SD card, and be able to output it through a USB connection. The Terasic DE0-Nano is a simple FPGA, but needed some peripheral additions for an SD card slot and USB readout. The Terasic DE0-Nano SoC was a powerful FPGA and hard processor running Linux combined. It was able to do what was needed, but pulled too much power in the process. The BeagleBone Black had a microcontroller and also ran Linux. This last device ended up being the best choice, as it did not require too much power and had a very easy system already in place for USB readout. The only difficulty to deal with was programming the microcontroller in assembly language. This device is necessary due to the telemetry on XQC not being able to send all of the data down during the flight. It records valuable data about low energy X-rays so that the X-ray Astrophysics Groups at the University of Wisconsin-Madison and Goddard Space Flight Center can analyze and resolve the spectrum of the soft X-ray background.Later, using the digital logic on a Terasic DE0-Nano FPGA, a data simulator for the BeagleBone Black data collection and recording device was created. Programmed with Quartus II, the simulator uses basic digital logic components to fabricate trackable data signals and related timing signals to send to the data management device, as well as other timing signals that are asynchronous to the rest of the circuit, a failsafe enable for outputs, and several user feedback components

  17. Simulation of Top Quark Pair Production as a Background for Higgs Events at the Compact Muon Solenoid

    NASA Astrophysics Data System (ADS)

    Justus, Christopher

    2005-04-01

    In this study, we simulated top-antitop (tt-bar) quark events at the Compact Muon Solenoid (CMS), an experiment presently being constructed at the Large Hadron Collider in Geneva, Switzerland. The tt-bar process is an important background for Higgs events. We used a chain of software to simulate and reconstruct processes that will occur inside the detector. CMKIN was used to generate and store Monte Carlo Events. OSCAR, a GEANT4 based CMS detector simulator, was used to simulate the CMS detector and how particles would interact with the detector. Next, we used ORCA to simulate the response of the readout electronics at CMS. Last, we used the Jet/MET Root maker to create root files of jets and missing energy. We are now using this software analysis chain to complete a systematic study of initial state radiation at hadron colliders. This study is essential because tt-bar is the main background for the Higgs boson and these processes are extremely sensitive to initial state radiation. Results of our initial state radiation study will be presented. We started this study at the new LHC Physics Center (LPC) located at Fermi National Accelerator Laboratory, and we are now completing the study at the University of Rochester.

  18. Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Pain, Bedabrata

    2005-01-01

    A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.

  19. The 160 TES bolometer read-out using FDM for SAFARI

    NASA Astrophysics Data System (ADS)

    Hijmering, R. A.; den Hartog, R. H.; van der Linden, A. J.; Ridder, M.; Bruijn, M. P.; van der Kuur, J.; van Leeuwen, B. J.; van Winden, P.; Jackson, B.

    2014-07-01

    For the read out of the Transition Edge Sensors (TES) bolometer arrays of the SAFARI instrument on the Japanese background-limited far-IR SPICA mission SRON is developing a Frequency Domain Multiplexing (FDM) read-out system. The next step after the successful demonstration of the read out of 38 TES bolometers using FDM was to demonstrate the FDM readout of the required 160 TES bolometers. Of the 160 LC filter and TES bolometer chains 151 have been connected and after cooldown 148 of the resonances could be identified. Although initial operation and locking of the pixels went smoothly the experiment revealed several complications. In this paper we describe the 160 pixel FDM set-up, show the results and discuss the issues faced during operation of the 160 pixel FDM experiment.

  20. Subelectron readout noise focal plane arrays for space imaging

    NASA Astrophysics Data System (ADS)

    Atlas, Gene; Wadsworth, Mark

    2004-01-01

    Readout noise levels of under 1 electron have long been a goal for the FPA community. In the quest to enhance the FPA sensitivity, various approaches have been attempted ranging from the exotic Photo-multiplier tubes, Image Intensifier tubes, Avalanche photo diodes, and now the on-chip avalanche charge amplification technologies from the CCD manufacturers. While these techniques reduce the readout noise, each offers a set of compromises that negatively affect the overall performance of the sensor in parameters such as power dissipation, dynamic range, uniformity or system complexity. In this work, we overview the benefits and tradeoffs of each approach, and introduce a new technique based on ImagerLabs" exclusive HIT technology which promises sub-electron read noise and other benefits without the tradeoffs of the other noise reduction techniques.

  1. Quantum Time Evolution in a Qubit Readout Process with a Josephson Bifurcation Amplifier

    NASA Astrophysics Data System (ADS)

    Nakano, Hayato; Saito, Shiro; Semba, Kouichi; Takayanagi, Hideaki

    2009-06-01

    We analyzed the Josephson bifurcation amplifier (JBA) readout process of a superconducting qubit quantum mechanically by calculating the dynamics of the density operator of a driven nonlinear oscillator and a qubit coupled system during the measurement process. In purely quantum cases, bifurcation is impossible. Introducing decoherence enables us to reproduce the bifurcation with a finite hysteresis. When a qubit is initially in a superposition state, we have observed the qubit-probe (JBA) entangled state, and it is divided into two separable states at the moment the JBA transition begins. This corresponds to “projection.” To readout the measurement result, however, we must wait until the two JBA states are macroscopically well separated. The waiting time is determined by the strength of the decoherence in the JBA.

  2. Catch-Disperse-Release Readout for Superconducting Qubits

    DTIC Science & Technology

    2013-03-01

    adiabatic, a fast high-fidelity qubit readout is possible even in the strongly nonlinear dispersive regime. Interestingly, the Jaynes - Cummings nonlinearity...will be included later) and describe the system by the Jaynes - Cummings (JC) Hamiltonian [7] with a microwave drive (we use ~ = 1) H = ωq(t)σ+σ− + ωra...λeff,0 rotates on the phase plane faster than in the two-level approximation , while λeff,1 rotates slower (some- times even in the opposite

  3. Application of bacteriorhodopsin films in an adaptive-focusing schlieren system

    NASA Astrophysics Data System (ADS)

    Downie, John D.

    1995-09-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  4. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  5. The Endcap Disc DIRC of PANDA

    NASA Astrophysics Data System (ADS)

    Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2017-12-01

    The Endcap Disc DIRC (EDD) for PANDA has been designed to identify traversing pions, kaons and protons in the future PANDA experiment. Its central part is a 2 cm thick fused silica plate. Focussing optics are attached to the outer rim of the plate, outside of the acceptance of the experiment. Fast, high-resolution MCP-PMTs, designed to register single Cherenkov photons, have been tested in magnetic field. Filters limit the spectral acceptance of the sensors to reduce dispersion effects and to extend their lifetime. A compact and fast readout is realized with ASICs. Analytical reconstruction algorithms allow for fast particle identification. The angular resolution of a DIRC prototype has been simulated in Monte Carlo and confirmed in a test beam. The final detector will be able to provide a 4 σπ / K separation up to a momentum of 4 GeV / c .

  6. Characterization of large area ZnS(Ag) detector for gross alpha and beta activity measurements in tap water plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunardon, M.; Cester, D.; Mistura, G.

    2015-07-01

    In this work we present the characterization of a large area 200 x 200 mm{sup 2} EJ-444 scintillation detector to be used for monitoring gross alpha and beta activity in tap water plants. Specific tests were performed to determine the best setup to readout the light from the detector side in order to have the possibility to stack many detectors and get a compact device with total active area of the order of 1 m{sup 2}. Alpha/Beta discrimination, efficiency and homogeneity tests were carried out with alpha and beta sources. Background from ambient radioactivity was measured as well. Alpha/beta real-timemore » monitoring in drinking water is a goal of the EU project TAWARA{sub R}TM. (authors)« less

  7. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  8. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  9. Sub-micron accurate track navigation method ``Navi'' for the analysis of Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    Yoshioka, T.; Yoshida, J.; Kodama, K.

    2011-03-01

    Sub-micron accurate track navigation in Nuclear Emulsion is realized by using low energy signals detected by automated Nuclear Emulsion read-out systems. Using those much dense ``noise'', about 104 times larger than the real tracks, the accuracy of the track position navigation reaches to be sub micron only by using the information of a microscope field of view, 200 micron times 200 micron. This method is applied to OPERA analysis in Japan, i.e. support of human eye checks of the candidate tracks, confirmation of neutrino interaction vertexes and to embed missing track segments to the track data read-out by automated systems.

  10. Design and performance of the readout electronics chain of the Delphi Forward Ring Imaging Cherenkov Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, P.; Nielsen, B.S.; Formenti, F.

    1992-10-01

    In this paper the Front End Readout electronics chain of the Forward Ring Imaging CHerenkov (FRICH) Detector used at the Delphi experiment of the Large Electron Positron (LEP) collider is presented. The system incorporates a wide band low noise preamplifier, mounted in the proximity of the MultiWire Proportional Chamber, an Amplifying-Discriminating-Multiple-xing FASTBUS unit for further signal amplification, discrimination and channel reduction and a LEP Time Digitizer FASTBUS unit for time digitization. The paper gives a general view of the detector and its electronics with particular emphasis on the novel characteristics and capabilities of the system.

  11. Operational characteristics of Wedge and Strip image readout systems

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Bowyer, S.; Malina, R. F.

    1986-01-01

    Application of the Wedge and Strip readout system in microchannel plate detectors for the Extreme Ultraviolet Explorer and FAUST space astronomy programs is discussed. Anode designs with high resolution (greater than 600 x 600 pixels) in imaging and spectroscopy applications have been developed. Extension of these designs to larger formats (100 mm) with higher resolution (3000 x 3000 pixels) are considered. It is shown that the resolution and imaging are highly stable, and that the flat field performance is essentially limited by photon statistics. Very high speed event response has also been achieved with output pulses having durations of less than 10 nanoseconds.

  12. The Flash ADC system and PMT waveform reconstruction for the Daya Bay experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yongbo; Chang, Jinfan; Cheng, Yaping; Chen, Zhang; Hu, Jun; Ji, Xiaolu; Li, Fei; Li, Jin; Li, Qiuju; Qian, Xin; Jetter, Soeren; Wang, Wei; Wang, Zheng; Xu, Yu; Yu, Zeyuan

    2018-07-01

    To better understand the energy response of the Antineutrino Detector (AD), the Daya Bay Reactor Neutrino Experiment installed a full Flash ADC readout system on one AD that allowed for simultaneous data taking with the current readout system. This paper presents the design, data acquisition, and simulation of the Flash ADC system, and focuses on the PMT waveform reconstruction algorithms. For liquid scintillator calorimetry, the most critical requirement to waveform reconstruction is linearity. Several common reconstruction methods were tested but the linearity performance was not satisfactory. A new method based on the deconvolution technique was developed with 1% residual non-linearity, which fulfills the requirement. The performance was validated with both data and Monte Carlo (MC) simulations, and 1% consistency between them has been achieved.

  13. WE-AB-207A-03: A CBCT Head Scanner for Point-Of-Care Imaging of Intracranial Hemorrhage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J; Sisniega, A; Zbijewski, W

    Purpose: This work reports the design, development, and first technical assessment of a cone-beam CT (CBCT) scanner developed specifically for imaging of acute intracranial hemorrhage (ICH) at the point of care, with target applications in diagnosis and monitoring of traumatic brain injury, stroke, and postsurgical hemorrhage. Methods: System design employed a task-based image quality model to quantify the influence of factors such as additive noise and high-gain (HG) detector readout on ICH detectability. Three bowtie filters with varying bare-beam attenuation strength and curvature were designed to enable HG readout without detector saturation, and a polyenergetic gain correction was developed tomore » minimize artifacts from bowtie flood-field calibration. Image reconstruction used an iterative penalized weighted least squares (PWLS) method with artifact correction including Monte Carlo scatter estimation, Joseph-Spital beam hardening correction, and spatiotemporal deconvolution of detector glare and lag. Radiation dose was characterized for half-scan and full-scan protocols at various kV, and imaging performance was assessed in a head phantom presenting simulated ICH with diameter ranging 2–12 mm. Results: The image quality model guided system design and was validated by measurements on a CBCT imaging bench. Compared to low-gain readout without a bowtie filter, the combination of HG readout and a modest bowtie improved the contrast-to-noise ratio (CNR per unit square-root dose) by 20% in the center of the image but degraded noise performance near the periphery (20% reduction in CNR). Low-frequency bowtie artifacts (∼100 HU magnitude) were corrected by the polyenergetic gain correction. Image reconstructions on the prototype scanner demonstrate clear visibility of the smallest ICH insert (2 mm diameter) in both HG readout (with a bowtie) and dual-gain readout (without bowtie). Conclusion: Technical assessment of the prototype scanner suggests the capability for reliable visualization of small (2 mm), low-contrast (50 HU) ICH at <20 mGy dose and motivates translation to clinical studies, now underway. Xiaohui Wang and David Foos (co-authors) are employees of Carestream Health. Research funding support from Carestream Health.« less

  14. An OS9-UNIX data acquisition system with ECL readout

    NASA Astrophysics Data System (ADS)

    Ziem, P.; Beschorner, C.; Bohne, W.; Drescher, B.; Friese, T.; Kiehne, T.; Kluge, Ch.

    1996-02-01

    A new data acquisition system has been developed at the Hahn-Meitner-Institut to handle almost 550 parameters of nuclear physics experiments. The system combines a UNIX host running a portable data buffer router and a VME front-end based on the OS9 real time operating system. Different kinds of pulse analyzers are located in several CAMAC crates which are controlled by the VME system via a VICbus connection. Data readout is performed by means of an ECL daisy chain. Besides controlling CAMAC the main purpose of the VME front-end is event data formatting and histogramming. Using TCP/IP services, the UNIX host receives formatted data packages for data storage and display. During a beam time at the antiproton accelerator LEAR/CERN, the PS208 experiment has accumulated about 100 Gbyte of event data [2

  15. An OS9-UNIX data acquisition system with ECL readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziem, P.; Beschorner, C.; Bohne, W.

    1996-02-01

    A new data acquisition system has been developed at the Hahn-Meitner-Institut to handle almost 550 parameters of nuclear physics experiments. The system combines a UNIX host running a portable data buffer router and a VME front-end based on the OS9 real time operating system. Different kinds of pulse analyzers are located in several CAMAC crates which are controlled by the VME system via a VICbus connection. Data readout is performed by means of an ECL daisy chain. Besides controlling CAMAC the main purpose of the VME front-end is event data formatting and histogramming. Using TCP/IP services, the UNIX host receivesmore » formatted data packages for data storage and display. During a beam time at the antiproton accelerator LEAR/CERN, the PS208 experiment has accumulated about 100 Gbyte of event data.« less

  16. Perforated semiconductor neutron detectors for battery operated portable modules

    NASA Astrophysics Data System (ADS)

    McGregor, Douglas S.; Bellinger, Steven L.; Bruno, David; McNeil, Walter J.; Patterson, Eric; Shultis, J. Kenneth; Solomon, C. J.; Unruh, Troy

    2007-09-01

    Perforated semiconductor diode detectors have been under development for several years at Kansas State University for a variety of neutron detection applications. The fundamental device configuration is a pin diode detector fabricated from high-purity float zone refined Si wafers. Perforations are etched into the diode surface with inductively-coupled plasma (ICP) reactive ion etching (RIE) and backfilled with 6LiF neutron reactive material. The perforation shapes and depths can be optimized to yield a flat response to neutrons over a wide variation of angles. The prototype devices delivered over 3.8% thermal neutron detection efficiency while operating on only 15 volts. The highest efficiency devices thus far have delivered over 12% thermal neutron detection efficiency. The miniature devices are 5.6 mm in diameter and require minimal power to operate, ranging from 3.3 volts to 15 volts, depending upon the amplifying electronics. The battery operated devices have been incorporated into compact modules with a digital readout. Further, the new modules have incorporated wireless readout technology and can be monitored remotely. The neutron detection modules can be used for neutron dosimetry and neutron monitoring. When coupled with high-density polyethylene, the detectors can be used to measure fission neutrons from spontaneous fission sources. Monto Carlo analysis indicates that the devices can be used in cargo containers as a passive search tool for spontaneous fission sources, such as 240Pu. Measurements with a 252Cf source are being conducted for verification.

  17. Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector

    NASA Astrophysics Data System (ADS)

    Espagnet, Romain; Frezza, Andrea; Martin, Jean-Pierre; Hamel, Louis-André; Després, Philippe

    2017-07-01

    Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm3 crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.

  18. Muon g-2 Calorimeter Prototypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polly, Chris; /Fermilab

    2010-05-03

    The proposed design is a tungsten-scintillating fiber calorimeter with 35 segments, each read out by a separate PMT. Tungsten, which is significantly denser than lead, produces compact showers. This is necessary, in order to improve shower separation in analysis and to fully contain the showers within a calorimeter that satisfies the strict space constraints of the experiment. A single calorimeter segment (4 x 6 x 15 cm{sup 3}) has been constructed in order establish the feasibility of the new design and study its properties. Initial tests of the detector segment at the Paul Scherrer Institute were conducted with a lowmore » energy < 400 MeV/c electron beam. A higher-energy test with electrons up to a few GeV/c was performed at the Test Beam Facility under the experimental number T-967. All data from that test have been analyzed and published, and the tungsten-scintillating fiber calorimeter still appears to be a viable candidate. For this test beam run, a larger calorimeter (15 x 15 x 11 cm{sup 3}) has been constructed and an emphasis will be placed on understanding shower leakage and the ability to separate pileup events with a more granular readout. The experimenters will measure the energy resolution, linearity, and shower size of the calorimeter segment. This will provide important information for finalizing decisions on the angle of the fibers relative to the incoming electrons and the optimal granularity of the readout.« less

  19. Analysis of the readout of a high rate MWPC

    NASA Astrophysics Data System (ADS)

    Camerini, P.; Grion, N.; Rui, R.; Sheffer, G.; Openshaw, R.

    1990-06-01

    An analytical method to reduce the raw data supplied by a high-speed multiwire proportional chamber (MWPC) is presented. The results obtained with the MWPC and the associated readout system, LeCroy PCOS III, when monitoring a high-intensity flux of positive pions delivered by the M11 channel at TRIUMF are discussed. The method allows the flux intensity, the beam envelope and the detector efficiency to be determined with little uncertainty (few %) at intense particle beams ( > 10 7 particles/s).

  20. Imaging label-free biosensor with microfluidic system

    NASA Astrophysics Data System (ADS)

    Jahns, S.; Glorius, P.; Hansen, M.; Nazirizadeh, Y.; Gerken, M.

    2015-06-01

    We present a microfluidic system suitable for parallel label-free detection of several biomarkers utilizing a compact imaging measurement system. The microfluidic system contains a filter unit to separate the plasma from human blood and a functionalized, photonic crystal slab sensor chip. The nanostructure of the photonic crystal slab sensor chip is fabricated by nanoimprint lithography of a period grating surface into a photoresist and subsequent deposition of a TiO2 layer. Photonic crystal slabs are slab waveguides supporting quasi-guided modes coupling to far-field radiation, which are sensitive to refractive index changes due to biomarker binding on the functionalized surface. In our imaging read-out system the resulting resonance shift of the quasi-guided mode in the transmission spectrum is converted into an intensity change detectable with a simple camera. By continuously taking photographs of the sensor surface local intensity changes are observed revealing the binding kinetics of the biomarker to its specific target. Data from two distinct measurement fields are used for evaluation. For testing the sensor chip, 1 μM biotin as well as 1 μM recombinant human CD40 ligand were immobilized in spotsvia amin coupling to the sensor surface. Each binding experiment was performed with 250 nM streptavidin and 90 nM CD40 ligand antibody dissolved in phosphate buffered saline. In the next test series, a functionalized sensor chip was bonded onto a 15 mm x 15 mm opening of the 75 mm x 25 mm x 2 mm microfluidic system. We demonstrate the functionality of the microfluidic system for filtering human blood such that only blood plasma was transported to the sensor chip. The results of first binding experiments in buffer with this test chip will be presented.

  1. Tuning fork enhanced interferometric photoacoustic spectroscopy: a new method for trace gas analysis

    NASA Astrophysics Data System (ADS)

    Köhring, M.; Pohlkötter, A.; Willer, U.; Angelmahr, M.; Schade, W.

    2011-01-01

    A photoacoustic trace gas sensor based on an optical read-out method of a quartz tuning fork is shown. Instead of conventional piezoelectric signal read-out, as applied in well-known quartz-enhanced photoacoustic spectroscopy (QEPAS), an interferometric read-out method for measurement of the tuning fork's oscillation is presented. To demonstrate the potential of the optical read-out of tuning forks in photoacoustics, a comparison between the performances of a sensor with interferometric read-out and conventional QEPAS with piezoelectric read-out is reported. The two sensors show similar characteristics. The detection limit (L) for the optical read-out is determined to be L opt=(2598±84) ppm (1 σ) compared to L elec=(2579±78) ppm (1 σ) for piezoelectric read-out. In both cases the detection limit is defined by the thermal noise of the tuning fork.

  2. Design of a CMOS readout circuit on ultra-thin flexible silicon chip for printed strain gauges

    NASA Astrophysics Data System (ADS)

    Elsobky, Mourad; Mahsereci, Yigit; Keck, Jürgen; Richter, Harald; Burghartz, Joachim N.

    2017-09-01

    Flexible electronics represents an emerging technology with features enabling several new applications such as wearable electronics and bendable displays. Precise and high-performance sensors readout chips are crucial for high quality flexible electronic products. In this work, the design of a CMOS readout circuit for an array of printed strain gauges is presented. The ultra-thin readout chip and the printed sensors are combined on a thin Benzocyclobutene/Polyimide (BCB/PI) substrate to form a Hybrid System-in-Foil (HySiF), which is used as an electronic skin for robotic applications. Each strain gauge utilizes a Wheatstone bridge circuit, where four Aerosol Jet® printed meander-shaped resistors form a full-bridge topology. The readout chip amplifies the output voltage difference (about 5 mV full-scale swing) of the strain gauge. One challenge during the sensor interface circuit design is to compensate for the relatively large dc offset (about 30 mV at 1 mA) in the bridge output voltage so that the amplified signal span matches the input range of an analog-to-digital converter (ADC). The circuit design uses the 0. 5 µm mixed-signal GATEFORESTTM technology. In order to achieve the mechanical flexibility, the chip fabrication is based on either back thinned wafers or the ChipFilmTM technology, which enables the manufacturing of silicon chips with a thickness of about 20 µm. The implemented readout chip uses a supply of 5 V and includes a 5-bit digital-to-analog converter (DAC), a differential difference amplifier (DDA), and a 10-bit successive approximation register (SAR) ADC. The circuit is simulated across process, supply and temperature corners and the simulation results indicate excellent performance in terms of circuit stability and linearity.

  3. Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS2)

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos

    2012-01-01

    IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

  4. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  5. A fast embedded readout system for large-area Medipix and Timepix systems

    NASA Astrophysics Data System (ADS)

    Brogna, A. S.; Balzer, M.; Smale, S.; Hartmann, J.; Bormann, D.; Hamann, E.; Cecilia, A.; Zuber, M.; Koenig, T.; Zwerger, A.; Weber, M.; Fiederle, M.; Baumbach, T.

    2014-05-01

    In this work we present a novel readout electronics for an X-ray sensor based on a Si crystal bump-bonded to an array of 3 × 2 Medipix ASICs. The pixel size is 55 μm × 55 μm with a total number of ~ 400k pixels and a sensitive area of 42 mm × 28 mm. The readout electronics operate Medipix-2 MXR or Timepix ASICs with a clock speed of 125 MHz. The data acquisition system is centered around an FPGA and each of the six ASICs has a dedicated I/O port for simultaneous data acquisition. The settings of the auxiliary devices (ADCs and DACs) are also processed in the FPGA. Moreover, a high-resolution timer operates the electronic shutter to select the exposure time from 8 ns to several milliseconds. A sophisticated trigger is available in hardware and software to synchronize the acquisition with external electro-mechanical motors. The system includes a diagnostic subsystem to check the sensor temperature and to control the cooling Peltier cells and a programmable high-voltage generator to bias the crystal. A network cable transfers the data, encapsulated into the UDP protocol and streamed at 1 Gb/s. Therefore most notebooks or personal computers are able to process the data and to program the system without a dedicated interface. The data readout software is compatible with the well-known Pixelman 2.x running both on Windows and GNU/Linux. Furthermore the open architecture encourages users to write their own applications. With a low-level interface library which implements all the basic features, a MATLAB or Python script can be implemented for special manipulations of the raw data. In this paper we present selected images taken with a microfocus X-ray tube to demonstrate the capability to collect the data at rates up to 120 fps corresponding to 0.76 Gb/s.

  6. Large Format CMOS-based Detectors for Diffraction Studies

    NASA Astrophysics Data System (ADS)

    Thompson, A. C.; Nix, J. C.; Achterkirchen, T. G.; Westbrook, E. M.

    2013-03-01

    Complementary Metal Oxide Semiconductor (CMOS) devices are rapidly replacing CCD devices in many commercial and medical applications. Recent developments in CMOS fabrication have improved their radiation hardness, device linearity, readout noise and thermal noise, making them suitable for x-ray crystallography detectors. Large-format (e.g. 10 cm × 15 cm) CMOS devices with a pixel size of 100 μm × 100 μm are now becoming available that can be butted together on three sides so that very large area detector can be made with no dead regions. Like CCD systems our CMOS systems use a GdOS:Tb scintillator plate to convert stopping x-rays into visible light which is then transferred with a fiber-optic plate to the sensitive surface of the CMOS sensor. The amount of light per x-ray on the sensor is much higher in the CMOS system than a CCD system because the fiber optic plate is only 3 mm thick while on a CCD system it is highly tapered and much longer. A CMOS sensor is an active pixel matrix such that every pixel is controlled and readout independently of all other pixels. This allows these devices to be readout while the sensor is collecting charge in all the other pixels. For x-ray diffraction detectors this is a major advantage since image frames can be collected continuously at up 20 Hz while the crystal is rotated. A complete diffraction dataset can be collected over five times faster than with CCD systems with lower radiation exposure to the crystal. In addition, since the data is taken fine-phi slice mode the 3D angular position of diffraction peaks is improved. We have developed a cooled 6 sensor CMOS detector with an active area of 28.2 × 29.5 cm with 100 μm × 100 μm pixels and a readout rate of 20 Hz. The detective quantum efficiency exceeds 60% over the range 8-12 keV. One, two and twelve sensor systems are also being developed for a variety of scientific applications. Since the sensors are butt able on three sides, even larger systems could be built at reasonable cost.

  7. The E and B EXperiment: EBEX

    NASA Astrophysics Data System (ADS)

    Helson, Kyle R.

    2015-08-01

    We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.

  8. Precision star-tracking telescope

    NASA Technical Reports Server (NTRS)

    Fairbank, W. M.; Everitt, C. W. F.

    1972-01-01

    The design, construction, and preliminary testing of a new high accuracy star tracking telescope for the laboratory model of the Stanford gyro relativity experiment are described. The function of the telescope in the final flight experiment is to define (by reference to a suitable star) a direction in space for comparison with the relativistic precession of a group of gyroscopes. The design of the telescope has been strongly affected by designs for other portions of the overall experiments, for example the gyroscopes, the attitude control system of the satellite, and the instrumentation system used in processing relativity data. Main goals for the star tracker are: (1) independent readout of angular position in two planes; (2) absolute null stability over a one year period of mechanical parts; (3) readout linear to 0.001 arc-seconds over + or - 0.05 arc-second; (4) noise performance leading to a resolution of 0.05 arc-second in 0.1 second observation time of the chosen reference star; and (5) provision for automatic gain control capable of matching the gains of the gyroscopes and telescope readouts to 1% or better.

  9. Prototype AEGIS: A Pixel-Array Readout Circuit for Gamma-Ray Imaging.

    PubMed

    Barber, H Bradford; Augustine, F L; Furenlid, L; Ingram, C M; Grim, G P

    2005-07-31

    Semiconductor detector arrays made of CdTe/CdZnTe are expected to be the main components of future high-performance, clinical nuclear medicine imaging systems. Such systems will require small pixel-pitch and much larger numbers of pixels than are available in current semiconductor-detector cameras. We describe the motivation for developing a new readout integrated circuit, AEGIS, for use in hybrid semiconductor detector arrays, that may help spur the development of future cameras. A basic design for AEGIS is presented together with results of an HSPICE ™ simulation of the performance of its unit cell. AEGIS will have a shaper-amplifier unit cell and neighbor pixel readout. Other features include the use of a single input power line with other biases generated on-board, a control register that allows digital control of all thresholds and chip configurations and an output approach that is compatible with list-mode data acquisition. An 8×8 prototype version of AEGIS is currently under development; the full AEGIS will be a 64×64 array with 300 μm pitch.

  10. Large size three-dimensional video by electronic holography using multiple spatial light modulators

    PubMed Central

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-01-01

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees. PMID:25146685

  11. Large size three-dimensional video by electronic holography using multiple spatial light modulators.

    PubMed

    Sasaki, Hisayuki; Yamamoto, Kenji; Wakunami, Koki; Ichihashi, Yasuyuki; Oi, Ryutaro; Senoh, Takanori

    2014-08-22

    In this paper, we propose a new method of using multiple spatial light modulators (SLMs) to increase the size of three-dimensional (3D) images that are displayed using electronic holography. The scalability of images produced by the previous method had an upper limit that was derived from the path length of the image-readout part. We were able to produce larger colour electronic holographic images with a newly devised space-saving image-readout optical system for multiple reflection-type SLMs. This optical system is designed so that the path length of the image-readout part is half that of the previous method. It consists of polarization beam splitters (PBSs), half-wave plates (HWPs), and polarizers. We used 16 (4 × 4) 4K×2K-pixel SLMs for displaying holograms. The experimental device we constructed was able to perform 20 fps video reproduction in colour of full-parallax holographic 3D images with a diagonal image size of 85 mm and a horizontal viewing-zone angle of 5.6 degrees.

  12. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less

  13. Design and Assembly of SPT-3G Cold Readout Hardware

    NASA Astrophysics Data System (ADS)

    Avva, J. S.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Thakur, R. Basu; Barron, D.; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Carter, F. W.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Dobbs, M. A.; Dutcher, D.; Elleflot, T.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Hasegawa, M.; Hattori, K.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Hori, Y.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Nishino, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Rotermund, K.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-05-01

    The third-generation upgrade to the receiver on the South Pole Telescope, SPT-3G, was installed at the South Pole during the 2016-2017 austral summer to measure the polarization of the cosmic microwave background. Increasing the number of detectors by a factor of 10 to ˜ 16,000 required the multiplexing factor to increase to 68 and the bandwidth of the frequency-division readout electronics to span 1.6-5.2 MHz. This increase necessitates low-thermal conductance, low-inductance cryogenic wiring. Our cold readout system consists of planar thin-film aluminum inductive-capacitive resonators, wired in series with the detectors, summed together, and connected to 4K SQUIDs by 10-μm -thick niobium-titanium (NbTi) broadside-coupled striplines. Here, we present an overview of the cold readout electronics for SPT-3G, including assembly details and characterization of electrical and thermal properties of the system. We report, for the NbTi striplines, values of R ≤ 10^{-4} Ω , L = 21 ± 1 nH , and C = 1.47± .02 nF . Additionally, the striplines' thermal conductivity is described by kA = 6.0± 0.3 T^{0.92 ± 0.04} μW mm K^{-1} . Finally, we provide projections for cross talk induced by parasitic impedances from the stripline and find that the median value of percentage cross talk from leakage current is 0.22 and 0.09% from wiring impedance.

  14. Automated drug identification system

    NASA Technical Reports Server (NTRS)

    Campen, C. F., Jr.

    1974-01-01

    System speeds up analysis of blood and urine and is capable of identifying 100 commonly abused drugs. System includes computer that controls entire analytical process by ordering various steps in specific sequences. Computer processes data output and has readout of identified drugs.

  15. Improved apparatus for continuous culture of hydrogen-fixing bacteria

    NASA Technical Reports Server (NTRS)

    Foster, J. F.; Litchfield, J. H.

    1970-01-01

    Improved apparatus permits the continuous culture of Hydrogenomonas eutropha. System incorporates three essential subsystems - /1/ environmentally isolated culture vessel, /2/ analytical system with appropriate sensors and readout devices, /3/ control system with feedback responses to each analytical measurement.

  16. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  17. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  18. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  19. Analysis of de-noising methods to improve the precision of the ILSF BPM electronic readout system

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2016-12-01

    In order to have optimum operation and precise control system at particle accelerators, it is required to measure the beam position with the precision of sub-μm. We developed a BPM electronic readout system at Iranian Light Source Facility and it has been experimentally tested at ALBA accelerator facility. The results show the precision of 0.54 μm in beam position measurements. To improve the precision of this beam position monitoring system to sub-μm level, we have studied different de-noising methods such as principal component analysis, wavelet transforms, filtering by FIR, and direct averaging method. An evaluation of the noise reduction was given to testify the ability of these methods. The results show that the noise reduction based on Daubechies wavelet transform is better than other algorithms, and the method is suitable for signal noise reduction in beam position monitoring system.

  20. Agricultural Aircraft Aid

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Farmers are increasingly turning to aerial applications of pesticides, fertilizers and other materials. Sometimes uneven distribution of the chemicals is caused by worn nozzles, improper alignment of spray nozzles or system leaks. If this happens, job must be redone with added expense to both the pilot and customer. Traditional pattern analysis techniques take days or weeks. Utilizing NASA's wind tunnel and computer validation technology, Dr. Roth, Oklahoma State University (OSU), developed a system for providing answers within minutes. Called the Rapid Distribution Pattern Evaluation System, the OSU system consists of a 100-foot measurement frame tied in to computerized analysis and readout equipment. System is mobile, delivered by trailer to airfields in agricultural areas where OSU conducts educational "fly-ins." A fly-in typically draws 50 to 100 aerial applicators, researchers, chemical suppliers and regulatory officials. An applicator can have his spray pattern checked. A computerized readout, available in five to 12 minutes, provides information for correcting shortcomings in the distribution pattern.

  1. Large Format, Background Limited Arrays of Kinetic Inductance Detectors for Sub-mm Astronomy

    NASA Astrophysics Data System (ADS)

    Baselmans, Jochem

    2018-01-01

    We present the development of large format imaging arrays for sub-mm astronomy based upon microwave Kinetic Inductance detectors and their read-out. In particular we focus on the arrays developed for the A-MKID instrument for the APEX telescope. AMKID contains 2 focal plane arrays, covering a field of view of 15?x15?. One array is optimized for the 350 GHz telluric window, the other for the 850 GHz window. Both arrays are constructed from four 61 x 61 mm detector chips, each of which contains up to 3400 detectors and up to 880 detectors per readout line. The detectors are lens antenna coupled MKIDs made from NbTiN and Aluminium that reach photon noise limited sensitivity in combination with a high optical coupling. The lens-antenna radiation coupling enables the use of 4K optics and Lyot stop due to the intrinsic directivity of the detector beam, allowing a simple cryogenic architecture. We discuss the pixel design and verification, detector packaging and the array performance. We will also discuss the readout system, which is a combination of a digital and analog back-end that can read-out up to 4000 pixels simultaneously using frequency division multiplexing.

  2. The AGILE silicon tracker: an innovative /γ-ray instrument for space

    NASA Astrophysics Data System (ADS)

    Prest, M.; Barbiellini, G.; Bordignon, G.; Fedel, G.; Liello, F.; Longo, F.; Pontoni, C.; Vallazza, E.

    2003-03-01

    AGILE (Light Imager for Gamma-ray Astrophysics) is the first small scientific mission of ASI, the Italian Space Agency. It is a light (100kg for the scientific instrument) satellite for the detection of /γ-ray sources in the energy range 30MeV-50GeV within a large field of view (1/4 of the sky). It is planned to be operational in the years 2003-2006, a period in which no other gamma-ray mission in the same energy range is foreseen. AGILE is made of a silicon tungsten tracker, a CsI(Tl) minicalorimeter (1.5X0), an anticoincidence system of segmented plastic scintillators and a X-ray imaging detector sensitive in the 10-40keV range. The tracker consists of 14 planes, each of them made of two layers of 16 single-sided, AC coupled, 410μm thick, 9.5×9.5cm2 silicon detectors with a readout pitch of 242μm and a floating strip. The readout ASIC is the TAA1, an analog-digital, low noise, self-triggering ASIC used in a very low power configuration (<400μW/channel) with full analog readout. The trigger of the satellite is given by the tracker. The total number of readout channels is around 43000. We present a detailed description of the tracker, its trigger and readout logic, its assembly procedures and the prototype performance in several testbeam periods at the CERN PS.

  3. A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability.

    PubMed

    Liu, Dan; Li, Xingrui; Zhou, Junkai; Liu, Shibo; Tian, Tian; Song, Yanling; Zhu, Zhi; Zhou, Leiji; Ji, Tianhai; Yang, Chaoyong

    2017-10-15

    Enzyme-linked immunosorbent assay (ELISA) is a popular laboratory technique for detection of disease-specific protein biomarkers with high specificity and sensitivity. However, ELISA requires labor-intensive and time-consuming procedures with skilled operators and spectroscopic instrumentation. Simplification of the procedures and miniaturization of the devices are crucial for ELISA-based point-of-care (POC) testing in resource-limited settings. Here, we present a fully integrated, instrument-free, low-cost and portable POC platform which integrates the process of ELISA and the distance readout into a single microfluidic chip. Based on manipulation using a permanent magnet, the process is initiated by moving magnetic beads with capture antibody through different aqueous phases containing ELISA reagents to form bead/antibody/antigen/antibody sandwich structure, and finally converts the molecular recognition signal into a highly sensitive distance readout for visual quantitative bioanalysis. Without additional equipment and complicated operations, our integrated ELISA-Chip with distance readout allows ultrasensitive quantitation of disease biomarkers within 2h. The ELISA-Chip method also showed high specificity, good precision and great accuracy. Furthermore, the ELISA-Chip system is highly applicable as a sandwich-based platform for the detection of a variety of protein biomarkers. With the advantages of visual analysis, easy operation, high sensitivity, and low cost, the integrated sample-in-answer-out ELISA-Chip with distance readout shows great potential for quantitative POCT in resource-limited settings. Copyright © 2017. Published by Elsevier B.V.

  4. US GEOLOGICAL SURVEY'S NATIONAL SYSTEM FOR PROCESSING AND DISTRIBUTION OF NEAR REAL-TIME HYDROLOGICAL DATA.

    USGS Publications Warehouse

    Shope, William G.; ,

    1987-01-01

    The US Geological Survey is utilizing a national network of more than 1000 satellite data-collection stations, four satellite-relay direct-readout ground stations, and more than 50 computers linked together in a private telecommunications network to acquire, process, and distribute hydrological data in near real-time. The four Survey offices operating a satellite direct-readout ground station provide near real-time hydrological data to computers located in other Survey offices through the Survey's Distributed Information System. The computerized distribution system permits automated data processing and distribution to be carried out in a timely manner under the control and operation of the Survey office responsible for the data-collection stations and for the dissemination of hydrological information to the water-data users.

  5. Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor

    PubMed Central

    Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan

    2012-01-01

    We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966

  6. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    NASA Astrophysics Data System (ADS)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  7. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  8. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  9. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  10. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    DOEpatents

    Smith, Leon Eric [Richland, WA; Miller, Steven D [Richland, WA; Bowyer, Theodore W [Oakton, VA

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  11. The PANDA DIRC detectors at FAIR

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.

    2017-07-01

    The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.

  12. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE PAGES

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.; ...

    2017-06-17

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  13. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  14. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  15. [Evaluation of Image Quality of Readout Segmented EPI with Readout Partial Fourier Technique].

    PubMed

    Yoshimura, Yuuki; Suzuki, Daisuke; Miyahara, Kanae

    Readout segmented EPI (readout segmentation of long variable echo-trains: RESOLVE) segmented k-space in the readout direction. By using the partial Fourier method in the readout direction, the imaging time was shortened. However, the influence on image quality due to insufficient data sampling is concerned. The setting of the partial Fourier method in the readout direction in each segment was changed. Then, we examined signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and distortion ratio for changes in image quality due to differences in data sampling. As the number of sampling segments decreased, SNR and CNR showed a low value. In addition, the distortion ratio did not change. The image quality of minimum sampling segments is greatly different from full data sampling, and caution is required when using it.

  16. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D(-) Charge State.

    PubMed

    Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y

    2015-10-16

    We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.

  17. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide

    NASA Astrophysics Data System (ADS)

    Cochrane, Corey J.; Blacksberg, Jordana; Anders, Mark A.; Lenahan, Patrick M.

    2016-11-01

    Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.

  18. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide

    PubMed Central

    Cochrane, Corey J.; Blacksberg, Jordana; Anders, Mark A.; Lenahan, Patrick M.

    2016-01-01

    Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system. PMID:27892524

  19. Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide.

    PubMed

    Cochrane, Corey J; Blacksberg, Jordana; Anders, Mark A; Lenahan, Patrick M

    2016-11-28

    Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.

  20. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.

    PubMed

    de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E

    2013-02-01

    We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.

  1. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  2. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  3. Construction and Performance Studies of Large Resistive Micromegas Quadruplets

    NASA Astrophysics Data System (ADS)

    Farina, E.; Iengo, P.; Bianco, M.; Sidiropoulou, O.; Kuger, F.; Sekhniaidze, G.; Vergain, M.; Wotschack, J.; Danielsson, H.; Degrange, J.; De Oliveira, R.; Schott, M.; Lin, Tai-Hua; Valderanis, C.; Düdder, A.

    2018-02-01

    In view of the use of Micromegas detectors for the upgrade of the ATLAS muon system, two detector quadruplets with an area of 0.3 m2 per plane serving as prototypes for future ATLAS chambers have been constructed. They are based on the resistive-strip technology and thus spark tolerant. The detectors were built in a modular way. The quadruplets consist of two double-sided readout panels and three support (or drift) panels equipped with the micromesh and the drift electrode. The panels are bolted together such that the detector can be opened and cleaned, if required. Two of the readout planes are equipped with readout strips inclined by 1.5 degree. In this talk, we present the results of detailed performance studies based on X-Ray and cosmic ray measurements as well as measurements with 855 MeV electrons at the MAMI accelerator. In particular, results on reconstruction efficiencies, track resolution and gain homogeneity is presented.

  4. Hardware for dynamic quantum computing.

    PubMed

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  5. Design of a wideband CMOS impedance spectroscopy ASIC analog front-end for multichannel biosensor interfaces.

    PubMed

    Valente, Virgilio; Dai Jiang; Demosthenous, Andreas

    2015-08-01

    This paper presents the preliminary design and simulation of a flexible and programmable analog front-end (AFE) circuit with current and voltage readout capabilities for electric impedance spectroscopy (EIS). The AFE is part of a fully integrated multifrequency EIS platform. The current readout comprises of a transimpedance stage and an automatic gain control (AGC) unit designed to accommodate impedance changes larger than 3 order of magnitude. The AGC is based on a dynamic peak detector that tracks changes in the input current over time and regulates the gain of a programmable gain amplifier in order to optimise the signal-to-noise ratio. The system works up to 1 MHz. The voltage readout consists of a 2 stages of fully differential current-feedback instrumentation amplifier which provide 100 dB of CMRR and a programmable gain up to 20 V/V per stage with a bandwidth in excess of 10MHz.

  6. Central Drift Chamber for Belle-II

    NASA Astrophysics Data System (ADS)

    Taniguchi, N.

    2017-06-01

    The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.

  7. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  8. ATLAS Tile Calorimeter calibration and monitoring systems

    NASA Astrophysics Data System (ADS)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  9. A positron emission tomograph based on LSO-APD modules with a sampling ADC read-out system for a students' advanced laboratory course.

    PubMed

    Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I

    2012-06-01

    A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.

  10. Towards fully analog hardware reservoir computing for speech recognition

    NASA Astrophysics Data System (ADS)

    Smerieri, Anteo; Duport, François; Paquot, Yvan; Haelterman, Marc; Schrauwen, Benjamin; Massar, Serge

    2012-09-01

    Reservoir computing is a very recent, neural network inspired unconventional computation technique, where a recurrent nonlinear system is used in conjunction with a linear readout to perform complex calculations, leveraging its inherent internal dynamics. In this paper we show the operation of an optoelectronic reservoir computer in which both the nonlinear recurrent part and the readout layer are implemented in hardware for a speech recognition application. The performance obtained is close to the one of to state-of-the-art digital reservoirs, while the analog architecture opens the way to ultrafast computation.

  11. High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.

    PubMed

    Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J

    2010-10-22

    We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.

  12. Aquifer-System Compaction and Land Subsidence: Measurements, Analyses, and Simulations-the Holly Site, Edwards Air Force Base, Antelope Valley, California

    USGS Publications Warehouse

    Sneed, Michelle; Galloway, Devin L.

    2000-01-01

    Land subsidence resulting from ground-water-level declines has long been recognized as a problem in Antelope Valley, California. At Edwards Air Force Base (EAFB), ground-water extractions have caused more than 150 feet of water-level decline, resulting in nearly 4 feet of subsidence. Differential land subsidence has caused sinklike depressions and earth fissures and has accelerated erosion of the playa lakebed surface of Rogers Lake at EAFB, adversely affecting the runways on the lakebed which are used for landing aircraft such as the space shuttles. Since 1990, about 0.4 foot of aquifer-system compaction has been measured at a deep (840 feet) borehole extensometer (Holly site) at EAFB. More than 7 years of paired ground-water-level and aquifer-system compaction measurements made at the Holly site were analyzed for this study. Annually, seasonal water-level fluctuations correspond to steplike variations in aquifer-system compaction; summer water-level drawdowns are associated with larger rates of compaction, and winter water-level recoveries are associated with smaller rates of compaction. The absence of aquifer-system expansion during recovery is consistent with the delayed drainage and resultant delayed, or residual, compaction of thick aquitards. A numerical one-dimensional MODFLOW model of aquitard drainage was used to refine estimates of aquifer-system hydraulic parameters that control compaction and to predict potential future compaction at the Holly site. The analyses and simulations of aquifer-system compaction are based on established theories of aquitard drainage. Historical ground-water-level and land-subsidence data collected near the Holly site were used to constrain simulations of aquifer-system compaction and land subsidence at the site for the period 1908?90, and ground-water-level and aquifer- system compaction measurements collected at the Holly site were used to constrain the model for the period 1990?97. Model results indicate that two thick aqui- tards, which total 129 feet or about half the aggregate thickness of all the aquitards penetrated by the Holly boreholes, account for most (greater than 99 percent) of the compaction measured at the Holly site during the period 1990?97. The results of three scenarios of future water-level changes indicate that these two thick aquitards account for most of the future compaction. The results also indicate that if water levels decline to about 30 feet below the 1997 water levels an additional 1.7 feet of compaction may occur during the next 30 years. If water levels remain at 1997 levels, the model predicts that only 0.8 foot of compaction may occur during the same period, and even if water levels recover to about 30 feet above 1997 water levels, another 0.5 foot of compaction may occur in the next 30 years. In addition, only a portion of the compaction that ultimately will occur likely will occur within the next 30 years; therefore, the residual compaction and associated land subsidence attributed to slowly equilibrating aquitards is important to consider in the long-term management of land and water resources at EAFB.

  13. Uncovering the identities of compact objects in high-mass X-ray binaries and gamma-ray binaries by astrometric measurements

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M. S.; Yano, T.; Gouda, N.

    2018-03-01

    We develop a method for identifying a compact object in binary systems with astrometric measurements and apply it to some binaries. Compact objects in some high-mass X-ray binaries and gamma-ray binaries are unknown, which is responsible for the fact that emission mechanisms in such systems have not yet confirmed. The accurate estimate of the mass of the compact object allows us to identify the compact object in such systems. Astrometric measurements are expected to enable us to estimate the masses of the compact objects in the binary systems via a determination of a binary orbit. We aim to evaluate the possibility of the identification of the compact objects for some binary systems. We then calculate probabilities that the compact object is correctly identified with astrometric observation (= confidence level) by taking into account a dependence of the orbital shape on orbital parameters and distributions of masses of white dwarfs, neutron stars and black holes. We find that the astrometric measurements with the precision of 70 μas for γ Cas allow us to identify the compact object at 99 per cent confidence level if the compact object is a white dwarf with 0.6 M⊙. In addition, we can identify the compact object with the precision of 10 μas at 97 per cent or larger confidence level for LS I +61° 303 and 99 per cent or larger for HESS J0632+057. These results imply that the astrometric measurements with the 10 μas precision level can realize the identification of compact objects for γ Cas, LS I +61° 303, and HESS J0632+057.

  14. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  15. Trigger and Readout System for the Ashra-1 Detector

    NASA Astrophysics Data System (ADS)

    Aita, Y.; Aoki, T.; Asaoka, Y.; Morimoto, Y.; Motz, H. M.; Sasaki, M.; Abiko, C.; Kanokohata, C.; Ogawa, S.; Shibuya, H.; Takada, T.; Kimura, T.; Learned, J. G.; Matsuno, S.; Kuze, S.; Binder, P. M.; Goldman, J.; Sugiyama, N.; Watanabe, Y.

    Highly sophisticated trigger and readout system has been developed for All-sky Survey High Resolution Air-shower (Ashra) detector. Ashra-1 detector has 42 degree diameter field of view. Detection of Cherenkov and fluorescence light from large background in the large field of view requires finely segmented and high speed trigger and readout system. The system is composed of optical fiber image transmission system, 64 × 64 channel trigger sensor and FPGA based trigger logic processor. The system typically processes the image within 10 to 30 ns and opens the shutter on the fine CMOS sensor. 64 × 64 coarse split image is transferred via 64 × 64 precisely aligned optical fiber bundle to a photon sensor. Current signals from the photon sensor are discriminated by custom made trigger amplifiers. FPGA based processor processes 64 × 64 hit pattern and correspondent partial area of the fine image is acquired. Commissioning earth skimming tau neutrino observational search was carried out with this trigger system. In addition to the geometrical advantage of the Ashra observational site, the excellent tau shower axis measurement based on the fine imaging and the night sky background rejection based on the fine and fast imaging allow zero background tau shower search. Adoption of the optical fiber bundle and trigger LSI realized 4k channel trigger system cheaply. Detectability of tau shower is also confirmed by simultaneously observed Cherenkov air shower. Reduction of the trigger threshold appears to enhance the effective area especially in PeV tau neutrino energy region. New two dimensional trigger LSI was introduced and the trigger threshold was lowered. New calibration system of the trigger system was recently developed and introduced to the Ashra detector

  16. A non-contact temperature measurement system for controlling photothermal medical laser treatments

    NASA Astrophysics Data System (ADS)

    Kaya, Ã.-zgür; Gülsoy, Murat

    2016-03-01

    Photothermal medical laser treatments are extremely dependent on the generated tissue temperature. It is necessary to reach a certain temperature threshold to achieve successful results, whereas preventing to exceed an upper temperature value is required to avoid thermal damage. One method to overcome this problem is to use previously conducted dosimetry studies as a reference. Nevertheless, these results are acquired in controlled environments using uniform subjects. In the clinical environment, the optical and thermal characteristics (tissue color, composition and hydration level) vary dramatically among different patients. Therefore, the most reliable solution is to use a closed-loop feedback system that monitors the target tissue temperature to control laser exposure. In this study, we present a compact, non-contact temperature measurement system for the control of photothermal medical laser applications that is cost-efficient and simple to use. The temperature measurement is achieved using a focused, commercially available MOEMS infrared thermocouple sensor embedded in an off-axis arrangement on the laser beam delivery hand probe. The spot size of the temperature sensor is ca. 2.5 mm, reasonably smaller than the laser spot sizes used in photothermal medical laser applications. The temperature readout and laser control is realized using a microcontroller for fast operation. The utilization of the developed system may enable the adaptation of several medical laser treatments that are currently conducted only in controlled laboratory environments into the clinic. Laser tissue welding and cartilage reshaping are two of the techniques that are limited to laboratory research at the moment. This system will also ensure the safety and success of laser treatments aiming hyperthermia, coagulation and ablation, as well as LLLT and PDT.

  17. Controller and data acquisition system for SIDECAR ASIC driven HAWAII detectors

    NASA Astrophysics Data System (ADS)

    Ramaprakash, Anamparambu; Burse, Mahesh; Chordia, Pravin; Chillal, Kalpesh; Kohok, Abhay; Mestry, Vilas; Punnadi, Sujit; Sinha, Sakya

    2010-07-01

    SIDECAR is an Application Specific Integrated Circuit (ASIC), which can be used for control and data acquisition from near-IR HAWAII detectors offered by Teledyne Imaging Sensors (TIS), USA. The standard interfaces provided by Teledyne are COM API and socket servers running under MS Windows platform. These interfaces communicate to the ASIC (and the detector) through an intermediate card called JWST ASIC Drive Electronics (JADE2). As part of an ongoing programme of several years, for developing astronomical focal plane array (CCDs, CMOS and Hybrid) controllers and data acquisition systems (CDAQs), IUCAA is currently developing the next generation controllers employing Virtex-5 family FPGA devices. We present here the capabilities which are built into these new CDAQs for handling HAWAII detectors. In our system, the computer which hosts the application programme, user interface and device drivers runs on a Linux platform. It communicates through a hot-pluggable USB interface (with an optional optical fibre extender) to the FPGA-based card which replaces the JADE2. The FPGA board in turn, controls the SIDECAR ASIC and through it a HAWAII-2RG detector, both of which are located in a cryogenic test Dewar set up which is liquid nitrogen cooled. The system can acquire data over 1, 4, or 32 readout channels, with or without binning, at different speeds, can define sub-regions for readout, offers various readout schemes like Fowler sampling, up-theramp etc. In this paper, we present the performance results obtained from a prototype system.

  18. Half-State Readout In Vertical-Bloch-Line Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Wu, Jiin-Chuan; Stadler, Henry L.

    1994-01-01

    Potentially narrow margins of chirality-based chopping of magnetic stripes avoided. Half-state readout is experimental method of readout in Vertical-Bloch-Line (VBL) memory. Based on differential deflections of magnetic stripe domains in which data bits stored. To give meaning to explanation of half-state readout, see "Vertical-Bloch-Line Memory" (NPO-18467).

  19. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  20. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  1. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  2. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  3. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154..., Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each readout under § 154.1340 for a device that measures temperature in a cargo tank must be marked with the...

  4. Design and build a compact Raman sensor for identification of chemical composition

    NASA Astrophysics Data System (ADS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-04-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified CCD camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  5. Design and Build a Compact Raman Sensor for Identification of Chemical Composition

    NASA Technical Reports Server (NTRS)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Sandford, Stephen P.; Elsayed-Ali, Hani

    2008-01-01

    A compact remote Raman sensor system was developed at NASA Langley Research Center. This sensor is an improvement over the previously reported system, which consisted of a 532 nm pulsed laser, a 4-inch telescope, a spectrograph, and an intensified charge-coupled devices (CCD) camera. One of the attractive features of the previous system was its portability, thereby making it suitable for applications such as planetary surface explorations, homeland security and defense applications where a compact portable instrument is important. The new system was made more compact by replacing bulky components with smaller and lighter components. The new compact system uses a smaller spectrograph measuring 9 x 4 x 4 in. and a smaller intensified CCD camera measuring 5 in. long and 2 in. in diameter. The previous system was used to obtain the Raman spectra of several materials that are important to defense and security applications. Furthermore, the new compact Raman sensor system is used to obtain the Raman spectra of a diverse set of materials to demonstrate the sensor system's potential use in the identification of unknown materials.

  6. A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1989-01-01

    Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.

  7. The design and implementation of on-line monitoring system for UHV compact shunt capacitors

    NASA Astrophysics Data System (ADS)

    Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao

    2017-08-01

    Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.

  8. Report of the sensor readout electronics panel

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Carson, J.; Kleinhans, W.; Kosonocky, W.; Kozlowski, L.; Pecsalski, A.; Silver, A.; Spieler, H.; Woolaway, J.

    1991-01-01

    The findings of the Sensor Readout Electronics Panel are summarized in regard to technology assessment and recommended development plans. In addition to two specific readout issues, cryogenic readouts and sub-electron noise, the panel considered three advanced technology areas that impact the ability to achieve large format sensor arrays. These are mega-pixel focal plane packaging issues, focal plane to data processing module interfaces, and event driven readout architectures. Development in each of these five areas was judged to have significant impact in enabling the sensor performance desired for the Astrotech 21 mission set. Other readout issues, such as focal plane signal processing or other high volume data acquisition applications important for Eos-type mapping, were determined not to be relevant for astrophysics science goals.

  9. A pixel read-out architecture implementing a two-stage token ring, zero suppression and compression

    NASA Astrophysics Data System (ADS)

    Heuvelmans, S.; Boerrigter, M.

    2011-01-01

    Increasing luminosity in high energy physics experiments leads to new challenges in the design of data acquisition systems for pixel detectors. With the upgrade of the LHCb experiment, the data processing will be changed; hit data from every collision will be transported off the pixel chip, without any trigger selection. A read-out architecture is proposed which is able to obtain low hit data loss on limited silicon area by using the logic beneath the pixels as a data buffer. Zero suppression and redundancy reduction ensure that the data rate off chip is minimized. A C++ model has been created for simulation of functionality and data loss, and for system development. A VHDL implementation has been derived from this model.

  10. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshito, T.; Kodama, K.; Yusa, K.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less

  11. A dc-coupled, high sensitivity bolometric detector system for the Infrared Telescope in Space

    NASA Technical Reports Server (NTRS)

    Devlin, M.; Lange, A. E.; Wilbanks, T.; Sato, S.

    1993-01-01

    We report the performance of an ac bridge readout system that has been developed for use on the Infrared Telescope in Space which is scheduled for launch in 1994. The ac bridge readout provides excellent dc stability enabling observing strategies well-suited to space-borne observations. The ability to modulate the optical signal slowly allows the use of new, highly sensitive, long time-constant bolometers. At 300 mK, the bolometers have an electrical noise equivalent power of 3 x 10 exp -17 W/sq rt Hz. The total noise of the differential signal, including amplifier noise, is less than 8 x 10 exp -17 W/sq rt Hz at frequencies as low as 35 mHz.

  12. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  13. 6 x 6-cm fully depleted pn-junction CCD for high-resolution spectroscopy in the 0.1- to 15-keV photon energy range

    NASA Astrophysics Data System (ADS)

    von Zanthier, Christoph; Holl, Peter; Kemmer, Josef; Lechner, Peter; Maier, B.; Soltau, Heike; Stoetter, R.; Braeuninger, Heinrich W.; Dennerl, Konrad; Haberl, Frank; Hartmann, R.; Hartner, Gisela D.; Hippmann, H.; Kastelic, E.; Kink, W.; Krause, N.; Meidinger, Norbert; Metzner, G.; Pfeffermann, Elmar; Popp, M.; Reppin, Claus; Stoetter, Diana; Strueder, Lothar; Truemper, Joachim; Weber, U.; Carathanassis, D.; Engelhard, S.; Gebhart, Th.; Hauff, D.; Lutz, G.; Richter, R. H.; Seitz, H.; Solc, P.; Bihler, Edgar; Boettcher, H.; Kendziorra, Eckhard; Kraemer, J.; Pflueger, Bernhard; Staubert, Ruediger

    1998-04-01

    The concept and performance of the fully depleted pn- junction CCD system, developed for the European XMM- and the German ABRIXAS-satellite missions for soft x-ray imaging and spectroscopy in the 0.1 keV to 15 keV photon range, is presented. The 58 mm X 60 mm large pn-CCD array uses pn- junctions for registers and for the backside instead of MOS registers. This concept naturally allows to fully deplete the detector volume to make it an efficient detector to photons with energies up to 15 keV. For high detection efficiency in the soft x-ray region down to 100 eV, an ultrathin pn-CCD backside deadlayer has been realized. Each pn-CCD-channel is equipped with an on-chip JFET amplifier which, in combination with the CAMEX-amplifier and multiplexing chip, facilitates parallel readout with a pixel read rate of 3 MHz and an electronic noise floor of ENC < e-. With the complete parallel readout, very fast pn-CCD readout modi can be implemented in the system which allow for high resolution photon spectroscopy of even the brightest x-ray sources in the sky.

  14. JPSS Science Data Services for the Direct Readout Community

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Lutz, Bob

    2014-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) High Rate Data (HRD) link provides Direct Broadcast data to users in real-time, utilizing their own remote field terminals. The Field Terminal Support (FTS) provides the resources needed to support the Direct Readout communities by providing software, documentation, and periodic updates to enable them to produce data products from SNPP and JPSS. The FTS distribution server will also provide the necessary ancillary and auxiliary data needed for processing the broadcasts, as well as making orbital data available to assist in locating the satellites of interest. In addition, the FTS provides development support for the algorithm and software through GSFC Direct Readout Laboratory (DRL) International Polar Orbiter Processing Package (IPOPP) and University of Wisconsin (UWISC) Community Satellite Processing Package (CSPP), to enable users to integrate the algorithms into their remote terminals. The support the JPSS Program provides to the institutions developing and maintaining these two software packages, will demonstrate the ability to produce ready-to-use products from the HRD link and provide risk reduction effort at a minimal cost. This paper discusses the key functions and system architecture of FTS.

  15. A molecular quantum spin network controlled by a single qubit.

    PubMed

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  16. SiPM based readout system for PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  17. A high-speed DAQ framework for future high-level trigger and event building clusters

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ardila Perez, L. E.; Balzer, M.; Dritschler, T.; Kopmann, A.; Mohr, H.; Rota, L.; Vogelgesang, M.; Weber, M.

    2017-03-01

    Modern data acquisition and trigger systems require a throughput of several GB/s and latencies of the order of microseconds. To satisfy such requirements, a heterogeneous readout system based on FPGA readout cards and GPU-based computing nodes coupled by InfiniBand has been developed. The incoming data from the back-end electronics is delivered directly into the internal memory of GPUs through a dedicated peer-to-peer PCIe communication. High performance DMA engines have been developed for direct communication between FPGAs and GPUs using "DirectGMA (AMD)" and "GPUDirect (NVIDIA)" technologies. The proposed infrastructure is a candidate for future generations of event building clusters, high-level trigger filter farms and low-level trigger system. In this paper the heterogeneous FPGA-GPU architecture will be presented and its performance be discussed.

  18. Physical evaluation of a needle photostimulable phosphor based CR mammography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Nicholas W.; Lemmens, Kim; Bosmans, Hilde

    2012-02-15

    Purpose: Needle phosphor based computed radiography (CR) systems promise improved image quality compared to powder phosphor based CR units for x-ray screening mammography. This paper compares the imaging performance of needle CR cassettes, powder based CR cassettes and a well established amorphous selenium (a-Se) based flat panel based mammography system, using consistent beam qualities. Methods: Detector performance was assessed using modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE). Mammography system performance was assessed against levels from the European Guidelines, including threshold gold thickness (c-d), relative signal difference to noise (SdNR) and mean glandular dose,more » for automatic exposure control settings suggested by the manufacturers. The needle based Agfa HM5.0 CR detector was compared against the single sided readout Agfa MM3.0R and dual sided readout Fuji Profect CS powder CR plates using a 28 kV Mo/Rh spectrum, while a 28 kV W/Rh spectrum was used to compare the Agfa HM5.0 against the Siemens MAMMOMAT Inspiration a-Se based system. Results: MTF at 5 mm{sup -1} was 0.16 and 0.24 for the needle CR detector in the fast and slow scan directions, respectively, indicating a slight improvement ({approx}20%) over the two powder CR systems but remained 50% lower than the result at 5 mm{sup -1} for the a-Se detector ({approx}0.55). Structured screen noise was lower for the needle phosphor compared to the powder plates. CR system gain, estimated from the measured absorption fraction and NNPS results, was 6.3 for the (single sided) needle phosphor and 5.1 and 7.2 for the single sided and dual sided powder phosphor systems. Peak DQE at {approx}100 {mu}Gy was 0.47 for the needle system compared to peak DQE figures of 0.33 and 0.46 for the single sided readout powder plates and dual sided readout plates. The high frequency DQE (at 5 mm{sup -1}) was 0.19 for the needle CR plates, a factor of approximately 3 greater than for the powder CR plates. At 28 kV W/Rh, 2 mm Al, peak DQE for the needle CR system was 0.45 against a value of 0.50 for the a-Se detector. The needle CR detector reached the Acceptable limit for 0.1 mm details in the European Guidelines at a mean glandular dose (MGD) of approximately 1.31 mGy imaged at 28 kV Mo/Rh, compared to figures of 2.19 and 1.43 mGy for the single sided and dual sided readout powder CR systems. The a-Se detector could reach the limit at 0.65 mGy using a 28 kV W/Rh spectrum, while the needle CR system required 1.09 mGy for the same spectrum. Conclusions: Imaging performance for the needle CR phosphor technology, characterized using MTF and DQE and threshold gold thickness demonstrated a clear improvement compared to both single and dual sided reading powder phosphor based CR systems.« less

  19. CMOS detectors: lessons learned during the STC stereo channel preflight calibration

    NASA Astrophysics Data System (ADS)

    Simioni, E.; De Sio, A.; Da Deppo, V.; Naletto, G.; Cremonese, G.

    2017-09-01

    The Stereo Camera (STC), mounted on-board the BepiColombo spacecraft, will acquire in push frame stereo mode the entire surface of Mercury. STC will provide the images for the global three-dimensional reconstruction of the surface of the innermost planet of the Solar System. The launch of BepiColombo is foreseen in 2018. STC has an innovative optical system configuration, which allows good optical performances with a mass and volume reduction of a factor two with respect to classical stereo camera approach. In such a telescope, two different optical paths inclined of +/-20°, with respect to the nadir direction, are merged together in a unique off axis path and focused on a single detector. The focal plane is equipped with a 2k x 2k hybrid Si-PIN detector, based on CMOS technology, combining low read-out noise, high radiation hardness, compactness, lack of parasitic light, capability of snapshot image acquisition and short exposure times (less than 1 ms) and small pixel size (10 μm). During the preflight calibration campaign of STC, some detector spurious effects have been noticed. Analyzing the images taken during the calibration phase, two different signals affecting the background level have been measured. These signals can reduce the detector dynamics down to a factor of 1/4th and they are not due to dark current, stray light or similar effects. In this work we will describe all the features of these unwilled effects, and the calibration procedures we developed to analyze them.

  20. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  1. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltagesmore » at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.« less

  2. Dual-Readout Immunochromatographic Assay by Utilizing MnO2 Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe.

    PubMed

    Ouyang, Hui; Lu, Qian; Wang, Wenwen; Song, Yang; Tu, Xinman; Zhu, Chengzhou; Smith, Jordan N; Du, Dan; Fu, Zhifeng; Lin, Yuehe

    2018-04-17

    Manganese dioxide nanoflowers (MnO 2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO 2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO 2 NFs on test line. The captured MnO 2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO 2 NFs showed a significant effect on the luminol-H 2 O 2 chemiluminescent (CL) system, and the CL signal driven by MnO 2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H 2 O 2 coloration assays were conducted for studying the enhancing mechanism of MnO 2 NFs, which was based on the oxidant activity to decompose H 2 O 2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.

  3. Feasibility study using MRI and two optical CT scanners for readout of polymer gel and PresageTM

    NASA Astrophysics Data System (ADS)

    Svensson, H.; Skyt, P. S.; Ceberg, S.; Doran, S.; Muren, L. P.; Balling, P.; Petersen, J. B. B.; Bäck, S. Å. J.

    2013-06-01

    The aim of this study was to compare the conventional combination of three-dimensional dosimeter (nPAG gel) and readout method (MRI) with other combinations of three-dimensional dosimeters (nPAG gel/PresageTM) and readout methods (optical CT scanners). In the first experiment, the dose readout of a gel irradiated with a four field-box technique was performed with both an Octopus IQ scanner and MRI. It was seen that the MRI readout agreed slightly better to the TPS. In another experiment, a gel and a PresageTM sample were irradiated with a VMAT field and read out using MRI and a fast laser scanner, respectively. A comparison between the TPS and the volumes revealed that the MRI/gel readout had closer resemblance to the TPS than the optical CT/PresageTM readout. There are clearly potential in the evaluated optical CT scanners, but more time has to be invested in the particular scanning scenario than was possible in this study.

  4. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  5. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  6. VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,

    In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less

  7. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensorsmore » are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.« less

  8. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  9. Where are compact groups in the local Universe?

    NASA Astrophysics Data System (ADS)

    Díaz-Giménez, Eugenia; Zandivarez, Ariel

    2015-06-01

    Aims: The purpose of this work is to perform a statistical analysis of the location of compact groups in the Universe from observational and semi-analytical points of view. Methods: We used the velocity-filtered compact group sample extracted from the Two Micron All Sky Survey for our analysis. We also used a new sample of galaxy groups identified in the 2M++ galaxy redshift catalogue as tracers of the large-scale structure. We defined a procedure to search in redshift space for compact groups that can be considered embedded in other overdense systems and applied this criterion to several possible combinations of different compact and galaxy group subsamples. We also performed similar analyses for simulated compact and galaxy groups identified in a 2M++ mock galaxy catalogue constructed from the Millennium Run Simulation I plus a semi-analytical model of galaxy formation. Results: We observed that only ~27% of the compact groups can be considered to be embedded in larger overdense systems, that is, most of the compact groups are more likely to be isolated systems. The embedded compact groups show statistically smaller sizes and brighter surface brightnesses than non-embedded systems. No evidence was found that embedded compact groups are more likely to inhabit galaxy groups with a given virial mass or with a particular dynamical state. We found very similar results when the analysis was performed using mock compact and galaxy groups. Based on the semi-analytical studies, we predict that 70% of the embedded compact groups probably are 3D physically dense systems. Finally, real space information allowed us to reveal the bimodal behaviour of the distribution of 3D minimum distances between compact and galaxy groups. Conclusions: The location of compact groups should be carefully taken into account when comparing properties of galaxies in environments that are a priori different. Appendices are available in electronic form at http://www.aanda.orgFull Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A61

  10. A micron resolution optical scanner for characterization of silicon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less

  11. Compact instrument for fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  12. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE PAGES

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; ...

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less

  13. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, suchmore » as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.« less

  14. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Abbamonte, P.; Alpert, B. K.; Bennett, D. A.; Denison, E. V.; Fang, Y.; Fischer, D. A.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Jaye, C.; McChesney, J. L.; Miaja-Avila, L.; Morgan, K. M.; Joe, Y. I.; O'Neil, G. C.; Reintsema, C. D.; Rodolakis, F.; Schmidt, D. R.; Tatsuno, H.; Uhlig, J.; Vale, L. R.; Ullom, J. N.; Swetz, D. S.

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

  15. A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science.

    PubMed

    Doriese, W B; Abbamonte, P; Alpert, B K; Bennett, D A; Denison, E V; Fang, Y; Fischer, D A; Fitzgerald, C P; Fowler, J W; Gard, J D; Hays-Wehle, J P; Hilton, G C; Jaye, C; McChesney, J L; Miaja-Avila, L; Morgan, K M; Joe, Y I; O'Neil, G C; Reintsema, C D; Rodolakis, F; Schmidt, D R; Tatsuno, H; Uhlig, J; Vale, L R; Ullom, J N; Swetz, D S

    2017-05-01

    We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

  16. Fast ADC based multichannel acquisition system for the GEM detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Czarski, T.; Chernyshova, M.; Dominik, W.; Jakubowska, K.; Karpinski, L.; Kierzkowski, K.; Pozniak, K.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.

    2012-05-01

    A novel approach to the Gas Electron Multiplier1 (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators, and analogue FIFOs,[ the method developed uses simultaneously sampling high speed ADCs and advanced FPGA-based processing logic to estimate the energy of every single photon. Such method is applied to every GEM strip signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, where higher order reflections need to be identified and rejected. For the purpose of the detector readout, a novel conception of the measurement platform was developed.

  17. A Concept for Power Cycling the Electronics of CALICE-AHCAL with the Train Structure of ILC

    NASA Astrophysics Data System (ADS)

    Göottlicher, Peter; The Calice-Collaboration

    Particle flow algorithm calorimetry requires high granularity three-dimensional readout. The tight power requirement of 40 μW/channel is reached by enabling readout ASIC currents only during beam delivery, corresponding to a 1% duty cycle. EMI noise caused by current switching needs to be minimized by the power system and this paper presents ideas, simulations and first measurements for minimizing disturbances. A carefully design of circuits, printed circuit boards, grounding scheme and use of floating supplies allows current loops to be closed locally, stabilized voltages and minimal currents in the metal structures.

  18. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Compact also provides a legal framework for the establishment of a cooperative federal-state system to... agencies to serve on the Council. The Council will prescribe system rules and procedures for the effective and proper operation of the Interstate Identification Index system. Matters for discussion are...

  19. The design and performance of the ZEUS Central Tracking Detector z-by-timing system

    NASA Astrophysics Data System (ADS)

    Bailey, D. S.; Foster, B.; Heath, G. P.; Morgado, C. J. S.; Harnew, N.; Khatri, T.; Lancaster, M.; McArthur, I. C.; McFall, J. D.; Nash, J.; Shield, P. D.; Topp-Jorgensen, S.; Wilson, F. F.; Carter, R. C.; Jeffs, M. D.; Milborrow, R.; Morrissey, M. C.; Phillips, D. A.; Quinton, S. P. H.; Westlake, G.; White, D. J.; Lane, J. B.; Nixon, G.; Postranecky, M.

    1997-02-01

    The ZEUS Central Tracking Detector utilizes a time difference measurement to provide a fast determination of the z coordinate of each hit. The z-by-timing measurement is achieved by using a Time-to-Amplitude Converter which has an intrinsic timing resolution of 36 ps, has pipelined readout, and has a multihit capability of 48 ns. In order to maintain the required sub-nanosecond timing accuracy, the technique incorporates an automated self-calibration system. The readout of the z-by-timing data utilizes a fully customized timing control system which runs synchronously with the HERA beam-crossing clock, and a data acquisition system implemented on a network of Transputers. Three dimensional space-points provided by the z-by-timing system are used as input to all three levels of the ZEUS trigger and for offline track reconstruction. The average z resolution is determined to be 4.4 cm for multi-track events from positron-proton collisions in the ZEUS detector.

  20. A system for characterization of DEPFET silicon pixel matrices and test beam results

    NASA Astrophysics Data System (ADS)

    Furletov, Sergey; DEPFET Collaboration

    2011-02-01

    The DEPFET pixel detector offers first stage in-pixel amplification by incorporating a field effect transistor in the high resistivity silicon substrate. In this concept, a very small input capacitance can be realized thus allowing for low noise measurements. This makes DEPFET sensors a favorable technology for tracking in particle physics. Therefore a system with a DEPFET pixel matrix was developed to test DEPFET performance for an application as a vertex detector for the Belle II experiment. The system features a current based, row-wise readout of a DEPFET pixel matrix with a designated readout chip, steering chips for matrix control, a FPGA based data acquisition board, and a dedicated software package. The system was successfully operated in both test beam and lab environment. In 2009 new DEPFET matrices have been characterized in a 120 GeV pion beam at the CERN SPS. The current status of the DEPFET system and test beam results are presented.

  1. The OPERA muon spectrometer tracking electronics

    NASA Astrophysics Data System (ADS)

    Ambrosio, M.; Barichello, G.; Brugnera, R.; Carrara, E.; Consiglio, L.; Corradi, A.; Dal Corso, F.; Dusini, S.; Felici, G.; Garfagnini, A.; Manea, C.; Masone, V.; Paoloni, A.; Paoluzzi, G.; Papalino, G.; Parascandolo, P.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Terranova, F.; Votano, L.

    2004-11-01

    The document describes the front-end electronics that instrument the spectrometer of the OPERA experiment. The spectrometer is made of two separate modules. Each module consists of 22 RPC planes equipped with horizontal and vertical strips readout for a total amount of about 25,000 digital channels. The front end electronics is self-triggered and has single plane readout capability. It is made of three different stages: the Front End Boards (FEBs) system, the Controller Boards (CBs) system and the Timing Boards (TBs) system. The FEB system provides discrimination of the strip incoming signals; a FAST OR output of the input signals is also available for trigger plane signal generation. FEBs discriminated signals are acquired by the CBs system that manages also the communication to the experiment DAQ and Slow Control interface. A Trigger Board allows to operate in both self-trigger (the FEB FAST OR signal starts the plane acquisition) or external-trigger (different conditions can be set on the OR signals generated from different planes) modes.

  2. Summary of extensometric measurements in El Paso, Texas

    USGS Publications Warehouse

    Heywood, Charles E.

    2003-01-01

    Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.

  3. A Compact Multilayer Diplexer in LTCC Substrate Using LPF with Multiple Attenuation Poles and Wideband BPF

    NASA Astrophysics Data System (ADS)

    Oshima, Shinpei; Wada, Kouji; Murata, Ryuji; Shimakata, Yukihiro

    Recently, compact wideband BPFs for UWB system are studied actively. In this paper we propose a compact diplexer in LTCC substrate for UWB system and 2.4GHz wireless systems. Firstly, a wideband BPF for UWB system and an LPF with multiple attenuation poles for 2.4GHz wireless systems are described. Secondly, we design matching circuits of a common port to keep basic performance of both the BPF and the LPF. Thirdly, in accordance with the result of the study, we design a compact diplexer in LTCC substrate. Finally, we verify the effectiveness of proposed method by experiments.

  4. Ultrasonic real-time in-die monitoring of the tablet compaction process-a proof of concept study.

    PubMed

    Stephens, James D; Kowalczyk, Brian R; Hancock, Bruno C; Kaul, Goldi; Cetinkaya, Cetin

    2013-02-14

    The mechanical properties of a drug tablet can affect its performance (e.g., dissolution profile and its physical robustness. An ultrasonic system for real-time in-die tablet mechanical property monitoring during compaction has been demonstrated. The reported set-up is a proof of concept compaction monitoring system which includes an ultrasonic transducer mounted inside the upper punch of the compaction apparatus. This upper punch is utilized to acquire ultrasonic pressure wave phase velocity waveforms and extract the time-of-flight of pressure waves travelling within the compact at a number of compaction force levels during compaction. The reflection coefficients for the waves reflecting from punch tip-powder bed interface are extracted from the acquired waveforms. The reflection coefficient decreases with an increase in compaction force, indicating solidification. The data acquisition methods give an average apparent Young's moduli in the range of 8-20 GPa extracted during the compaction and release/decompression phases in real-time. A monitoring system employing such methods is capable of determining material properties and the integrity of the tablet during compaction. As compared to the millisecond time-scale dwell time of a typical commercial compaction press, the micro-second pulse duration and ToF of an acoustic pulse are sufficiently fast for real-time monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Effect of end-point compaction on superpave hot mix asphalt (HMA) mix designs.

    DOT National Transportation Integrated Search

    2004-01-09

    In the Superpave hot mix asphalt (HMA) mix design system, gyratory specime ns are compacted to varying levels of initial (Ninitial), : design (Ndesign) and maximum (Nmaximum) gyrations. Initially, in the Superpave system, specimens were compacted to ...

  6. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... resolution read-out systems such as computers, data loggers, etc., can provide sufficient accuracy and...

  7. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... resolution read-out systems such as computers, data loggers, etc., can provide sufficient accuracy and...

  8. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... resolution read-out systems such as computers, data loggers, etc., can provide sufficient accuracy and...

  9. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... resolution read-out systems such as computers, data loggers, etc., can provide sufficient accuracy and...

  10. 40 CFR 92.127 - Emission measurement accuracy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission measurement accuracy. (a) Good engineering practice dictates that exhaust emission sample analyzer... resolution read-out systems such as computers, data loggers, etc., can provide sufficient accuracy and...

  11. Strategy Guideline. Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less

  12. 2D stepping drive for hyperspectral systems

    NASA Astrophysics Data System (ADS)

    Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin

    2015-07-01

    We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.

  13. Improved Airborne System for Sensing Wildfires

    NASA Technical Reports Server (NTRS)

    McKeown, Donald; Richardson, Michael

    2008-01-01

    The Wildfire Airborne Sensing Program (WASP) is engaged in a continuing effort to develop an improved airborne instrumentation system for sensing wildfires. The system could also be used for other aerial-imaging applications, including mapping and military surveillance. Unlike prior airborne fire-detection instrumentation systems, the WASP system would not be based on custom-made multispectral line scanners and associated custom- made complex optomechanical servomechanisms, sensors, readout circuitry, and packaging. Instead, the WASP system would be based on commercial off-the-shelf (COTS) equipment that would include (1) three or four electronic cameras (one for each of three or four wavelength bands) instead of a multispectral line scanner; (2) all associated drive and readout electronics; (3) a camera-pointing gimbal; (4) an inertial measurement unit (IMU) and a Global Positioning System (GPS) receiver for measuring the position, velocity, and orientation of the aircraft; and (5) a data-acquisition subsystem. It would be necessary to custom-develop an integrated sensor optical-bench assembly, a sensor-management subsystem, and software. The use of mostly COTS equipment is intended to reduce development time and cost, relative to those of prior systems.

  14. Optically Addressable, Ferroelectric Memory With NDRO

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1994-01-01

    For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.

  15. 40 CFR 91.314 - Analyzer accuracy and specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... deflection should generally not be used. (2) Some high resolution read-out systems, such as computers, data...-second time interval. (b) Operating procedure for analyzers and sampling system. Follow the start-up and... systems may be used provided that additional calibrations are made to ensure the accuracy of the...

  16. Jetliner Alert Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA research and design has significantly improved crew alert systems. The Engine Indication and Crew Alerting System (EICAS), developed by Psycho-Linguistic Research Associates, is technologically advanced and able to order alerts by priority. Ames has also developed computer controlled voice synthesizers for readouts during difficult landing approaches. This is available to airplane manufacturers.

  17. Readout architecture for sub-nanosecond resolution TDC

    NASA Astrophysics Data System (ADS)

    Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.

    2012-04-01

    The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s) (either multichannel pixelized PM or silicon PM). The electronics system is built on the concept of autonomous, triggerless, smart sensor directly connected on a standard fast Ethernet network. First radiographies have been performed on the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France). We present an upgrade of the readout architecture allowing to embed a sub-nanosecond resolution TDC within the existing programmable logic to help in the background rejection (rear flux, random coincidences) and to improve the detection purity and the radiography quality. First results obtained are also presented and briefly discussed.

  18. Dedicated multichannel readout ASIC coupled with single crystal diamond for dosimeter application

    NASA Astrophysics Data System (ADS)

    Fabbri, A.; Falco, M. D.; De Notaristefani, F.; Galasso, M.; Marinelli, M.; Orsolini Cencelli, V.; Tortora, L.; Verona, C.; Verona Rinati, G.

    2013-02-01

    This paper reports on the tests of a low-noise, multi-channel readout integrated circuit used as a readout electronic front-end for a diamond multi-pixel dosimeter. The system is developed for dose distribution measurement in radiotherapy applications. The first 10-channel prototype chip was designed and fabricated in a 0.18 um CMOS process. Every channel includes a charge integrator with a 10 pF capacitor and a double slope A/D converter. The diamond multi-pixel detector, based on CVD synthetic single crystal diamond Schottky diodes, is made by a 3 × 3 sensor matrix. The overall device has been tested under irradiation with 6 MeV radio therapeutic photon beams at the Policlinico ``Tor Vergata'' (PTV) hospital. Measurements show a 20 fA RMS leakage current from the front-end input stage and a negligible dark current from the diamond detector, a stable temporal response and a good linear behaviour as a function of both dose and dose rate. These characteristics were common to each tested channel.

  19. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    DOE PAGES

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; ...

    2017-09-26

    Here, we have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e - rms/pixel. This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime.more » Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.« less

  20. Single-Electron and Single-Photon Sensitivity with a Silicon Skipper CCD

    NASA Astrophysics Data System (ADS)

    Tiffenberg, Javier; Sofo-Haro, Miguel; Drlica-Wagner, Alex; Essig, Rouven; Guardincerri, Yann; Holland, Steve; Volansky, Tomer; Yu, Tien-Tien

    2017-09-01

    We have developed ultralow-noise electronics in combination with repetitive, nondestructive readout of a thick, fully depleted charge-coupled device (CCD) to achieve an unprecedented noise level of 0.068 e- rms /pixel . This is the first time that discrete subelectron readout noise has been achieved reproducible over millions of pixels on a stable, large-area detector. This enables the contemporaneous, discrete, and quantized measurement of charge in pixels, irrespective of whether they contain zero electrons or thousands of electrons. Thus, the resulting CCD detector is an ultra-sensitive calorimeter. It is also capable of counting single photons in the optical and near-infrared regime. Implementing this innovative non-destructive readout system has a negligible impact on CCD design and fabrication, and there are nearly immediate scientific applications. As a particle detector, this CCD will have unprecedented sensitivity to low-mass dark matter particles and coherent neutrino-nucleus scattering, while future astronomical applications may include direct imaging and spectroscopy of exoplanets.

Top