Science.gov

Sample records for compact sr ring

  1. Features of the compact photon storage ring

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari; Tsutsui, Hiroshi; Shimoda, Koichi; Mima, Kunioki

    1993-07-01

    The compact photon storage ring (PhSR) is a hybrid machine that features both linac driven FEL and storage ring driven FEL. The lasing condition is determined by the exactly circular electron storage ring, but a continuous electron injection is possible without disturbing the lasing. An effect of coherent synchrotron radiation takes an important role in the lasing. It is found that the compact PhSR is promising in lasing up to a wavelength of less than 10 μm with 10 A accumulated current.

  2. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  3. FODO-Supercell Based Compact Ring Design with Tunable Momentum Compaction and Optimized Dynamic Aperture

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-05-11

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  4. A simple scheme for injection and extraction in compact rings

    SciTech Connect

    Xu, H. S. Huang, W. H.; Tang, C. X.

    2014-03-15

    There has been great interest in building compact synchrotrons for various applications, for example, inverse Compton scattering X-ray sources. However, the beam injection and extraction in compact rings require careful design for the lack of space. In this paper, we propose a simple combined injection-extraction scheme exploiting the fringe field of existing dipole magnets instead of additional septum magnets. This scheme is illustrated by using the 4.8 m ring proposed for Tsinghua Thomson scattering X-ray source as an example. Particle tracking is applied to demonstrate the validity of this scheme.

  5. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE PAGES

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  6. Ion ring experiments with applications to the compact toroid program

    SciTech Connect

    Schamiloglu, E.; Greenly, J.B.; Hammer, D.A.; Pedrow, P.D.; Sudan, R.N.

    1985-05-01

    We report here the status of the ion ring experimental program at Cornell. Ion rings having 3 x 10/sup 15/. 430 keV protons have been trapped in the Ion Ring Experiment (IREX) in a 0.8 T magnetic field. Trapping was achieved using a static downstream mirror and a fast (1.7 ..mu..sec rise time) gated upstream mirror. Ring protons were detectable for up to 4 ..mu..sec (about 50 times both the ion cyclotron period and the injection pulse duration). On LONGSHOT II, up to 1 kJ of less than or equal to 150 keV ions has been produced in 0.4 to 0.9 ..mu..sec pulses using an active anode plasma source as well as the standard surface flashover source. The LONGSHOT II beam will shortly be formed into a rotating proton layer and injected into a preformed (0.3 m diameter and 2.5 m long) Z-discharge plasma to study axial energy dissipation processes. This proton layer ultimately is to be combined with a compact toroid plasma.

  7. A compact cascaded microring filter with two master rings and two slave rings for sensing application

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Zhi-quan; Tong, Kai

    2014-01-01

    In this paper, an ultra compact cascaded microring filter consisting of two master rings with radius of 2.5 μm and two slave rings with radius of 1 μm is presented and studied theoretically. The filter with a very large free spectral range (FSR) of 206 nm, a deep extinction ratio of 23 dB, a high quality factor of 2.76×105, and greatly suppressed spurious modes of less than 0.1 dB is achieved. The spectral responses of the filter are simulated by transfer matrix method, and the results show that this filter has a great potential of sensor application.

  8. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  9. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  10. Acceleration of compact toroid plasma rings for fusion applications

    SciTech Connect

    Hartman, C.W.; Barr, W.L.; Eddleman, J.L.; Gee, M.; Hammer, J.H.; Ho, S.K.; Logan, B.G.; Meeker, D.J.; Mirin, A.A.; Nevins, W.M.

    1988-08-26

    We describe experimental results for a new type of collective accelerator based on magnetically confined compact torus (CT) plasma rings and discuss applications to both inertial and magnetic fusion. We have demonstrated the principle of CT acceleration in the RACE device with acceleration of 0.5 mg ring masses to 400 km/s and 0.02 mg ring masses to 1400 km/s at greater than or equal to30% efficiency. Scaling the CT accelerator to the multi-megajoule level could provide an efficient, economical driver for inertial fusion (ICF) or magnetically insulated inertial fusion. Efficient conversion to x-rays for driving hohlraum-type ICF targets has been modeled using a radiation-hydrodynamics code. At less demanding conditions than required for ICF, a CT accelerator can be applied to fueling and current drive in tokamaks. Fueling is accomplished by injecting CTs at the required rate to sustain the particle inventory and at a velocity sufficient to penetrate to the magnetic axis before CT dissolution. Current drive is a consequence of the magnetic helicity content of the CT, which is approximately conserved during reconnection of the CT fields with the tokamak. Major areas of uncertainty in CT fueling and current drive concern the mechanism by which CTs will stop in a tokamak plasma and the effects of the CT on energy confinement and magnetic stability. Bounds on the required CT injection velocity are obtained by considering drag due to emission of an Alfven-wave wake and rapid reconnection and tilting on the internal Alfven time scale of the CT. Preliminary results employing a 3-D, resistive MHD code show rapid tilting with the CT aligning its magnetic moment with the tokamak field. Requirements for an experimental test of CT injection and scenarios for fueling a reactor will also be discussed. 14 refs., 4 figs.

  11. Acceleration of compact torus plasma rings in a coaxial rail-gun

    SciTech Connect

    Hartman, C.W.; Hammer, J.H.; Eddleman, J.

    1985-05-16

    We discuss here theoretical studies of magnetic acceleration of Compact Torus plasma rings in a coaxial, rail-gun accelerator. The rings are formed using a magnetized coaxial plasma gun and are accelerated by injection of B/sub theta/ flux from an accelerator bank. After acceleration, the rings enter a focusing cone where the ring is decelerated and reduced in radius. As the ring radius decreases, the ring magnetic energy increases until it equals the entering kinetic energy and the ring stagnates. Scaling laws and numerical calculations of acceleration using a O-D numerical code are presented. 2-D, MHD simulations are shown which demonstrate ring formation, acceleration, and focusing. Finally, 3-D calculations are discussed which determine the ideal MHD stability of the accelerated ring.

  12. Choice of momentum compaction factor for the APIARY low-energy ring

    SciTech Connect

    Zisman, M.S. )

    1990-08-01

    For the new low-energy ring of the APIARY B factory collider, there are several considerations that go into the choice of momentum compaction factor. In this note we enumerate these considerations and indicate the restrictions on momentum compaction factor that arise therefrom. Probably the most difficult condition to achieve is maintaining the same betatron tune modulation at the IP as occurs for the high-energy ring. Generally, however, we find that the constraints are rather loose, so the ring design is not heavily influenced. 5 refs.

  13. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M.T.F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Shibata, K.; Ohmi, K.; Dugan, G.; Palmer, M.; Crittenden, J.A.; Harkay, K.; Boon, L.; Furman, M.A.; Venturini, M.; Celata, C.; Malyshev, O.B.; Papaphilippou, I.; /CERN

    2010-06-15

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of the shorter damping ring with respect to the electron cloud build-up and related beam instabilities. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow considerable reduction of the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigation techniques and the integration of the CesrTA results into the Damping Ring design.

  14. Recommendation for the Feasibility of more Compact LC Damping Rings

    SciTech Connect

    Pivi, M. T. F.; Wang, L.; Demma, T.; Guiducci, S.; Suetsugu, Y.; Fukuma, H.; Shibata, K.; Dugan, K.,G.; Palmer, M.; Crittenden, J.; Harkay, K.; Boon, L.; Furman, M. A.; Venturini, M.; Celata, C.; Malyshev, O.; Papaphilippou, I.

    2010-05-23

    As part of the international Linear Collider (ILC) collaboration, we have compared the electron cloud (EC) effect for different Damping Ring (DR) designs respectively with 6.4 km and 3.2 km circumference and investigated the feasibility of a shorter damping ring with respect to the electron cloud build-up and related beam instability. The studies for a 3.2 km ring were carried out with beam parameters of the ILC Low Power option. A reduced damping ring circumference has been proposed for the new ILC baseline design SB2009 [1] and would allow to considerably reduce the number of components, wiggler magnets and costs. We discuss the impact of the proposed operation of the ILC at high repetition rate 10 Hz and address the necessary modifications for the DRs. We also briefly discuss the plans for future studies including the luminosity upgrade option with shorter bunch spacing, the evaluation of mitigations and the integration of the CesrTA results into the Damping Ring design.

  15. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  16. Compact all-fiber ring femtosecond laser with high fundamental repetition rate.

    PubMed

    Wei, Xiaoming; Xu, Shanhui; Huang, Huichang; Peng, Mingying; Yang, Zhongmin

    2012-10-22

    A 165-fs all-fiber ring laser is demonstrated with a fundamental repetition rate of 235 MHz based on a 5.7-cm-long Er(3+)/Yb(3+) codoped phosphate glass fiber and a technique of nonlinear polarization evolution. In order to further enhance the fundamental repetition rate and compact the structure of the all-fiber laser, an optical integrated module is designed. By employing this novel optical module, a much more compact 105-fs mode-locking all-fiber ring laser, operating at a 325 MHz fundamental repetition rate, is realized.

  17. Design of a compact ring for proton radiation applications

    NASA Astrophysics Data System (ADS)

    Li, Guang-Rui; Zheng, Shu-Xin; Yao, Hong-Juan; Guan, Xia-Ling; Wang, Xue-Wu; Huang, Wen-Hui

    2017-01-01

    This paper presents the design of a compact proton synchrotron, including lattice structure, injection system and extraction system, for radiation applications. The lattice is based on a DBFO cell and shows good properties like small β max and decent kick arm. Radiation applications require relative strong and continuous beam, so we propose strip injection and resonance extraction for the design. A phase space painting scheme is designed and simulated by ORBIT. The scheme achieves good uniformity in phase space. The extraction system is designed and optimized by multi-particle tracking.

  18. A Compact Parasitic Ring Antenna for ISM Band Applications

    NASA Astrophysics Data System (ADS)

    Kamalaveni, G.; Ganesh, Madhan M.

    2016-11-01

    This paper reports a simple approach for the design of a compact microstrip antenna at 5.8 GHz. The proposed antenna initially designed with 20 mm × 12 mm radiating element and 65 mm2 of ground plane in FR4 substrate, provided a -10 dB bandwidth of 300 MHz. Further, parasitic elements are added to improve the antenna bandwidth. A gap-coupled co axial feeding mechanism is also studied for achieving higher impedance bandwidth. It is observed that, antenna with parasitic patches provides a higher impedance bandwidth of 600 MHz with return loss of -30 dB. The prototype of the antenna is fabricated and characterized using a near field measurement system. The results obtained by the experiments are found to agree well with the simulation.

  19. Results from the RACE (Ring ACceleration Experiment) Compact Torus Acceleration Experiment

    SciTech Connect

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ approx.F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of approx. =2.5 x 10/sup 8/ cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10/sup 8/ cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios approx.10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements.

  20. Status of the Mini-Ring project: a compact electrostatic storage ring

    SciTech Connect

    Bernard, J.; Montagne, G.; Ales, J.; Bredy, R.; Chen, L.; Martin, S.; Cederquist, H.; Schmidt, H.

    2008-12-08

    The idea of building a small, cheap and transportable electrostatic storage ring emerged in the Lyon and Stockholm groups as a collaborative work in the framework of the ITS-LEIF European network. Such a ring could be devoted to experiments where the ring needs to be transported to different facilities that can deliver exotic particles or means of excitation (e.-g. highly charged ions, X--ray synchrotron...). The design of the so-called Mini-Ring and ion trajectory simulations will be presented. First preliminary results have demonstrated the storage of stable Ar{sup +} ion beams in the millisecond time range. The storage time is presently limited by the poor vacuum conditions (P = 2x10{sup -7} mbar) in the chamber, a feature that is going to be improved in the future.

  1. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  2. Compact near-IR and mid-IR cavity ring down spectroscopy device

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  3. Compact storage rings Siberia-AS and Siberia-SM synchrotron radiation sources for lithography

    SciTech Connect

    Anashin, V. V.; Arbuzov, V. S.; Blinov, G. A.; Veshcherevich, V. G.; Vobly, P. D.; Gorniker, E. I.; Zinevich, N. I.; Zinin, E. I.; Zubkov, N. I.; Kiselev, V. A.; and others

    1989-07-01

    The paper deals with two projects of compact superconducting storage rings for industrial production of integrated circuits (IC) using x-ray lithography within the 8- to 20-A wavelengths range. The azimuthally symmetric superconducting storage ring Siberia-AS at an energy of 600 MeV is a superconducting analog of VEP-1, one of the earliest storage rings in the world intended for the purposes of high-energy physics. Unlike the conventional design, no iron yoke is used in the storage ring under consideration to form the magnetic field at the equilibrium orbit and to close the return magnetic flux---this is performed by some inner and outer superconducting windings. Such a scheme enables the size of the storage ring to be substantially reduced (a cylinder of 2 m in diameter and 2 m long), and as a result, its weight decreases, too (about 10 tons). The eight-magnet storage ring Siberia-SM is of four-order symmetry so that the periodicity element comprises two rectangular magnets and three lenses. Its basic component is a superconducting bending rectangular magnet at a 6-T magnetic field. Two variants of such magnets have been proposed: in the first, the iron yoke is utilized to form the magnetic field and to close the return flux, while the second is an ironless C-shaped magnet manufactured on the basis of original wedgelike coils.

  4. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances

    PubMed Central

    Sabran, Mursyidul Idzam; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A. E.

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz– 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations. PMID:28192504

  5. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    PubMed Central

    Islam, M. M.; Faruque, M. R. I.; Islam, M. T.

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band. PMID:24971379

  6. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    PubMed

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  7. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    PubMed

    Sabran, Mursyidul Idzam; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Soh, Ping Jack; Chew, Beng Wah; Vandenbosch, Guy A E

    2017-01-01

    This paper presents a compact circularly polarized (CP) antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third) order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11) impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  8. Compact dual-wavelength thulium-doped fiber laser employing a double-ring filter.

    PubMed

    Fan, Xuliang; Zhou, Wei; Wang, Siming; Liu, Xuan; Wang, Yong; Shen, Deyuan

    2016-04-20

    In this paper, we report on stable dual-wavelength operation of a thulium-doped compact all-fiber laser using a double-ring filter as the wavelength selective element. Simultaneously lasing at 2014.4 and 2018.4 nm has been obtained via tuning the polarization controllers to adjust the relative gain and loss of the laser cavity. The side mode suppression ratios are greater than 52 dB and the output power difference between the two lasing lines is less than 0.08 dB under 2.6 W of incident pump power.

  9. Design and system integration of the superconducting wiggler magnets for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Schoerling, Daniel; Antoniou, Fanouria; Bernhard, Axel; Bragin, Alexey; Karppinen, Mikko; Maccaferri, Remo; Mezentsev, Nikolay; Papaphilippou, Yannis; Peiffer, Peter; Rossmanith, Robert; Rumolo, Giovanni; Russenschuck, Stephan; Vobly, Pavel; Zolotarev, Konstantin

    2012-04-01

    To achieve high luminosity at the collision point of the Compact Linear Collider (CLIC), the normalized horizontal and vertical emittances of the electron and positron beams must be reduced to 500 and 4 nm before the beams enter the 1.5 TeV linear accelerators. An effective way to accomplish ultralow emittances with only small effects on the electron polarization is using damping rings operating at 2.86 GeV equipped with superconducting wiggler magnets. This paper describes a technical design concept for the CLIC damping wigglers.

  10. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    PubMed

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  11. Development of a compact neutron source by a high voltage ring electrode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; Shuhei Nezu Team; Akihiro Takeuchi Team

    2016-10-01

    Neutron is one of the particles in atomic nucleus. Neutron beam has many physical characteristics as follows; (a) the transmittance in a matter is high and (b) the interaction with atomic nuclei is dominant. For these reasons, the development of the neutron beam source is expected in many engineering and medical applications. However, it is still under development, because there is no compact neutron beam source. The purpose of this research is to develop the compact neutron beam source. The neutron is generated by using the inertial electrostatic confinement fusion. In this experiment, a ring-shaped electrode (cathode) is used for the convergence of the deuterium nucleus. To product the neutron by a D-D nuclear reaction, it is necessary to apply a high voltage into the glow discharge plasma. The neutron production rate is approximately 105 n/s under the condition that the cathode voltage is -15kV and discharge current is 10 mA. The neutron production rate increases with increasing the ring cathode voltage or discharge current. It will be possible to increase the number of neutrons by the stabilizing of the high voltage and high current discharge.

  12. The Corollaries of the Ultra-Compact Nuclear Rings in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Shlosman, Isaac

    2011-10-01

    Some `composite' Seyfert 2 nuclei show evidence for massive ultra-compact starbursts within the central 40-200 pc. When spatially resolved with the HST, these starbursts exhibit morphology similar to `canonical,' 1-2 kpc size, nuclear rings which form as a result of radial gas inflows in barred and {maybe} interacting galaxies. Based on our recent work, although only a few of such Ultra-Compact Nuclear Rings {UCNRs} are known to date, there are reasons to believe that this is the tip of the iceberg. UCNRs can be closely related to both the AGN and starburst activity in the nucleus, and to the host galaxy. They may thus be the missing link between the two. We propose the first comprehensive statistical study of the fraction and properties of such UCNRs in nearby galaxies using HST archival data. We shall also investigatethe UCNR population in matched samples of Seyfert 2s, LINERs, `transition' objects and `pure' nuclear starbursts. The targets will be selected from the homogeneous survey of 486 objects of Ho et al., of which we estimate more than half to have suitable archive data. We shall find the size, ellipticity, color distributions and stellar populations of the UCNRs, explore how they relate to nuclear activity and analyze correlations between UCNR population and global galactic properties. We shall determine whether the UCNRs form a distinct population from the canonical 1-2 kpc size nuclear rings or they constitute the tail distribution of their larger counterparts. The properties of the UCNR population will allow us to distinguish between the various theoretical models of gas flow within the central 40-200 pc, thus providing stringent clues to the fueling mechanisms of AGN and explore any possible linkage between central starbursts and AGN. While we do not expect to provide definitive answers to all of these questions, this will be the first attempt to link observationally and theoretically the AGN processes to those in their host galaxies.

  13. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    NASA Astrophysics Data System (ADS)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  14. The in vitro biological properties of Mg-Zn-Sr alloy and superiority for preparation of biodegradable intestinal anastomosis rings

    PubMed Central

    Liu, Ling; Li, Nianfeng; Lei, Ting; Li, Kaimo; Zhang, Yangde

    2014-01-01

    Background Magnesium (Mg) alloy is a metal-based biodegradable material that has received increasing attention in the field of clinical surgery, but it is currently seldom used in intestinal anastomosis. This study was conducted to comprehensively assess a ternary magnesium (Mg)-zinc (Zn)-strontium (Sr) alloy’s biological superiorities as a preparation material for intestinal anastomosis ring. Material/Methods Mouse L-929 fibroblasts were cultured with Mg-Zn-Sr alloy extract and compared with both positive (0.64% phenol) and negative (original broth culture) controls. The cell morphology of different groups was examined using microscopy, and a cytotoxicity assessment was performed. Fresh anticoagulated human blood was mixed with Mg-Zn-Sr alloy extract and compared with both positive (distilled water) and negative (normal saline) controls. The absorbance of each sample at 570 nm was used to calculate the Mg-Zn-Sr alloy hemolysis ratio in order to test the Mg alloy’s blood compatibility. Bacterial cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were added to Mg-Zn-Sr alloy block samples and compared with positive (Ceftazidime), negative (316LSS stainless steel), and blank controls. The broth cultures were sampled to compare their bacterial colony counts so as to evaluate the antibacterial properties of the Mg-Zn-Sr alloy. The Mg-Zn-Sr alloy was surface-coated with a layer of poly(lactic-co-glycolic acid) carrying everolimus. The surface morphology and degradability of the coating were examined so as to demonstrate feasibility of coating, which can release the drug evenly. Results The experiments proved that Mg-Zn-Sr alloy has good biocompatible, antibacterial, and drug-loaded coating performances, which are lacking in existing intestinal anastomosis devices/materials. Conclusions The Mg-Zn-Sr alloy increases biocompatibility, and yields a safer and better therapeutic effect; therefore, it is a novel biomaterial that is feasible for

  15. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes).

    PubMed

    Li, Shuhui; Wang, Jian

    2014-01-24

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<-22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<-20 dB crosstalk under a bend radius of 2 cm).

  16. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  17. Study of vortex ring dynamics in the nonlinear Schrodinger equation utilizing GPU-accelerated high-order compact numerical integrators

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald Meyer

    We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrodinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics. Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient numerical methods to integrate the NLSE have to be developed in order to perform the extensive number of required simulations. To facilitate this, compact high-order numerical schemes for the spatial derivatives are developed which include a new semi-compact modulus-squared Dirichlet boundary condition. The schemes are combined with a fourth-order Runge-Kutta time-stepping scheme in order to keep the overall method fully explicit. To ensure efficient use of the schemes, a stability analysis is performed to find bounds on the largest usable time step-size as a function of the spatial step-size. The numerical methods are implemented into codes which are run on NVIDIA graphic processing unit (GPU) parallel architectures. The codes running on the GPU are shown to be many times faster than their serial counterparts. The codes are developed with future usability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with a MEX-compiler interface. Reproducibility of results is achieved by combining the codes into a code package called NLSEmagic which is freely distributed on a dedicated website.

  18. Stripline design for the extraction kicker of Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Belver-Aguilar, C.; Faus-Golfe, A.; Toral, F.; Barnes, M. J.

    2014-07-01

    In the framework of the design study of future linear colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal center-of-mass energy of 3 TeV. To achieve the luminosity requirements, predamping rings (PDRs) and damping rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several kicker systems are needed to inject and extract the beam from the PDRs and DRs. In order to achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. In this paper, we present the complete design of the striplines for the DR extraction kicker, since it is the most challenging from the field homogeneity point of view. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most common shapes introduce separately. Furthermore, a detailed study of the different operating modes of a stripline kicker allowed the beam coupling impedance to be reduced at low frequencies: this cannot be achieved by tapering the electrodes. The optimum design of the striplines and their components has been based on studies of impedance matching, field homogeneity, power transmission, beam coupling impedance, and manufacturing tolerances. Finally, new ideas for further improvement of the performance of future striplines are reported.

  19. Investigation on Ring/Split-Ring Loaded Bow-Tie Antenna for Compactness and Notched-Band

    NASA Astrophysics Data System (ADS)

    Peng, Lin; Xie, Ji-yang; Jiang, Xing; Li, Si-min

    2016-03-01

    In this paper, a Bow-tie antenna with size reduction, impedance matching and radiation pattern improvement characteristics is designed with an encircling ring. Moreover, further size reduction is achieved by utilizing two symmetric split rings with more frequency tuning flexibility. Research found the ring loaded Bow-tie antenna (RLBA) shows better performance than the referenced Bow-tie antenna (RBA), and the mechanisms of performance improvements are also investigated and found to be the loading ring acts as two symmetric dipoles in the direction of the antenna's polarization. Then, using two symmetric split rings on the opposite side of the substrate as replacement of the encircling ring will prolong the length of the dipoles, and achieves further size reduction. The antenna is denoted as dual split ring loaded Bow-tie antenna (DSRBA). The low cutoff frequencies of RBA, RLBA and DSRBA with identical antenna size are 2.65 GHz, 2.27 GHz and 2.06 GHz, respectively. Then, the corresponding diameters of the antennas are 0.353 λc, 0.303 λc, and 0.275 λc, where λc are their corresponding wavelength of the lower cutoff frequencies. Furthermore, a notched-band is generated as a byproduct of the split rings, and it is owing to the new resonance of the overlap areas of the split rings. The notch can be used to alleviate interference of WiMAX band by carefully choosing the split rings' size. Radiation patterns of RLBA and DSRBA are also improved as current distributions of the high frequencies are trained in order by the ring/split-rings. Measurements are performed to verify the designs.

  20. Upgrade of the 1.2 GeV STB ring for the SR utilization in Tohoku University

    NASA Astrophysics Data System (ADS)

    Hinode, F.; Muto, T.; Kawai, M.; Kashiwagi, S.; Shibasaki, Y.; Nanbu, K.; Nagasawa, I.; Takahashi, K.; Hama, H.

    2013-03-01

    An electron accelerator complex, 300 MeV linac and 1.2 GeV booster synchrotron, had been routinely operated as a user facility at Tohoku University until the Great East Japan Earthquake damaged the accelerator seriously. In the last year some budgets were approved to partially reconstruct the accelerator. For the booster ring, some old power supplies of magnets are replaced. Furthermore some quadrupole magnets are also replaced to the combined function magnets of which sextupole component is included. Modifying the ring optics so as to introduce the horizontal dispersion into the position of combined magnet, this replacement will make it possible to correct the chromaticity. There has been no sextupole in the ring, so that the ring current is significantly limited due to head-tail instability. Hence this upgrade will bring the new capability into the ring as a synchrotron light source. Presently it is planned to utilize SR from the 1.3 T bending magnet for educational purpose in the field of SR application such as XAFS. The photon flux of 5.6E12 photons/s/mrad2/0.1%BW will be obtained around the peak energy region of 1 keV for this beam line in the case of 200 mA operation with the emittance of 160 nmrad. In addition to the beam line from bending magnet, a 2 m long straight section is also reserved for an insertion device for future application.

  1. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  2. Geochronology and paleothermometry of Neogene sediments from the Vøring Plateau using Sr, C and O isotopes

    NASA Astrophysics Data System (ADS)

    Smalley, P. C.; Nordaa, A.; Råheim, A.

    1986-07-01

    The Neogene sediments from DSDP site 341 on the Vøring Plateau, Norwegian Sea, contain a thin glauconitic pellet-bearing subunit, which separates underlying pelagic clays from overlying glacial-marine sediments. Oxygen isotope measurements of benthic foraminifera show aδ 18O shift of + 1%. during deposition of this subunit, probably a combined effect of a drop in bottom water temperature and a rise in seawaterδ 18O. The chronology of this sedimentological and O isotope transition is, however, poorly constrained by fossil evidence. Rb sbnd Sr dating of glauconitic pellets indicates that the lower part of the glauconitic subunit was deposited 11.6 ± 0.2 Ma ago. Further geochronological evidence, derived from the Sr and C isotopic compositions of foraminifera compared with known seawater-time variations, indicates that the lower pelagic clays are early to middle Miocene, deposited at a mean rate of ˜ 15 m/Ma. The glauconitic subunit contains part of the middle Miocene and probably all of the late Miocene in a condensed sequence with a very low mean depositional rate (˜ 0.2 m/Ma). The overlying glacial marine sediments are probably Pliocene, with a high mean rate of deposition, ˜ 45 m/Ma. This is the first application of C, O and Sr isotopic stratigraphy combined with Rb sbnd Sr dating of glauconitic minerals, and it illustrates the applications of this integrated approach in geochronology.

  3. Treatment of boundary conditions in through-diffusion: A case study of (85)Sr(2+) diffusion in compacted illite.

    PubMed

    Glaus, M A; Aertsens, M; Maes, N; Van Laer, L; Van Loon, L R

    2015-01-01

    Valuable techniques to measure effective diffusion coefficients in porous media are an indispensable prerequisite for a proper understanding of the migration of chemical-toxic and radioactive micropollutants in the subsurface and geosphere. The present article discusses possible pitfalls and difficulties in the classical through-diffusion technique applied to situations where large diffusive fluxes of cations in compacted clay minerals or clay rocks occur. The results obtained from a benchmark study, in which the diffusion of (85)Sr(2+) tracer in compacted illite has been studied using different experimental techniques, are presented. It is shown that these techniques may yield valuable results provided that an appropriate model is used for numerical simulations. It is further shown that effective diffusion coefficients may be systematically underestimated when the concentration at the downstream boundary is not taken adequately into account in modelling, even for very low concentrations. A criterion is derived for quasi steady-state situations, by which it can be decided whether the simplifying assumption of a zero-concentration at the downstream boundary in through-diffusion is justified or not. The application of the criterion requires, however, knowledge of the effective diffusion coefficient of the clay sample. Such knowledge is often absent or only approximately available during the planning phase of a diffusion experiment.

  4. Status of the variable momentum compaction storage ring experiment in SPEAR

    SciTech Connect

    Tran, P.; Amiry, A.; Pellegrini, C.

    1993-09-01

    Variable momentum compaction lattices have been proposed for electron-positron colliders and synchrotron radiation sources to control synchrotron tune and bunch length. To address questions of single particle stability limits, a study has been initiated to change the SPEAR lattice into a variable momentum compaction configuration for experimental investigation of the beam dynamics. In this paper, we describe a model-based method used to transform SPEAR from the injection lattice to the low momentum compaction configuration. Experimental observations of the process are reviewed.

  5. Compact Torus plasma ring accelerator: a new type driver for inertial confinement fusion

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Meeker, D.L.

    1986-08-22

    We discuss the acceleration of magnetically-confined plasma rings to provide a driver for ICF. The acceleration of plasma rings is predicted to be efficient and following focusing, to generate ion-bombardment power in the range 10/sup 15/ to 10/sup 16/ W/cm/sup 2/ at a total deposition energy of multimegajoules. The simplicity of plasma ring accelerator suggests that a 5 MJ (on target) driver would cost in the range 1 to 5 $/joule. First experimental tests of the accelerator are described.

  6. Ultra-low power generation of twin photons in a compact silicon ring resonator.

    PubMed

    Azzini, Stefano; Grassani, Davide; Strain, Michael J; Sorel, Marc; Helt, L G; Sipe, J E; Liscidini, Marco; Galli, Matteo; Bajoni, Daniele

    2012-10-08

    We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.

  7. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators.

    PubMed

    Chu, Tao; Fujioka, Nobuhide; Ishizaka, Masashige

    2009-08-03

    A wavelength tunable laser with an SOA and external double micro-ring resonator, which is fabricated with silicon photonic-wire waveguides, is demonstrated. To date, it is the first wavelength tunable laser fabricated with silicon photonic technology. The device is ultra compact, and its external resonator footprint is 700 x 450 microm, which is about 1/25 that of conventional tunable lasers fabricated with SiON waveguides. The silicon resonator shows a wide tuning range covering the C or L bands for DWDM optical communication. We obtained a maximum tuning span of 38 nm at a tuning power consumption of 26 mW, which is about 1/8 that of SiON-type resonators.

  8. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  9. Coherent Synchrotron Radiation and Bunch Stability in a Compact Storage Ring

    SciTech Connect

    Venturini, M.

    2005-01-25

    We examine the effect of the collective force due to coherent synchrotron radiation (CSR) in an electron storage ring with small bending radius. In a computation based on time-domain integration of the nonlinear Vlasov equation, we find the threshold current for a longitudinal microwave instability induced by CSR alone. The model accounts for suppression of radiation at long wavelengths due to shielding by the vacuum chamber. In a calculation just above threshold, small ripples in the charge distribution build up over a fraction of a synchrotron period, but then die out to yield a relatively smooth but altered distribution with eventual oscillations in bunch length. The instability evolves from small noise on an initial smooth bunch of rms length much greater than the shielding cutoff.

  10. Multi-cell disk-and-ring tapered structure for compact RF linacs

    NASA Astrophysics Data System (ADS)

    Smirnov, A. V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-09-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  11. A Compact Pentagonal Ring CPW-Fed Zeroth Order Resonating Antenna with Gain Enhancement

    NASA Astrophysics Data System (ADS)

    Gupta, Ashish; Chaudhary, Raghvendra Kumar

    2017-09-01

    In this work, a pentagonal ring CPW-fed zeroth order resonating (ZOR) antenna with gain enhancement is proposed. Gain enhancement is achieved by means of electromagnetic bandgap structures (EBG) loaded on patch. The proposed antenna is operated in series resonant mode, therefore resonance frequency is dominated by series parameters of the conventional CRLH transmission line. The antenna comprises of a circular patch which is imposed by interdigital capacitor and EBG structures. Meandered line inductor is connected between patch and pentagonal ground plane in order to ensure miniaturization using CRLH resonant approach. Measurement results shows that proposed antenna offers ZOR resonance at 2.7 GHz with 4.81 %, 10 dB fractional bandwidth. The antenna offers simulated gain of 1.63 dBi and 80.6 % radiation efficiency at ZOR frequency. Surface current distribution shows that how these CRLH - TL components responsible for origination of ZOR mode. Proposed antenna exhibits excellent radiation patterns with cross polarization level of -53 dB in the boresight direction.

  12. Lattice design of a quasi-isochronous ring for a storage-ring FEL

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1995-12-31

    Design work for a Quasi-Isochronous Ring (QI-Ring) dedicated to Storage Ring FELs in Electrotechnical Laboratory has been completed. The motivation for this work is to shorten the electron bunch length in order to get a high peak current in a compact Storage-Ring (SR). By placing an inverted dipole field in a location where the energy dispersion function is relatively large, one can reduce the momentum compaction factor ({alpha}) and shorten a bunch length in a SR. The main requirements for the QI-Ring are: 1.5GeV maximum beam energy; 80m circumference; two 10m-long dispersion free straight sections for insertion devices. A few meters dispersion free straight sections for RF cavities and injection bumpers; and a wide tune ability in betatron functions and momentum compaction factor ({alpha}). As shown in figure 1, the lattice includes two 49 degree, 3 T superconducting bending magnets to reduce the circumference of the ring, a -8 degree normal inverted dipole magnet (ID), 4 families quadrupole magnets (QF, QD, QFA, QDA), and 3 families sextupole magnets. Each quadrupole family has a specific function: QF & QD control the betatron tunes, and QFA & QDA control the {alpha} and suppress the energy dispersion in a straight section. In this type of ring it is important to compensate the second order momentum compaction factor ({alpha}{sub 2}), so at least three families of sextupoles are required.

  13. Ultra-Sensitive Elemental and Isotope Measurements with Compact Plasma Source Cavity Ring-Down Spectroscopy (CPS-CRDS)

    SciTech Connect

    Duan, Yixiang; Wang, Chuji; Winstead, Christopher B.

    2005-06-01

    The proposed research is to develop a new class of instruments for actinide isotopes and hazardous element analysis through coupling highly sensitive cavity ring-down spectroscopy to a compact microwave plasma source. The research work will combine advantages of CRDS measurement with a low power, low flow rate, tubing-type microwave plasma source to reach breakthrough sensitivity for elemental analysis and unique capability of isotope measurement. The project has several primary goals: (1) Explore the feasibility of marrying CRDS with a new microwave plasma source; (2) Provide quantitative evaluation of CMP-CRDS for ultratrace elemental and actinide isotope analysis; (3) Approach a breakthrough detection limit of ca. 10{sup -13} g/ml or so, which are orders of magnitude better than currently available best values; (4) Demonstrate the capability of CMP-CRDS technology for isobaric measurements, such as {sup 238}U and {sup 238}Pu isotopes. (5) Design and assemble the first compact, field portable CMP-CRDS instrument with a high-resolution diode laser for DOE/EM on-site demonstration. With all these unique capabilities and sensitivities, we expect CMP-CRDS will bring a revolutionary change in instrument design and development, and will have great impact and play critical roles in supporting DOE's missions in environmental remediation, environmental emission control, waste management and characterization, and decontamination and decommissioning. The ultimate goals of the proposed project are to contribute to environmental management activities that would decrease risk for the public and workers, increase worker productivity with on-site analysis, and tremendously reduce DOE/EM operating costs.

  14. Compact stellar systems in the polar ring galaxies NGC 4650A and NGC 3808B: Clues to polar disk formation

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Georgiev, Iskren Y.; Puzia, Thomas H.; Goudfrooij, Paul; Arnaboldi, Magda

    2016-01-01

    Context. Polar ring galaxies (PRGs) are composed of two kinematically distinct and nearly orthogonal components, a host galaxy (HG) and a polar ring/disk (PR). The HG usually contains an older stellar population than the PR. The suggested formation channel of PRGs is still poorly constrained. Suggested options are merger, gas accretion, tidal interaction, or a combination of both. Aims: To constrain the formation scenario of PRGs, we study the compact stellar systems (CSSs) in two PRGs at different evolutionary stages: NGC 4650A with well-defined PR, and NGC 3808 B, which is in the process of PR formation. Methods: We use archival HST/WFPC2 imaging in the F450W, F555W, or F606W and F814W filters. Extensive completeness tests, PSF-fitting techniques, and color selection criteria are used to select cluster candidates. Photometric analysis of the CSSs was performed to determine their ages and masses using stellar population models at a fixed metallicity. Results: Both PRGs contain young CSSs (<1 Gyr) with masses of up to 5 × 106M⊙, mostly located in the PR and along the tidal debris. The most massive CSSs may be progenitors of metal-rich globular clusters or ultra compact dwarf (UCD) galaxies. We identify one such young UCD candidate, NGC 3808 B-8, and measure its size of reff = 25.23+1.43-2.01 pc. We reconstruct the star formation history of the two PRGs and find strong peaks in the star formation rate (SFR, ≃200 M⊙/yr) in NGC 3808 B, while NGC 4650 A shows milder (declining) star formation (SFR< 10 M⊙/yr). This difference may support different evolutionary paths between these PRGs. Conclusions: The spatial distribution, masses, and peak star formation epoch of the clusters in NGC 3808 suggest for a tidally triggered star formation. Incompleteness at old ages prevents us from probing the SFR at earlier epochs of NGC 4650 A, where we observe the fading tail of CSS formation. This also impedes us from testing the formation scenarios of this PRG.

  15. Static beam-based alignment for the Ring-To-Main-Linac of the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Han, Y.; Latina, A.; Ma, L.; Schulte, D.

    2017-06-01

    The Compact Linear Collider (CLIC) is a future multi-TeV collider for the post-Large Hadron Collider era. It features high-gradient acceleration and ultra-low emittance to achieve its ambitious goals of high collision energy and peak luminosity. Beam-based alignment (BBA) techniques are mandatory for CLIC to preserve the ultra-low emittances from the damping rings to the interaction point. In this paper, a detailed study of BBA techniques has been carried out for the entire 27 km long ``Ring-To-Main-Linac'' (RTML) section of the CLIC, to correct realistic static errors such as element position offsets, angle, magnetic strength and dynamic magnetic centre shifts. The correction strategy is proved to be very effective and leads to a relaxation of the pre-alignment tolerances for the component installation in the tunnel. This is the first time such a large scale and complex lattice has been corrected to match the design budgets. The techniques proposed could be applied to similarly sized facilities, such as the International Linear Collider, where a similar RTML section is used, or free-electron lasers, which, being equipped with linacs and bunch compressors, present challenges similar to those of the CLIC RTML. Moreover, a new technique is investigated for the emittance tuning procedure: the direct measurement of the interactions between the beams and a set of a few consecutive laser wires. The speed of this technique can be faster comparing to the traditional techniques based on emittance reconstructed from beam size measurements at several positions.

  16. Influence of the Biasing Scheme on the Performance of Au/SrTiO3/LaAlO3 Thin Film Conductor/Ferroelectric Tunable Ring Resonators

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.

    1998-01-01

    The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.

  17. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, this paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  18. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  19. National Synchrotron Light Source II storage ring vacuum systems

    SciTech Connect

    Hseuh, Hsiao-Chaun Hetzel, Charles; Leng, Shuwei; Wilson, King; Xu, Huijuan; Zigrosser, Douglas

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.

  20. Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite

    NASA Astrophysics Data System (ADS)

    Glaus, M. A.; Aertsens, M.; Appelo, C. A. J.; Kupcik, T.; Maes, N.; Van Laer, L.; Van Loon, L. R.

    2015-09-01

    Enhanced mass transfer rates have been frequently observed in diffusion studies with alkaline and earth alkaline elements in compacted clay minerals and clay rocks. Whether this phenomenon - often termed surface diffusion - is also relevant for more strongly sorbing species is an open question. We therefore investigated the diffusion of Sr2+, Co2+ and Zn2+ in compacted illite with respect to variations of the concentration of the background electrolyte, pH and carbonate. New experimental techniques were developed in order to avoid artefacts stemming from the confinement of the clay sample. A distinct dependence of the effective diffusion coefficients on the concentration of the background electrolyte was observed for all three elements. A similar correlation was found for the sorption distribution ratio (Rd) derived from tracer breakthrough in the case of Sr2+, while this dependence was much weaker for Co2+ and Zn2+. Model calculations using Phreeqc resulted in a good agreement with the experimental data when it was assumed that the cationic species, present in the electrical double layer (EDL) of the charged clay surface, are mobile. Species bound to the specific surface complexation sites at the clay edges were assumed to be immobile. An assessment of the mobility of the type of cationic elements studied here in argillaceous media thus requires an analysis of their distribution among specifically sorbed surface species and species in the EDL. The normal approach of deriving unknown effective diffusion coefficients from reference values of an uncharged water tracer may significantly underestimate the mobility of metal cations in argillaceous media.

  1. Electromagnetic characterization of nonevaporable getter properties between 220-330 and 500-750 GHz for the Compact Linear Collider damping rings

    NASA Astrophysics Data System (ADS)

    Koukovini-Platia, E.; Rumolo, G.; Zannini, C.

    2017-01-01

    Due to its effective pumping ability, nonevaporable getter (NEG) coating is considered for the vacuum chambers of the Compact Linear Collider (CLIC) electron damping rings (EDR). The aim is to suppress fast beam ion instabilities. The electromagnetic (EM) characterization of the NEG properties up to ultra-high frequencies is required for the correct impedance modeling of the damping ring (DR) components. The properties are determined using rectangular waveguides which are coated with NEG. The method is based on a combination of complex transmission coefficient S21 measurements with a vector network analyzer (VNA) and 3D simulations using CST Microwave Studio® (CST MWS). The frequency ranges discussed in this paper are 220-330 and 500-750 GHz.

  2. Compact optical particulate characterization based on a tapered-fiber bundle using a holographic ring-wedge detector and optical neural network

    NASA Astrophysics Data System (ADS)

    Marshall, Martin S.

    1996-03-01

    A high-speed, compact optical correlation system is presented utilizing a tapered-fiber bundle, a holographic ring-wedge detector, and simple optical neural networks. This study includes three standard classes of unclassified military smokes and obscurants, standard liquid aerosol smokes, fibrous obscurants, and brass flakes. Digital and optical implementations of the holographic ring-wedge detector directly coupled into an optical neural network are studied as a means of increasing the speed of the decision process for particle characterization. This method has the ability to simultaneously recognize and distinguish the particle classes included in this study and to give a size range for spherical particles. Experimental data are presented utilizing a holographic ring detector and optical neural network combination for characterizing the particulates included in this study. A single holographic optical element fabricated to perform the same function as a ring detector and a simple two-layer, feedforward optical neural network are evaluated. Future work will include expanding the capabilities of the system to include more particulate types and to develop a field competent system.

  3. A Compact Light Source: Design and Technical Feasibility Study of a Laser-Electron Storage Ring X-Ray Source

    SciTech Connect

    Loewen, R

    2004-02-02

    Thomson scattering infrared photons off energetic electrons provides a mechanism to produce hard X-rays desirable for applied sciences research. Using a small, modest energy (25MeV) electron storage ring together with a resonantly-driven optical storage cavity, a narrow spectrum of hard X-rays could be produced with the quality and monochromatic intensity approaching that of beamline sources at large synchrotron radiation laboratories. The general design of this X-ray source as well as its technical feasibility are presented. In particular, the requirements of optical pulse gain enhancement in an external cavity are described and experimentally demonstrated using a CW mode-locked laser.

  4. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  5. Compact ultra wide band microstrip bandpass filter based on multiple-mode resonator and modified complementary split ring resonator.

    PubMed

    Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems.

  6. A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate.

    PubMed

    Baskin, David S; Ryan, Patrick; Sonntag, Volker; Westmark, Richard; Widmayer, Marsha A

    2003-06-15

    A prospective, randomized, pilot clinical trial compared recombinant human bone morphogenetic protein-2 (rhBMP-2) with iliac crest autograft bone for the treatment of human cervical disc disease. To examine the safety and effectiveness of using INFUSE Bone Graft (rhBMP-2 applied to an absorbable collagen sponge), as compared with an autogenous iliac crest bone graft placed inside the CORNERSTONE-SR fibular allograft, in anterior cervical discectomy and interbody fusion. Recombinant human bone morphogenetic protein-2 is an osteoinductive protein that induces a reliable fusion in the lumbar spine, but it has not been studied in patients with degenerative cervical disc disease. For this study, 33 patients with degenerative cervical disc disease were randomly assigned to investigational or control groups. The investigational group received a fibular allograft (CORNERSTONE-SR Allograft Ring) with an rhBMP-2-laden collagen carrier inside the graft along with an ATLANTIS anterior cervical plate. The control group received a fibular allograft with cancellous iliac crest autograft placed inside it, along with an ATLANTIS anterior cervical plate. The patients underwent plain radiographs at 6 weeks, then at 3, 6, 12, and 24 months, and CT scans at 3 and 6 months after surgery. They also completed general health profiles and self-evaluation scales. Adverse events were evaluated for severity, duration, association with the implant, and the need for a second surgical procedure. All the patients evaluated had solid fusions 6, 12, and 24 months after surgery. There were no device-related adverse events. At 24 months, the investigational group had mean improvement superior to that of the control group in neck disability and arm pain scores (P < 0.03 each). This pilot study demonstrates the feasibility of using rhBMP-2 safely and effectively in the cervical spine.

  7. Sr3BeB6O13: a new borate in the SrO/BeO/B2O3 system with novel tri-six-membered ring (BeB6O15)10- building block.

    PubMed

    Yao, Wenjiao; Huang, Hongwei; Yao, Jiyong; Xu, Tao; Jiang, Xingxing; Lin, Zheshuai; Chen, Chuangtian

    2013-05-20

    A new polyborate Sr3BeB6O13 has been synthesized and grown by the traditional solid-state reaction method and spontaneous crystallization flux method. It crystallizes in orthorhombic space group Pnma (No. 62) with the following unit cell dimensions: a = 12.775(3) Å, b = 10.029(2) Å, c = 8.0453(16) Å, and Z = 4. The crystal is characterized by an infinite two-dimensional network with a tri-six-membered ring (BeB5O13)(9-) anionic group, which was first found in beryllium borates. Ultraviolet (UV)-visible-near-infrared diffuse reflectance spectroscopy demonstrates that its UV cutoff edge is below 200 nm, and the first-principles electronic structure calculations reveal its energy band gap of 7.03 eV (∼175 nm). Thermal analysis exposes its incongruent feature at 1043 °C. IR spectroscopy measurements are consistent with the crystallographic study. These data reveal that this crystal would be applied as a deep-ultraviolet optical material.

  8. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration.

    PubMed

    Odame-Ankrah, Charles A; Osthoff, Hans D

    2011-11-01

    A compact rack-mounted cavity ring-down spectrometer (CRDS) for simultaneous measurements of the nocturnal nitrogen oxides NO(3) and N(2)O(5) in ambient air is described. The instrument uses a red diode laser to quantify mixing ratios of NO(3) (at its absorption maximum at 662 nm) and of N(2)O(5) following its thermal dissociation to NO(3) in a second detection channel. The spectrometer is equipped with an automated zeroing and calibration setup to determine effective NO(3) absorption cross-sections and NO(3) and N(2)O(5) inlet transmission efficiencies. The instrument response was calibrated using simultaneous measurements of NO(2), generated by thermal dissociation of N(2)O(5) and/or by titration of NO(3) with excess NO, using blue diode laser CRDS at 405 nm. When measuring ambient air, the (2σ, 10 s) precision of the red diode CRDS varied between 5 and 8 parts-per-trillion by volume (pptv), which sufficed to quantify N(2)O(5) concentrations under moderately polluted conditions. Sample N(2)O(5) measurements made on a rooftop on the University of Calgary campus in August 2010 are presented. A maximum N(2)O(5) mixing ratio of 130 pptv was observed, corresponding to a steady-state lifetime of less than 50 min. The NO(3) mixing ratios were below the detection limit, consistent with their predicted values based on equilibrium calculations. During the measurement period, the instrument response for N(2)O(5) was 70% of the theoretical maximum, rationalized by a slight mismatch of the laser diode output with the NO(3) absorption line and a N(2)O(5) inlet transmission efficiency less than unity. Advantages and limitations of the instrument's compact design are discussed.

  9. Compact torus

    SciTech Connect

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  10. Field-scale investigation of infiltration into a compacted soil liner

    USGS Publications Warehouse

    Panno, Samuel V.; Herzog, Beverly L.; Cartwright, Keros; Rehfeldt, Kenneth R.; Krapac, Ivan G.; Hensel, Bruce R.

    1991-01-01

    The Illinois State Geological Survey constructed and instrumented an experimental compacted soil liner. Infiltration of water into the liner has been monitored for two years. The objectives of this investigation were to determine whether a soil liner could be constructed to meet the U.S. EPA's requirement for a saturated hydraulic conductivity of less than or equal to 1.0 ?? 10-7 cm/s, to quantify the areal variability of the hydraulic properties of the liner, and to determine the transit time for water and tracers through the liner. The liner measures 8m ?? 15m ?? 0.9m and was designed and constructed to simulate compacted soil liners built at waste disposal facilities. The surface of the liner was flooded to form a pond on April 12, 1988. Since flooding, infiltration has been monitored with four large-ring (LR) and 32 small-ring (SR) infiltrometers, and a water-balance (WB) method that accounted for total infiltration and evaporation. Ring-infiltrometer and WB data were analyzed using cumulative-infiltration curves to determine infiltration fluxes. The SR data are lognormally distributed, and the SR and LR data form two statistically distinct populations. Small-ring data are nearly identical with WB data; because there is evidence of leakage in the LRs, the SR and WB data are considered more reliable.

  11. Compact tunable diode laser with diffraction limited 1000 mW in Littman/Metcalf configuration for cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Stry, Sandra; Sacher, Joachim; Thelen, Sven; Halmer, Daniel; Hering, Peter; Mürtz, Manfred

    2006-02-01

    High resolution spectroscopy of environmental and medical gases requires reliable, fast tunable laser light sources in the mid-infrared (MIR) wavelength regime between 3 and 5 μm. Since this wavelength cannot be reached via direct emitting room temperature semiconductor lasers, additional techniques like difference frequency generation (DFG) are essential. Tunable difference frequency generation relies on high power, small linewidth, fast tunable, robust laser diode sources. We report a new, very compact, alignment insensitive, robust, external cavity diode laser system in Littman/Metcalf configuration with an output power of 1000 mW and an almost Gaussian shaped beam quality (M2<1.2). The coupling efficiency for optical waveguides as well as single mode fibers exceeds 70%. The center wavelength is widely tunable within the tuning range of 20 nm via remote control. This laser system operates longitudinally single mode with a mode-hop free tuning range of up to 150 GHz without current compensation and a side-mode-suppression better than 50 dB. This concept can be realized within the wavelength regime between 750 and 1060 nm. We investigated this light source for high resolution spectroscopy in the field of Cavity Ring-Down Spectroscopy (CRDS). Our high powered Littman/Metcalf laser system was part of a MIR-light source which utilizes difference-frequency generation in Periodically Poled Lithium Niobate (PPLN) crystals. At the wavelength of 3.3 μm we were able to achieve a high-resolution absorption spectrum of water with four resolved isotopic H IIO components. This application clearly demonstrates the suitability of this laser for high-precision measurements.

  12. Coral growth rings and the temporal history of nuclear /sup 14/C/C and /sup 90/Sr/Sr in the surface ocean: Final report, June 1, 1982-December 31, 1984

    SciTech Connect

    Broecker, W.S.; Cember, R.P.; Toggweiler, J.R.; Trumbore, S.E.; White, J.

    1987-08-01

    This report summarizes the history and scientific results of the Lamont-Doherty Geological Observatory coral radioisotope project. The report includes abstracts of works in the literature or in preparation resulting from the coral project and a complete listing of the radiocarbon and /sup 90/Sr data measured in the course of the project. Also, some possible future research directions for the coral project are suggested.

  13. Coral growth rings and the temporal history of nuclear /sup 14/C/C /sup 90/Sr/Sr in the surface ocean. Progress report, February 1, 1980-January 31, 1981

    SciTech Connect

    Broecker, W. S.; Fairbanks, R. G.

    1980-09-01

    Research Progress is reported for the period February 1980 through January 1981. 129 coral samples have been collected from the Atlantic, Pacific, and Indian Oceans. Three Strontium 90 records, one each from Bermuda, Oahu and Tarawa, have been generated. Models have been constructed and tested which are used to reproduce the essential features of the coral /sup 90/Sr and /sup 14/C time histories. (ACR)

  14. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Chen, W. G.; Lou, S. Q.; Feng, S. C.; Wang, L. W.; Li, H. L.; Guo, T. Y.; Jian, S. S.

    2009-11-01

    Switchable multi-wavelength fiber ring laser with an in-fiber Mach-Zehnder interferometer incorporated into the ring cavity serving as wavelength-selective filter at room temperature is demonstrated. The filter is formed by splicing a section of few-mode photonic crystal fiber (PCF) and two segments of single mode fiber (SMF) with the air-holes on the both sides of PCF intentionally collapsed in the vicinity of the splices. By adjusting the states of the polarization controller (PC) appropriately, the laser can be switched among the stable single-, dual- and triple-wavelength lasing operations by exploiting polarization hole burning (PHB) effect.

  15. Computer control system of the superconducting SR-light source ``Aurora''

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari

    1989-07-01

    The Aurora is a compact SR-light system optimized for x-ray lithography. The system includes a superconducting electron storage ring, a 150-MeV race track microtron as an injector, and light beamlines. The SR-ring features a single magnet body, in which the 650-MeV electron beam orbits a true circular trajectory of 1 m diameter. The computer control system developed for Aurora has a three-level hierarchical architecture. The top level is the Central Intelligence System, and the second an Autonomic Control System (ACS). The bottom is an assembly of distributed local controllers linked to the ACS level through optical fibers. This system provides fully automatic and remote operation, and a powerful machine study capability through the associated man-machine console and the interpretive operation language.

  16. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  17. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  18. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  19. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  20. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  1. SR-71

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows a head-on view of NASA's SR-71B, used for pilot proficiency and training, on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. NASA operated two of these unique aircraft, an SR-71A, for high-speed, high altitude research, and this SR- 71B pilot trainer for most of the decade of the 1990s. The 'B' model is special because of its raised rear cockpit, which provided a second pilot position so a trainer and an experienced pilot could both see what was going on during flights. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and 'moveable spike' system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies

  2. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  3. SR-71

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA's SR-71B, one of three triple-sonic SR-71s loaned to NASA by the Air Force, cruises over the Tehachapi Mountains on a flight from the NASA Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet

  4. A novel approach for preferential recovery of Sr from (Sr, Th)O2.

    PubMed

    Vyas, Chirag K; Joshirao, Pranav M; Shukla, Rakesh; Tyagi, Avesh K; Manchanda, Vijay K

    2012-11-30

    Quantitative leaching of Sr from homogeneous and calcined (Th,Sr) O(2) in dilute perchloric acid medium suggests the possibility of reducing the hazardousness of discharged nuclear fuel by separation of (90)Sr, a prominent fission product at dissolution stage itself rather than the conventional approach of its recovery from high level nuclear waste. Apart from mitigating the radiotoxicity of the nuclear waste, recovered (90)Sr can be employed as a compact heat source and as parent radionuclide for (90)Y (used in therapy radiopharmaceuticals), provided it can be made available at desired high purity. Leaching behavior of few other fission products was also investigated to quantify their contamination in leached Sr. Feasibility of employing extraction chromatography using Sr selective resin was explored in perchloric acid medium. In this context, the distribution coefficients of (85)Sr(II), Th (IV), Zr(IV), Y(III), Pd(II) as well as (152)Eu(III) and (137)Cs (I) were determined under varying nitric acid/perchloric acid concentration and under varying loading conditions of metal ions. Perchloric acid medium appears better than nitric acid medium for preferential leaching of Sr from (Th,Sr)O(2) as well as for uptake of Sr by Sr selective chromatographic resin.

  5. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  6. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  7. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  8. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  9. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  10. Ring World

    NASA Image and Video Library

    2007-03-01

    Our robotic emissary, flying high above Saturn, captured this view of an alien copper-colored ring world. The overexposed planet has deliberately been removed to show the unlit rings alone, seen from an elevation of 60 degrees

  11. Neptune Rings

    NASA Image and Video Library

    1999-10-29

    This 591-second exposure of the rings of Neptune were taken with the clear filter by NASA Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged.

  12. Ring Backdrop

    NASA Image and Video Library

    2011-01-03

    Saturn moon Enceladus brightly reflects sunlight before a backdrop of the planet rings and the rings shadows cast onto the planet. NASA Cassini spacecraft captured this snapshot during its flyby of the moon on Nov. 30, 2010.

  13. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  14. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  15. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  16. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  17. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  18. Translucent Rings

    NASA Image and Video Library

    2014-12-08

    Although solid-looking in many images, Saturn's rings are actually translucent. In this picture, we can glimpse the shadow of the rings on the planet through (and below) the A and C rings themselves, towards the lower right hand corner. For centuries people have studied Saturn's rings, but questions about the structure and composition of the rings lingered. It was only in 1857 when the physicist James Clerk Maxwell demonstrated that the rings must be composed of many small particles and not solid rings around the planet, and not until the 1970s that spectroscopic evidence definitively showed that the rings are composed mostly of water ice. This view looks toward the sunlit side of the rings from about 17 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on Aug. 12, 2014 in near-infrared light centered at 752 nanometers. The view was obtained at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 24 degrees. Image scale is 85 miles (136 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18295

  19. Widening Rings

    NASA Image and Video Library

    2010-03-18

    Saturn rings and its moon Rhea are imaged before a crescent of the planet in this image captured by NASA Cassini spacecraft. The shadows of the rings continue to grow wider after their disappearing act during the planet August 2009 equinox.

  20. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  1. Ring Slicer

    NASA Image and Video Library

    2015-07-06

    Saturn's moon Prometheus, seen here looking suspiciously blade-like, is captured near some of its sculpting in the F ring. Prometheus' (53 miles or 86 kilometers across) orbit sometimes takes it into the F ring. When it enters the ring, it leaves a gore where its gravitational influence clears out some of the smaller ring particles. Below Prometheus, the dark lanes interior to the F ring's bright core provide examples of previous ring-moon interactions. This view looks toward the unilluminated side of the rings from about 7 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on March 15, 2015. The view was obtained at a distance of approximately 286,000 miles (461,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 115 degrees. Image scale is 1.7 miles (2.8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18324

  2. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  3. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  4. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  5. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  6. NUCLEAR RINGS IN GALAXIES-A KINEMATIC PERSPECTIVE

    SciTech Connect

    Mazzuca, Lisa M.; Swaters, Robert A.; Veilleux, Sylvain; Knapen, Johan H.

    2011-10-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicates that the rings are in the same plane as the disk and are circular. From the rotation curves derived, we have estimated the compactness (v{sup 2}/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  7. Quasi-isochronous storage ring for enhanced FEL performance

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1996-02-01

    A compact storage ring is designed to be used as driver for a free electron laser (FEL). This ring can be operated very close to zero momentum compaction factor (α) to increase the electron density and thus the gain of the FEL. In order to control α with zero dispersion in the straight sections we use an inverted dipole located between the bending magnets and 4 families of quadrupoles. By using 3 families of sextupoles we can control the 2 transverse chromaticities and 2nd order momentum compaction. We find that the ring has sufficient dynamic aperture for good performance.

  8. Ring King

    NASA Image and Video Library

    2014-08-18

    Saturn reigns supreme, encircled by its retinue of rings. Although all four giant planets have ring systems, Saturn's is by far the most massive and impressive. Scientists are trying to understand why by studying how the rings have formed and how they have evolved over time. Also seen in this image is Saturn's famous north polar vortex and hexagon. This view looks toward the sunlit side of the rings from about 37 degrees above the ringplane. The image was taken with the Cassini spacecraft wide-angle camera on May 4, 2014 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 2 million miles (3 million kilometers) from Saturn. Image scale is 110 miles (180 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18278

  9. Vascular rings.

    PubMed

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K

    2016-06-01

    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  11. Physics of planetary rings

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2007-08-01

    image from the Hubble Space Telescope (STIS, observation of team by Sara Heap, our co-author) and results of our simulation of scattered light from warped disk will be compared [4]. The direct signatures of this planet were discovered on 2002 by Keck telescope observations. References: 1. Fridman, A.M. and Gorkavyi, N.N. Physics of Planetary Rings (Celestial Mechanics of a Continuous Media). Springer-Verlag, 1999, 436 p. 2. Gorkavyi, N.N., Taidakova, T.A. The Model for Formation of Jupiter, Saturn and Neptune Satellite Systems, Astronomy Letters., 1995, v. 21 (6). pp.939-945; Discovered Saturnian and undiscovered Neptuanian retrograde satellites, BAAS, v.33, N4, 1403; The New Model of the Origin of the Moon, BAAS, 2004, 36, #2 3. Ozernoy, L.M., Gorkavyi, N.N., Mather, J.C. & Taidakova, T. 2000, Signatures of Exo-solar Planets in Dust Debris Disks, ApJ, 537:L147-L151, 2000 July 10. 4. Gorkavyi, N.N., Heap S.R., Ozernoy, L.M., Taidakova, T.A., and Mather, J.C. Indicator of Exo-Solar Planet(s) in the Circumstellar Disk Around Beta Pictoris. In:"Planetary Systems in the Universe: Observation, Formation, and Evolution". Proc. IAU Symp. No. 202, 2004, ASP Conf. Series, p.331-334. 5. Gorkavyi, N., Taidakova, T. Outermost planets of Beta Pictoris, Vega and Epsilon Eridani: goals for direct imaging. In: "Direct Imaging of Exoplanets: Science and Techniques" (C. Aime and F. Vakili, eds.). Proc. IAU Coll. No. 200, 2005, p.47-51.

  12. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  13. Luminescent Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This view shows the unlit face of Saturn's rings, visible via scattered and transmitted light. In these views, dark regions represent gaps and areas of higher particle densities, while brighter regions are filled with less dense concentrations of ring particles.

    The dim right side of the image contains nearly the entire C ring. The brighter region in the middle is the inner B ring, while the darkest part represents the dense outer B Ring. The Cassini Division and the innermost part of the A ring are at the upper-left.

    Saturn's shadow carves a dark triangle out of the lower right corner of this image.

    The image was taken in visible light with the Cassini spacecraft wide-angle camera on June 8, 2005, at a distance of approximately 433,000 kilometers (269,000 miles) from Saturn. The image scale is 22 kilometers (14 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  14. Cave Rings

    DTIC Science & Technology

    2010-10-13

    hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...Literature The ‘splash ring’ conjecture is described in [5]. It is claimed that 45◦ is the most probable angle for secondary drops to be ejected at, and that...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by

  15. Interstellar Scattering and the Einstein Ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Meier, D. L.; Jauncey, D. L.; Reynolds, J. E.; Tziomis, A. K.

    1995-01-01

    High frequency (22 GHz) data have been used two resolve two compact components of the strong gravitational lens PKS 1830-211. The two bright components are at opposite sides of a one arcsecond diameter Einstein ring.

  16. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  17. Proposal to produce large compact toroids

    SciTech Connect

    Phillips, J.A.

    1981-03-01

    Relatively large, hot compact toroids might be produced in the annular space between two concentric one-turn coils. With currents in the two coils flowing in the same direction, the magnetic fields on each side of the plasma are in opposite directions. As the fields are raised, the plasma ring is heated and compressed radially towards the center of the annular space. By the addition of two sets of auxiliary coils, the plasma ring can be ejected out one end of the two-coil system into a long axial magnetic field.

  18. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  19. Fine resolution chronology based on initial Sr-87/Sr-86

    NASA Technical Reports Server (NTRS)

    Stewart, B. W.; Papanastassiou, D. A.; Capo, R. C.; Wasserburg, G. J.

    1993-01-01

    It has been recognized that small variations in initial Sr-87/Sr-86 (Sr(sub I)), can provide a fine scale relative chronology for the chemical fractionation of materials with low Rb/Sr from parent reservoirs with high Rb/Sr. Similarly, Sr(sub I), as determined for low Rb/Sr phases in meteorites, may permit a fine resolution chronology of the recrystallization or metamorphism of planetary materials. For the establishment of a primitive Sr-87/Sr-86 chronology, it is important to search for samples with extremely low Rb/Sr for which the measured Sr-87/Sr-86 is below BABI, in which case the primitive nature of the Sr can be directly established. Using the measured Rb/Sr to calculate an initial Sr-87/Sr-86 can introduce substantial uncertainty if the Rb-Sr are disturbed. We report Sr-87/Sr-86 in plagioclase from silicate pebbles from the Vaca Muerta mesosiderite on which we have reported Sm-147-Nd-143 and Ne-142 correlations. For the purpose of cross-calibration with our previous work we have performed extensive new measurements on Angra dos Reis and on anorthite from Moore County, which have very low Rb/Sr and primitive Sr-87/Sr-86.

  20. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  1. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  2. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  3. Chondrite chronology by initial Sr-87/Sr-86 in phosphates?

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Brannon, Joyce C.

    1991-01-01

    New data are presented on Rb-Sr isotope analyses of phosphates from nine ordinary chondrites, including accurate identification of initial Sr-87/Sr-86. The initial Sr-87/Sr-86 ratios found in this study were generally significantly higher than the more primitive initial Sr-87/Sr-86 ratios inferred for carbonaceous chondrite refractory inclusions, basaltic achondrites, or bulk ordinary chondrites. Such elevation of initial Sr-87/Sr-86 is generally considered to reflect isotopic redistribution during metamorphism. However, in this study, no evident correlation was found between the phosphate initial Sr-87/Sr-86 compositions and the metamorphic grade. Two possible alternative hypotheses for high initial Sr-87/Sr-86 ratios are considered.

  4. Chondrite chronology by initial Sr-87/Sr-86 in phosphates?

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Brannon, Joyce C.

    1991-01-01

    New data are presented on Rb-Sr isotope analyses of phosphates from nine ordinary chondrites, including accurate identification of initial Sr-87/Sr-86. The initial Sr-87/Sr-86 ratios found in this study were generally significantly higher than the more primitive initial Sr-87/Sr-86 ratios inferred for carbonaceous chondrite refractory inclusions, basaltic achondrites, or bulk ordinary chondrites. Such elevation of initial Sr-87/Sr-86 is generally considered to reflect isotopic redistribution during metamorphism. However, in this study, no evident correlation was found between the phosphate initial Sr-87/Sr-86 compositions and the metamorphic grade. Two possible alternative hypotheses for high initial Sr-87/Sr-86 ratios are considered.

  5. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  6. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-10-01

    7/16/10 12:23 PM UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime. 7/16/10 12:23 PM 7/16/10 12:23 PM

  7. Boom and Bust Cycles in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Sremcevic, M.; Albers, N.

    2010-12-01

    Cassini UVIS occultation data show clumping in Saturn’s F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations perturbed by Mimas and Prometheus. Timescales range from hours to months. The maximum clumping lags the moon by roughly π in the forcing frame. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the aggregate mean size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. For realistic values of the parameters this creates a limit cycle behavior, as for the ecology of foxes and hares or the boom-bust economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons at both these locations in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material allows fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. These more persistent objects would then orbit at the Kepler rate. Such processes can create the equinox objects seen at the B ring edge and in the F ring, explain the ragged nature of those ring regions and allow for rare events to aggregate ring particles into solid objects, recycling the ring material and extending the ring lifetime.

  8. Ringing wormholes

    SciTech Connect

    Konoplya, R.A.; Molina, C.

    2005-06-15

    We investigate the response of traversable wormholes to external perturbations through finding their characteristic frequencies and time-domain profiles. The considered solution describes traversable wormholes between the branes in the two brane Randall-Sundrum model and was previously found within Einstein gravity with a conformally coupled scalar field. The evolution of perturbations of a wormhole is similar to that of a black hole and represents damped oscillations (ringing) at intermediately late times, which are suppressed by power-law tails (proportional to t{sup -2} for monopole perturbations) at asymptotically late times.

  9. Environmental 90Sr measurements

    USGS Publications Warehouse

    Paul, M.; Berkovits, D.; Cecil, L.D.; Feldstein, H.; Hershkowitz, A.; Kashiv, Y.; Vogt, S.

    1997-01-01

    90Sr (T1/2 = 28.5 years) is a long-lived radionuclide produced in nuclear fission. Fast radiochemical detection of 90Sr in environmental samples is not feasible using current analytical methods. Accelerator Mass Spectrometry (AMS) measurements of 90Sr were made with the Rehovot 14UD Pelletron accelerator at a terminal voltage of 11 or 12 MV using our standard detection system. Injection of hydride ions (SrH3-) was chosen owing to high beam intensity and low Coulomb explosion effects. 90Sr ions were identified and discriminated from isobaric 90Zr by measuring time of flight, total energy and three independent energy-loss signals in an ionization chamber. A reference sample and a ground-water sample were successfully measured. The detection limit determined for a laboratory blank by the residual counts in the 90Sr region is 90Sr/Sr = 3 ?? 10-13, corresponding in practice to (2-4) ?? 10790Sr atoms or about 0.5-1 pCi/L in environmental water samples.

  10. Sr and 87Sr/86Sr in estuaries of western India: Impact of submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Rahaman, Waliur; Singh, Sunil Kumar

    2012-05-01

    Dissolved Sr and 87Sr/86Sr are measured in the Narmada, Tapi and the Mandovi estuaries linked to the eastern Arabian Sea. The concentration of dissolved Sr and 87Sr/86Sr in the river water endmembers show significant differences reflecting the lithologies they drain. The distribution of Sr in all these estuaries shows a near perfect two endmember mixing between river water and seawater suggesting that there is no discernible net addition/removal of Sr from the estuarine waters. In contrast, 87Sr/86Sr shows non-conservative behaviour in all these estuaries, its distribution exhibits significant departure from the theoretical mixing lines. A likely mechanism for this difference in the behaviour between dissolved Sr and its 87Sr/86Sr is the discharge of submarine groundwater (SGD) which can modify the 87Sr/86Sr of the estuarine waters by exchange with sediments without causing measurable changes in Sr concentration. The impact of such an exchange process on the 87Sr/86Sr of the estuaries and therefore on the Sr isotope composition of dissolved Sr entering the Arabian Sea differs among the three estuaries and also between seasons in the Narmada. The non-conservative behaviour of 87Sr/86Sr provides a handle to estimate the quantum of SGD to these estuaries. The Sr concentration, 87Sr/86Sr ratio and salinity of the submarine groundwater and estimate of its fluxes to the Narmada estuary have been made using inverse model calculations. The model derived SGD flow rates are ˜5 and 280 cm/day during pre-monsoon and monsoon, respectively. The more radiogenic Sr isotope composition of SGD relative to the seawater suggests that SGD acts as an additional source of 87Sr to the Arabian Sea.

  11. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  12. Moonlets wandering on a leash-ring

    NASA Astrophysics Data System (ADS)

    Winter, O. C.; Mourão, D. C.; Giuliatti Winter, S. M.; Spahn, F.; da Cruz, C.

    2007-09-01

    Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the `shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of `propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial `streaks' seen in the F ring. The related `thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).

  13. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    SciTech Connect

    Sannibale, F.; Byrd, J.M.; Loftsdottir, A.; Martin, M.C.; Venturini, M.

    2004-05-12

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  14. Kinetics of ring formation

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2011-06-01

    We study reversible polymerization of rings. In this stochastic process, two monomers bond and, as a consequence, two disjoint rings may merge into a compound ring or a single ring may split into two fragment rings. This aggregation-fragmentation process exhibits a percolation transition with a finite-ring phase in which all rings have microscopic length and a giant-ring phase where macroscopic rings account for a finite fraction of the entire mass. Interestingly, while the total mass of the giant rings is a deterministic quantity, their total number and their sizes are stochastic quantities. The size distribution of the macroscopic rings is universal, although the span of this distribution increases with time. Moreover, the average number of giant rings scales logarithmically with system size. We introduce a card-shuffling algorithm for efficient simulation of the ring formation process and we present numerical verification of the theoretical predictions.

  15. Determination of 87Sr/86Sr*-δ88/86Sr Values of the Oceans Sr Sources and Sinks to Balance the Global Sr Cycle

    NASA Astrophysics Data System (ADS)

    Eisenhauer, A.; Krabbenhoeft, A.; Boehm, F.; Vollstaedt, H.; Augustin, N.; Fietzke, J.; Liebetrau, V.; Peucker-Ehrenbrink, B.; Horn, C.; Hansen, B.; Nolte, N.

    2009-12-01

    With the application of the Sr double spike TIMS technique (KRABBENHOEFT et al., 2009) we are now entering a new dimension in Sr isotope geochemistry by the simultaneous measurement of paired 87Sr/86Sr*-δ88/86Sr values of geological samples. The most important advantage of using paired 87Sr/86Sr*-δ88/86Sr values is that now a complete balance of the oceans Sr budget can be calculated including Sr input and output values. With the normalization to a fixed 88Sr/86Sr=8.375209 ratio to correct for mass dependent fractionation during TIMS measurement any natural Strontium (Sr) isotopic fractionation in 88Sr/86Sr is ignored and important additional information are lost. A first study performed with a MC-ICP-MS (FIETZKE and EISENHAUER, 2006) showed significant fractionation between the IAPSO seawater standard and the SRM987 carbonate standard in the δ88/86Sr value. In order to provide a Sr isotope balance for the global ocean we collected paired 87Sr/86Sr*-δ88/86Sr values of a set of river waters samples (87Sr/86Sr*=0.713902(9) - δ88/86Sr=0.300(13)), hydrothermal fluids (87Sr/86Sr*=0.704518(8) - δ88/86Sr=0.253(15) , major marine carbonate producers (foraminifera, coccolithophores, corals) and seawater and present it in a 3-isotope-plot. Rivers and mid ocean ridges represent the main Sr sources to the ocean while marine carbonates are representing the major Sr sink. The major Sr output corresponds to the Sr incorporated by the major marine calcifiers (87Sr/86Sr*=0.709312(9) - δ88/86Sr=0.240). The offset between the Sr input and the Sr output was determined to be ~ 0.50 ‰ in its δ88/86Sr indicates that modern ocean is apparently not in steady state with respect to Sr. Weathering of young carbonates on the shelfes during sea level low stands possibly can shift the δ88/86Sr of rivers from its recent value of 0.300(24) to 0.23‰ to equilibrate in- and output.

  16. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  17. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    SciTech Connect

    Sannibale, F.

    2004-10-28

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  18. A model describing stable coherent synchrotron radiation in storage rings.

    PubMed

    Sannibale, F; Byrd, J M; Loftsdóttir, A; Venturini, M; Abo-Bakr, M; Feikes, J; Holldack, K; Kuske, P; Wüstefeld, G; Hübers, H-W; Warnock, R

    2004-08-27

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSY II storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  19. Accretion in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  20. Ringing phenomenon of the fiber ring resonator.

    PubMed

    Ying, Diqing; Ma, Huilian; Jin, Zhonghe

    2007-08-01

    A resonator fiber-optic gyro (R-FOG) is a high-accuracy inertial rotation sensor based on the Sagnac effect. A fiber ring resonator is the core sensing element in the R-FOG. When the frequency of the fiber ring resonator input laser is swept linearly with time, ringing of the output resonance curve is observed. The output field of the fiber ring resonator is derived from the superposition of the light transmitted through the directional coupler directly and the multiple light components circulated in the fiber ring resonator when the frequency of the laser is swept. The amplitude and phase of the output field are analyzed, and it is found that the difference in time for different light components in the fiber ring resonator to reach a point of destructive interference causes the ringing phenomenon. Finally the ringing phenomenon is observed in experiments, and the experimental results agree with the theoretical analysis well.

  1. The Ring Sculptor

    NASA Image and Video Library

    2006-09-08

    Prometheus zooms across the Cassini spacecraft field of view, attended by faint streamers and deep gores in the F ring. This movie sequence of five images shows the F ring shepherd moon shaping the ring inner edge

  2. Beyond Bright Rings

    NASA Image and Video Library

    2009-12-30

    The tiny moon Pandora appears beyond the bright disk of Saturn rings in this image taken by NASA Cassini spacecraft. Pandora orbits outside the F ring and, in this image, is farther from Cassini than the rings are.

  3. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  4. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  5. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  6. SR-71 Flight

    NASA Image and Video Library

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  7. The dynamics of magnetic flux rings

    NASA Technical Reports Server (NTRS)

    Deluca, E. E.; Fisher, G. H.; Patten, B. M.

    1993-01-01

    The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.

  8. Saturn's Spectacular Ring System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Saturn's beautiful rings have fascinated astronomers since they were first observed by Galileo in 1610. The main rings consist of solid particles mostly in the 1 cm - 10 m range, composed primarily of water ice. The ring disk is exceptionally thin - the typical local thickness of the bright rings is tens of meters, whereas the diameter of the main rings is 250,000 km! The main rings exhibit substantial radial variations "ringlets", many of which are actively maintained via gravitational perturbations from Saturn's moons. Exterior to the main rings lie tenuous dust rings, which have little mass but occupy a very large volume of space. This seminar will emphasize the physics of ring-moon interactions, recent advances in our understanding of various aspects of the rings obtained from observations taken during 1995 when the rings appeared edge-on to the Earth and then to the Sun, and observations in subsequent years from HST.

  9. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  10. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  11. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  12. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  13. Birth Control Ring

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in this ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  14. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    SciTech Connect

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R

    2006-02-02

    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  15. [Research on DICOM SR].

    PubMed

    Wang, Shuang; Pu, Lixin

    2011-02-01

    This paper is aimed to research into the information model of the Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR), and to introduce DICOM information object definitions (IODs) and services used for the storage and transmission of SR. The DICOM services are concerned with storage, query, retrieval, and transfer of data, and give a brief introduction to DICOM DIR. DICOM DIR is a file based on medical information. According to the DICOM DIR definition in the DICOM part ten, it may be found that the composite objects referenced in the DICOM SR. So putting forward the management of DICOM files by DICOM DIR sets, It effectively improves the efficiency of the object referenced by SR. This can increase the ability to access the data. For scientific research, medical data mining and applications, DICOM SR can profit the communication of medical information in different hospitals, and this can be useful for the analysis, research, summary, classification and extraction of a large quantity of medical information.

  16. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  17. Fragmentation and constitutive response of tailored mesostructured aluminum compacts

    NASA Astrophysics Data System (ADS)

    Marquez, Andrew M.; Braithwaite, Christopher H.; Weihs, Timothy P.; Krywopusk, Nicholas M.; Gibbins, David J.; Vecchio, Kenneth S.; Meyers, Marc A.

    2016-04-01

    The fragmentation and constitutive response of aluminum-based compacts were examined under dynamic conditions using mesostructured powder compacts in which the interfaces between the powders (sizes of 40, 100, and 400 μm) were tailored during the swaging fabrication process. Fragmentation was induced in ring samples of this material through explosive loading and was examined through high speed photography, laser interferometry, and soft capture of fragments. Fragment velocities of around 100 m/s were recorded. The fragment mass distributions obtained correlated in general with the interfacial strength of the compacts as well as with the powder size. Experimental results are compared with fragmentation theories to characterize the behavior of reactive powders based on the material's mesostructure by introducing the fracture toughness of the compacts. The mean fragment size is calculated using a modified form of Mott's theory and successfully compared with experimental results.

  18. SR-71B

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's SR-71B, one of three triple-sonic SR-71s initially loaned to NASA by the Air Force, cruises over the California desert en route to NASA's Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California, from Air Force Plant 42, Palmdale, CA, July 25, 1991. The aircraft, two SR-71As and the SR-71B, were loaned to NASA for high-speed, high -altitude testbeds for research in such areas as aerodynamics, propulsion structures, thermal protection materials, and instrumentation. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which

  19. SR-71B

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's SR-71B, one of three triple-sonic SR-71s initially loaned to NASA by the Air Force, cruises over the California desert en route to NASA's Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California, from Air Force Plant 42, Palmdale, CA, July 25, 1991. The aircraft, two SR-71As and the SR-71B, were loaned to NASA for high-speed, high -altitude testbeds for research in such areas as aerodynamics, propulsion structures, thermal protection materials, and instrumentation. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which

  20. High intensity muon storage rings for neutrino production: Lattice design

    SciTech Connect

    Johnstone, C>

    1998-05-01

    Five energies, 250, 100, 50, 20, and 10 GeV, have been explored in the design of a muon storage ring for neutrino-beam production. The ring design incorporates exceptionally long straight sections with large beta functions in order to produce an intense, parallel neutrino beam via muon decay. To emphasize compactness and reduce the number of muon decays in the arcs, high-field superconducting dipoles are used in the arc design.

  1. Some aspects of SR beamline alignment

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  2. Electron Storage Ring Development for ICS Sources

    SciTech Connect

    Loewen, Roderick

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  3. SR-71 Taking Off

    NASA Technical Reports Server (NTRS)

    1990-01-01

    One of three U.S. Air Force SR-71 reconnaissance aircraft originally retired from operational service and loaned to NASA for a high-speed research program retracts its landing gear after taking off from NASA's Ames-Dryden Flight Research Facility (later Dryden Flight Research Center), Edwards, California, on a 1990 research flight. One of the SR-71As was later returned to the Air Force for active duty in 1995. Data from the SR-71 high-speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of

  4. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2010-03-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  5. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2009-12-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  6. Inhomogeneous compact extra dimensions

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Budaev, R. I.; Grobov, A. V.; Dmitriev, A. E.; Rubin, Sergey G.

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ4 in pure f(R) theory, and the extra dimensions are stable relative to the "radion mode" of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ4. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f(R) gravity.

  7. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  8. Molecular Scale Dynamics of Large Ring Polymers

    NASA Astrophysics Data System (ADS)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  9. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  10. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  11. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  12. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  13. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    detections (e.g., DDoS attacks), machine learning, databases, and search. Fundamentally, compact data representations are highly beneficial because they...Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence... Machine Learning (ICML), 2016 11. Ping Li, One Scan 1-Bit Compressed Sensing, in International Conference on Artificial Intelligence and Statistics

  14. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  15. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  16. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  17. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  18. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  19. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1990-01-01

    Compact resistance-welding pinch gun lets one operator do jobs formerly needing two workers. Light in weight and produces repeatable, high-quality weld joints. Welding-electrode head rotates for easy positioning. Lever at top of handle activates spring to pinch electrodes together at preset welding force. Button at bottom of handle activates welding current. Cables supply electrical power.

  20. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  1. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  2. New dust belts of Uranus: one ring, two ring, red ring, blue ring.

    PubMed

    de Pater, Imke; Hammel, Heidi B; Gibbard, Seran G; Showalter, Mark R

    2006-04-07

    We compared near-infrared observations of the recently discovered outer rings of Uranus with Hubble Space Telescope results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced by impacts into the embedded moon Mab, which apparently orbits at a location where nongravitational perturbations favor the survival and spreading of submicron-sized dust. R/2003 U 2 more closely resembles Saturn's G ring, which is red, a typical color for dusty rings.

  3. Rings Through Atmosphere

    NASA Image and Video Library

    2010-05-26

    NASA Cassini spacecraft looks toward the limb of Saturn and, on the right of this image, views part of the rings through the planet atmosphere. Saturn atmosphere can distort the view of the rings from some angles.

  4. Wavy, Wiggly Ring

    NASA Image and Video Library

    2012-04-23

    The constant change in Saturn wavy, wiggly F ring is on display in this image obtained by NASA Cassini spacecraft. The image shows a view looking directly down onto the ring with the planet removed from the center.

  5. Saturn Rings in Infrared

    NASA Image and Video Library

    2006-10-11

    This mosaic of Saturn rings was acquired by NASA Cassini visual and infrared mapping spectrometer instrument on Sept. 15, 2006, while the spacecraft was in the shadow of the planet looking back towards the rings

  6. The Inner Rings

    NASA Image and Video Library

    2007-02-01

    The Cassini spacecraft looks toward the innermost region of Saturn rings, capturing from right to left the C and B rings. The dark, inner edge of the Cassini Division is just visible in the lower left corner

  7. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, B.W.; Downey, J.W.; Lam, D.J.; Paulikas, A.P.

    1992-12-22

    A superconductor is disclosed consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi[sub 2]O[sub 3], SrCO[sub 3], CaCO[sub 3] and CuO into a particulate compact wherein the atom ratios are Bi[sub 2], Sr[sub 1.2-2.2], Ca[sub 1.8-2.4], Cu[sub 3]. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K. 7 figs.

  8. 110K Bi-Sr-Ca-Cu-O superconductor oxide and method for making same

    DOEpatents

    Veal, Boyd W.; Downey, John W.; Lam, Daniel J.; Paulikas, Arvydas P.

    1992-01-01

    A superconductor consisting of a sufficiently pure phase of the oxides of Bi, Sr, Ca, and Cu to exhibit a resistive zero near 110K resulting from the process of forming a mixture of Bi.sub.2 O.sub.3, SrCO.sub.3, CaCO.sub.3 and CuO into aparticulate compact wherein the atom ratios are Bi.sub.2, Sr.sub.1.2-2.2, Ca.sub.1.8-2.4, Cu.sub.3. Thereafter, heating the particulate compact rapidly in the presence of oxygen to an elevated temperature near the melting point of the oxides to form a sintered compact, and then maintaining the sintered compact at the elevated temperature for a prolonged period of time. The sintered compact is cooled and reground. Thereafter, the reground particulate material is compacted and heated in the presence of oxygen to an elevated temperature near the melting point of the oxide and maintained at the elevated temperature for a time sufficient to provide a sufficiently pure phase to exhibit a resistive zero near 110K.

  9. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  10. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  11. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Program

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2015-11-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. An overview of the concept and its diamagnetic, high beta magnetically encapsulated linear ring cusp confinement scheme will be given. The analytical model of the major loss mechanisms and predicted performance will be discussed, along with the major physics challenges. Key features of an operational CFR reactor will be highlighted. The proposed developmental path following the current experimental efforts will be presented. ©2015 Lockheed Martin Corporation. All Rights Reserved.

  12. A Standard FODO Lattice with Adjustable Momentum Compaction

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Courant, E. D.

    1997-05-01

    An exisisting lattice made of identical FODO cells can be modified to have adjustable momentum compaction. The modified lattice consists of repeating superperiods of four FODO cells where every two cells have different horizontal phase advance. In exisiting FODO cell rings an additional quad bus is required for every two consecutive cells. This allows tuning of the momentum compaction or γt (transition) to any desired value. A value of the γt could be an imaginary number. A drawback of this modification is relatively large values of the dispersion function (two or three times larger than in the regular FODO cell design).

  13. Modules over hereditary rings

    SciTech Connect

    Tuganbaev, A A

    1998-04-30

    Let A be a hereditary Noetherian prime ring that is not right primitive. A complete description of {pi}-injective A-modules is obtained. Conditions under which the classical ring of quotients of A is a {pi}-projective A-module are determined. A criterion for a right hereditary right Noetherian prime ring to be serial is obtained.

  14. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  15. Rings Around Uranus

    ERIC Educational Resources Information Center

    Maran, Stephen P.

    1977-01-01

    Events leading up to the discovery of the rings of Uranus are described. The methods used and the logic behind the methods are explained. Data collected to prove the existence of the rings are outlined and theories concerning the presence of planetary rings are presented. (AJ)

  16. Eyeing the E Ring

    NASA Image and Video Library

    2009-12-24

    NASA Cassini spacecraft takes a look at Saturn diffuse E ring which is formed from icy material spewing out of the south pole of the moon Enceladus. The E ring is seen nearly edge-on from slightly above the northern side of Saturn ring plane.

  17. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  18. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  19. Dusty D Ring

    NASA Image and Video Library

    2014-02-24

    Saturn D ring is easy to overlook since it trapped between the brighter C ring and the planet itself. In this view from NASA Cassini spacecraft, all that can be seen of the D ring is the faint and narrow arc as it stretches from top right of the ima

  20. On certain Hecke rings

    PubMed Central

    Evens, Sam; Bressler, Paul

    1987-01-01

    We examine rings that embed into the smash product of the group algebra of the Weyl group with the field of meromorphic functions on the Cartan subalgebra and are generated by elements that satisfy braid relations. We prove that every such ring is isomorphic to either the Hecke algebra, the nil Hecke ring, or the group algebra of the Weyl group. PMID:16593804

  1. Soft normed rings.

    PubMed

    Uluçay, Vakkas; Şahin, Mehmet; Olgun, Necati

    2016-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft normed rings by soft set theory. The notions of soft normed rings, soft normed ideals, soft complete normed rings are introduced and also several related properties and examples are given.

  2. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  3. SR-71 flyover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  4. SR-71 flight

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  5. SR-71 flyover

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This clip, running about 14 seconds in length, shows the NASA SR-71 (No. 844) lighting off the afterburners on a low pass over the Dryden Flight Research Center. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  6. SR-71 flight

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  7. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  8. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  9. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  10. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  11. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  12. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  13. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  14. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  15. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  16. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Thomas, Clark S.

    1991-01-01

    Spot welder designed for bonding insulated metal strips together. Compact, measuring only about 33.5 cm in its largest linear dimension. Pinch welder clamps electrodes on weldments with strong, repeatable force. Compressed air supplied through fitting on one handle. Small switch on same handle starts welding process when operator presses it with trigger. Provides higher, more repeatable clamping force than manually driven gun and thus produces weld joints of higher quality. Light in weight and therefore positioned precisely by operator.

  17. A ring-source model for jet noise

    NASA Technical Reports Server (NTRS)

    Maestrello, L.

    1978-01-01

    A model consisting of two ring sources was developed to study the direct radiation of jet noise in terms of correlation, coherence, and phase and also to aid in solving the inverse radiation problem of determining the noise source in terms of far-field measurements. The rings consist of discrete sources which are either monopoles or quadrupoles with Gaussian profiles. Only adjacent sources, both within the rings and between rings, are correlated. Results show that from the far-field information can be used to determine when the sources are compact or noncompact with respect to the acoustic wavelength and to distinguish between the types of sources. In addition, from the inverse radiation approach, the center of mass, the location and separation distance of the ring, and the diameters can be recovered.

  18. On the solar dust ring(s)

    NASA Astrophysics Data System (ADS)

    Mukai, T.

    Based on a mechanism to form the solar dust ring, it is proved that the observed peak in infrared F-corona cannot be explained by silicate type grains alone. Preliminary analysis on the recent infrared data of the F-corona by Maihara et al. (1984) has suggested that the ring particles have different physical properties compared with the dust grains, which produce the background F-corona.

  19. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    SciTech Connect

    Siemon, R.E.

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  20. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators.

    PubMed

    Dong, Po; Qian, Wei; Liang, Hong; Shafiiha, Roshanak; Feng, Ning-Ning; Feng, Dazeng; Zheng, Xuezhe; Krishnamoorthy, Ashok V; Asghari, Mehdi

    2010-05-10

    We present thermally reconfigurable multiplexing devices based on silicon microring resonators with low tuning power and low thermal crosstalk. Micro-heaters on top of the rings are employed to tune the resonant wavelengths through the thermo-optic effect of silicon. We achieve a low tuning power of 21 mW per free spectral range for a single ring by exploiting thermal isolation trenches close to the ring waveguides. Negligible thermal crosstalk is demonstrated for rings spaced by 15 microm, enabling compact multiplexing devices. The tuning time constant is demonstrated to be less than 10 micros.

  1. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  2. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  3. Surge in the Ring

    NASA Image and Video Library

    2016-08-29

    An ethereal, glowing spot appears on Saturn's B ring in this view from NASA's Cassini spacecraft. There is nothing particular about that place in the rings that produces the glowing effect -- instead, it is an example of an "opposition surge" making that area on the rings appear extra bright. An opposition surge occurs when the Sun is directly behind the observer looking toward the rings. The particular geometry of this observation makes the point in the rings appear much, much brighter than would otherwise be expected. This view looks toward the sunlit side of the rings from about 28 degrees above the ring plane. The image was taken in visible light with the Cassini wide-angle camera on June 26, 2016. The view was acquired at a distance of approximately 940,000 miles (1.5 million kilometers) from the rings and at a Sun-ring-spacecraft, or phase, angle of 0 degrees. Image scale on the rings at center is 56 miles (90 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20496

  4. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  5. The Christiansen Effect in Saturn's narrow dusty rings and the spectral identification of clumps in the F ring

    USGS Publications Warehouse

    Hedman, M.M.; Nicholson, P.D.; Showalter, M.R.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.; Sotin, C.

    2011-01-01

    Stellar occultations by Saturn's rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87??m. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100??m across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ~30??m across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring's particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously

  6. A systems tester for compact HPG component development

    NASA Astrophysics Data System (ADS)

    Walls, W. A.; Vaughn, M. R.

    1984-03-01

    To facilitate the development of more compact homopolar generators (HPGs), the compact HPG systems tester was designed and built to develop the system and component technology necessary to design HPGs having energy densities of up to 60 MJ/cu m. The systems tester is one-half of a full-scale counter-rotating HPG storing 2.5 MJ at 6,900 rpm and generating 20 V. Incorporated in the tester are two new types of components, face brushes and a stationary-shaft hydrostatic bearing, which will lead to HPG designs that will rotate a larger fraction of the magnetic circuit while eliminating much of the stationary support structure. The systems tester is designed to provide a facility for future bearing research and development of the higher-current-density brushgear required for drawing larger currents from the smaller slip ring areas of more compact machines.

  7. Slowing of Vortex Rings

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell; Bolster, Diogo; Hershberger, Robert

    2008-11-01

    We have investigated the slowing of vortex rings in water which are created with very thin cores. We find that these rings propagate with no measurable change in diameter or core size. The drag appears to be the result of viscous forces on the core. A simple model for this drag describes experimental data in terms of a drag coefficient, which depends only on Reynolds number. Barenghi's group at Newcastle found that the translational velocity of a ring in an inviscid fluid perturbed by Kelvin waves decreases with increasing amplitude of Kelvin waves. This suggests that the velocity of vortex rings in a viscous fluid may well depend on the amplitude of Kelvin waves at the time of formation. Rings with substantial amplitude of Kelvin waves will be expected to move more slowly than rings with little or no Kelvin wave amplitude. We present experimental data confirming this suggestion.

  8. Ring Details on Display

    NASA Image and Video Library

    2016-11-07

    This view from NASA's Cassini spacecraft showcases some of the amazingly detailed structure of Saturn's rings. The rings are made up of many smaller ringlets that blur together when seen from a distance. But when imaged up close, the rings' structures display quite a bit of variation. Ring scientists are debating the nature of these features -- whether they have always appeared this way or if their appearance has evolved over time. This view looks toward the sunlit side of the rings from about 4 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 283,000 miles (456,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 32 degrees. Image scale is 17 miles (27 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20506

  9. Design study of compact Laser-Electron X-ray Generator for material and life sciences applications

    NASA Astrophysics Data System (ADS)

    Bessonov, E. G.; Gorbunkov, M. V.; Kostryukov, P. V.; Maslova, Yu Ya; Tunkin, V. G.; Postnov, A. A.; Mikhailichenko, A. A.; Shvedunov, V. I.; Ishkhanov, B. S.; Vinogradov, A. V.

    2009-07-01

    X-ray generators utilizing Thomson scattering fill in the gap that exists between conventional and synchrotron-based X-ray sources. They are expected to be more intensive than X-ray tubes and more compact, accessible and less expensive than synchrotrons. In this work, two operation modes of Thomson X-ray source (or laser-electron X-ray generator — LEXG) are documented: quasi continuous wave (QCW) and a pulsed one. They are considered for material sciences and medical applications that are currently implemented at Synchrotron Radiation (SR) facilities. The proposed system contains a ~ 50 MeV linac and a picosecond laser with an average power ~ few hundred Watts. The Thomson X-ray source is able to deliver up to 5 × 1011 photons in a millisecond flash and an average flux of 1012-1013 phot/sec. To achieve these parameters with existing optical and accelerator technology, the system must also contain a ring for storage of e-bunches for 103-105 revolutions and an optical circulator for storage of laser pulses for 102 passes. The XAFS spectroscopy, small animal angiography and human noninvasive coronary angiography are considered as possible applications of laser-electron X-ray generator.

  10. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  11. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  12. [Non-compaction cardiomyopathy].

    PubMed

    Wieneke, Heinrich; Neumann, Till; Breuckmann, Frank; Hunold, Peter; Fries, Jochen W U; Dirsch, Olaf; Erbel, Raimund

    2005-09-01

    Isolated non-compaction of the ventricular myocardium (INVM), also known as left ventricular hypertrabeculation or spongy myocardium, belongs to the "unclassified" cardiomyopathies according to the World Health Organization. The main characteristic of this entity is a prominent trabeculation of the left ventricle with deep intertrabecular recesses communicating with the ventricular cavity. The pathomechanism of INVM is thought to be an arrest in cardiac myogenesis with persistence of embryonic myocardial morphology. The most frequent clinical manifestations include congestive heart failure, ventricular arrhythmias and systemic thromboembolic events. The therapy of INVM comprises standard medical therapy for heart failure.

  13. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  14. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  15. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  16. Stable CSR in Storage Rings: A Model

    SciTech Connect

    Sannibale, F.

    2005-02-02

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user's shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  17. Stable CSR in storage rings: A model

    SciTech Connect

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge; Holldack, Karsten; Kuske, Peter; Wustefeld, Godehart; Hubers, Heinz-Willerm; Warnock, Robert

    2005-01-03

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  18. Saturn's rings - an overview

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2005-08-01

    Saturn's rings embody in their diversity the entire spectrum of ring properties seen across the outer solar system, and remain unique in fundamental ways. The Voyager flybys revealed their complexity in 1980-1981, while groundbased and HST observations have provided important new insights since that time. Since July 2004, when it skimmed only tens of thousands of km over the unlit face of the rings - collecting unique remote and in-situ observations as it entered orbit - Cassini has been fulfilling the long-held dream of understanding Saturn's rings in depth. As of this meeting, if all continues as planned, seven orbits designed specifically with ring observations in mind will have been completed - each providing even better geometric opportunities than an entire Voyager flyby (to a spacecraft with far more powerful instruments than Voyager). Even these represent only a fraction of what the complete mission will tell us about the rings. This talk will review the key properties of the rings, highlight the themes and new insights emerging from recent studies, and serve as a context for new results presented at the meeting. The key properties include the relationship of the rings to their close-in and embedded moons; the composition of the rings and its spatial variation; and the complex radial and vertical structure of the rings, as related to local particle sizes and mass density. The main themes are that several evolutionary processes cause all these to vary - we think substantially - with time, and that the rings may be much younger than Saturn. To achieve our goal of understanding the origin of the rings, we must start from an in-depth characterization of their current state, and peer back through their extensive evolution. Cassini observations, and their theoretical analysis, will ultimately make this possible.

  19. Radioactive gold ring dermatitis

    SciTech Connect

    Miller, R.A.; Aldrich, J.E. )

    1990-08-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy.

  20. Tiny Mimas, Huge Rings

    NASA Image and Video Library

    2016-11-28

    Saturn's icy moon Mimas is dwarfed by the planet's enormous rings. Because Mimas (near lower left) appears tiny by comparison, it might seem that the rings would be far more massive, but this is not the case. Scientists think the rings are no more than a few times as massive as Mimas, or perhaps just a fraction of Mimas' mass. Cassini is expected to determine the mass of Saturn's rings to within just a few hundredths of Mimas' mass as the mission winds down by tracking radio signals from the spacecraft as it flies close to the rings. The rings, which are made of small, icy particles spread over a vast area, are extremely thin -- generally no thicker than the height of a house. Thus, despite their giant proportions, the rings contain a surprisingly small amount of material. Mimas is 246 miles (396 kilometers) wide. This view looks toward the sunlit side of the rings from about 6 degrees above the ring plane. The image was taken in red light with the Cassini spacecraft wide-angle camera on July 21, 2016. The view was obtained at a distance of approximately 564,000 miles (907,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 31 degrees. Image scale is 34 miles (54 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20509

  1. Faint D Ring

    NASA Image and Video Library

    2015-04-27

    Not all of Saturn's rings are created equal: here the C and D rings appear side-by-side, but the C ring, which occupies the bottom half of this image, clearly outshines its neighbor. The D ring appears fainter than the C ring because it is comprised of less material. However, even rings as thin as the D ring can pose hazards to spacecraft. Given the high speeds at which Cassini travels, impacts with particles just fractions of a millimeter in size have the potential to damage key spacecraft components and instruments. Nonetheless, near the end of Cassini's mission, navigators plan to thread the spacecraft's orbit through the narrow region between the D ring and the top of Saturn's atmosphere. This view looks toward the unilluminated side of the rings from about 12 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 11, 2015. The view was acquired at a distance of approximately 372,000 miles (599,000 kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 133 degrees. Image scale is 2.2 miles (3.6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18313

  2. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  3. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  4. Saturn's E ring revisited

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Klinglesmith, D. A.

    1980-07-01

    Images of the E ring of Saturn obtained by the image processing of photographs of the 1966 edge-on presentation of the planet's ring plane are presented. Two methods of image enhancement were used: scanning with an image quantizer operated in the derivative mode to enhance contrast and computerized subtraction of a circularly symmetric image of the overexposed Saturn disk. Further photographic and CCD observation confirming the existence of the ring extending to twice the diameter of the A ring, which was not detected by the Pioneer 11 imaging photopolarimeter, is indicated.

  5. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  6. Viscosity in Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Shu, F. H.; Cuzzi, J. N.

    1982-01-01

    The technique of estimating the viscosity in Saturn's rings from the damping rate of waves observed to be propagating within the rings is discussed. The wavetrains of attempts using spiral density waves as a diagnostic suffer significant complications that compromise the interpretations. A method that considers the damping of spiral bending waves was used to deduce a kinematic viscosity of 260 (+150, -100) sqcm/sec for the middle of the A ring where bending waves are excited by the 5:3 vertical resonance with Mimas. This value implies upper limits on the particle velocity dispersion and local ring thickness of 0.4 cm/sec and 30 m, respectively.

  7. Modified spiral wound retaining ring

    NASA Technical Reports Server (NTRS)

    Lawson, A. G. (Inventor)

    1980-01-01

    A spiral wound retaining ring with angled ends is described. The ring is crimped at the same angle as the ring ends to maintain a constant thickness dimension. The angling of the ends of the ring and crimp allow the ends to be positioned closer together while maintaining enough clearance to enable insertion and removal of the ring. By reducing the separation distance between the ends a stronger ring results since the double layer area of the ring is maximized.

  8. Topological effects in ring polymers. II. Influence of persistence length

    NASA Astrophysics Data System (ADS)

    Müller, M.; Wittmer, J. P.; Cates, M. E.

    2000-04-01

    The interplay of topological constraints and the persistence length of ring polymers in their own melt is investigated by means of dynamical Monte Carlo simulations of a three-dimensional lattice model. We ask if the results are consistent with an asymptotically regime where the rings behave like (compact) lattice animals in a self-consistent network of topological constraints imposed by neighboring rings. Tuning the persistence length provides an efficient route to increase the ring overlap required for this mean-field picture to hold: The effective Flory exponent for the ring size decreases down to ν<~1/3 with increasing persistence length. Evidence is provided for the emergence of one additional characteristic length scale dt~N0, only weakly dependent on the persistence length and much larger than the excluded volume screening length ξ. At distances larger than dt the conformational properties of the rings are governed by the topological interactions; at smaller distances rings and their linear chain counterparts become similar. (At distances smaller than ξ both architectures are identical.) However, the crossover between both limits is intricate and broad, as a detailed discussion of the local fractal dimension (e.g., obtained from the static structure factor) reveals. This is due to various crossover effects which we are unable to separate even for the largest ring size (N=1024) presented here. The increased topological interactions also influence the dynamical properties. Mean-square displacements and their distributions depend crucially on the ring overlap, and show evidence of the existence of additional size and time scales. The diffusion constant of the rings goes down from effectively DN~N-1.22 for flexible rings with low overlap to DN~N-1.68 for strongly overlapping semiflexible rings.

  9. Scalable Nonlinear Compact Schemes

    SciTech Connect

    Ghosh, Debojyoti; Constantinescu, Emil M.; Brown, Jed

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  10. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  11. Lacunarity for compact groups.

    PubMed

    Edwards, R E; Hewitt, E; Ross, K A

    1971-01-01

    Let G be a compact Abelian group with character group X. A subset Delta of X is called a [unk](q) set (1 < q < infinity) if for all trigonometric polynomials f = [unk](k=1) (n) alpha(k)chi(k) (chi(1),...,chi(n) [unk] Delta) an inequality parallelf parallel(q) [unk] [unk] parallelf parallel(1) obtains, where [unk] is a positive constant depending only on Delta. The subset Delta is called a Sidon set if every bounded function on Delta can be matched by a Fourier-Stieltjes transform. It is known that every Sidon set is a [unk](q) set for all q. For G = T, X = Z, Rudin (J. Math. Mech., 9, 203 (1960)) has found a set that is [unk](q) for all q but not Sidon. We extend this result to all infinite compact Abelian groups G: the character group X contains a subset Delta that is [unk](q) for all q, 1 < q < infinity, but Delta is not a Sidon set.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  14. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  15. Particle Simulations of Ion Rings for Magnetic Fusion.

    NASA Astrophysics Data System (ADS)

    Lyster, Peter Michael

    1987-09-01

    This thesis contains a numerical study of the dynamics of axis encircling charged particles in ion rings and layers. Part of this work deals with the coalescence of ion rings to form field reversed rings, which may be useful for Compact Torus magnetic fusion reactors. The coalescence of weak ion rings with Compact Toroids is also investigated. This is important because a component of energetic particles may help to maintain the flux or stabilize these configurations against a number of macroscopic magnetohydrodynamic instabilities. Several different types of particle codes are used. RINGA and CIDER are two and one half-dimensional codes in cylindrical axisymmetric geometry. For the RINGA code, a simple Ohm's law is used for modeling a resistive background plasma. For CIDER, the massless electron momentum equation is used for modeling a conductive background plasma. In a resistive plasma, ring coalescence can be achieved if the initial relative translational velocity is not excessive, and if the plasma conductivity is chosen to maximize the dissipation of ring energy. A theoretical and computational study is made of a mechanism by which ring translational energy is transferred to Alfven waves in a conductive plasma. A new collective phenomenon is discussed, whereby the merging of rings is improved if they have stronger initial self fields. A study is made of the coalescence of strong field-reversed ion rings in highly conductive plasmas, in which it is found that magnetic field line reconnection is an important process. Finally, a study of the magnetic compression of ion layers in conductive plasmas is presented. BAGSHAW, a one-dimensional particle code which treats the background plasma in the two fluid approximation, was developed for this purpose. Compression on a timescale which is comparable with the Alfven transit time may create considerable transients in the system. In a one-dimensional system, the plasma return current does not cancel the increase in the

  16. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  17. Harmonic cavities for the NLC damping rings

    SciTech Connect

    de Santis, S.; Wolski, A.

    2003-05-29

    To achieve high luminosity, a linear collider needs damping rings to produce beams with very small transverse emittances. In the NLC, design constraints place the Main Damping Rings in a parameter regime where intrabeam scattering (IBS) is likely to be a limitation on the emittance, and hence on the final luminosity. It is possible to mitigate the effects of IBS by lengthening the bunch: this may be achieved by redesigning the lattice with higher momentum compaction, or by use of higher harmonic cavities. Here, we consider the latter approach. We estimate the required bunch lengthening that might be needed, outline some appropriate parameters for the harmonic cavities, and discuss some of the effects that might be introduced or exacerbated by the cavities, such as synchronous phase variation along the bunch train.

  18. Compact 400 kV Marx Generator with Common Switch Housing

    DTIC Science & Technology

    1997-06-01

    A compact four stage Marx with six parallel Marx generators per stage and a common switch housing, developed for various Air Force applications, is...described. Unique features of the Compact Marx include a single cast epoxy switch housing common to each stage that can use six independent spark gaps...or one continuous ring gap packaged in a housing measuring 76 em in diameter, 56 em in height, and 295 kg. Initial test results of the Marx into a 5 n

  19. A MODEL FOR PRODUCING STABLE, BROADBAND TERAHERTZ COHERENT SYNCHROTRONRADIATION IN STORAGE RINGS

    SciTech Connect

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Martin, MichaelC.; Venturini, Marco

    2003-06-13

    We present a model for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use this model to optimize the performance of a source for CSR emission.

  20. Dynamic Compaction of Porous Beds

    DTIC Science & Technology

    1985-12-26

    NSWVC TR 83-246 00 00 SDYNAMIC COMPACTION OF POROUS B3EDS BY H. W. SANDUSKY T. P. LIDDIARD RESEARCH AND TECHNOLOGY DEPARTMENT D I 26 DECEMBER 1985...RIOBA4313 11. TITLE (Include Security Classfication3 Dynamic Compaction of Porous Beds 12. PERSONAL AUTHOR(S) Sandusky, H. W., and Liddiard, T. P. 13a... Porous Bed Compaction Wave Velocity Oeflaaration-to-Detonation Transition Particle Velocity ABSTRACT (Continue on reverse if necessary and identify

  1. Damping Ring R&D at CESR-TA

    SciTech Connect

    Rubin, David L.

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  2. Experimental results from the small isochronous ring

    SciTech Connect

    Eduard Pozdeyev

    2005-05-01

    The Small Isochronous Ring (SIR) is a compact, low-energy storage ring designed to investigate the beam dynamics of high-intensity isochronous cyclotrons and synchrotrons at the transition energy. The ring was developed at Michigan State University (MSU) and has been operational since December 2003. It stores 20 keV hydrogen beams with a peak current of 10-20 microamps for up to 200 turns. The transverse and longitudinal profiles of extracted bunches are measured with an accuracy of approximately 1 mm. The high accuracy of the measurements makes the experimental data attractive for validation of multi-particle space charge codes. The results obtained in the ring show a fast growth of the energy spread induced by the space charge forces. The energy spread growth is accompanied by a breakup of the beam bunches into separated clusters that are involved in the vortex motion specific to the isochronous regime. The experimental results presented in the paper show a remarkable agreement with simulations performed with the code CYCO. In this paper, we discuss specifics of space charge effects in the isochronous regime, present results of experiments in SIR, and conduct a detailed comparison of the experimental data with results of simulations.

  3. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  4. Inner B Ring Terminus

    NASA Image and Video Library

    2009-09-21

    This mosaic, part of a larger mosaic of images captured by NASA Cassini Orbiter just hours before exact equinox at Saturn, shows that the spiral corrugation in the planet’s inner rings continues right up to the inner B ring.

  5. Neptune's ring system.

    NASA Astrophysics Data System (ADS)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  6. EBT ring physics

    SciTech Connect

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  7. Uranus Ring System

    NASA Image and Video Library

    1996-01-29

    This image captured by NASA's Voyager 2 in 1986 revealed a continuous distribution of small particles throughout the Uranus ring system. This unique geometry, the highest phase angle at which Voyager imaged the rings, allowed us to see lanes of fine dust. http://photojournal.jpl.nasa.gov/catalog/PIA00142

  8. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  9. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  10. Steroidal contraceptive vaginal rings.

    PubMed

    Sarkar, N N

    2003-06-01

    The development of steroid-releasing vaginal rings over the past three decades is reviewed to illustrate the role of this device as an effective hormonal contraceptive for women. Vaginal rings are made of polysiloxane rubber or ethylene-vinyl-acetate copolymer with an outer diameter of 54-60 mm and a cross-sectional diameter of 4-9.5 mm and contain progestogen only or a combination of progestogen and oestrogen. The soft flexible combined ring is inserted in the vagina for three weeks and removed for seven days to allow withdrawal bleeding. Progesterone/progestogen-only rings are kept in for varying periods and replaced without a ring-free period. Rings are in various stages of research and development but a few, such as NuvaRing, have reached the market in some countries. Women find this method easy to use, effective, well tolerated and acceptable with no serious side-effects. Though the contraceptive efficacy of these vaginal rings is high, acceptability is yet to be established.

  11. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  12. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  13. Lower esophageal ring (Schatzki)

    MedlinePlus

    ... narrowed area to stretch the ring. Sometimes, a balloon is placed in the area and inflated, to help widen the ring. Outlook (Prognosis) Swallowing problems may return. You may need repeat treatment. When to Contact a Medical Professional Call your health care provider if you ...

  14. Contactless Magnetic Slip Ring

    NASA Technical Reports Server (NTRS)

    Kumagai, Hiroyuki (Inventor); Deardon, Joe D. (Inventor)

    1997-01-01

    A contactless magnetic slip ring is disclosed having a primary coil and a secondary coil. The primary and secondary coils are preferably magnetically coupled together, in a highly reliable efficient manner, by a magnetic layered core. One of the secondary and primary coils is rotatable and the contactless magnetic slip ring provides a substantially constant output.

  15. Rings of Neptune

    NASA Image and Video Library

    1999-07-25

    These two 591-second exposures of the rings of Neptune were taken with the clear filter by the NASA Voyager 2 wide-angle camera on Aug. 26, 1989. The two main rings are clearly visible and appear complete over the region imaged.

  16. Illustration of Saturn's Rings

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  17. Birth Control Ring

    MedlinePlus

    ... It? The birth control ring is a soft, flexible, doughnut-shaped ring about 2 inches (5 centimeters) in diameter. It is inserted into the vagina, where it slowly releases hormones — the chemicals the body makes to control organ function — through the vaginal wall into the ...

  18. A-ring Propeller

    NASA Image and Video Library

    2010-08-26

    A propeller-shaped structure, created by an unseen moon, can be seen in Saturn A ring and looks like a small, dark line interrupting the bright surrounding ring material in the upper left of this image taken by NASA Cassini spacecraft.

  19. Telemetry carrier ring and support

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor)

    1992-01-01

    A telemetry carrier ring for use in a gas turbine engine includes an annular support ring connected to the engine and an annular carrier ring coupled to the support ring, each ring exhibiting different growth characteristics in response to thermal and mechanical loading. The carrier ring is coupled to the support ring by a plurality of circumferentially spaced web members which are relatively thin in an engine radial direction to provide a predetermined degree of radial flexibility. the web members have a circumferential width and straight axial line of action selected to transfer torque and thrust between the support ring and the carrier ring without substantial deflection. The use of the web members with radial flexibility provides compensation between the support ring and the carrier ring since the carrier ring grows at a different rate than the supporting ring.

  20. Jupiter's Gossamer Rings Explained.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2003-05-01

    Over the past several years, Galileo measurements and groundbased imaging have drastically improved our knowledge of Jupiter's faint ring system. We now recognize that the ring consists of four components: a main ring 7000km wide, whose inner edge blossoms into a vertically-extended halo, and a pair of more tenuous Gossamer rings, one associated with each of the small moons Thebe and Amalthea. When viewed edge on, the Gossamer rings appear as diaphanous disks whose thicknesses agree with the vertical excursions of the inclined satellites from the equatorial plane. In addition, the brightness of each Gossamer ring drops off sharply outside the satellite orbits. These correlations allowed Burns etal (1999, Science, 284, 1146) to argue convincingly that the satellites act as sources of the dusty ring material. In addition, since most material is seen inside the orbits of the source satellites, an inwardly-acting dissipative force such as Poynting-Robertson drag is implicated. The most serious problem with this simple and elegant picture is that it is unable to explain the existence of a faint swath of material that extends half a jovian radius outward from Thebe. A key constraint is that this material has the same thickness as the rest of the Thebe ring. In this work, we identify the mechanism responsible for the outward extension: it is a shadow resonance, first investigated by Horanyi and Burns (1991, JGR, 96, 19283). When a dust grain enters Jupiter's shadow, photoelectric processes shut down and the grain's electric charge becomes more negative. The electromagnetic forces associated with the varying charge cause periodic oscillations in the orbital eccentricity and semimajor axis as the orbital pericenter precesses. This results in a ring which spreads both inward and outward of its source satellite while preserving its vertical thickness - just as is observed for the Thebe ring. Predictions of the model are: i) gaps of micron-sized material interior to Thebe and

  1. Jupiter's Rings: Sharpest View

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  2. Jupiter Ring, With Orion

    NASA Image and Video Library

    2017-05-25

    As NASA's Juno spacecraft flew through the narrow gap between Jupiter's radiation belts and the planet during its first science flyby, Perijove 1, on August 27, 2016, the Stellar Reference Unit (SRU-1) star camera collected the first image of Jupiter's ring taken from the inside looking out. The bright bands in the center of the image are the main ring of Jupiter's ring system. While taking the ring image, the SRU was viewing the constellation Orion. The bright star above the main ring is Betelgeuse, and Orion's belt can be seen in the lower right. Juno's Radiation Monitoring Investigation actively retrieves and analyzes the noise signatures from penetrating radiation in the images of the spacecraft's star cameras and science instruments at Jupiter. https://photojournal.jpl.nasa.gov/catalog/PIA21644

  3. A Four Cell Lattice for the UCLA Compact Light Source Synchrotron

    SciTech Connect

    Garren, A.A.; Green, M.A.

    1999-03-12

    The 1.5 GeV compact light source UCS proposed for UCLA must fit into a shielded vault that is 9.144 meters (30 feet) wide. In order for the machine to fit into the allowable space, the ring circumference must be reduced 36 meters, the circumference of the six cell lattice, to something like 26 or 27 meters. The four cell lattice described in this report has a ring circumference of 27.0 meters.

  4. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  5. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  6. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  7. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  8. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  9. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  10. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  11. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  12. Compact SAW aerosol generator.

    PubMed

    Winkler, A; Harazim, S; Collins, D J; Brünig, R; Schmidt, H; Menzel, S B

    2017-03-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.

  13. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  14. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  15. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  16. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  17. Responses of methane effluxes and soil methane concentrations to compaction.

    NASA Astrophysics Data System (ADS)

    Plain, C.; Delogu, E.; Longdoz, B.; Epron, D.; Ranger, J.

    2015-12-01

    Forest soils host methanotrophic bacterial communities that make them a major methane sink worldwide. Soil compaction resulting from mechanization of forest operations is first affecting soil macroporosity, and thus gas and water transfer within the soil, leading to a reduced oxygenation of the soil. This reduction of soil aeration is expected to reduce the methanotrophic activity leading thus to less CH4 oxidation and more CH4 production, affecting the overall soil CH4budget. Compaction was applied in 2007 and had created linear ruts. We measured continuously since September 2014, in three different situations (compacted-mound, compacted hollow and control), soil CO2 and CH4 effluxes using closed chamber coupled to a cavity ring down spectrometer in an young oak plantation. Since December 2015, in addition to these measurements, we have implanted hydrophobic tubes to measure vertical soil profiles of CH4, O2 and CO2 concentrations in the 3 situations. The soil acts as CH4 sink, with no significant difference in net CH4uptake between control and both hollow and mound in the compacted treatment. However, the uptake of CH4 was significantly lower for the hollows than for the mounds resulting from both a lower diffusion of CH4 within soil and a higher production of CH4 in deeper layer when the soil is water saturated.

  18. Finite element modelling of process-integrated powder coating by radial axial rolling of rings

    NASA Astrophysics Data System (ADS)

    Frischkorn, J.; Kebriaei, R.; Reese, S.; Moll, H.; Theisen, W.; Husmann, T.; Meier, H.

    2011-05-01

    The process-integrated powder coating by radial axial rolling of rings represents a new hybrid production technique applied in the manufacturing of large ring-shaped work pieces with functional layers. It is thought to break some limitations that come along with the hot isostatic pressing (HIP) which is used nowadays to apply the powdery layer material onto the rolled substrate ring. Within the new process the compaction of the layer material is integrated into the ring rolling and HIP becomes dispensable. Following this approach the rolling of such compound rings brings up some new challenges. The volume of a solid ring stays nearly constant during the rolling. This behaviour can be exploited to determine the infeed of the rollers needed to reach the desired ring shape. Since volume consistency cannot be guaranteed for the rolling of a compound ring the choice of appropriate infeed of the rollers is still an open question. This paper deals with the finite element (FE) simulation of this new process. First, the material model that is used to describe the compaction of the layer material is shortly reviewed. The main focus of the paper is then put on a parameterized FE ring rolling model that incorporates a control system in order to stabilize the process. Also the differences in the behaviour during the rolling stage between a compound and a solid ring will be discussed by means of simulation results.

  19. Finite element modelling of process-integrated powder coating by radial axial rolling of rings

    SciTech Connect

    Frischkorn, J.; Kebriaei, R.; Reese, S.; Moll, H.; Theisen, W.; Husmann, T.; Meier, H.

    2011-05-04

    The process-integrated powder coating by radial axial rolling of rings represents a new hybrid production technique applied in the manufacturing of large ring-shaped work pieces with functional layers. It is thought to break some limitations that come along with the hot isostatic pressing (HIP) which is used nowadays to apply the powdery layer material onto the rolled substrate ring. Within the new process the compaction of the layer material is integrated into the ring rolling and HIP becomes dispensable. Following this approach the rolling of such compound rings brings up some new challenges. The volume of a solid ring stays nearly constant during the rolling. This behaviour can be exploited to determine the infeed of the rollers needed to reach the desired ring shape. Since volume consistency cannot be guaranteed for the rolling of a compound ring the choice of appropriate infeed of the rollers is still an open question. This paper deals with the finite element (FE) simulation of this new process. First, the material model that is used to describe the compaction of the layer material is shortly reviewed. The main focus of the paper is then put on a parameterized FE ring rolling model that incorporates a control system in order to stabilize the process. Also the differences in the behaviour during the rolling stage between a compound and a solid ring will be discussed by means of simulation results.

  20. Design of 3 GeV booster ring lattice

    SciTech Connect

    Etisken, O. Ciftci, A. K.

    2016-03-25

    The aim of this study is to design of a 3 GeV booster ring for the 3 GeV storage ring. Electrons are needed to be accelerated to 3.0 GeV from 0.15 GeV energy. In this frame, we studied on two options for booster ring; a compact booster and the booster that shares the same tunnel with the storage ring. The lattice type has been chosen FODO for both options, lattice parameters are calculated, sextupole magnets are used to decrease dynamic aperture problem and dynamic aperture calculations are also made with considering of the necessary conditions. After designing and calculating of the parameters, these designs have been compared with each other. In addition to this comparison, these booster design parameters have been compared with some world centers design parameters and the reliability of the booster design is seen. Beam optics, OPA and Elegant simulation programs have been used in the study calculations.

  1. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  2. The Enceladus Ring

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] The Enceladus Ring (labeled)

    This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background.

    The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view.

    Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring.

    Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione.

    An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus.

    One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane.

    Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally

  3. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  4. Earth: A Ringed Planet?

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.; Povenmire, H.

    2010-12-01

    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  5. Compaction with Automatic Jog Introduction,

    DTIC Science & Technology

    1985-10-01

    The compaction algorithm This section defines mathematically the problem of compaction with auto- matk jog introduction, and presents a practical...t(5) of potential cuts of S, and usng their mutability cmndi to constrain the positiokn of modulo in S. The proof that this technique gen - erates a

  6. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  7. Compost improves compacted urban soil

    USDA-ARS?s Scientific Manuscript database

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  8. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  9. Seal ring installation tool

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes (Inventor)

    2004-01-01

    A seal ring tool that allows an installer to position a primary seal ring between hub ends of pipe flanges that are being assembled together. The tool includes a pivoting handle member and extension arms attached to the pivoting handle member. The ends of the arms have side indentation type longitudinal grooves angled toward one another for holding the primary seal ring in place between the hubs of respective pipes that are to be attached together. The arms of the tool can also have flat sides that can be used to abut against an optional second larger seal that is supported within a groove in one of the hub ends so that the second hub end can then be moved against the other side of the primary seal ring. Once the seal ring is positioned between the pipe hubs, the pipe hubs can be moved about the seal ring due to the flat sides of the arms of the tool. The tool eliminates the chances of damaging and contaminating seal rings being installed within pipe hubs that are being attached to one another.

  10. Gored of the Rings

    NASA Image and Video Library

    2014-06-09

    Prometheus is caught in the act of creating gores and streamers in the F ring. Scientists believe that Prometheus and its partner-moon Pandora are responsible for much of the structure in the F ring as shown by NASA Cassini spacecraft. The orbit of Prometheus (53 miles, or 86 kilometers across) regularly brings it into the F ring. When this happens, it creates gores, or channels, in the ring where it entered. Prometheus then draws ring material with it as it exits the ring, leaving streamers in its wake. This process creates the pattern of structures seen in this image. This process is described in detail, along with a movie of Prometheus creating one of the streamer/channel features, in PIA08397. This view looks toward the sunlit side of the rings from about 8.6 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 11, 2014. The view was acquired at a distance of approximately 1.3 million miles (2.1 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 147 degrees. Image scale is 8 miles (13 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18270

  11. Ring artifacts removal from synchrotron CT image slices

    NASA Astrophysics Data System (ADS)

    Wei, Zhouping; Wiebe, Sheldon; Chapman, Dean

    2013-06-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  12. The NLC Main Damping Ring Lattice(LCC-0113)

    SciTech Connect

    Woodley, M

    2003-10-02

    Studies of the NLC Main Damping Ring lattice since April 2001 have indicated that there are a number of collective effects that potentially limit operational performance. One possible way to reduce the impact of these effects is to raise the momentum compaction of the lattice, which requires a significant re-design. In this note, we present a lattice that has a momentum compaction four times larger than the previous design. We discuss the linear and nonlinear dynamical properties of the lattice, and present some initial estimates of the sensitivity of the new design to various magnet misalignments.

  13. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  14. Dynamics of the Uranian Rings

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.

    1984-01-01

    Some of the problems of the shepherding satellite model of Goldreich ant tremaine are discussed. The following topics are studied: (1) optical depths of the all the observed narrow rings; (2) satellite and ring separation timescales; (3) ring edge sharpness; (4) shock formation in narrow rings; (5) the existence of small satellites near the Uranian rings; and (6) the apse and node alignments of the eccentric and inclined rings.

  15. Dynamics of planetary rings

    NASA Astrophysics Data System (ADS)

    Araki, S.

    1991-02-01

    The modeling of the dynamics of particle collisions within planetary rings is discussed. Particles in the rings collide with one another because they have small random motions in addition to their orbital velocity. The orbital speed is roughly 10 km/s, while the random motions have an average speed of about a tenth of a millimeter per second. As a result, the particle collisions are very gentle. Numerical analysis and simulation of the ring dynamics, performed with the aid of a supercomputer, is outlined.

  16. Theodolite Ring Lights

    NASA Technical Reports Server (NTRS)

    Clark, David

    2006-01-01

    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  17. Heavy ion storage rings

    SciTech Connect

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  18. Alternative parallel ring protocols

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Foudriat, E. C.; Maly, Kurt J.; Kale, V.

    1990-01-01

    Communication protocols are know to influence the utilization and performance of communication network. The effect of two token ring protocols on a gigabit network with multiple ring structure is investigated. In the first protocol, a mode sends at most one message on receiving a token. In the second protocol, a mode sends all the waiting messages when a token is received. The behavior of these protocols is shown to be highly dependent on the number of rings as well as the load in the network.

  19. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  20. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  1. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  2. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  3. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  4. Accuracy and precision of 88Sr/86Sr and 87Sr/86Sr measurements by MC-ICPMS compromised by high barium concentrations

    NASA Astrophysics Data System (ADS)

    Scher, Howie D.; Griffith, Elizabeth M.; Buckley, Wayne P.

    2014-02-01

    (BaSO4) is a widely distributed mineral that incorporates strontium (Sr) during formation. Mass-dependent fractionation of Sr isotopes occurs during abiotic precipitation of barite and formation of barite associated with biological processes (e.g., bacterial sulfide oxidation). Sr isotopes in barite can provide provenance information as well as potentially reconstruct sample formation conditions (e.g., saturation state, temperature, biotic versus abiotic). Incomplete separation of Ba from Sr has complicated measurements of Sr isotopes by MC-ICPMS. In this study, we tested the effects of Ba in Sr sample solutions and modified extraction chromatography of Sr using Eichrom Sr Spec (Eichrom Technologies LLC, USA) resin to enable rapid, accurate, and precise measurements of 88Sr/86Sr and 87Sr/86Sr ratios from Ba-rich matrices. Sr isotope ratios of sample solutions doped with Ba were statistically indistinguishable from Ba-free sample solutions below 1 ppm Ba. Deviations in both 87Sr/86Sr and δ88/86Sr occurred above 1 ppm Ba. An updated extraction chromatography method tested with barite and Ba-doped seawater produces Sr sample solutions containing 10-100 ppb levels of Ba. The practice of Zr spiking for external mass-discrimination correction of 88Sr/86Sr ratios was also evaluated, and it was confirmed that variable Zr levels do not have adverse effects on the accuracy and precision of 87Sr/86Sr ratios in the Zr concentration range required to produce accurate δ88/86Sr values.

  5. A reconsideration of marine strontium budgets using both stable (δ88Sr) and radiogenic (87Sr/86Sr) systems

    NASA Astrophysics Data System (ADS)

    Pearce, C. R.; Parkinson, I. J.; Burton, K. W.

    2011-12-01

    The radiogenic strontium (Sr) isotope system is one of the most commonly used continental weathering proxies, as variations in 87Sr/86Sr throughout the geological record are thought to represent changes in the flux of continental and hydrothermal material to the oceans(1). Despite decades of research, however, it remains unclear why Sr in the modern oceans is not in steady state, with the flux-weighted inputs of radiogenic and unradiogenic Sr not balancing the rate of change observed in seawater 87Sr/86Sr over the last ~400 kyr(2). Recent recognition of significant stable Sr isotope fractionation suggests that variations in δ88Sr may offer new insights into the global cycling of Sr. Because δ88Sr is fractionated during both continental weathering(3) and carbonate precipitation(4), it can provide information on both the inputs and outputs of Sr from the oceans, and may consequently help constrain differences between weathering flux and source compositional variations over geological timescales. This study presents new δ88Sr data from numerous pore water and dust samples, which, together with δ88Sr values for global river water, rain water and hydrothermal fluids(3), complete the δ88Sr characterisation of the principal marine Sr inputs. Incorporating δ88Sr values from carbonates that are representative of the dominant output flux of Sr from the oceans(4), this enables the complete stable Sr isotope budget of the modern oceans to be determined. This is compared to the existing radiogenic Sr isotope budget, and the implications for the non-steady state cycling of Sr are discussed. (1) Palmer and Edmond (1989). EPSL, 92, 11-26. (2) Vance et al. (2009). Nature, 458, 493-496. (3) Pearce et al. (2010). AGU Fall Meeting, Abstract B21D-0342. (4) Krabbenhöft et al. (2010). GCA, 74, 4097-4109.

  6. Ring-array processor distribution topology for optical interconnects

    NASA Technical Reports Server (NTRS)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  7. INVESTIGATION OF COHERENT EMISSION FROM THE NSLS VUV RING.

    SciTech Connect

    CARR,G.L.; KRAMER,S.L.; MURPHY,J.B.; LAVEIGNE,J.; LOBO,R.P.S.; REITZE,D.H.; TANNER,D.B.

    1999-03-01

    Bursts of coherent radiation are observed from the NSLS VUV ring near a wavelength of 7 mm. The bursts occur when the electron beam current (I) exceeds a threshold value (I{sub th}), which itself varies with ring operating conditions. Beyond threshold, the average intensity of the emission is found to increase as (I-I{sub th}){sup 2}. With other parameters held nearly constant, the threshold current value is found to increase quadratically with synchrotron frequency, indicating a linear dependence on momentum compaction. It is believed that the coherent emission is a consequence of micro-bunching of the electron beam due to the microwave instability.

  8. Scintillating C Ring

    NASA Image and Video Library

    2007-01-16

    Both luminous and translucent, the C ring sweeps out of the darkness of Saturn's shadow and obscures the planet at lower left. The ring is characterized by broad, isolated bright areas, or "plateaus," surrounded by fainter material. This view looks toward the unlit side of the rings from about 19 degrees above the ringplane. North on Saturn is up. The dark, inner B ring is seen at lower right. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 15, 2006 at a distance of approximately 632,000 kilometers (393,000 miles) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 56 degrees. Image scale is 34 kilometers (21 miles) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA08855

  9. Ring of Stellar Fire

    NASA Image and Video Library

    2014-10-22

    This image from NASA Spitzer Space Telescope shows where the action is taking place in galaxy NGC 1291. The outer ring, colored red, is filled with new stars that are igniting and heating up dust that glows with infrared light.

  10. Obscured by Rings

    NASA Image and Video Library

    2012-08-29

    Saturn rings obscure part of Titan colorful visage in this image from NASA Cassini spacecraft. The south polar vortex that first appeared in Titan atmosphere in 2012 is visible at the bottom of this view.

  11. Outer B Ring Edge

    NASA Image and Video Library

    2004-12-03

    This image NASA Cassini spacecraft shows subtle, wavelike patterns, hundreds of narrow features resembling a record grooves in Saturn outer B-ring, and a noticeable abrupt change in overall brightness beyond the dark gap near the right.

  12. A-Ring Structures

    NASA Image and Video Library

    2010-09-23

    Several structures in Saturn A ring are exposed near the Encke Gap in this image captured by NASA Cassini spacecraft. A peculiar kink can be seen in one particularly bright ringlet at the bottom right.

  13. Ring Shadows on Janus

    NASA Image and Video Library

    2009-12-23

    Sunlight passing through the Cassini Division between Saturn A and B rings sweeps across and illuminates the surface of the moon Janus in this image captured by NASA Cassini spacecraft. Go to the Photojournal to view the animation.

  14. View of Saturn Rings

    NASA Image and Video Library

    1999-01-18

    This view shows some detail and differences in the complex system of rings. This was one of the first pictures obtained once NASA Voyager 2 resumed returning images Aug. 29, 1979 after its scan platform was commanded to view Saturn.

  15. Rings and Waves

    NASA Image and Video Library

    2013-09-30

    Saturn A ring is decorated with several kinds of waves. NASA Cassini spacecraft has captured a host of density waves, a bending wave, and the edge waves on the edge of the Keeler gap caused by the small moon Daphnis.

  16. Wisps Under the Rings

    NASA Image and Video Library

    2015-12-28

    Dione beautiful wispy terrain is brightly lit alongside Saturn elegant rings in this image captured by NASA Cassini spacecraft. The wisps are relatively young fractures on the trailing hemisphere of Dione icy surface.

  17. Warm core rings

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Gulf stream phenomena have been the focus of numerous studies by U.S. and Canadian oceanographic laboratories. Two years ago, observations of warm core rings associated with the Gulf Stream were reported in The Oceanography Report, (November 2, 1982, p. 834). It was noted then that the structure of warm core rings can undergo rapid transformation. Recently, a multidisciplinary group of physical and biological oceanographic institutions has examined the evolution of warm core rings in detail [Nature, 308, pp. 837-840, 1984]. The study has involved research vessels Endeavor, Atlantis II, and Albatross IV for surface measurements of temperature, salinity, and for measurement surface pigments to assess the concentration of marine plants. The results are that even though warm core rings are often very stable, undergoing only slow changes, it turns out that major alterations in structure can and do occur in short periods of 2-5 days.

  18. Saturn's dynamic D ring

    USGS Publications Warehouse

    Hedman, M.M.; Burns, J.A.; Showalter, M.R.; Porco, C.C.; Nicholson, P.D.; Bosh, A.S.; Tiscareno, M.S.; Brown, R.H.; Buratti, B.J.; Baines, K.H.; Clark, R.

    2007-01-01

    The Cassini spacecraft has provided the first clear images of the D ring since the Voyager missions. These observations show that the structure of the D ring has undergone significant changes over the last 25 years. The brightest of the three ringlets seen in the Voyager images (named D72), has transformed from a narrow, <40-km wide ringlet to a much broader and more diffuse 250-km wide feature. In addition, its center of light has shifted inwards by over 200 km relative to other features in the D ring. Cassini also finds that the locations of other narrow features in the D ring and the structure of the diffuse material in the D ring differ from those measured by Voyager. Furthermore, Cassini has detected additional ringlets and structures in the D ring that were not observed by Voyager. These include a sheet of material just interior to the inner edge of the C ring that is only observable at phase angles below about 60??. New photometric and spectroscopic data from the ISS (Imaging Science Subsystem) and VIMS (Visual and Infrared Mapping Spectrometer) instruments onboard Cassini show the D ring contains a variety of different particle populations with typical particle sizes ranging from 1 to 100 microns. High-resolution images reveal fine-scale structures in the D ring that appear to be variable in time and/or longitude. Particularly interesting is a remarkably regular, periodic structure with a wavelength of ??? 30 ?? km extending between orbital radii of 73,200 and 74,000 km. A similar structure was previously observed in 1995 during the occultation of the star GSC5249-01240, at which time it had a wavelength of ??? 60 ?? km. We interpret this structure as a periodic vertical corrugation in the D ring produced by differential nodal regression of an initially inclined ring. We speculate that this structure may have formed in response to an impact with a comet or meteoroid in early 1984. ?? 2006 Elsevier Inc. All rights reserved.

  19. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  20. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  1. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  2. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  3. Compact photoacoustic tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Pramanik, Manojit

    2017-03-01

    Photoacoustic tomography (PAT) is a non-ionizing biomedical imaging modality which finds applications in brain imaging, tumor angiogenesis, monitoring of vascularization, breast cancer imaging, monitoring of oxygen saturation levels etc. Typical PAT systems uses Q-switched Nd:YAG laser light illumination, single element large ultrasound transducer (UST) as detector. By holding the UST in horizontal plane and moving it in a circular motion around the sample in full 2π radians photoacoustic data is collected and images are reconstructed. The horizontal positioning of the UST make the scanning radius large, leading to larger water tank and also increases the load on the motor that rotates the UST. To overcome this limitation, we present a compact photoacoustic tomographic (ComPAT) system. In this ComPAT system, instead of holding the UST in horizontal plane, it is held in vertical plane and the photoacoustic waves generated at the sample are detected by the UST after it is reflected at 45° by an acoustic reflector attached to the transducer body. With this we can reduce the water tank size and load on the motor, thus overall PAT system size can be reduced. Here we show that with the ComPAT system nearly similar PA images (phantom and in vivo data) can be obtained as that of the existing PAT systems using both flat and cylindrically focused transducers.

  4. Ultrasonic Newton's rings

    SciTech Connect

    Hsu, D.K. ); Dayal, V. )

    1992-03-09

    Interference fringes due to bondline thickness variation were observed in ultrasonic scans of the reflected echo amplitude from the bondline of adhesively joined aluminum skins. To demonstrate that full-field interference patterns are observable in point-by-point ultrasonic scans, an optical setup for Newton's rings was scanned ultrasonically in a water immersion tank. The ultrasonic scan showed distinct Newton's rings whose radii were in excellent agreement with the prediction.

  5. Bending the Rings

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's rings appear strangely warped in this view of the rings seen through the upper Saturn atmosphere.

    The atmosphere acts like a lens in refracting (bending) the light reflected from the rings. As the rings pass behind the overexposed limb (edge) of Saturn as seen from Cassini, the ring structure appears to curve downward due to the bending of the light as it passes through the upper atmosphere.

    This image was obtained using a near-infrared filter. The filter samples a wavelength where methane gas does not absorb light, thus making the far-off rings visible through the upper atmosphere.

    By comparing this image to similar ones taken using filters where methane gas does absorb, scientists can estimate the vertical profile of haze and the abundance of methane in Saturn's high atmosphere.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2005, through a filter sensitive to wavelengths of infrared light centered at 938 nanometers and at a distance of approximately 197,000 kilometers (123,000 miles) from Saturn. The image scale is 820 meters (2,680 feet) per pixel.

  6. Nardo Ring, Italy

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Nardo Ring is a striking visual feature from space, and astronauts have photographed it several times. The Ring is a race car test track; it is 12.5 kilometers long and steeply banked to reduce the amount of active steering needed by drivers. The Nardo Ring lies in a remote area on the heel of Italy's 'boot,' 50 kilometers east of the naval port of Taranto. The Ring encompasses a number of active (green) and fallow (brown to dark brown) agricultural fields. In this zone of intensive agriculture, farmers gain access to their fields through the Ring via a series of underpasses. Winding features within the southern section of the Ring appear to be smaller, unused race tracks.

    The image covers an area of 18.8 x 16.4 km, was acquired on August 17. 2007, and is located at 49.3 degrees north latitude, 17.8 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Barely Bisected Rings

    NASA Image and Video Library

    2016-09-12

    Saturn's shadow stretched beyond the edge of its rings for many years after Cassini first arrived at Saturn, casting an ever-lengthening shadow that reached its maximum extent at the planet's 2009 equinox. This image captured the moment in 2015 when the shrinking shadow just barely reached across the entire main ring system. The shadow will continue to shrink until the planet's northern summer solstice, at which point it will once again start lengthening across the rings, reaching across them in 2019. Like Earth, Saturn is tilted on its axis. And, just as on Earth, as the sun climbs higher in the sky, shadows get shorter. The projection of the planet's shadow onto the rings shrinks and grows over the course of its 29-year-long orbit, as the angle of the sun changes with respect to Saturn's equator. This view looks toward the sunlit side of the rings from about 11 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Jan. 16, 2015. The view was obtained at a distance of approximately 1.6 million miles (2.5 million kilometers) from Saturn. Image scale is about 90 miles (150 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20498

  8. Einstein Ring in Distant Universe

    NASA Astrophysics Data System (ADS)

    2005-06-01

    population. The far away lensed galaxy, however, is extremely active, having recently experienced bursts of star formation. It is a compact galaxy, 7,000 light-years across. "Because the gravitational pull of matter bends the path of light rays, astronomical objects - stars, galaxies and galaxy clusters - can act like lenses, which magnify and severely distort the images of galaxies behind them, producing weird pictures as in a hall of mirrors", explains Chris Lidman (ESO), co-discover of the new cosmic mirage. In the most extreme case, where the foreground lensing galaxy and the background galaxy are perfectly lined up, the image of the background galaxy is stretched into a ring. Such an image is known as an Einstein ring, because the formula for the bending of light, first described in the early twentieth century by Chwolson and Link, uses Albert Einstein's theory of General Relativity. Gravitational lensing provides a very useful tool with which to study the Universe. As "weighing scales", it provides a measure of the mass within the lensing body, and as a "magnifying glass", it allows us to see details in objects which would otherwise be beyond the reach of current telescopes. From the image, co-worker David Valls-Gabaud (CFHT), using state-of-the-art modelling algorithms, could deduce the mass of the galaxy acting as a lens - it is almost one million million suns. More information The paper describing this research has been published as a Letter to the Editor in Astronomy and Astrophysics, volume 436, L21-L25 ("Discovery of a high-redshift Einstein ring", by R.A. Cabanac, D. Valls-Gabaud, A.O. Jaunsen, C. Lidman, and H. Jerjen). The paper is available for download in PDF format from the A&A web site.

  9. Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment.

    PubMed

    Niu, Junfeng; Ding, Shiyuan; Zhang, Liwen; Zhao, Jinbo; Feng, Chenghong

    2013-09-01

    Photodegradation of tetracycline (TC) was investigated in aqueous solution by visible-light-driven photocatalyst Sr-doped β-Bi2O3 (Sr-Bi2O3) prepared via solvothermal synthesis. The decomposition of TC by Sr-Bi2O3 under visible light (λ>420nm) irradiation followed pseudo-first-order kinetics, and the removal ratio reached 91.2% after 120min of irradiation. Sr-Bi2O3 photocatalysis is able to break the naphthol ring of TC which decomposes to m-cresol via dislodging hydroxyl group step by step by photogenerated electron. This mechanism was verified by electron spin resonance measurement, the addition of radical scavengers and the intermediate product analysis, indicating that the photogenerated electron acts as a reductant and can be the key to the degradation process. In contrast, in TiO2 photocatalysis the naphthol ring is broken via oxidation by hydroxyl radical, while in direct photolysis the ring remains intact. In addition, the toxicity of photodegradation products was analyzed by bioluminescence inhibition. After 120min of irradiation by Sr-Bi2O3, the toxicity decreases by 90.6%, which is more substantial than direct photolysis (70%) and TiO2 photocatalysis (80%), indicating that the Sr-Bi2O3 photocatalysis is more eco-friendly than the other two methods.

  10. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2014-04-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings [5, 8]. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~ 100m in size) have been identified in Saturn's A ring through their propeller signature in the images [10, 7, 9, 11]. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring [6, 2]. In this paper we present our new results about by now classical A ring propellers and more enigmatic B ring population. Due to the presence of self-gravity wakes the analysis of propeller brightness in ISS images always bears some ambiguity [7, 9] and consequently the exact morphology of propellers is not a settled issue. In 2008 we obtained a fortunate Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation of the largest A ring propeller Bleriot. Utilizing Cassini ISS images we obtain Bleriot orbit and demonstrate that UVIS Persei Rev42 occultation did cut across Bleriot about 100km downstream from the center. The occultation itself shows a prominent partial gap and higher density outer flanking wakes, while their orientation is consistent with a downstream cut. While in the UVIS occultation the partial gap is more prominent than the flanking wakes, the features mostly seen in Bleriot images are actually flanking wakes. One of the most interesting aspects of the A ring propellers are their wanderings, or longitudinal deviations from a pure circular orbit [11]. We numerically investigated the possibility of simple moon

  11. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  12. Compactness of lateral shearing interferometers.

    PubMed

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-10

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  13. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  14. Bunch Length Measurements With Laser/SR Cross-Correlation

    SciTech Connect

    Miller, Timothy; Daranciang, Dan; Lindenberg, Aaron; Corbett, Jeff; Fisher, Alan; Goodfellow, John; Huang, Xiaobiao; Mok, Walter; Safranek, James; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  15. Coral Sr-U thermometry

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Gaetani, Glenn A.; Cohen, Anne L.; Foster, Gavin L.; Alpert, Alice E.; Stewart, Joseph A.

    2016-06-01

    Coral skeletons archive past climate variability with unrivaled temporal resolution. However, extraction of accurate temperature information from coral skeletons has been limited by "vital effects," which confound, and sometimes override, the temperature dependence of geochemical proxies. We present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. DeCarlo et al. (2015a) investigated temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater and modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, which we refer to hereafter as the Sr-U thermometer. Here we test the model predictions with measured Sr/Ca and U/Ca ratios of 14 Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. By calibrating to instrumental temperature records, we show that Sr-U captures 93% of mean annual temperature variability (26-30°C) and has a standard deviation of prediction of 0.5°C, compared to 1°C using Sr/Ca alone. The Sr-U thermometer may offer significantly improved reliability for reconstructing past ocean temperatures from coral skeletons.

  16. Sr and 87Sr/ 86Sr in the Yamuna River System in the Himalaya: sources, fluxes, and controls on sr isotope composition

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Krishnaswami, S.; Kumar, Anil

    2003-08-01

    Sr and 87Sr/ 86Sr have been measured in the Yamuna river headwaters and many of its tributaries (YRS) in the Himalaya. These results, with those available for major ions in YRS rivers and in various lithologies of their basin, have been used to determine their contributions to riverine Sr and its isotopic budget. Sr in the YRS ranges from 120 to 13,400 nM, and 87Sr/ 86Sr from 0.7142 to 0.7932. Streams in the upper reaches, draining predominantly silicates, have low Sr and high 87Sr/ 86Sr whereas those draining the lower reaches exhibit the opposite resulting from differences in drainage lithology. 87Sr/ 86Sr shows significant co-variation with SiO 2/TDS and (Na * + K)/TZ + (indices of silicate weathering) in YRS waters, suggesting the dominant role of silicate weathering in contributing to high radiogenic Sr. This is also consistent with the observation that streams draining largely silicate terrains have the highest 87Sr/ 86Sr, analogous to that reported for the Ganga headwaters. Evaluation of the significance of other sources such as calc-silicates and trace calcites in regulating Sr budget of these rivers and their high 87Sr/ 86Sr needs detailed work on their Sr and 87Sr/ 86Sr. Preliminary calculations, however, indicate that they can be a significant source to some of the rivers. It is estimated that on an average, ˜25% of Sr in the YRS is derived from silicate weathering. In the lower reaches, the streams receive ˜15% of their Sr from carbonate weathering whereas in the upper reaches, calc-silicates can contribute significantly (˜50%) to the Sr budget of rivers. These calculations reveal the need for additional sources for rivers in the lower reaches to balance their Sr budget. Evaporites and phosphorites are potential candidates as judged from their occurrence in the drainage basin. In general, Precambrian carbonates, evaporites, and phosphorites "dilute" the high 87Sr/ 86Sr supplied by silicates, thus making Sr isotope distribution in YRS an overall two

  17. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  18. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  19. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  20. Lunar Rb-Sr chronology

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.

    1977-01-01

    It has been established with the aid of Rb-Sr studies that lunar chronology consists of five episodes, including the formation of the moon approximately 4.6 AE ago (1 AE = 1000 million years), a period of intense bombardment by planetary debris resulting in the formation of the major lunar basins, the end of this period at 3.9-4.0 AE ago, a period of mare flooding extending from 3.9 to 3.2 AE ago, and a relatively quiescent period from 3.2 AE ago to the present. In addition, Rb-Sr-studies have provided valuable constraints on the geochemical evolution of the moon through the determination of the initial Sr-87/Sr-86 ratios which limit the Rb/Sr ratios of the source materials for lunar rocks. Attention is given to the characteristics of the Rb-Sr method, the analytical techniques, the ages of lunar mare basalts, the non-mare rocks, the studies conducted in connection with the various Apollo missions, the lunar cataclysm, lunar soils, and aspects of crustal contamination.

  1. Transient Clumps in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Sremcevic, M.

    2011-10-01

    The Cassini Ultraviolet Imaging Spectrograph has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Of those 27 features, 17 likely correspond to transient clumps of material. We calculate from these observations the total number and total mass of transient clumps in the F ring. Constraints from observations place an upper limit on the number and total mass of such clumps. In turn, an upper limit on mass indicates that the clumps are not solid, spherical objects, rather they are loosely-packed, triaxial ellipsoids elongated in azimuth and vertically flattened. The total mass of clumps in the F ring is thus 6.1 x 1014 kg, the equivalent of a 6.8 km icy moon with a density equivalent to that of Prometheus. The differences in optical depth and morphology of the 17 significant features considered here also lead us to believe porosity differences exist among clumps. We investigate how the size distribution of clumps of different porosities evolves and how compaction of such clumps could lead to denser states that resemble moonlets, which describes 2 of the 17 features observed. The results presented here lead to a better model of how transient clumps form, evolve, and survive.

  2. Ring correlations in random networks

    NASA Astrophysics Data System (ADS)

    Sadjadi, Mahdi; Thorpe, M. F.

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  3. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  4. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  5. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  6. Compact Shelving Ten Years Later.

    ERIC Educational Resources Information Center

    Morris, Leslie R.

    1998-01-01

    Discusses experiences at the Niagara University Library with compact shelving. Highlights include citations to other relevant articles; patron use; selection of vendor; reliability; possible problems; and installation considerations, such as floor-load requirements. (LRW)

  7. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  8. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  9. Thermodynamic black di-rings

    SciTech Connect

    Iguchi, Hideo; Mishima, Takashi

    2010-10-15

    Previously the five dimensional S{sup 1}-rotating black rings have been superposed in a concentric way by some solitonic methods, and regular systems of two S{sup 1}-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions 'black di-rings'). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution sets of the black di-rings. Then the existence of thermodynamic black di-rings is shown, in which both isothermality and isorotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  10. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  11. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  12. Stacked Corrugated Horn Rings

    NASA Technical Reports Server (NTRS)

    Sosnowski, John B.

    2010-01-01

    This Brief describes a method of machining and assembly when the depth of corrugations far exceeds the width and conventional machining is not practical. The horn is divided into easily machined, individual rings with shoulders to control the depth. In this specific instance, each of the corrugations is identical in profile, and only differs in diameter and outer profile. The horn is segmented into rings that are cut with an interference fit (zero clearance with all machining errors biased toward contact). The interference faces can be cut with a reverse taper to increase the holding strength of the joint. The taper is a compromise between the interference fit and the clearance of the two faces during assembly. Each internal ring is dipped in liquid nitrogen, then nested in the previous, larger ring. The ring is rotated in the nest until the temperature of the two parts equalizes and the pieces lock together. The resulting assay is stable, strong, and has an internal finish that cannot be achieved through other methods.

  13. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  14. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  15. Ring solitons on vortices.

    PubMed

    Kevrekidis, P G; Nistazakis, H E; Frantzeskakis, D J; Malomed, B A; Bishop, A R

    2001-12-01

    Interaction of a ring dark or antidark soliton (RDS and RADS, respectively) with a vortex is considered in the defocusing nonlinear Schrödinger equation with cubic (for RDS) or saturable (for RADS) nonlinearities. By means of direct simulations, it is found that the interaction gives rise to either an almost isotropic or a spiral-like pattern. A transition between them occurs at a critical value of the RDS or RADS amplitude, the spiral pattern appearing if the amplitude exceeds the critical value. An initial ring soliton created on top of the vortex splits into a pair of rings moving inward and outward. In the subcritical case, the inbound ring reverses its polarity, bouncing from the vortex core, without conspicuous effect on the core. In the transcritical case, the bounced ring soliton suffers a spiral deformation, while the vortex changes its position and structure and also loses its axial symmetry. Through a variational-type approach to the system's Hamiltonian, we additionally find that the vortex-RDS and vortex-RADS interactions are, respectively, attractive and repulsive. Simulations with the vortex placed eccentrically with respect to the RDS or RADS reveal the generation of strongly localized multispot dark and/or antidark coherent structures. The occurrence of spiral-like patterns in many numerical experiments prompted an attempt to generate a spiral dark soliton, but the latter is found to suffer a core instability that converts it into a rotating dipole emitting waves in the outward direction.

  16. Coral Sr-U Thermometry

    NASA Astrophysics Data System (ADS)

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.

    2016-12-01

    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral

  17. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1985-10-01

    A novel polynomial-time algorithm for compacting a VLSI layout is presented. Compared to previous algorithms, the algorithm promises to produce higher quality output while reducing the need for designer intervention. The performance gain is realized by converting wires into constraints on the positions of the active devices. These constraints can be solved by graph-theoretic techniques to yield optimal positions for chip components. A single-layer router is then used to restore the wires to the layout, using as many as jogs as necessary. An automated compaction procedure is an effective tool for cutting production costs of a VLSI circuit at low cost to the designer, because the yield of fabricated chips is strongly dependent on the total circuit area. Sect 1 is an introduction. Sect 2 states the definitions and theoretical results that underlie the new compaction method. Sect 3 shows how the circuit layout is converted to a data structure appropriate for compaction, and Sect 4 details the body of the compaction algorithm. Sect 5 covers several improvements to the algorithm that should make it run considerably faster. Sect 6 comments on the algorithms of results, and a discussion of the practical value of the compaction algorithm.

  18. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  19. Rings in the solar system

    SciTech Connect

    Pollack, J.B.; Cuzzi, J.N.

    1981-11-01

    Saturn, Jupiter, and Uranus have rings with different structure and composition. The rings consist of tiny masses in independent orbits. Photographs and data obtained by the Voyager project have aided in the understanding of Saturn's rings. Spokes have been found in B ring and boards, knots, and twist in F ring. Particles on the order of a micrometer in size are believed to occur in F, B, and A rings. The dominant component is water ice. The rings of Uranus are narrow and separated by broad empty regions. The technique used to study them has been stellar occulation. Nothing is known of particle size. The dominant component is believed to be silicates rich in compounds that absorb sunlight. Jupiter's rings consist of 3 main parts: a bright ring, a diffuse disk, and a halo. Use of Pioneer 10 data and other techniques have indicated particle sizes on the order of several micrometers and some at least a centimeter in diameter. The architecture of the ring system results from the interplay of a number of forces. These include gravitational forces due to moons outside the rings and moonlets embedded in them, electromagnetic forces due to the planet's rotating magnetic field, and even the gentle forces exerted by the dilute gaseous medium in which the rings rotate. Each of these forces is discussed. Several alternative explanations of how the rings arose are considered. The primary difference in these hypotheses is the account of the relationship between the ring particles of today and the primordial ring material. (SC)

  20. Stuck on the Rings

    NASA Image and Video Library

    2014-10-13

    Like a drop of dew hanging on a leaf, Tethys appears to be stuck to the A and F rings from this perspective. Tethys (660 miles, or 1,062 kilometers across), like the ring particles, is composed primarily of ice. The gap in the A ring through which Tethys is visible is the Keeler gap, which is kept clear by the small moon Daphnis (not visible here). This view looks toward the Saturn-facing hemisphere of Tethys. North on Tethys is up and rotated 43 degrees to the right. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014. The view was acquired at a distance of approximately 1.1 million miles (1.8 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18284

  1. Ring-Bow

    NASA Image and Video Library

    2017-07-24

    Although the rings lack the many colors of the rainbow, they arc across the sky of Saturn. From equatorial locations on the planet, they'd appear very thin since they would be seen edge-on. Closer to the poles, the rings would appear much wider; in some locations (for parts of the Saturn's year), they would even block the sun for part of each day. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on April 10, 2017. The view was obtained at a distance of approximately 680,000 miles (1.1 million kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 128 degrees. Image scale is 43 miles (69 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21339

  2. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  3. Rings dominate western Gulf

    NASA Astrophysics Data System (ADS)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  4. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Gu, Guiru; Lu, Xuejun

    2017-10-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field (E-field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E-fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement.

  5. Compact silicon photonic resonance-assisted variable optical attenuator

    SciTech Connect

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L.; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-17

    Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.

  6. Compact silicon photonic resonance-assisted variable optical attenuator

    DOE PAGES

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; ...

    2016-11-17

    Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.

  7. Compact silicon photonic resonance-sssisted variable optical attenuator.

    PubMed

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  8. Saturn's rings - high resolution

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  9. Unidirectional ring lasers

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1994-09-20

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.

  10. Unidirectional ring lasers

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1994-01-01

    Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.

  11. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  12. Satellite Rings Movie

    NASA Image and Video Library

    2000-12-30

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies. The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000. http://photojournal.jpl.nasa.gov/catalog/PIA02872

  13. Ring laser gyroscope anode

    SciTech Connect

    Ljung, B.H.

    1981-03-17

    An anode for a ring laser gyroscope which provides improved current stability in the glow discharge path is disclosed. The anode of this invention permits operation at lower currents thereby allowing a reduction of heat dissipation in the ring laser gyroscope. The anode of one embodiment of this invention is characterized by a thumbtack appearance with a spherical end where the normal sharp end of the thumbtack would be located. The stem of the anode extends from the outside of the gyroscope structure to the interior of the structure such that the spherical end is substantially adjacent to the laser beam.

  14. Single ring vs multiple ring determination of Super Kamiokande

    NASA Astrophysics Data System (ADS)

    O'Malley, Patrick; Messier, Mark

    2004-10-01

    Super Kamiokande houses the world's largest Cherenkov detector and whose primary goal is to detect and study neutrino interactions. My purpose in the project was to write a program to enhance the accuracy the ring counting. Currently, ring counting is the largest single source of systematic uncertainty in the single ring event rate, contributing an uncertainty of 5-8This article presents an algorithm the single ring selection efficiency based on a statistical test of azimuthal symmetry of the event topology. With the aid of my advisor, Dr. Mark Messier, I was able to write a program that enhanced the decision between single-ring and multiple ring events by 35

  15. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  16. 88Sr/86Sr fractionation and calcite accumulation rate in the Sea of Galilee

    NASA Astrophysics Data System (ADS)

    Fruchter, N.; Lazar, B.; Nishri, A.; Almogi-Labin, A.; Eisenhauer, A.; Be'eri Shlevin, Y.; Stein, M.

    2017-10-01

    This study used the Sea of Galilee (Lake Kinneret, northern Israel) as a ;natural laboratory; to investigate the fractionation of the stable Sr isotope ratio (88Sr/86Sr) during precipitation of inorganic (primary) calcite from the lake's water. It was found that the absolute value of the 88Sr/86Sr fractionation factor, Δ88/86Sr, increases as a function of calcite accumulation rate (Δ88/86Sr [‰] = -0.05 to 0.042·log(R) [μmol·m-2·d-1], where R is the accumulation rate). Furthermore, the 87Sr/86Sr and 88Sr/86Sr ratios in the freshwater and brines that enter the lake were used to calculate the contributions of these sources to the lake Sr budget. The 87Sr/86Sr and 88Sr/86Sr ratios were measured in primary calcite, aragonite shells of live Melanopsis, lake water and various water sources to the lake. While the lake's 87Sr/86Sr ratios are determined by the mixture of freshwater of the Jordan River and saline springs, the 88Sr/86Sr ratios of the lake reflect a more complex mass balance that includes the effect of isotopic fractionation associated with the precipitation of primary calcite. Data analysis suggests that long-term accumulation of inorganic calcite depleted in the heavy isotope 88Sr, results in an increase of the δ88/86Sr value of the lake water by 0.05‰. In contrast to the primary inorganic calcite, biogenic aragonite of the Melanopsis shells show a rather constant 88Sr/86Sr water-CaCO3 fractionation of Δ88/86Sr = -0.21‰. Similar Δ88/86Sr values were reported for the precipitation of coralline and inorganic aragonite from seawater and the precipitation of inorganic calcite from various continental waters. The Δ88/86Sr value of inorganic calcite is modulated by the rate of carbonate precipitation, as noted above and shown by precipitation experiments. Massive precipitation of primary calcite with a wide spread of accumulation rates occurs during the spring phytoplankton bloom in Lake Kinneret. The bloom dictates the degree of calcite saturation

  17. Improved performance of SrFe12O19 bulk magnets through bottom-up nanostructuring

    NASA Astrophysics Data System (ADS)

    Saura-Múzquiz, Matilde; Granados-Miralles, Cecilia; Stingaciu, Marian; Bøjesen, Espen Drath; Li, Qiang; Song, Jie; Dong, Mingdong; Eikeland, Espen; Christensen, Mogens

    2016-01-01

    The influence of synthesis and compaction parameters is investigated with regards to formation of high performance SrFe12O19 bulk magnets. The produced magnets consist of highly aligned, single-magnetic domain nanoplatelets of SrFe12O19. The relationship between the magnetic performance of the samples and their structural features is established through systematic characterization by Vibrating Sample Magnetometry (VSM) and Rietveld refinement of powder X-ray diffraction data (PXRD). The analysis is supported by complementary techniques including Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and X-ray pole figure measurements. SrFe12O19 hexagonal nanoplatelets with various sizes are synthesized by a supercritical hydrothermal flow method. The crystallite sizes are tuned by varying the Fe/Sr ratio in the precursor solution. Compaction of SrFe12O19 nanoplatelets into bulk magnets is performed by Spark Plasma Sintering (SPS). Rietveld refinement of the pressed pellets and texture analysis of pole figure measurements reveal that SPS pressing produces a high degree of alignment of the nanoplatelets, achieved without applying any magnetic field prior or during compaction. The highly aligned nanocrystallites combined with crystal growth during SPS give rise to an enormous enhancement of the magnetic properties compared to the as-synthesized powders, leading to high performance bulk magnets with energy products of 26 kJ m-3.The influence of synthesis and compaction parameters is investigated with regards to formation of high performance SrFe12O19 bulk magnets. The produced magnets consist of highly aligned, single-magnetic domain nanoplatelets of SrFe12O19. The relationship between the magnetic performance of the samples and their structural features is established through systematic characterization by Vibrating Sample Magnetometry (VSM) and Rietveld refinement of powder X-ray diffraction data (PXRD). The analysis is supported by complementary

  18. Natural examples of Valdivia compact spaces

    NASA Astrophysics Data System (ADS)

    Kalenda, Ondrej F. K.

    2008-04-01

    We collect examples of Valdivia compact spaces, their continuous images and associated classes of Banach spaces which appear naturally in various branches of mathematics. We focus on topological constructions generating Valdivia compact spaces, linearly ordered compact spaces, compact groups, L1 spaces, Banach lattices and noncommutative L1 spaces.

  19. High-intensity muon storage rings for neutrino production: Lattice design

    SciTech Connect

    Johnstone, C.

    1998-08-01

    Five energies, 250, 100, 50, 20, and 10 GeV, have been explored in the design of a muon storage ring for neutrino-beam production. The ring design incorporates exceptionally long straight sections with large beta functions in order to produce an intense, parallel neutrino beam {ital via} muon decay. To emphasize compactness and reduce the number of muon decays in the arcs, high-field superconducting dipoles are used in the arc design. {copyright} {ital 1998 American Institute of Physics.}

  20. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  1. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  2. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  3. Diffraction-limited storage-ring vacuum technology.

    PubMed

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-09-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings.

  4. The elusive rings of Neptune

    NASA Astrophysics Data System (ADS)

    Porco, C. C.

    1992-04-01

    An overview of investigations of Neptune's rings is presented in which the recent data and findings from the Voyager 2 mission are emphasized. The evolving interpretation of the ring arcs is outlined, and the concept of resonance in the rings is described. Illustrations of the rings, the moons of Neptune, and the interactions between the two are given, and attention is given to the development of the rings by means of the catastrophic breakup of a planetary satellite. The very large crater on the Mimas satellite is given as evidence of potentially catastrophic impacts, and the implications of further breakup are discussed. A total of four rings are identified which include 3 pronounced rings and one ring that is more diaphanous. Clumps in the arcs are discussed in terms of the possible existence of large objects within the rings, and interparticle collisions are theorized to account for the large arc dust content.

  5. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2015-08-10

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.

  6. Topology Matters: Structure and dynamics of ring polymers

    NASA Astrophysics Data System (ADS)

    Richter, Dieter

    In this talk I present recent experimental advances addressing the structure and dynamics of rings. I focus mainly on neutron scattering results that reveal experimental insight on a molecular scale. Structural investigations characterizing rings as compact objects in the melts are put into theoretical context. In contrast to the plateau regime common for all other high molecular weight polymer systems, the dynamic modulus of pure ring systems is characterized by a power law decay, while the viscosity displays a much weaker molecular weight dependence as a corresponding linear melt. The dynamics of ring melts is uniquely addressed by neutron spin-echo spectroscopy. The sub-diffusive center of mass motion at short times agrees well with simulation as well as theoretical concepts. In the internal dynamics the basic length scale of the ring molecule, the loop size, manifests itself clearly. The experiments reveal strong evidence for loop motions and call for further theoretical work describing them. Finally, small fractions of ring molecules in linear melts turn out to be very sensitive probes in order to scrutinize the dynamics of the host with the potential to reveal fundamental aspects of the dynamics of branched polymer systems. ∖pard Review Letters 131, 168302 (2014)Review Letters 115, 148302 (2015)Matter 11, DOI: 10.1039/C5SM01994J (2015)

  7. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats.

    PubMed

    Sempionatto, Juliane R; Mishra, Rupesh K; Martín, Aida; Tang, Guangda; Nakagawa, Tatsuo; Lu, Xiaolong; Campbell, Alan S; Lyu, Kay Mengjia; Wang, Joseph

    2017-10-11

    This work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats. High analytical performance is demonstrated despite the remarkable miniaturization and integration of the ring system. The attractive capabilities of the wearable sensor ring system have been demonstrated for sensitive and rapid voltammetric and amperometric monitoring of nitroaromatic and peroxide explosives, respectively, along with amperometric biosensing of organophosphate (OP) nerve agents. Such ability of the miniaturized wearable sensor ring platform to simultaneously detect multiple chemical threats in both liquid and vapor phases and alert the wearer of such hazards offers considerable promise for meeting the demands of diverse defense and security scenarios.

  8. Evolution of a Ring around the Pluto-Charon Binary

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.; Kenyon, Scott J.

    2015-08-01

    We consider the formation of satellites around the Pluto-Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Damping and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto-Charon binary. With simple models and numerical experiments, we show how the Pluto-Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.

  9. Computational study of shock interaction with a vortex ring

    NASA Astrophysics Data System (ADS)

    Ding, Z.; Hussaini, M. Y.; Erlebacher, G.; Krothapalli, A.

    2001-10-01

    The problem of shock interaction with a vortex ring is investigated within the framework of axisymmetric Euler equations solved numerically by a shock-fitted sixth-order compact difference scheme. The vortex ring, which is based on Lamb's formula, has an upstream circulation Γ=0.01 and its aspect ratio R lies in the range 8⩽R⩽100. The shock Mach number varies in the range 1.1⩽M1⩽1.8. The vortex ring/shock interaction results in the streamwise compression of the vortex core by a factor proportional to the ratio of the upstream and downstream mean velocity U1/U2, and the generation of a toroidal acoustic wave and entropy disturbances. The toroidal acoustic wave propagates and interacts with itself on the symmetry axis of the vortex ring. This self-interaction engenders high amplitude rarefaction/compression pressure peaks upstream/downstream of the transmitted vortex core. This results in a significant increase in centerline sound pressure levels, especially near the shock (due to the upstream movement of the rarefaction peak) and in the far downstream (due to the downstream movement of the compression peak). The magnitude of the compression peak increases nonlinearly with M1. For a given M1, vortex rings with smaller aspect ratios (R<20) generate pressure disturbances whose amplitudes scale inversely with R, while vortex rings with larger aspect ratios (R>40) generate pressure disturbances whose amplitudes are roughly independent of R.

  10. Topological interactions between ring polymers: Implications for chromatin loops

    NASA Astrophysics Data System (ADS)

    Bohn, Manfred; Heermann, Dieter W.

    2010-01-01

    Chromatin looping is a major epigenetic regulatory mechanism in higher eukaryotes. Besides its role in transcriptional regulation, chromatin loops have been proposed to play a pivotal role in the segregation of entire chromosomes. The detailed topological and entropic forces between loops still remain elusive. Here, we quantitatively determine the potential of mean force between the centers of mass of two ring polymers, i.e., loops. We find that the transition from a linear to a ring polymer induces a strong increase in the entropic repulsion between these two polymers. On top, topological interactions such as the noncatenation constraint further reduce the number of accessible conformations of close-by ring polymers by about 50%, resulting in an additional effective repulsion. Furthermore, the transition from linear to ring polymers displays changes in the conformational and structural properties of the system. In fact, ring polymers adopt a markedly more ordered and aligned state than linear ones. The forces and accompanying changes in shape and alignment between ring polymers suggest an important regulatory function of such a topology in biopolymers. We conjecture that dynamic loop formation in chromatin might act as a versatile control mechanism regulating and maintaining different local states of compaction and order.

  11. Observations of ejecta clouds produced by impacts onto Saturn's rings.

    PubMed

    Tiscareno, Matthew S; Mitchell, Colin J; Murray, Carl D; Di Nino, Daiana; Hedman, Matthew M; Schmidt, Jürgen; Burns, Joseph A; Cuzzi, Jeffrey N; Porco, Carolyn C; Beurle, Kevin; Evans, Michael W

    2013-04-26

    We report observations of dusty clouds in Saturn's rings, which we interpret as resulting from impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 centimeter and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system.

  12. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  13. Exotic damping ring lattices

    SciTech Connect

    Palmer, R.B.

    1987-05-01

    This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.

  14. Reading, Writing, and Rings!

    ERIC Educational Resources Information Center

    Aschbacher, Pamela; Li, Erika; Hammon, Art

    2008-01-01

    "Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…

  15. Reading, Writing, and Rings!

    ERIC Educational Resources Information Center

    Aschbacher, Pamela; Li, Erika; Hammon, Art

    2008-01-01

    "Reading, Writing, and Rings!" was created by a team of elementary teachers, literacy experts, and scientists in order to integrate science and literacy. These free units bring students inside NASA's Cassini-Huygens mission to Saturn. The authors--a science teacher and education outreach specialist and two evaluators of educational programs--have…

  16. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  17. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  18. Ring of Stellar Death

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image from NASA's Spitzer Space Telescope shows a dying star (center) surrounded by a cloud of glowing gas and dust. Thanks to Spitzer's dust-piercing infrared eyes, the new image also highlights a never-before-seen feature -- a giant ring of material (red) slightly offset from the cloud's core. This clumpy ring consists of material that was expelled from the aging star.

    The star and its cloud halo constitute a 'planetary nebula' called NGC 246. When a star like our own Sun begins to run out of fuel, its core shrinks and heats up, boiling off the star's outer layers. Leftover material shoots outward, expanding in shells around the star. This ejected material is then bombarded with ultraviolet light from the central star's fiery surface, producing huge, glowing clouds -- planetary nebulas -- that look like giant jellyfish in space.

    In this image, the expelled gases appear green, and the ring of expelled material appears red. Astronomers believe the ring is likely made of hydrogen molecules that were ejected from the star in the form of atoms, then cooled to make hydrogen pairs. The new data will help explain how planetary nebulas take shape, and how they nourish future generations of stars.

    This image composite was taken on Dec. 6, 2003, by Spitzer's infrared array camera, and is composed of images obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red).

  19. Crescent Moon with Rings

    NASA Image and Video Library

    2006-04-14

    This poetic scene shows the giant, smog-enshrouded moon Titan behind Saturn nearly edge-on rings. Much smaller Epimetheus 116 kilometers, or 72 miles across is just visible to the left of Titan 5,150 kilometers, or 3,200 miles across

  20. Epimetheus Above the Rings

    NASA Image and Video Library

    2015-11-09

    Although Epimetheus appears to be lurking above the rings here, it's actually just an illusion resulting from the viewing angle. In reality, Epimetheus and the rings both orbit in Saturn's equatorial plane. Inner moons and rings orbit very near the equatorial plane of each of the four giant planets in our solar system, but more distant moons can have orbits wildly out of the equatorial plane. It has been theorized that the highly inclined orbits of the outer, distant moons are remnants of the random directions from which they approached the planets they orbit. This view looks toward the unilluminated side of the rings from about -0.3 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 500,000 miles (800,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 62 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18342

  1. Rings In Between

    NASA Image and Video Library

    2011-12-05

    Saturn rings lie between a pair of moons in this view from NASA Cassini spacecraft that features Mimas and Prometheus. Mimas is the more noticeable of the two moons at top left, Prometheus is near the center of image and closest to Cassini.

  2. Ring laser scatterometer

    DOEpatents

    Ackermann, Mark; Diels, Jean-Claude

    2005-06-28

    A scatterometer utilizes the dead zone resulting from lockup caused by scatter from a sample located in the optical path of a ring laser at a location where counter-rotating pulses cross. The frequency of one pulse relative to the other is varied across the lockup dead zone.

  3. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  4. Viral RNAs are unusually compact.

    PubMed

    Gopal, Ajaykumar; Egecioglu, Defne E; Yoffe, Aron M; Ben-Shaul, Avinoam; Rao, Ayala L N; Knobler, Charles M; Gelbart, William M

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  5. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  6. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  7. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  8. ``Superdeformed'' Bands in ^80Sr

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Baktash, C.; Jin, H.-Q.; Rudolph, D.; Yu, C.-H.; Birriel, I.; Saladin, J. X.; Winchell, D. F.; Wood, V. Q.; Sylvan, G. N.; Tabor, S. L.

    1996-05-01

    We report the observation of four high-spin collective bands in ^80Sr, populated by the reaction ^58Ni(^28Si,α 2p) at 130 MeV. The data were taken with the GAMMASPHERE and MICROBALL detector arrays, the latter of which was used to select charged-particle exit channels. The characteristics of these bands will be discussed, including deduced spin assignments, measured lifetimes and Qt values. These bands are less deformed than SD bands in other Sr isotopes( D.R. LaFosse, et al., Phys. Lett. B 354) (1995) 34; C. Baktash, et al., Phys. Rev. Lett. 74 (1995) 1946; F. Cristancho, et al., Phys. Lett. B 357 (1995) 281; A.G. Smith, et al., Phys. Lett. B 355 (1995) 32., and a comparison of the deformations of known SD bands in Sr isotopes will be presented. The configurations of these bands will be discussed.

  9. STABLE SR VS 85SR SORPTION FROM SIMULATED WASTE SOLUTIONS BY MST AND MMST

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.

    2012-04-02

    A series of tests were performed to examine the sorption of stable Sr versus the sorption of {sup 85}Sr by monosodium titanate (MST) and modified monosodium titanate (mMST) from simulated waste solutions. Earlier testing indicated a discrepancy between the decontamination factors (DFs) obtained by measuring the stable Sr concentrations by inductively coupled plasma - mass spectroscopy (ICP-MS) and the {sup 85}Sr activities by gamma spectroscopy. One hypothesis to explain this discrepancy was that the stable Sr and {sup 85}Sr were in different chemical forms in the simulated solutions. Several simulants were prepared using different methods for adding the Sr and performance tests were carried out using MST and mMST to determine the Sr and {sup 85}Sr DFs with the various simulants. Testing indicated no discrepancy between the Sr and {sup 85}Sr DFs in tests with these simulants.

  10. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    SciTech Connect

    Yamada, H.; Amano, D.; Miyade, H.

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  11. The gravitational interaction between inclined, elliptical rings. [Uranus rings

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1982-01-01

    An expression for the potential for two elliptical, inclined rings is derived from a model in which the gravitational torque between two wide rings or within a ring of finite width can prevent differential precession caused by planetary oblateness. The model was proposed to explain the observed eccentricity and width variations of the Uranian epsilon ring. The stationary solutions and stability of this system are examined.

  12. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  13. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  14. THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.

    SciTech Connect

    WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.

    2002-06-03

    The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.

  15. A Compact and Robust Method for Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Sparks, William

    2013-04-01

    A compact and robust method for spectropolarimetry is described which lends itself, in principle, to application in the field and in space. With space-based spectropolarimetry in the Solar System, exploration and characterization opportunities are greatly enhanced. Spectropolarimetry offers diagnostics for dust (cometary, zodiacal, rings), surfaces (rocky, regolith, icy), aerosols (clouds, dust storms) and high energy plasma emission processes. Beyond the Solar System, space-based telescopic spectropolarimetry has important contributions to make in the search for extrasolar planets, their characterization and the presence of life. There are astrobiological applications for full Stokes polarimetry stemming from the chiral interaction of light with living organisms. The instrumental approach requires no moving parts and encodes the polarimetric information onto a single data frame, hence it is immune to time dependencies, free of fragile modulating components, has the potential for high sensitivity and offers a wide wavelength range with full Stokes spectropolarimetry. We are laying the groundwork for understanding the design and usefulness of space-based exoplanet spectropolarimetry through development of a Moon-based Earth observing instrument concept CLOVE (Camera for Lunar Observations of the Variable Earth), within NASA's Lunar Science Institute. The polarimetric method could also be implemented in LOUPE (Lunar Observatory for Unresolved Polarimetry of Earth), which is being developed in the Netherlands. Both of these concepts aim to use the Earth as a benchmark for interpreting future observations of extrasolar Earth-like planets.

  16. Deflagration analysis of the ITP facility utilizing the MELCOR/SR code

    SciTech Connect

    Allison, D.K.; Chow, S.

    1993-07-01

    Under certain accident conditions, waste tanks in the In-Tank Processing (ITP) facility may contain significant concentrations of benzene and hydrogen. Because these gases are flammable, a safety analysis was required to demonstrate that the risk posed by the possible combustion of these gases is acceptable. In support of this analysis, the MELCOR/SR computer code was modified to simulate the combustion of benzene-hydrogen mixtures. MELCOR/SR was developed originally to analyze severe accidents that may occur in the SRS production reactors but many of its modules can be used also for non-reactor applications such as combustion and aerosol and radionuclide transport. The MELCOR/SR combustion model (package) was originally configured for the deflagration analysis of hydrogen-carbon monoxide mixtures. With minor changes to the coding in the combustion package subroutines, and the addition of benzene thermodynamic and transport properties to the input decks, MELCOR/SR was modified to analyze deflagrations in benzene-hydrogen gas mixtures. A MELCOR/SR model was created consisting of two control volumes connected by flow paths. One volume represents a type III waste tank; the other, the environment. The flow paths represent vents that open during the deflagration. Choked flow and radiative heat transfer from the hot gas to the cooling coils and tank walls are phenomonalogical aspects accounted for in the model. Results from MELCOR/SR compared favorably with results from two other codes: COMPACT, a code similar to MELCOR/SR used in the preliminary ITP analysis and DPAC, a code developed specifically to analyze deflagrations in SRS waste tanks. Peak pressures predicted by MELCOR/SR (and by DPAC) for realistic waste tank conditions do not exceed the pressure required to fail the primary line of the tank. ({approximately}23 psig)

  17. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  18. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  19. Compact Chern-Simons vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-09-01

    We introduce and investigate new models of the Chern-Simons type in the three-dimensional spacetime, focusing on the existence of compact vortices. The models are controlled by potentials driven by a single real parameter that can be used to change the profile of the vortex solutions as they approach their boundary values. One of the models unveils an interesting new behavior, the tendency to make the vortex compact, as the parameter increases to larger and larger values. We also investigate the behavior of the energy density and calculate the total energy numerically.

  20. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  1. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  2. Oscillations at B Ring Edge

    NASA Image and Video Library

    2010-11-01

    This image obtained by NASA Cassini spacecraft of the outer edge of Saturn?s B ring, reveals the combined effects of a tugging moon and oscillations that can naturally occur in disks like Saturn rings and spiral galaxies.

  3. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  4. Ring autosomes: some unexpected findings.

    PubMed

    Caba, L; Rusu, C; Plăiaşu; Gug, G; Grămescu, M; Bujoran, C; Ochiană, D; Voloşciuc, M; Popescu, R; Braha, E; Pânzaru, M; Butnariu, L; Sireteanu, A; Covic, M; Gorduza, Ev

    2012-12-01

    Ring chromosomes are rare entities, usually associated with phenotypic abnormalities in correlation with the loss of genetic material. There are various breakpoints and sometimes there is a dynamic mosaicism that is reflected in clinical features. Most of the ring chromosomes are de novo occurrences. Our study reflects the experience of three Romanian cytogenetic laboratories in the field of ring chromosomes. We present six cases with ring chromosomes involving chromosomes 5, 13, 18, and 21. All ring chromosomes were identified after birth in children with plurimalformative syndromes. The ring chromosome was present in mosaic form in three cases, and this feature reflects the ring's instability. In case of ring chromosome 5, we report a possible association with oculo-auriculo-vertebral spectrum.

  5. Planetary rings: Structure and history

    NASA Astrophysics Data System (ADS)

    Esposito, L.

    The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The

  6. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  7. Cenozoic seawater Sr/Ca evolution

    NASA Astrophysics Data System (ADS)

    Sosdian, Sindia M.; Lear, Caroline H.; Tao, Kai; Grossman, Ethan L.; O'Dea, Aaron; Rosenthal, Yair

    2012-10-01

    Records of seawater chemistry help constrain temporal variations in geochemical processes that impact the global carbon cycle and climate through Earth's history. Here we reconstruct Cenozoic seawater Sr/Ca (Sr/Casw) using fossil Conus and turritellid gastropod Sr/Ca. Combined with an oxygen isotope paleotemperature record from the same samples, the gastropod record suggests that Sr/Caswwas slightly higher in the Eocene (˜11.4 ± 3 mmol/mol) than today (˜8.54 mmol/mol) and remained relatively stable from the mid- to late Cenozoic. We compare our gastropod Cenozoic Sr/Casw record with a published turritellid gastropod Sr/Casw record and other published biogenic (benthic foraminifera, fossil fish teeth) and inorganic precipitate (calcite veins) Sr/Caswrecords. Once the uncertainties with our gastropod-derived Sr/Casw are taken into account the Sr/Casw record agrees reasonably well with biogenic Sr/Caswrecords. Assuming a seawater [Ca] history derived from marine evaporite inclusions, all biogenic-based Sr/Casw reconstructions imply decreasing seawater [Sr] through the Cenozoic, whereas the calcite vein Sr/Casw reconstruction implies increasing [Sr] through the Cenozoic. We apply a simple geochemical model to examine the implications of divergence among these seawater [Sr] reconstructions and suggest that the interpretation and uncertainties associated with the gastropod and calcite vein proxies need to be revisited. Used in conjunction with records of carbonate depositional fluxes, our favored seawater Sr/Ca scenarios point to a significant increase in the proportion of aragonite versus calcite deposition in shelf sediments from the Middle Miocene, coincident with the proliferation of coral reefs. We propose that this occurred at least 10 million years after the seawater Mg/Ca threshold was passed, and was instead aided by declining levels of atmospheric carbon dioxide.

  8. 88Sr/86Sr fractionation in inorganic aragonite and in corals

    NASA Astrophysics Data System (ADS)

    Fruchter, Noa; Eisenhauer, Anton; Dietzel, Martin; Fietzke, Jan; Böhm, Florian; Montagna, Paolo; Stein, Moti; Lazar, Boaz; Rodolfo-Metalpa, Riccardo; Erez, Jonathan

    2016-04-01

    Conflicting results have been reported for the stable Sr isotope fractionation, specifically with respect to the influence of temperature. In an experimental study we have investigated the stable Sr isotope systematics for inorganically precipitated and biogenic (coral) aragonite (natural and laboratory-cultured). Inorganic aragonite precipitation experiments were performed from natural seawater using the CO2 diffusion technique. The experiments were performed at different temperatures and different carbonate ion concentrations. 88Sr/86Sr of the inorganic aragonite precipitated in the experiments are 0.2‰ lighter than seawater, but showed no correlation to the water temperature or to CO32- concentration. Similar observations are made in different coral species (Cladocora caespitosa, Porites sp. and Acropora sp.), with identical fractionation from the bulk solution and no correlation to temperature or CO32- concentration. The lack of 88Sr/86Sr variability in corals at different environmental parameters and the similarity to the 88Sr/86Sr fractionation in inorganic aragonite may indicate a similar Sr incorporation mechanism in corals skeleton and inorganic aragonite, and therefore the previously proposed Rayleigh-based multi element model (Gaetani et al., 2011) cannot explain the process of Sr incorporation in the coral skeletal material. It is proposed that the relatively constant 88Sr/86Sr fractionation in aragonite can be used for paleo reconstruction of seawater 88Sr/86Sr composition. The seawater 88Sr/86Sr ratio reconstruction can be further used in calcite samples to reconstruct paleo precipitation rates.

  9. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  10. Uranus Rings and Two Moons

    NASA Image and Video Library

    1999-06-19

    Voyager 2 has discovered two hepherd satellites associated with the rings of Uranus. The two moons, designated 1986U7 and 1986U8, are seen here on either side of the bright epsilon ring; all nine of the known Uranian rings are visible.

  11. Uranus: the rings are black.

    PubMed

    Sinton, W M

    1977-11-04

    An upper limit of 0.05 is established for the geometric albedo of the newly discovered rings of Uranus. In view of this very low albedo, the particles of the rings cannot be ice-covered as are those of rings A and B of Saturn.

  12. Ring closure in actin polymers

    NASA Astrophysics Data System (ADS)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  13. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  14. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  15. Investigations of planetary ring phenomena

    NASA Technical Reports Server (NTRS)

    Burns, Joseph A.

    1987-01-01

    Faint planetary rings, their dynamical behavior and physical properties, were the main focus of the research efforts. The motion of weakly-charged dust through the gravitational and magnetic fields of Jupiter were examined. Several topics concerning features of Saturn's rings were addressed. The origin and fate of the Uranian ring dust is presently being studied.

  16. Mimas Against the Rings

    NASA Image and Video Library

    2005-08-05

    During its close flyby of Saturn's moon Mimas on Aug. 2, 2005, Cassini caught a glimpse of Mimas against the broad expanse of Saturn's rings. The Keeler Gap in the outer A ring, in which Cassini spied a never-before-seen small moon (see PIA06237), is at the upper right. The ancient, almost asteroid-like surface of Mimas is evident in its crater-upon-crater appearance. Even the material which has slumped down into the bottom of some of its craters bears the marks of later impacts. This image was taken through the clear filter of the Cassini spacecraft narrow-angle camera at a distance of 68,000 kilometers (42,500 miles) from Mimas and very near closest approach. The smallest features seen on the moon are about 400 meters wide (440 yards); the Sun-Mimas-Cassini angle is 44 degrees. http://photojournal.jpl.nasa.gov/catalog/PIA06412

  17. Saturn Ring Observer

    NASA Technical Reports Server (NTRS)

    Spilker, T. R.

    2001-01-01

    Answering fundamental questions about ring particle characteristics, and individual and group behavior, appears to require close-proximity (a few km) observations. Saturn's magnificent example of a ring system offers a full range of particle sizes, densities, and behaviors for study, so it is a natural choice for such detailed investigation. Missions implementing these observations require post-approach Delta(V) of approximately 10 km/s or more, so past mission concepts called upon Nuclear Electric Propulsion. The concept described here reduces the propulsive Delta(V) requirement to as little as 3.5 km/s, difficult but not impossible for high-performance chemical propulsion systems. Additional information is contained in the original extended abstract.

  18. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  19. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  20. Possible insect vectors of phytoplasmas affiliated with subgroups 16SrI-B, 16SrI-C, 16SrIII-B and 16SrIII-P in Lithuania

    USDA-ARS?s Scientific Manuscript database

    Phytoplasma strains affiliated with groups 16SrI, 16SrIII, 16SrV, and 16SrXII have been found in Lithuania, but still little is known about insects that could transmit them. In this study, four phytoplasma strains belonging to phytoplasma subgroups 16SrI-B, 16SrI-C, 16SrIII-B and 16SrIII-P were id...

  1. Strained Ring Energetic Binders

    DTIC Science & Technology

    1993-08-27

    polyhomobenzvalene ( PHBV ). PHBV was not found to have the mechanical instability problems of PBV, but was still thermally unstable (Tonset - 660C, Tmax - 1090C...DISCUSSION 4 Polybenzvalene (PBV) 4 Polyhomobenzvalene ( PHBV ) 6 Chain-Transfer Studies 11 CONCLUSIONS 15 EXPERIMENTAL PROCEDURES 16 .F 4E 19 APPENDICES A...strained ring polymers similar to PBV are known. The investigation of one of these polymers, polyhomobenzvalene ( PHBV ), is also described in this report

  2. SrAu4In4 and Sr4Au9In13: Polar Intermetallic Structures with Cations in Augmented Hexagonal Prismatic Environments

    SciTech Connect

    Palasyuk, A.; Dai, J.C.; Corbett, J.

    2008-03-11

    The title compounds were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction analyses and band structure calculations. SrAu{sub 3.76(2)}In{sub 4.24} crystallizes in the YCo{sub 5}In{sub 3} structure type with two of eight network sites occupied by mixtures of Au and In: Pnma, Z = 4, a = 13.946(7), b = 4.458(2), c = 12.921(6) {angstrom}. Its phase breadth appears to be small. Sr{sub 4}Au{sub 9}In{sub 13} exhibits a new structure type, P{sub 6}m2, Z = 1, a = 12.701(2), c = 4.4350(9) {angstrom}. The Sr atoms in both compounds center hexagonal prisms of nominally alternating In and Au atoms and also have nine augmenting (outer) Au + In atoms around their waists so as to define 21-vertex Sr{at}Au{sub 9}M{sub 4}In{sub 8} (M = Au/In) and Sr{at}Au{sub 9}In{sub 12} polyhedra, respectively. The relatively larger Sr content in the second phase also leads to condensation of some of the ideal building units into trefoil-like cages with edge-shared six-member rings. One overall driving force for the formation of these structures can be viewed as the need for each Sr cation to have as many close neighbors as possible in the more anionic Au-In network. The results also depend on the cation size as well as on the flexibility of the anionic network and an efficient intercluster condensation mode as all clusters are shared. Band structure calculations (LMTO-ASA) emphasize the greater strengths (overlap populations) of the Au-In bonds and confirm expectations that both compounds are metallic.

  3. Classification of radiating compact stars

    NASA Technical Reports Server (NTRS)

    Coppi, B.; Treves, A.

    1971-01-01

    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail.

  4. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  5. The Compact Project: Final Report.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…

  6. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  7. Which Ringed Planet...!?

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Don't worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System! But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...?? Well, it is not Saturn, but Uranus , the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth. The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the K s -band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) . The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec. The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile). The rings The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light. However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere

  8. Precooler Ring Vacuum System

    SciTech Connect

    Moenich, J.

    1980-10-02

    The precooler vacuum system, as proposed by FNAL, is based on a suitable modification of the existing Electron Cooling Ring System. Because of the magnetic cycle of the bending magnets, distributed ion pumping, as exists in the Electron Cooling Ring, is not applicable. Instead, the proposed pumping will be done with commercial appendage ion pumps mounted approximately every two meters around the circumference of the ring. The loss of effective pumping speed and non-uniformity of system pressure with appendage pumps may not be major considerations but the large number required does effect experimental and analytical equipment placement considerations. There is a distributed pumping technique available which: (1) is not affected by the magnetic cycle of the bending magnets; (2) will provide a minimum of four times the hydrogen pumping speed of the proposed appendage ion pumps; (3) will require no power during pumping after the strip is activated; (4) will provide the heat source for bakeout; (5) is easily replaceable; and (6) can be purchased, installed, and operated at a generous economic advantage over the presently proposed ion pumped system. The pumping technique referred to is non-evaporable gettering with ST101 Zr/Al pumping strip. A technical description of this pumping strip is given on Data Sheet 1 and 2 attached to this report.

  9. Swarming rings of bacteria.

    NASA Astrophysics Data System (ADS)

    Brenner, M. P.; Levitov, L. S.

    1996-03-01

    The behavior of bacterii controlled by chemotaxis can lead to a complicated spatial organization, producing swarming rings, and steady or moving aggregates( E. O. Budrene, and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630-633 (1991). ). We present a simple theory that explains the experimentally observed structures, by solving analytically two coupled differential equations, for the densities of bacterii and of chemoattractant. The equations have an interesting relation to the exactly solvable Burgers equation, and admit soliton-like solutions, that can be steady or moving. In addition, we find that there are singular solutions to the equations in which the bacterial density diverges. The theory agrees very well with the experiment: the solitons correspond to the observed travelling rings, the singularities describe formation of aggregates. In particular, the theory explains why the velocity of swarming rings decreases with the increase of the food concentration, the fact apparently not accounted by other existing approaches( L. Tsimring et. al., Phys. Rev. Lett., 75, 1859 (1995); Woodward, et al, Biophysical Journal, 68, 2181-2189 (1995). ).

  10. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  11. Saturn's ``Gossamer'' Ring: The F Ring's Inner Sheet

    NASA Astrophysics Data System (ADS)

    Showalter, M. R.; Burns, J. A.; Hamilton, D. P.

    1998-09-01

    Recent Galileo and Earth-based images have revealed for the first time that Jupiter's ``gossamer'' ring is actually composed of two rings, one bounded at the outer edge by Amalthea and the other bounded by Thebe. Dynamical models suggest that these rings are composed of dust grains ejected off the surfaces of the two moons, which then evolve inward under Poynting-Robertson drag. A very faint sheet of material filling the region between Saturn's A and F Rings reported by Burns et al. (BAAS 15, 1013--1014, 1983) may be a dynamically analogous system, in which dust escapes from the F Ring and evolves inward to the A Ring. Unlike Jupiter's gossamer rings, however, the inner sheet of Saturn's F Ring has been well observed from a large range of phase angles and visual wavelengths by Voyager. Voyager images reveal that this faint ring shows a tenfold increase in brightness between phase angles of 125(deg) and 165(deg) , indicating that it is composed of fine dust microns in size. Preliminary estimates of the normal optical depth fall in the range 1--2*E(-4) , depending on the dust size distribution assumed. Initial spectrophotometry reveals that the ring is neutral in color. The ring is uniform in brightness over the entire region between the two rings, with no evidence for internal structure associated with Prometheus and Atlas, suggesting that neither of these embedded moons acts as either a source or a sink. We will refine the aforementioned measurements and develop photometric models to better constrain the properties of the dust in this ring. This will enable us to relate the dust population to that in the F Ring proper, and to better explore the dynamical processes at work.

  12. Sr isotopic microsampling of magmatic rocks; a review (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2010-12-01

    Sr isotopes have been used since the 1960s as powerful tracers of source for igneous rocks. In the past 10 years in-situ isotopic microsampling has afforded us tremendous progress in our capacity to understand magmatic processes. This progress is underpinned by analytical advances particularly in sample extraction through laser or micromill and in multicollector mass spectrometer improvements to sensitivity and precision. Perhaps the biggest surprise was the recognition in the 1990s that young magmatic rocks are commonly isotopically heterogeneous at the component (inter- or intra- crystal) scale. Given that melting and fractionation do not affect 87Sr/86Sr we would not a priori expect isotopic variations within or among crystals in a young igneous rock. This observation alone attests to open system behavior in magmas, and tells us that many of the crystals have been mechanically aggregated and not grown directly from the melt in which they are found solidified (a conclusion that can also commonly be drawn from cursory petrographic examination). This recognition in turn means that we can make use of the crystals as recorders of the isotopic environments in which they crystallise: If a crystal grows progressively from a melt which changes its isotopic composition through processes such as contamination and mixing, then the only record of the melt evolution is in the core-rim compositions of the crystals - analogous to the environmental record of tree rings. Plagioclase crystals in mafic enclaves from Lassen (CA) and Purico-Chascon (Chile), for instance, have isotopic records that reflect origination from the more silicic host. Core-rim records of evolution can also be integrated with textural measurements. At Stromboli we have shown how isotopic zoning correlates with crystal size distribution. The detailed records of single crystals can be complemented by multi crystal core analyses which can be used to distinguish specific populations. This approach was used on

  13. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < Me), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > Me undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  14. Helmet latching and attaching ring

    NASA Technical Reports Server (NTRS)

    Chase, E. W.; Viikinsalo, S. J. (Inventor)

    1970-01-01

    A neck ring releasably secured to a pressurized garment carries an open-ended ring normally in the engagement position fitted into an annular groove and adapted to fit into a complementary annular groove formed in a helmet. Camming means formed on the inner surface at the end of the helmet engages the open-ended ring to retract the same and allow for one motion donning even when the garment is pressurized. A projection on the end of the split ring is engageable to physically retract the split ring.

  15. Planetary ring dynamics and morphology

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Durisen, Richard H.; Shu, Frank H.

    1987-01-01

    Evidence for a moonlet belt in the region between Saturn's close-in moonrings Pandora and Prometheus is discussed. It is argued that little-known observations of magnetospheric electron density by Pioneer 11 imply substantial, ongoing injections of mass into the 2000 km region which surrounds the F ring. A hypothesis is presented that these events result naturally from interparticle collisions between the smaller members of an optically thin belt of moonlets. Also discussed is work on Uranus ring structure and photometry, image processing and analysis of the Jonian ring strucure, photometric and structural studies of the A ring of Saturn, and improvements to an image processing system for ring studies.

  16. Compact high-flux source of cold sodium atoms

    NASA Astrophysics Data System (ADS)

    Lamporesi, G.; Donadello, S.; Serafini, S.; Ferrari, G.

    2013-06-01

    We present a compact source of cold sodium atoms suitable for the production of quantum degenerate gases and versatile for a multi-species experiment. The magnetic field produced by permanent magnets allows to simultaneously realize a Zeeman slower and a two-dimensional magneto-optical trap (MOT) within an order of magnitude smaller length than standard sodium sources. We achieve an atomic flux exceeding 4 × 109 atoms/s loaded in a MOT, with a most probable longitudinal velocity of 20 m/s, and a brightness larger than 2.5 × 1012 atoms/s/sr. This atomic source allows us to produce pure Bose-Einstein condensates with more than 107 atoms and a background pressure limited lifetime of 5 min.

  17. Compact Superconducting Terahertz Source Operating in Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Hao, L. Y.; Ji, M.; Yuan, J.; An, D. Y.; Li, M. Y.; Zhou, X. J.; Huang, Y.; Sun, H. C.; Zhu, Q.; Rudau, F.; Wieland, R.; Kinev, N.; Li, J.; Xu, W. W.; Jin, B. B.; Chen, J.; Hatano, T.; Koshelets, V. P.; Koelle, D.; Kleiner, R.; Wang, H. B.; Wu, P. H.

    2015-02-01

    We report on a liquid-nitrogen-cooled compact source for continuous terahertz (THz) emission. The emitter is a Bi2Sr2Ca Cu2O8 +δ intrinsic Josephson-junction stack embedded between two gold layers and sandwiched between two MgO substrates. The radiation is emitted to free space through a hollow metallic tube acting as a waveguide. The maximum emission power is 1.17 μ W . The tunable emission frequency bandwidth is up to 100 GHz with a maximum emission power at 0.311 THz. Since the operation voltage is about 1 V and the current is less than 30 mA, we are able to drive this terahertz source at 77 K with only one commercial 1.5-V battery, just like a torch. This convenient and economical setup may find applications in fields like tracer-gas detection or nondestructive evaluation.

  18. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  19. The MAX IV storage ring project.

    PubMed

    Tavares, Pedro F; Leemann, Simon C; Sjöström, Magnus; Andersson, Ake

    2014-09-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources.

  20. Overview of the Lockheed Martin Compact Fusion Reactor (CFR) T4B Experiment

    NASA Astrophysics Data System (ADS)

    McGuire, Thomas

    2016-10-01

    The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. The goal of the T4B experiment is to demonstrate a suitable plasma target for heating experiments and to characterize the behavior of plasma sources in the CFR configuration. The design of the T4B experiment will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2016 Lockheed Martin Corporation. All Rights Reserved.

  1. Inverse Compton Light Source: A Compact Design Proposal

    NASA Astrophysics Data System (ADS)

    Deitrick, Kirsten Elizabeth

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source was constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels

  2. Ring Autosomes: Some Unexpected Findings

    PubMed Central

    Caba, L; Rusu, C; Plăiaşu; Gug, G; Grămescu, M; Bujoran, C; Ochiană, D; Voloşciuc, M; Popescu, R; Braha, E; Pânzaru, M; Butnariu, L; Sireteanu, A; Covic, M; Gorduza, EV

    2012-01-01

    Ring chromosomes are rare entities, usually associated with phenotypic abnormalities in correlation with the loss of genetic material. There are various breakpoints and sometimes there is a dynamic mosaicism that is reflected in clinical features. Most of the ring chromosomes are de novo occurrences. Our study reflects the experience of three Romanian cytogenetic laboratories in the field of ring chromosomes. We present six cases with ring chromosomes involving chromosomes 5, 13, 18, and 21. All ring chromosomes were identified after birth in children with plurimalformative syndromes. The ring chromosome was present in mosaic form in three cases, and this feature reflects the ring’s instability. In case of ring chromosome 5, we report a possible association with oculo-auriculo-vertebral spectrum. PMID:24052730

  3. Mass of Saturn's A ring

    NASA Technical Reports Server (NTRS)

    Horn, L. J.; Russell, C. T.

    1993-01-01

    The mass of Saturn's A ring is reestimated using the behavior of spiral density waves embedded in the ring. The Voyager photopolarimeter (PPS) observed the star delta-Scorpii as it was occulted by Saturn's rings during the Voyager 2 flyby of Saturn in 1981 producing a radial profile of the rings. We examined forty spiral density waves in the Voyager PPS data of the A ring including 10 weaker waves that have not been previously analyzed by means of an autoregressive power spectral technique called Burg. The strengths of this new method for ring studies are that weaker, less extended waves are easily detected and characterized. This method is also the first one which does not require precise knowledge of the resonance location and phase of the wave in order to calculate the surface mass density. Uncertainties of up to 3 km are present in the currently available radial scales for Saturn's rings.

  4. A season in Saturn's rings: Cycling, recycling and ring history

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.

    2012-04-01

    Cassini experiments have watched Saturn's ring system evolve before our eyes. Images and occultations show changes and transient events. The rings are a dynamic and complex geophysical system, incompletely modeled as a single-phase fluid. Key Cassini observations: High resolution images show straw, propellers, embedded moonlets, and F ring objects. Multiple UVIS, RSS and VIMS occutlations indicate multimodal ringlet and edge structure, including free and forced modes along with stochastic perturbations that are most likely caused by nearby mass concentrations. Vertical excursions are evident at ring edges and in other perturbed regions. The rings are occasionally hit by meteorites that leave a signature that may last centuries; meteoritic dust pollutes the rings. Temperature, reflectance and transmission spectra are influenced by the dynamical state of the ring particles. Saturn's Equinox 2009: Oblique lighting exposed vertical structure and embedded objects. The rings were the coldest ever. Images inspired new occultation and spectral analysis that show abundant structure in the perturbed regions. The rings are more variable and complex than we had expected prior to this seasonal viewing geometry. Sub-kilometer structure in power spectral analysis: Wavelet analysis shows features in the strongest density waves and at the shepherded outer edge of the B ring. Edges are variable as shown by multiple occultations and occultations of double stars. F ring kittens: 25 features seen in the first 102 occultations show a weak correlation with Prometheus location. We interpret these features as temporary aggregations. Simulation results indicate that accretion must be enhanced to match the kittens' size distribution. Images show that Prometheus triggers the formation of transient objects. Propellers and ghosts: Occulations and images provide evidence for small moonlets in the A, B and C rings. These indicate accretion occurs inside the classical Roche limit. Implications

  5. A FODO racetrack ring for nuSTORM: design and optimization

    NASA Astrophysics Data System (ADS)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.

  6. A Multi-wavelength Analysis of Dust and Gas in the SR 24S Transition Disk

    NASA Astrophysics Data System (ADS)

    Pinilla, P.; Pérez, L. M.; Andrews, S.; van der Marel, N.; van Dishoeck, E. F.; Ataiee, S.; Benisty, M.; Birnstiel, T.; Juhász, A.; Natta, A.; Ricci, L.; Testi, L.

    2017-04-01

    We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution ≲ 0\\buildrel{ \\prime}\\over{.} 18 (12 au radius). We perform a multi-wavelength investigation by combining new data with previous ALMA data at 0.45 mm. The visibilities and images of the continuum emission at the two wavelengths are well characterized by a ring-like emission. Visibility modeling finds that the ring-like emission is narrower at longer wavelengths, in good agreement with models of dust-trapping in pressure bumps, although there are complex residuals that suggest potentially asymmetric structures. The 0.45 mm emission has a shallower profile inside the central cavity than the 1.3 mm emission. In addition, we find that the 13CO and C18O (J = 2-1) emission peaks at the center of the continuum cavity. We do not detect either continuum or gas emission from the northern companion to this system (SR 24N), which is itself a binary system. The upper limit for the dust disk mass of SR 24N is ≲ 0.12 {M}\\bigoplus , which gives a disk mass ratio in dust between the two components of {M}{dust,{SR}24{{S}}}/{M}{dust,{SR}24{{N}}}≳ 840. The current ALMA observations may imply that either planets have already formed in the SR 24N disk or that dust growth to millimeter sizes is inhibited there and that only warm gas, as seen by rovibrational CO emission inside the truncation radii of the binary, is present.

  7. New Views of Jupiter's Rings

    NASA Astrophysics Data System (ADS)

    Burns, J. A.

    1998-09-01

    Jupiter's rings are the archetype of ethereal planetary rings (very-low optical-depth bands containing micron-sized "dust"). As a result of much improved observations by Galileo (Ockert-Bell* -- most citations are et al. and Icarus in press* or this meeting) and Keck (de Pater*), we now understand the nature of such rings. The ring has three components: a 104 km-thick toroidal halo (1.4-1.7 RJ; normal optical depth t = 10-6), a thin main ring (1.7-1.8 RJ; t = 10-6), and a pair of exterior gossamer rings (1.8-3.5RJ; t = 10-7). The main ring has patchy ( 20-30 percent) brightness. The ring is reddish and its particles satisfy a -2.5 differential power-law size distribution. Because particle lifetimes are brief, the rings must be continually regenerated, by collisions into parent bodies, which may be unseen or may be the known small ring-moons (Thomas*, Simonelli). The gossamer ring seems to be collisional ejecta derived from the ring-moons Amalthea and Thebe, and evolving inward by Poynting-Robertson drag (Burns). The particles drift through many electromagnetic resonances, clustering around synchronous orbit, which produce jumps in the particles' inclinations (Hamilton). The main ring is probably debris from Adrastea and Metis, which orbit in the equatorial plane. The halo particles are driven vertically by electromagnetic forces, which may be resonant (Schaffer & Burns) or not (Horanyi & Cravens). When halo orbits become highly distorted, particles are lost into Jupiter. Similar faint rings may be attendant to all small, close-in satellites (Showalter).

  8. Production of 89Sr in solution reactor.

    PubMed

    Chuvilin, D Yu; Khvostionov, V E; Markovskij, D V; Pavshook, V A; Ponomarev-Stepnoy, N N; Udovenko, A N; Shatrov, A V; Vereschagin, Yu I; Rice, J; Tome, L A

    2007-10-01

    The new method for medical (89)Sr production in a reactor with solution fuel is proposed which is characterized by simplicity, high production efficiency and low buildup of radioactive waste. The main advantages of the new technology were validated by numerous experiments. The proposed new technology selectively extracts (89)Sr from a fuel of solution reactor and precludes penetration of (90)Sr into the final product. This method is based on the presence of gaseous radionuclide (89)Kr (T(1/2)=190.7s) in the decay chain (89)Se-->(89)Br-->(89)Kr-->(89)Rb-->(89)Sr. The performed experiments on taking the gas probes from internal volume of the solution 20 kW mini-reactor "Argus" have confirmed that the mechanism for (89)Sr delivery to the sorption volume of the reactor experimental loop is based on transport of gaseous (89)Sr predecessor-radionuclide (89)Kr. According to the measurements of radioactive impurities in a final (89)SrCl(2) solution, the filtration of the gas flow with cermet filters followed by cleaning of (89)Sr chloride solution in chromatographic columns with DOWEX-50 x 8 or Sr-Resin ensures reception of (89)Sr fully meeting the requirements for medical application. The experimental estimations have shown that the proposed new technology is multiply more productive than the traditional industrial methods of (89)Sr reception.

  9. Heteroepitaxially lifting Diracdegeneracy in topological semimetallic perovskite SrIrO3

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    Crystal symmetry-breaking and time-reversal symmetry breaking in epitaxial thin films and heterostructures of the topological semimetallic perovskite SrIrO3 were investigated by experimental growth, characterizations and theoretical calculations. Structure refinement on ultrathin films and first-principles calculations show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac nodal ring is found to be gapped in epitaxial film structure where the n-glide symmetry of the bulk Pbnm space group is removed while the mirror symmetry is preserved. Our symmetry-breaking analysis shows that the n-glide operation protects the nodal ring and the b-glide operation provides addition protection for a pair of high-symmetry Dirac points of the nodal ring. These symmetry operations can be selectively broken by different epitaxially strained structures, leading to different semimetallic band crossing. Time-reversal symmetry is further investigated under epitaxial confinement by ferromagnetic La0.7Sr0.3MnO3. The resulted control over the magnetic anisotropy and spin-orbit coupling will be discussed. The results highlight the vital role of symmetry in spin-orbit-coupled correlated oxides.

  10. Deriving the Marine Strontium Budget from Paired (87Sr/86Sr*-δ88/86Sr) Values of Marine Carbonates, Hydrothermal Fluids and River Waters

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Eisenhauer, A.; Boehm, F.; Vollstaedt, H.; Augustin, N.; Fietzke, J.; Liebetrau, V.; Peucker-Ehrenbrink, B.; Horn, C.; Nolte, N.; Hansen, B.

    2009-12-01

    With the normalization to a fixed 88Sr/86Sr=8.375209 ratio to correct for mass dependent fractionation during TIMS measurement any natural Strontium (Sr) isotopic fractionation in 88Sr/86Sr is ignored and important additional information are lost. A first study performed with a MC-ICP-MS (FIETZKE and EISENHAUER, 2006) showed significant fractionation between the IAPSO seawater standard and the SRM987 carbonate standard in the δ88/86Sr value. However, with the application of the Sr double spike TIMS technique (KRABBENHOEFT et al., 2009) we are now entering a new dimension in Sr isotope geochemistry by the simultaneous measurement of paired 87Sr/86Sr*-δ88/86Sr values of geological samples. The most important advantage of using paired 87Sr/86Sr*-δ88/86Sr values is that now a complete balance of the oceans Sr budget can be calculated including Sr input and output values. In order to provide a Sr isotope balance for the global ocean we collected paired 87Sr/86Sr*-δ88/86Sr values of a set of river waters samples, hydrothermal fluids, major marine carbonate producers and seawater. In a 3-isotope-plot the IAPSO seawater standard and the the paired 87Sr/86Sr*-δ88/86Sr values of marine carbonates are connected by a fractionation line, whereas the paired 87Sr/86Sr*-δ88/86Sr values of river waters and hydrothermal fluids are connected by a binary mixing line. The intercept of these lines provides the isotopic composition of the marine input (87Sr/86Sr*=0.709314(9) - δ88/86Sr=0.284(24)). The major Sr output corresponds to the Sr incorporated by the major marine calcifiers (87Sr/86Sr*=0.709312(9) - δ88/86Sr=0.240). The offset indicates that modern ocean is apparently not in steady state with respect to Sr. Weathering of young carbonates on the shelfes during sea level low stands can shift the δ88/86Sr of rivers from its recent value of 0.300(24) to 0.23‰ to equilibrate in- and output.

  11. Tree Rings: Timekeepers of the Past.

    ERIC Educational Resources Information Center

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  12. Backward extruded NdFeB HDDR ring magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Kirchner, A.; Grünberger, W.; Hinz, D.; Schäfer, R.; Schultz, L.; Harris, I. R.; Müller, K. H.

    1998-03-01

    Isotropic, submicron grained Nd 15Fe 77B 8 powder has been prepared by applying the HDDR process. Fully dense isotropic magnets have been produced by hot pressing, textured compacts have been obtained by subsequent die upsetting. Radially oriented ring magnets have been prepared by backward extrusion of the hot pressed compacts. Very encouraging magnetic properties have been achieved, the remanence measured in the radial direction is Br=1.07 T with a coercivity of iHc=575 kA/m. However, a decrease in alignment has been observed in the axial direction of the ring magnet. The effects of deformation temperature and speed have been investigated. Magnetic properties and the physical and magnetic microstructure have been characterised by VSM, SEM and high-resolution Kerr-effect microscopy, the latter showing the formation of interaction domains, which indicate a high degree of texture in a fine grained material, in both the die upset and the backward extruded ring magnet produced from Nd 15Fe 77B 8 HDDR material.

  13. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  14. Is the schatzki ring a unique esophageal entity?

    PubMed Central

    Müller, Michaela; Gockel, Ines; Hedwig, Philip; Eckardt, Alexander J; Kuhr, Kathrin; König, Jochem; Eckardt, Volker F

    2011-01-01

    AIM: To study, whether the association of Schatzki rings with other esophageal disorders support one of the theories about its etiology. METHODS: From 1987 until 2007, all patients with newly diagnosed symptomatic Schatzki rings (SRs) were prospectively registered and followed. All of them underwent structured interviews with regards to clinical symptoms, as well as endoscopic and/or radiographic examinations. Endoscopic and radiographic studies determined the presence of an SR and additional morphological abnormalities. RESULTS: One hundred and sixty-seven patients (125 male, 42 female) with a mean age of 57.1 ± 14.6 years were studied. All patients complained of intermittent dysphagia for solid food and 113 (79.6%) patients had a history of food impaction. Patients experienced symptoms for a mean of 4.7 ± 5.2 years before diagnosis. Only in 23.4% of the 64 patients who had endoscopic and/or radiological examinations before their first presentation to our clinic, was the SR previously diagnosed. At presentation, the mean ring diameter was 13.9 ± 4.97 mm. One hundred and sixty-two (97%) patients showed a sliding hiatal hernia. Erosive reflux esophagitis was found in 47 (28.1%) patients. Twenty-six (15.6%) of 167 patients showed single or multiple esophageal webs; five (3.0%) patients exhibited eosinophilic esophagitis; and four (2.4%) had esophageal diverticula. Four (7%) of 57 patients undergoing esophageal manometry had non-specific esophageal motility disorders. CONCLUSION: Schatzki rings are frequently associated with additional esophageal disorders, which support the assumption of a multifactorial etiology. Despite typical symptoms, SRs might be overlooked. PMID:21734791

  15. Ring currents in azulene

    NASA Astrophysics Data System (ADS)

    Paxton, A. T.; Todorov, T. N.; Elena, A. M.

    2009-11-01

    We propose a self consistent polarisable ion tight binding theory for the study of push-pull processes in aromatic molecules. We find that the method quantitatively reproduces ab initio calculations of dipole moments and polarisability. We apply the scheme in a simulation which solves the time dependent Schrödinger equation to follow the relaxation of azulene from the second excited to the ground states. We observe rather spectacular oscillating ring currents which we explain in terms of interference between the HOMO and LUMO states.

  16. Wave structure in planetary rings

    NASA Astrophysics Data System (ADS)

    Horn, Linda Joyce

    1992-01-01

    Planetary rings contain a wealth of wavelike structure that is driven by gravitational resonance interactions with nearby satellites. Wave behavior is a powerful tool for estimating physical ring parameters that are key to our understanding of ring origin and evolution. A new technique, utilizing the Burg autoregressive power spectral algorithm, was developed for probing the physical characteristics of rings and for detecting waves that are not otherwise visible. Data from the Voyager photopolarimeter (PPS) stellar occultations by the rings of Saturn, Uranus, and Neptune and the Voyager radio science (RSS) occultation by Saturn's rings were used. Local surface mass density estimates are obtained from the dispersion of 40 spiral density waves in Saturn's A ring, including 10 weaker waves not previously analyzed. Surface mass densities vary from 20 to 60 gm sq cm. Increasing optical depth is not correlated with increasing surface mass density, especially after the Keeler gap, suggesting that ring particle size and composition are not uniform throughout the A ring. Saturn's A ring mass is reestimated using the surface mass densities and is 5.2 +/- 1.3 x 1021 gm. The wakes of Saturn's satellite Pan are not short timescale phenomena because the effects of Pan's gravitational perturbations persist for more than one Pan encounter. Four additional Pan wakes were discovered at longitudes greater than 360 deg. Collective effects such as collisions modify the wake dispersion more extensively at greater longitudes. Pan is the dominant mass in the Encke gap. A spiral density wave was detected inside the Uranian delta ring. Upper and lower bounds were estimated for the surface mass density of the delta ring 5 less than or equal to sigma less than or equal to 10 gm/sq cm, the viscosity 10 less than or equal to nu less than or equal to 40 sq cm/sec, and the local ring height 7 less than or equal to h less than or equal to 20 m. These values are comparable to the corresponding

  17. Local structure investigation of Eu doped SrSnO3 samples surrounding Sr site

    NASA Astrophysics Data System (ADS)

    Basu, S.; Patel, D. K.; Sudarsan, V.; Kulshreshtha, S. K.; Jha, S. N.; Bhattacharyya, D.

    2013-02-01

    In the present study, Eu doped SrSnO3 samples have been prepared and the local structure surrounding Sr atom has been studied by Synchrotron based EXAFS measurements at Sr K-edge (16105 eV). EXAFS analysis show that the average Sr-O bond distances show a marginal increase compared to the undoped sample. There is a general decreasing trend in the coordination number values for all samples upto 3% Eu doped SrSnO3. The introduction of Eu3+ replacing Sr2+ creates anionic vacancies to preserve the electronegativity in the system. The 4% Eu doped SrSnO3 sample shows unusually high coordination values in both Sr-O and Sr-Sn shell thus confirming increased perturbation in the lattice.

  18. 88Sr/86Sr fractionation and calcite accumulation rate in the Sea of Galilee

    NASA Astrophysics Data System (ADS)

    Fruchter, Noa; Lazar, Boaz; Nishri, Aminadav; Almogi-Labin, Ahuva; Eisenhauer, Anton; Beeri-Shlevin, Yaron; Stein, Mordechai

    2017-04-01

    This study uses Lake Kinneret (Sea of Galilee, northern Israel) as a natural laboratory to investigate the fractionation of the stable Sr isotope ratio (88Sr/86Sr) during precipitation of authigenic calcite in the water column, and evaluates the dependence of the fractionation 87Sr/86Sr and 88Sr/86Sr ratios in the freshwater and brines that enter the lake are used to calculate the relative contributions of these sources to the Sr budget of the modern lake. The 87Sr/86Sr and 88Sr/86Sr ratios were measured in authigenic calcite, living Melanopsis shells, lake water and various water sources to the lake. While the lake's 87Sr/86Sr ratios are determined by the mixture of freshwater supplied mainly by the Jordan River and saline springs, the 88Sr/86Sr ratios of the lake reflect a more complex mass balance that includes the effect of isotopic fractionation during the precipitation of authigenic calcite. The data show a significant long-term effect of calcite accumulation on the stable Sr isotope ratio of the lake, increasing the 88Sr/86Sr of the water by 0.04 ‰. In contrast to the authigenic calcite, biogenic aragonite shells are shown to have a rather constant 88Sr/86Sr water-CaCO3 fractionation of precipitation of coralline and chemical aragonite from seawater and the precipitation of authigenic calcite from various continental waters. The field data of the present study suggests that the fractionation of 88Sr/86Sr in authigenic calcite represents a kinetic fractionation that varies with precipitation rate, in addition to the constant thermodynamic property. Massive precipitation of authigenic calcite occurs in Lake Kinneret during the spring phytoplankton bloom as the latter increases considerably the degree of calcite saturation. The correlation between accumulation rate can be therefore used as a tool to reconstruct paleo-environmental variations by analyzing the 88Sr/86Sr ratio in authigenic CaCO3 in core sections.

  19. Orbits of nine Uranian rings

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Frogel, J. A.; Elias, J. H.; Mink, D. J.; Liller, W.

    1981-01-01

    Observations of a stellar occultation by Uranus and its nine rings are presented and used to examine the structures and kinematics of the rings. The observations of the occultation of the K giant star KM 12 were obtained in the K band with the 4-m CTIO telescope at a signal-to-noise ratio higher than any previously obtained. Ring occultation profiles reveal the alpha ring to possibly have a double structure and less abrupt boundaries than the gamma ring, which exhibits diffraction fringes, while the eta ring is a broad ring with an unresolved narrow component at its inner edge. The present timing data, as well as previous occultation timings, are fit to a kinematic model in which all nine rings are treated as coplanar eclipses of zero inclination, precessing due to the zonal harmonics of the Uranian gravitational potential to obtain solutions for the ring orbits. Analysis of the residuals from the fitted orbits reveals that the proposed model is a good representation of ring kinematics. The reference system defined by the orbit solutions has also been used to obtain a value of 0.022 + or - 0.003 for the ellipticity of Uranus and a Uranian rotation period of 15.5 h.

  20. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.