Sample records for compact steam reformers

  1. Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor

    NASA Astrophysics Data System (ADS)

    Seo, Yong-Seog; Seo, Dong-Joo; Seo, Yu-Taek; Yoon, Wang-Lai

    The objective of this study is to investigate numerically a compact steam methane reforming (SMR) system integrated with a water-gas shift (WGS) reactor. Separate numerical models are established for the combustion part, SMR and WGS reaction bed. The concentration of species at the exits of the SMR and WGS bed, and the temperatures in the WGS bed are in good agreement with the measured data. Heat transfer to the catalyst beds and the catalytic reactions in the SMR and WGS catalyst bed are investigated as a function of the operation parameters. The conversion of methane at the exit of the SMR catalyst bed is calculated to be 87%, and the carbon monoxide concentration at the outlet of the WGS bed is estimated to be 0.45%. The effects of the cooling heat flux at the outside wall of the system and steam-to-carbon (S/C) ratio are also examined. As the cooling heat flux increases, both the methane conversion and carbon monoxide content are reduced in the SMR bed, and the carbon monoxide conversion is improved in the WGS bed. Both methane conversion and carbon dioxide reduction increase with increasing steam-to-carbon ratio.

  2. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  3. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  4. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  5. Steam reforming of commercial ultra-low sulphur diesel

    NASA Astrophysics Data System (ADS)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  6. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  7. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen; Zhang, He; Sun, Junming

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  8. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  9. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  10. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  11. Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.

    The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.

  12. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  13. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOEpatents

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  14. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  15. Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Vogel, B.; Hübner, P.

    The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.

  16. Steam reforming of heptane in a fluidized bed membrane reactor

    NASA Astrophysics Data System (ADS)

    Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.

    n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.

  17. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  18. Alternative technologies to steam-methane reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tindall, B.M.; Crews, M.A.

    1995-11-01

    Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies canmore » be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.« less

  19. The use of advanced steam reforming technology for hydrogen production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbishaw, J.B.; Cromarty, B.J.

    1996-12-01

    The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturingmore » site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.« less

  20. An afterburner-powered methane/steam reformer for a solid oxide fuel cells application

    NASA Astrophysics Data System (ADS)

    Mozdzierz, Marcin; Chalusiak, Maciej; Kimijima, Shinji; Szmyd, Janusz S.; Brus, Grzegorz

    2018-04-01

    Solid oxide fuel cell (SOFC) systems can be fueled by natural gas when the reforming reaction is conducted in a stack. Due to its maturity and safety, indirect internal reforming is usually used. A strong endothermic methane/steam reforming process needs a large amount of heat, and it is convenient to provide thermal energy by burning the remainders of fuel from a cell. In this work, the mathematical model of afterburner-powered methane/steam reformer is proposed. To analyze the effect of a fuel composition on SOFC performance, the zero-dimensional model of a fuel cell connected with a reformer is formulated. It is shown that the highest efficiency of a solid oxide fuel cell is achieved when the steam-to-methane ratio at the reforming reactor inlet is high.

  1. Analysis on Operating Parameter Design to Steam Methane Reforming in Heat Application RDE

    NASA Astrophysics Data System (ADS)

    Dibyo, Sukmanto; Sunaryo, Geni Rina; Bakhri, Syaiful; Zuhair; Irianto, Ign. Djoko

    2018-02-01

    The high temperature reactor has been developed with various power capacities and can produce electricity and heat application. One of heat application is used for hydrogen production. Most hydrogen production occurs by steam reforming that operated at high temperature. This study aims to analyze the feasibility of heat application design of RDE reactor in the steam methane reforming for hydrogen production using the ChemCAD software. The outlet temperature of cogeneration heat exchanger is analyzed to be applied as a feed of steam reformer. Furthermore, the additional heater and calculating amount of fuel usage are described. Results show that at a low mass flow rate of feed, its can produce a temperature up to 480°C. To achieve the temperature of steam methane reforming of 850°C the additional fired heater was required. By the fired heater, an amount of fuel usage is required depending on the Reformer feed temperature produced from the heat exchanger of the cogeneration system.

  2. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Stephen D.; Spies, Kurt A.; Mei, Donghai

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, andmore » activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.« less

  3. New Insights into Reaction Mechanisms of Ethanol Steam Reforming on Co-ZrO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Mei, Donghai

    2015-01-01

    The reaction pathway of ethanol steam reforming on Co-ZrO2 has been identified and the active sites associated with each step are proposed. Ethanol is converted to acetaldehyde and then to acetone, followed by acetone steam reforming. More than 90% carbon was found to follow this reaction pathway. N2-Sorption, X-ray Diffraction (XRD), Temperature Programmed Reduction (TPR), in situ X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy, as well as theoretical Density Functional Theory (DFT) calculations have been employed to identify the structure and functionality of the catalysts, which was further used to correlate their performance in ESR. It was found that metallicmore » cobalt is mainly responsible for the acetone steam reforming reactions; while, CoO and basic sites on the support play a key role in converting ethanol to acetone via dehydrogenation and condensation/ketonization reaction pathways. The current work provides fundamental understanding of the ethanol steam reforming reaction mechanisms on Co-ZrO2 catalysts and sheds light on the rational design of selective and durable ethanol steam reforming catalysts.« less

  4. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    NASA Astrophysics Data System (ADS)

    Raju, Arun Satheesh Kumar

    This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio

  5. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  6. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czernik, S.; Wang, D.; Chornet, E.

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step.more » Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.« less

  7. Syngas Production from CO2 Reforming and CO2-steam Reforming of Methane over Ni/Ce-SBA-15 Catalyst

    NASA Astrophysics Data System (ADS)

    Tan, J. S.; Danh, H. T.; Singh, S.; Truong, Q. D.; Setiabudi, H. D.; Vo, D.-V. N.

    2017-06-01

    This study compares the catalytic performance of mesoporous 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane reactions in syngas production. The catalytic performance of 10 Ni/Ce-SBA-15 catalyst for CO2 reforming and CO2-steam reforming of methane was evaluated in a temperature-controlled tubular fixed-bed reactor at stoichiometric feed composition, 1023 K and atmospheric pressure for 12 h on-stream with gas hourly space velocity (GHSV) of 36 L gcat -1 h-1. The 10 Ni/Ce-SBA-15 catalyst possessed a high specific BET surface area and average pore volume of 595.04 m2 g-1. The XRD measurement revealed the presence of NiO phase with crystallite dimension of about 13.60 nm whilst H2-TPR result indicates that NiO phase was completely reduced to metallic Ni0 phase at temperature beyond 800 K and the reduction temperature relied on different degrees of metal-support interaction associated with the location and size of NiO particles. The catalytic reactivity was significantly enhanced with increasing H2O/CO2 feed ratio. Interestingly, the H2/CO ratio for CO2-steam reforming of methane varied between 1 and 3 indicated the occurrence of parallel reactions, i.e., CH4 steam reforming giving a H2/CO of 3 whilst reverse water-gas shift (RWGS) reaction consuming H2 to produce CO gaseous product.

  8. Catalytic glycerol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  9. Ethanol internal steam reforming in intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Diethelm, Stefan; Van herle, Jan

    This study investigates the performance of a standard Ni-YSZ anode supported cell under ethanol steam reforming operating conditions. Therefore, the fuel cell was directly operated with a steam/ethanol mixture (3 to 1 molar). Other gas mixtures were also used for comparison to check the conversion of ethanol and of reformate gases (H 2, CO) in the fuel cell. The electrochemical properties of the fuel cell fed with four different fuel compositions were characterized between 710 and 860 °C by I- V and EIS measurements at OCV and under polarization. In order to elucidate the limiting processes, impedance spectra obtained with different gas compositions were compared using the derivative of the real part of the impedance with respect of the natural logarithm of the frequency. Results show that internal steam reforming of ethanol takes place significantly on Ni-YSZ anode only above 760 °C. Comparisons of results obtained with reformate gas showed that the electrochemical cell performance is dominated by the conversion of hydrogen. The conversion of CO also occurs either directly or indirectly through the water-gas shift reaction but has a significant impact on the electrochemical performance only above 760 °C.

  10. Effect of Cobalt Particle Size on Acetone Steam Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Zhang, He; Yu, Ning

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less

  11. Catalytic glycerol steam reforming for hydrogen production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterizedmore » through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.« less

  12. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  13. Thermal analysis of cylindrical natural-gas steam reformer for 5 kW PEMFC

    NASA Astrophysics Data System (ADS)

    Jo, Taehyun; Han, Junhee; Koo, Bonchan; Lee, Dohyung

    2016-11-01

    The thermal characteristics of a natural-gas based cylindrical steam reformer coupled with a combustor are investigated for the use with a 5 kW polymer electrolyte membrane fuel cell. A reactor unit equipped with nickel-based catalysts was designed to activate the steam reforming reaction without the inclusion of high-temperature shift and low-temperature shift processes. Reactor temperature distribution and its overall thermal efficiency depend on various inlet conditions such as the equivalence ratio, the steam to carbon ratio (SCR), and the fuel distribution ratio (FDR) into the reactor and the combustor components. These experiments attempted to analyze the reformer's thermal and chemical properties through quantitative evaluation of product composition and heat exchange between the combustor and the reactor. FDR is critical factor in determining the overall performance as unbalanced fuel injection into the reactor and the combustor deteriorates overall thermal efficiency. Local temperature distribution also influences greatly on the fuel conversion rate and thermal efficiency. For the experiments, the operation conditions were set as SCR was in range of 2.5-4.0 and FDR was in 0.4-0.7 along with equivalence ratio of 0.9-1.1; optimum results were observed for FDR of 0.63 and SCR of 3.0 in the cylindrical steam reformer.

  14. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  15. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts

    DOE PAGES

    Rogers, Jessica L.; Mangarella, Michael C.; D’Amico, Andrew D.; ...

    2016-07-20

    In this paper, the Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl 4O 7, NiAl 2O 4, and Ni 2Al 2O 5. The samples have been characterized by N 2 physisorption, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl 2O 4 in the reduced and unreduced statemore » as well as NiAl 4O 7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. Finally, on the other hand, the presence of metallic nickel is required for methane steam reforming. Ni 2Al 2O 5 in the reduced and unreduced states and NiAl 2O 4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits.« less

  16. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  17. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  18. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less

  19. Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming

    ERIC Educational Resources Information Center

    Azad, Abdul-Majeed; Kesavan, Sathees

    2006-01-01

    An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…

  20. Steam Reforming of Methyl Fuel - Phase I

    DTIC Science & Technology

    1977-06-30

    best catalyst . 2.0 TEST DESCRIPTION 2.1 Technical Background The basic reactions occurring in steam reforming of methanol are CH3OH + H20 CO2 + 3H 2...chamber contains the test catalyst . The fuel feed tank was filled with premixed methanol /gasoline mixture. Fuel flow as well as water flow were measured...carbon-oxygen bond formation and therefore follows a different mechanism than the methanol reaction . Different catalysts promote these types of

  1. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOEpatents

    Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  2. A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.

    PubMed

    Wu, Chunfei; Williams, Paul T

    2010-08-01

    Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.

  3. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: METHLYCHLORIDE. (R822721C633)

    EPA Science Inventory

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  4. Hydrogen Production by Steam Reforming of Natural Gas Over Vanadium-Nickel-Alumina Catalysts.

    PubMed

    Yoo, Jaekyeong; Park, Seungwon; Song, Ji Hwan; Song, In Kyu

    2018-09-01

    A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

  5. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range ofmore » 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.« less

  6. Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer

    NASA Astrophysics Data System (ADS)

    Sari, Ataallah; Sabziani, Javad

    2017-06-01

    Modeling and CFD simulation of a three-dimensional microreactor includes thirteen structured parallel channels is performed to study the hydrogen production via methanol steam reforming reaction over a Cu/ZnO/Al2O3 catalyst. The well-known Langmuir-Hinshelwood macro kinetic rate expressions reported by Peppley and coworkers [49] are considered to model the methanol steam reforming reactions. The effects of inlet steam to methanol ratio, pre-heat temperature, channels geometry and size, and the level of external heat flux on the hydrogen quality and quantity (i.e., hydrogen flow rate and CO concentration) are investigated. Moreover, the possibility of reducing the CO concentration by passing the reactor effluent through a water gas shift channel placed in series with the methanol reformer is studied. Afterwards, the simulation results are compared with the experimental data reported in the literature considering two different approaches of mixture-averaged and Maxwell-Stefan formulations to evaluate the diffusive flux of mass. The results indicate that the predictions of the Maxwell-Stefan model is in better agreement with experimental data than mixture-averaged one, especially at the lower feed flow rates.

  7. A numerical analysis of heat and mass transfer during the steam reforming process of ethane

    NASA Astrophysics Data System (ADS)

    Tomiczek, Marcin; Kaczmarczyk, Robert; Mozdzierz, Marcin; Brus, Grzegorz

    2017-11-01

    This paper presents a numerical analysis of heat and mass transfer during the steam reforming of ethane. From a chemical point of view, the reforming process of heavy hydrocarbons, such as ethane, is complex. One of the main issue is a set of undesired chemical reactions that causes the deposition of solid carbon and consequently blocks the catalytic property of a reactor. In the literature a carbon deposition regime is selected by thermodynamical analysis to design safe operation conditions. In the case of Computational Fluid Dynamic (CFD, hereafter) models each control volume should be investigated to determinate if carbon deposition is thermodynamically favourable. In this paper the authors combine equilibrium and kinetics analysis to simulate the steam reforming of methane-ethane rich fuel. The results of the computations were juxtaposed with experimental data for methane steam reforming, and good agreement was found. An analysis based on the kinetics of reactions was conducted to predict the influence of temperature drop and non-equilibrium composition on solid carbon deposition. It was found that strong non-uniform temperature distribution in the reactor causes conditions favourable for carbon deposition at the inlet of the reformer. It was shown that equilibrium calculations, often used in the literature, are insufficient.

  8. Modified Ni-Cu catalysts for ethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-01

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N2 adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  9. Influence of geometry on pressure and velocity distribution in packed-bed methanol steam reforming reactor

    NASA Astrophysics Data System (ADS)

    Ivanović, Ivana; Sedmak, Aleksandar; Milošević, Miloš; Cvetković, Ivana; Pohar, Andrej; Likozar, Blaž

    2017-07-01

    The main tasks of this research is to propose several changes in the packed bed micro methanol steam reformer geometry in order to ensure its performance. The reformer is an integral part of the existing indirect internal reforming high temperature PEMFC and most of its geometry is already defined. The space for remodeling is very limited.

  10. Effect of ZnO facet on ethanol steam reforming over Co/ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Zhang, He; Davidson, Stephen D.

    2016-01-01

    The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.

  11. Process Evaluation - Steam Reforming of Diesel Fuel Oil

    DTIC Science & Technology

    1980-02-15

    Table 9. HIDROGEN CONVERSION RELATIVE TO TEMPERATURE, SPACE, VELOCITY, AND H20/C RATIO Oil Feed, Gas Product ,Run No. Temperature, *F H2,O/C Ratio igram...steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test...79-C-0048. Hydrogen-rich gas was produced over a wide range of reaction conditions. This product gas contained small amounts of ethylene and !nzene

  12. Activity Tests of Macro-Meso Porous Catalysts over Metal Foam Plate for Steam Reforming of Bio-Ethanol.

    PubMed

    Park, No-Kuk; Jeong, Yong Han; Kang, Misook; Lee, Tae Jin

    2018-09-01

    The catalytic activity of a macro-mesoporous catalyst coated on a metal foam plate in the reforming of bio-ethanol to synthesis gas was investigated. The catalysts were prepared by coating a support with a noble metal and transition metal. The catalytic activity for the production of synthetic gas by the reforming of bio-ethanol was compared according to the support material, reaction temperature, and steam/carbon ratio. The catalysts coated on the metal foams were prepared using a template method, in which macro-pores and meso-pores were formed by mixing polymer beads. In particular, the thermodynamic equilibrium composition of bio-ethanol reforming with the reaction temperature and steam/carbon ratio to produce synthetic gas was examined using the HSC (Enthalpy-Entropy-Heat capacity) chemistry program in this study. The composition of hydrogen and carbon monoxide in the reformate gas produced by steam reforming over the Rh/Ni-Ce-Zr/Al2O3-based pellet type catalysts and metal foam catalysts that had been coated with the Rh/Al-Ce-Zr-based catalysts was investigated by experimental activity tests. The activity of the metal foam catalyst was higher than that of the pellet type catalyst.

  13. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location

    NASA Astrophysics Data System (ADS)

    Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej

    2014-05-01

    The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.

  14. Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation-Experimental studies

    NASA Astrophysics Data System (ADS)

    Damle, Ashok S.

    One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite ® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd-Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H 2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite ® indicated very good match between theoretical predictions and

  15. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: POLYCHLORINATED BIPHENYLS (PCBS). (R826694C633)

    EPA Science Inventory

    Experiments with commercial askarals (Aroclors 1221, 1248 and 1254) have confirmed the feasibility of catalytic steam reforming as a method for destroying polychlorinated biphenyls (PCBs). Rhodium, platinum and nickel supported on CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST DEACTIVATION. (R826694C633)

    EPA Science Inventory

    Deactivation of 0.5 wt.% Pt/small gamma, Greek-Al2O3 catalysts during trichloroethylene (TCE)–steam reforming was studied with experiments at 700°C, H

  16. Hydrogen production by ethanol steam reforming on Ni/oxide catalysts

    NASA Astrophysics Data System (ADS)

    Lazar, Mihaela D.; Dan, Monica; Mihet, Maria; Borodi, George; Almasan, Valer

    2012-02-01

    Hydrogen production from bio-fuels such as bio-ethanol provides significant environmental benefits since the resulted CO2 is consumed again for biomass growth, offering a carbon dioxide neutral energy source. In the actual conditions of increasing energy demand and atmosphere pollution, clean produced hydrogen can be an alternative option for a clean energy vector. In this paper we present the results obtained in hydrogen production by steam reforming of ethanol using oxide supported nickel catalysts. Although Ni is not the most active catalyst for this process, economically is the most attractive one, due to the high price and low availability of noble metals. Ni was dispersed on several oxides: ZrO2, Al2O3, Cr2O3, SiO2 with a target metal concentration of 8 wt%. using impregnation method. The catalysts were characterized using several techniques: N2 adsorption desorption isotherms to determine total surface area and porosity, XRD to determine oxide crystallinity and Ni crystallite size. Each catalyst was tested in steam reforming of ethanol at temperatures ranging from 150 to 350°C, at atmospheric pressure and a ethanol: steam ratio of 1:9. The best ethanol conversion and catalyst stability was obtained for Ni/Al2O3. The catalyst selectivity for H2 production depends on the support nature. The best H2 selectivity was obtained for Ni/ZrO2 catalyst.

  17. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions.

    PubMed

    Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-12-04

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  18. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  19. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    PubMed

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  1. Stable Hydrogen Production from Ethanol through Steam Reforming Reaction over Nickel-Containing Smectite-Derived Catalyst

    PubMed Central

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-01-01

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2. PMID:25547495

  2. STEAM REFORMING OF CHLOROCARBONS: CHLORINATED AROMATICS. (R826694C633)

    EPA Science Inventory

    Effective dechlorination of chloroaromatics, such as C6H5Cl, 1,2-C6H4Cl2, 1,3-C6H4Cl2 and 1,2,4-C6H3Cl3, using catalytic steam reforming has been confirmed ...

  3. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    NASA Astrophysics Data System (ADS)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  4. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R826694C633)

    EPA Science Inventory

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals ...

  5. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST COMPARISONS. (R822721C633)

    EPA Science Inventory

    Catalyst candidates for steam reforming chlorocarbons have been screened for activity using methyl chloride as a model reactant. At 500°C, a H2O/C ratio of about 10 and a GHSV of 254 000 h-1, catalysts comprising 0.5% loading of the metals o...

  6. Gas-Phase Hydrodesulfurization of JP-8 Light Fraction Using Steam Reformate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiwen; King, David L.

    2006-10-11

    Gas phase hydrodesulfurization of JP-8 light fraction was investigated over CoMo/Al2O3 and NiMo/Al2O3 catalysts. Use of a light fraction provides a fuel that is more easily desulfurized, and allows the process to operate in the vapor phase. This study investigated the utilization of reformate (syngas) from a steam reformer rather than pure H2 as gas feed to HDS unit. This is consistent with what might be available to the military during operation in the field. Dry syngas functions almost as well as pure H2 in the HDS reaction, and sulfur levels below 5ppmw are readily obtained from a feed initiallymore » containing 320ppmw sulfur. Addition of steam at 40 vol% to the gas feed has a significant negative impact on HDS performance with CoMo/Al2O3, but only a small effect with NiMo/Al2O3. The impacts of various process conditions on S removal efficiency were examined and will be described.« less

  7. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: TRICHLOROETHANE, TRICHLOROETHYLENE AND PERCHLOROETHYLENE. (R826694C633)

    EPA Science Inventory

    The effective destruction of trichloroethane, trichloroethylene and perchloroethylene by steam reforming with a commercial nickel catalyst has been demonstrated. Conversion levels of up to 0.99999 were attained in both laboratory and semi-pilot experiments, with the products c...

  8. Internal combustion engine with thermochemical recuperation fed by ethanol steam reforming products - feasibility study

    NASA Astrophysics Data System (ADS)

    Cesana, O.; Gutman, M.; Shapiro, M.; Tartakovsky, L.

    2016-08-01

    This research analyses the performance of a spark ignition engine fueled by ethanol steam reforming products. The basic concept involves the use of the internal combustion engine's (ICE) waste heat to promote onboard reforming of ethanol. The reformer and the engine performance were simulated and analyzed using GT-Suite, Chem CAD and Matlab software. The engine performance with different compositions of ethanol reforming products was analyzed, in order to find the optimal working conditions of the ICE - reformer system. The analysis performed demonstrated the capability to sustain the endothermic reactions in the reformer and to reform the liquid ethanol to hydrogen-rich gaseous fuel using the heat of the exhaust gases. However, the required reformer's size is quite large: 39 x 89 x 73 cm, which makes a feasibility of its mounting on board a vehicle questionable. A comparison with ICE fed by gasoline or liquid ethanol doesn't show a potential of efficiency improvement, but can be considered as a tool of additional emissions reduction.

  9. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less

  10. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less

  11. Pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen.

    PubMed

    Renny, Andrew; Santhosh, Viswanathan; Somkuwar, Nitin; Gokak, D T; Sharma, Pankaj; Bhargava, Sanjay

    2016-11-01

    The aim of this work was to study the pyrolysis of de-oiled seed cake of Jatropha Curcas and catalytic steam reforming of pyrolytic bio-oil to hydrogen. As per literature, presence of heavy nitrogenous and oxygenated compounds leads to catalyst deactivation. Here, an attempt has been made to tune pyrolytic reactions to optimize the N and O content of the pyrolytic bio-oil. Bio-oil conversion and hydrogen yield decreased as reaction progressed, which attributes to temporary loss of catalytic activity by blockage of catalyst pores by carbon deposition. Further, retention of steam reforming activity after repetitive steam activation suggests long-term catalyst usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  13. Catalytic Steam and Partial Oxidation Reforming of Liquid Fuels for Application in Improving the Efficiency of Internal Combustion Engines

    DOE PAGES

    Brookshear, Daniel William; Pihl, Josh A.; Szybist, James P.

    2018-02-07

    Here, this study investigated the potential for catalytically reforming liquid fuels in a simulated exhaust gas recirculation (EGR) mixture loop for the purpose of generating reformate that could be used to increase stoichiometric combustion engine efficiency. The experiments were performed on a simulated exhaust flow reactor using a Rh/Al 2O 3 reformer catalyst, and the fuels evaluated included iso-octane, ethanol, and gasoline. Both steam reforming and partial oxidation reforming were examined as routes for the production of reformate. Steam reforming was determined to be an ineffective option for reforming in an EGR loop, because of the high exhaust temperatures (inmore » excess of 700 °C) required to produce adequate concentrations of reformate, regardless of fuel. However, partial oxidation reforming is capable of producing hydrogen concentrations as high as 10%–16%, depending on fuel and operating conditions in the simulated EGR gas mixture. Meanwhile, measurements of total fuel enthalpy retention were shown to have favorable energetics under a range of conditions, although a tradeoff between fuel enthalpy retention and reformate production was observed. Of the three fuels evaluated, iso-octane exhibited the best overall performance, followed by ethanol and then gasoline. Overall, it was found that partial oxidation reforming of liquid fuels in a simulated EGR mixture over the Rh/Al 2O 3 catalyst demonstrated sufficiently high reformate yields and favorable energetics to warrant further evaluation in the EGR system of a stoichiometric combustion engine.« less

  14. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  15. Comparison of partial oxidation and steam-CO{sub 2} mixed reforming of CH{sub 4} to syngas on MgO-supported metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, D.; Lapszewicz, J.; Jiang, X.

    1996-03-01

    Partial oxidation (POX) and steam-CO{sub 2} mixed reforming of CH{sub 4} on MgO-supported noble metals were investigated at high space velocity (5.5 x 10{sup 5} h{sup -1}). Temperature-programmed reaction (TPR) and isotope transient techniques were used to study the mechanism of POX and mixed reforming. TPR profiles of POX and mixed reforming showed similar ignition reaction behaviors, which implied that there are similar characteristics in their mechanisms. Steam reforming and CO{sub 2} reforming were found to start at the same time in mixed reforming. TPR and CH{sub 4}-D{sub 2} exchange experiments indicated that CH{sub 4} was activated at low temperaturemore » on Rh/MgO. POX showed much higher activity than mixed reforming although their C, H, and O atomic concentrations were the same at the beginning of each reaction. Mechanisms for POX and mixed reforming are suggested and the effect of oxygen-metal bond strength on activity is discussed. 31 refs., 11 figs., 3 tabs.« less

  16. Thermodynamic evaluation of hydrogen production for fuel cells by using bio-ethanol steam reforming: Effect of carrier gas addition

    NASA Astrophysics Data System (ADS)

    Hernández, Liliana; Kafarov, Viatcheslav

    Omitting the influence of the addition of carrier gas to the reaction system for hydrogen production by bio-ethanol steam reforming can lead to wrong conclusions, especially when it is going to be made to scale. The effect of carrier gas addition to produce hydrogen using bio-ethanol steam reforming to feed fuel cells was evaluated. Thermodynamic calculations in equilibrium conditions were made, however the analysis derived from them can also be applied to kinetic conditions. These calculations were made by using the Aspen-HYSYS software at atmospheric pressure and different values of temperature, water/ethanol molar ratios, and inert (argon)/(water/ethanol) molar ratios. The addition of inert carrier gas modifies the concentrations of the reaction products in comparison to those obtained without its presence. This behavior occurs because most of the reactions which take place in bio-ethanol steam reforming have a positive difference of moles. This fact enhances the system sensitivity to inert concentration at low and moderated temperatures (<700 °C). At high values of temperature, the inert addition does not influence the composition of the reaction products because of the predominant effect of inverse WGS reaction.

  17. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101/102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-06-08

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-10-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FB SR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-S.2.1-20 1 0-00 1, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, 'Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  18. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    PubMed

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  19. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE PAGES

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang; ...

    2018-04-10

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  20. Steam reforming of simulated bio-oil on K-Ni-Cu-Mg-Ce-O/Al 2O 3: The effect of K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Rahman, Muhammad Mahfuzur; Chen, Jixiang

    Steam reforming of simulated bio-oil (ethanol, acetone, phenol, and acetic acid) and phenol has been studied on K-Ni-Cu-Mg-Ce-O/Al 2O 3 composite catalysts. Complementary characterization techniques, such as nitrogen sorption, XRD, H 2-TPR, H 2-TPD, CO-TPD, CO-DRIFTS, and in situ XPS, were used to correlate surface structure and functionality to catalytic performance of potassium (K) doped catalysts. K doping of the Ni-Cu-Mg-Ce-O/Al 2O 3 catalyst created a Ni°/Ni 2+ mixed active phase, which not only enhanced steam reforming activity, but also suppressed the methanation reaction. In addition, K doping changed the surface acid-basic properties of the catalyst, which instead favor themore » gasifcation and water-gas shift reactions. In conclusion, with the combination of these effects, K doping of Ni-Cu-Mg-Ce-O/Al 2O 3 catalysts led to higher C1 yield and much lower methane formation, favoring hydrogen production in steam reforming of both phenol and simulated bio-oil.« less

  1. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  2. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannahmore » River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies

  3. Integrated hydrocarbon reforming system and controls

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  4. Thermochemically recuperated and steam cooled gas turbine system

    DOEpatents

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  5. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst.

    PubMed

    Wu, C; Williams, P T

    2012-01-01

    In this paper, a nano-Ni/SiO2 catalyst was prepared by a sol-gel method and tested for hydrogen production from ethanol steam reforming using a two-stage fixed-bed reaction system. The reaction conditions, such as reaction temperature, water/ethanol ratio and sample feeding rate, were investigated with the prepared nano-Ni/SiO2 catalyst. Brunauer-Emmett-Teller surface area and porosity, temperature-programmed oxidation, X-ray diffraction and focused ion beam (FIB)/scanning electron microscopy were used in this work to analysis the fresh and/or reacted catalysts. An extended catalyst stability test for ethanol steam reforming with the Ni/SiO2 catalyst was carried out at a reaction temperature of 600 degrees C, when the water/ethanol ratio was kept at 3.5 and sample feeding rate was 4.74 g h(-1). The results showed that a stabilized gas and hydrogen production was obtained with a potential H2 production of about 40 wt.%. Increasing the reaction temperature during ethanol steam reforming with the Ni/SiO2 catalyst resulted in an increase of gas and hydrogen production. The gas yield was slightly reduced when the water/ethanol ratio was increased from 2.0 to 3.5. However, the potential H2 production was increased. The investigation of the sample feeding rate showed that the gas production per hour was increased due to the higher sample feeding rate, but the potential H2 production was reduced.

  6. Integrated solar thermochemical reaction system for steam methane reforming

    DOE PAGES

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; ...

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  7. Purifier-integrated methanol reformer for fuel cell vehicles

    NASA Astrophysics Data System (ADS)

    Han, Jaesung; Kim, Il-soo; Choi, Keun-Sup

    We developed a compact, 3-kW, purifier-integrated modular reformer which becomes the building block of full-scale 30-kW or 50-kW methanol fuel processors for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by composite metal membrane and catalytic combustion by washcoated wire-mesh catalyst were combined with the conventional methanol steam-reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems using preferential oxidation. In this system, steam reforming, hydrogen purification, and catalytic combustion all take place in a single reactor so that the whole system is compact and easy to operate. Hydrogen from the module is ultrahigh pure (99.9999% or better), hence there is no power degradation of PEMFC stack due to contamination by CO. Also, since only pure hydrogen is supplied to the anode of the PEMFC stack, 100% hydrogen utilization is possible in the stack. The module produces 2.3 Nm 3/h of hydrogen, which is equivalent to 3 kW when PEMFC has 43% efficiency. Thermal efficiency (HHV of product H 2/HHV of MeOH in) of the module is 89% and the power density of the module is 0.77 kW/l. This work was conducted in cooperation with Hyundai Motor Company in the form of a Korean national project. Currently the module is under test with an actual fuel cell stack in order to verify its performance. Sooner or later a full-scale 30-kW system will be constructed by connecting these modules in series and parallel and will serve as the fuel processor for the Korean first fuel cell hybrid vehicle.

  8. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam

  9. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor

    PubMed Central

    Zhang, Shubin; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance. PMID:29121067

  10. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.

    PubMed

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Zhang, Xuelin; Liu, Xiaowei

    2017-01-01

    This paper presents a numerical and experimental study on the performance of a methanol steam reformer integrated with a hydrogen/air combustion reactor for hydrogen production. A CFD-based 3D model with mass and momentum transport and temperature characteristics is established. The simulation results show that better performance is achieved in the cross-U type reactor compared to either a tubular reactor or a parallel-U type reactor because of more effective heat transfer characteristics. Furthermore, Cu-based micro reformers of both cross-U and parallel-U type reactors are designed, fabricated and tested for experimental validation. Under the same condition for reforming and combustion, the results demonstrate that higher methanol conversion is achievable in cross-U type reactor. However, it is also found in cross-U type reactor that methanol reforming selectivity is the lowest due to the decreased water gas shift reaction under high temperature, thereby carbon monoxide concentration is increased. Furthermore, the reformed gas generated from the reactors is fed into a high temperature proton exchange membrane fuel cell (PEMFC). In the test of discharging for 4 h, the fuel cell fed by cross-U type reactor exhibits the most stable performance.

  11. Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process

    NASA Astrophysics Data System (ADS)

    Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.

    2017-09-01

    The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.

  12. Thermodynamic analyses of hydrogen production from sub-quality natural gas. Part II: Steam reforming and autothermal steam reforming

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Part I of this paper analyzed sub-quality natural gas (SQNG) pyrolysis and autothermal pyrolysis. Production of hydrogen via direct thermolysis of SQNGs produces only 2 mol of hydrogen and 1 mol of carbon per mole of methane (CH 4). Steam reforming of SQNG (SRSQNG) could become a more effective approach because the processes produce two more moles of hydrogen via water splitting. A Gibbs reactor unit operation in the AspenPlus™ chemical process simulator was employed to accomplish equilibrium calculations for the SQNG + H 2O and SQNG + H 2O + O 2 systems. The results indicate that water and oxygen inlet flow rates do not significantly affect the decomposition of hydrogen sulfide (H 2S) at temperatures lower than 1000 °C. The major co-product of the processes is carbonyl sulfide (COS) while sulfur dimer (S 2) and carbon disulfide (CS 2) are minor by-products within this temperature range. At higher temperatures (>1300 °C), CS 2 and S 2 become major co-products. No sulfur dioxide (SO 2) or sulfur trioxide (SO 3) is formed during either SRSQNG or autothermal SRSQNG processes, indicating that no environmentally harmful acidic gases are generated.

  13. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Men, Yong; Wang, Jinguo; He, Rong; Wang, Yuanqiang

    2017-10-01

    Effects of supports over Pt/In2O3/MOx catalysts with extremely low loading of Pt (1 wt%) and In2O3 loadings (3 wt%) are investigated for the hydrogen production of methanol steam reforming (MSR) in the temperature range of 250-400 °C. Under practical conditions without the pre-reduction, the 1Pt/3In2O3/CeO2 catalyst shows the highly efficient catalytic performance, achieving almost complete methanol conversion (98.7%) and very low CO selectivity of 2.6% at 325 °C. The supported Pt/In2O3 catalysts are characterized by means of Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD), high-resolution transmission microscopy (HRTEM), temperature programmed reduction with hydrogen (H2-TPR), CO pulse chemisorption, temperature programmed desorption of methanol and water (CH3OH-TPD and H2O-TPD). These demonstrate that the nature of catalyst support of Pt/In2O3/MOx plays crucial roles in the Pt dispersion associated by the strong interaction among Pt, In2O3 and supporting materials and the surface redox properties at low temperature, and thus affects their capability to activate the reactants and determines the catalytic activity of methanol steam reforming. The superior 1Pt/3In2O3/CeO2 catalyst, exhibiting a remarkable reactivity and stability for 32 h on stream, demonstrates its potential for efficient hydrogen production of methanol steam reforming in mobile and de-centralized H2-fueled PEMFC systems.

  14. Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming

    NASA Astrophysics Data System (ADS)

    Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.

    2018-04-01

    Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.

  15. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    PubMed

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  16. Statistical validation and an empirical model of hydrogen production enhancement found by utilizing passive flow disturbance in the steam-reformation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Paul A.; Liao, Chang-hsien

    2007-11-15

    A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less

  17. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.

    PubMed

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Mathew, Thomas; May, Robert B; Prakash, G K Surya

    2015-07-15

    Catalysts based on suitable metal oxide supports, such as NiO/MgO and CoO/MgO, were shown to be active for single step bi-reforming, the combined steam and dry reforming of methane or natural gas with H2O and CO2 exclusively to metgas (CO-2H2) for efficient methanol synthesis. Reactions were carried out in a tubular flow reactor under pressures up to 42 bar at 830-910 °C. Using a CH4 to steam to CO2 ratio of ∼3:2:1 in the gas feed, the H2/CO ratio of 2:1 was achieved, which is desired for subsequent methanol synthesis. The needed 2/1 steam/CO2 feed ratio together with the reaction heat for the endothermic bi-reforming can be conveniently obtained by the complete combustion of a quarter part of the overall used methane (natural gas) with oxygen of the air (oxidative bi-reforming). Complete combustion of a part of methane followed by bi-reforming leads to the production of metgas (H2/CO in 2:1 mol ratio) for self-sufficient exclusive methanol synthesis. The long sought after but elusive efficient and selective oxygenation of methane to methanol is thus achieved in an effective and economic way without any oxidation byproduct formation according to CH4 + 1/2O2 → CH3OH.

  18. Hydrogen generation from biogenic and fossil fuels by autothermal reforming

    NASA Astrophysics Data System (ADS)

    Rampe, Thomas; Heinzel, Angelika; Vogel, Bernhard

    Hydrogen generation for fuel cell systems by reforming technologies from various fuels is one of the main fields of investigation of the Fraunhofer ISE. Suitable fuels are, on the one hand, gaseous hydrocarbons like methane, propane but also, on the other hand, liquid hydrocarbons like gasoline and alcohols, e.g., ethanol as biogenic fuel. The goal is to develop compact systems for generation of hydrogen from fuel being suitable for small-scale membrane fuel cells. The most recent work is related to reforming according to the autothermal principle — fuel, air and steam is supplied to the reactor. Possible applications of such small-scale autothermal reformers are mobile systems and also miniature fuel cell as co-generation plant for decentralised electricity and heat generation. For small stand-alone systems without a connection to the natural gas grid liquid gas, a mixture of propane and butane is an appropriate fuel.

  19. Compact hydrogen production systems for solid polymer fuel cells

    NASA Astrophysics Data System (ADS)

    Ledjeff-Hey, K.; Formanski, V.; Kalk, Th.; Roes, J.

    Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350°C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900°C the decomposition of propane into carbon and hydrogen takes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2.

  20. Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi

    2018-02-01

    The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.

  1. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass.

    PubMed

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2015-02-01

    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. On direct internal methane steam reforming kinetics in operating solid oxide fuel cells with nickel-ceria anodes

    NASA Astrophysics Data System (ADS)

    Thallam Thattai, A.; van Biert, L.; Aravind, P. V.

    2017-12-01

    Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.

  3. Studying the characteristics of a 5 kW power installation on solid-oxide fuel cells with steam reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Munts, V. A.; Volkova, Yu. V.; Plotnikov, N. S.; Dubinin, A. M.; Tuponogov, V. G.; Chernishev, V. A.

    2015-11-01

    The results from tests of a 5 kW power plant on solid-oxide fuel cells (SOFCs), in which natural gas is used as fuel, are presented. The installation's process circuit, the test procedure, and the analysis of the obtained results are described. The characteristics of the power plant developed by the Ural Industrial Company are investigated in four steady-state modes of its operation: with the SOFC nominal power capacity utilized by 40% (2 kW), 60% (3 kW), 90% (4.5 kW) and 110% (5.4 kW) (the peaking mode). The electrical and thermodynamic efficiencies are calculated for all operating modes, and the most efficient mode, in which the electrical efficiency reached almost 70%, is determined. The air excess coefficient and heat loss with flue gases q 2 are determined, and it is revealed that the heat loss q 5 decreases from 40 to 25% with increasing the load. Thermal balances are drawn up for the following components of the system the reformer, the SOFC battery, the catalytic burner for afterburning anode gases, the heat exchanger for heating the cathode air and the mixture of natural gas and steam, and the actual fuel utilization rates in the electrochemical generator are calculated. An equation for the resulting natural gas steam reforming reaction was obtained based on the results from calculating the equilibrium composition of reforming products for the achieved temperatures at the reformer outlet t 3.

  4. Hydrogen production by steam reforming of liquefied natural gas (LNG) over nickel catalysts supported on cationic surfactant-templated mesoporous aluminas

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Park, Sunyoung; Jung, Ji Chul; Kim, Pil; Chung, Jin Suk; Song, In Kyu

    Two types of mesoporous γ-aluminas (denoted as A-A and A-S) are prepared by a hydrothermal method under different basic conditions using cationic surfactant (cetyltrimethylammonium bromide, CTAB) as a templating agent. A-A and A-S are synthesized in a medium of ammonia solution and sodium hydroxide solution, respectively. Ni/γ-Al 2O 3 catalysts (Ni/A-A and Ni/A-S) are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of a mesoporous γ-Al 2O 3 support on the catalytic performance of Ni/γ-Al 2O 3 is investigated. The identity of basic solution strongly affects the physical properties of the A-A and A-S supports. The high surface-area of the mesoporous γ-aluminas and the strong metal-support interaction of supported catalysts greatly enhance the dispersion of nickel species on the catalyst surface. The well-developed mesopores of the Ni/A-A and Ni/A-S catalysts prohibit the polymerization of carbon species on the catalyst surface during the reaction. In the steam reforming of LNG, both Ni/A-A and Ni/A-S catalysts give better catalytic performance than the nickel catalyst supported on commercial γ-Al 2O 3 (Ni/A-C). In addition, the Ni/A-A catalyst is superior to the Ni/A-S catalyst. The relatively strong metal-support interaction of Ni/A-A catalyst effectively suppresses the sintering of metallic nickel and the carbon deposition in the steam reforming of LNG. The large pores of the Ni/A-A catalyst also play an important role in enhancing internal mass transfer during the reaction.

  5. P-16: The Last Education Reform. Book One: Reflections on School Restructuring and the Establishment of Local Preschool through College Compacts

    ERIC Educational Resources Information Center

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly J.

    2005-01-01

    The first in a series of three books on P-16 systems of education, P-16: The Last Education Reform chronicles the establishment of Ohio's first regional P-16 Compact and how one community began the process of large scale systemic education reform not just for K-12 education, but for its entire education system--preschool through college and…

  6. Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) Over Nickel-Phosphorus-Alumina Xerogel Catalyst Prepared by a Carbon-Templating Epoxide-Driven Sol-Gel Method.

    PubMed

    Bang, Yongju; Park, Seungwon; Han, Seung Ju; Yoo, Jaekyeong; Choi, Jung Ho; Kang, Tae Hun; Lee, Jinwon; Song, In Kyu

    2016-05-01

    A nickel-phosphorus-alumina xerogel catalyst was prepared by a carbon-templating epoxide-driven sol-gel method (denoted as CNPA catalyst), and it was applied to the hydrogen production by steam reforming of liquefied natural gas (LNG). For comparison, a nickel-phosphorus-alumina xerogel catalyst was also prepared by a similar method in the absence of carbon template (denoted as NPA catalyst). The effect of carbon template addition on the physicochemical properties and catalytic activities of the catalysts in the steam reforming of LNG was investigated. Both CNPA and NPA catalysts showed excellent textural properties with well-developed mesoporous structure. However, CNPA catalyst retained a more reducible nickel aluminate phase than NPA catalyst. XRD analysis of the reduced CNPA and NPA catalysts revealed that nickel sintering on the CNPA catalyst was suppressed compared to that on the NPA catalyst. From H2-TPD and CH4-TPD measurements of the reduced CNPA and NPA catalysts, it was also revealed that CNPA catalyst with large amount of hydrogen uptake and strong hydrogen-binding sites showed larger amount of methane adsorption than NPA catalyst. In the hydrogen production by steam reforming of LNG, CNPA catalyst with large methane adsorption capacity showed a better catalytic activity than NPA catalyst.

  7. Solid oxide fuel cell steam reforming power system

    DOEpatents

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  8. High temperature ceramic-tubed reformer

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  9. Alkali Metal CO2 Sorbents and the Resulting Metal Carbonates: Potential for Process Intensification of Sorption-Enhanced Steam Reforming.

    PubMed

    Memon, Muhammad Zaki; Zhao, Xiao; Sikarwar, Vineet Singh; Vuppaladadiyam, Arun K; Milne, Steven J; Brown, Andy P; Li, Jinhui; Zhao, Ming

    2017-01-03

    Sorption-enhanced steam reforming (SESR) is an energy and cost efficient approach to produce hydrogen with high purity. SESR makes it economically feasible to use a wide range of feedstocks for hydrogen production such as methane, ethanol, and biomass. Selection of catalysts and sorbents plays a vital role in SESR. This article reviews the recent research aimed at process intensification by the integration of catalysis and chemisorption functions into a single material. Alkali metal ceramic powders, including Li 2 ZrO 3 , Li 4 SiO 4 and Na 2 ZrO 3 display characteristics suitable for capturing CO 2 at low concentrations (<15% CO 2 ) and high temperatures (>500 °C), and thus are applicable to precombustion technologies such as SESR, as well as postcombustion capture of CO 2 from flue gases. This paper reviews the progress made in improving the operational performance of alkali metal ceramics under conditions that simulate power plant and SESR operation, by adopting new methods of sorbent synthesis and doping with additional elements. The paper also discusses the role of carbonates formed after in situ CO 2 chemisorption during a steam reforming process in respect of catalysts for tar cracking.

  10. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Cho, Kyung Min; Park, Sunyoung; Song, In Kyu

    Mesoporous alumina xerogel (A-SG) is prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/A-SG catalyst is then prepared by an impregnation method, and is applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of the mesoporous alumina xerogel support on the catalytic performance of Ni/A-SG catalyst is investigated. For the purpose of comparison, a nickel catalyst supported on commercial alumina (A-C) is also prepared by an impregnation method (Ni/A-C). Both the hydroxyl-rich surface and the electron-deficient sites of the A-SG support enhance the dispersion of the nickel species on the support during the calcination step. The formation of the surface nickel aluminate phase in the Ni/A-SG catalyst remarkably increases the reducibility and stability of the catalyst. Furthermore, the high-surface area and the well-developed mesoporosity of the Ni/A-SG catalyst enhance the gasification of surface hydrocarbons that are adsorbed in the reaction. In the steam reforming of LNG, the Ni/A-SG catalyst exhibits a better catalytic performance than the Ni/A-C catalyst in terms of LNG conversion and hydrogen production. Moreover, the Ni/A-SG catalyst shows strong resistance toward catalyst deactivation.

  11. Minimizing the formation of coke and methane on Co nanoparticles in steam reforming of biomass-derived oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Mei, Donghai; Karim, Ayman M.

    2013-06-01

    Fundamental understanding and control of chemical transformations are essential to the development of technically feasible and economically viable catalytic processes for efficient conversion of biomass to fuels and chemicals. Using an integrated experimental and theoretical approach, we report high hydrogen selectivity and catalyst durability of acetone steam reforming (ASR) on inert carbon supported Co nanoparticles. The observed catalytic performance is further elucidated on the basis of comprehensive first-principles calculations. Instead of being considered as an undesired intermediate prone for catalyst deactivation during bioethanol steam reforming (ESR), acetone is suggested as a key and desired intermediate in proposed two-stage ESR processmore » that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. The significance of the present work also sheds a light on controlling the chemical transformations of key intermediates in biomass conversion such as ketones. We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the Laboratory directed research and development (LDRD) project of Pacific Northwest National Laboratory (PNNL). Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. DOE national scientific user facility located at PNNL, and sponsored by the U.S. DOE’s Office of Biological and Environmental Research.« less

  12. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄more » selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the

  13. Superior performance of Ni–W–Ce mixed-metal oxide catalysts for ethanol steam reforming: Synergistic effects of W- and Ni-dopants

    DOE PAGES

    Liu, Zongyuan; Xu, Wenqian; Yao, Siyu; ...

    2014-11-26

    In this study, the ethanol steam reforming (ESR) reaction was examined over a series of Ni-W-Ce oxide catalysts. The structures of the catalysts were characterized using in-situ techniques including X-ray diffraction, Pair Distribution Function, X-ray absorption fine structure and transmission electron microscopy; while possible surface intermediates for the ESR reaction were investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. In these materials, all the W and part of the Ni were incorporated into the CeO₂ lattice, with the remaining Ni forming highly dispersed nano NiO (< 2 nm) outside the Ni-W-Ce oxide structure. The nano NiO was reduced to Nimore » under ESR conditions. The Ni-W-Ce systeme exhibited a much larger lattice strain than those seen for Ni-Ce and W-Ce. Synergistic effects between Ni and W inside ceria produced a substantial amount of defects and O vacancies that led to high catalytic activity, selectivity and stability (i.e. resistance to coke formation) during ethanol steam reforming.« less

  14. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur

  15. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  16. Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming

    NASA Astrophysics Data System (ADS)

    Kramer, Michelle; McKelvie, Millie; Watson, Matthew

    2018-01-01

    Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).

  17. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2011-02-11

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less

  18. Internal reforming of methane in solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Peters, R.; Dahl, R.; Klüttgen, U.; Palm, C.; Stolten, D.

    Internal reforming is an attractive option offering a significant cost reduction, higher efficiencies and faster load response of a solid oxide fuel cell (SOFC) power plant. However, complete internal reforming may lead to several problems which can be avoided with partial pre-reforming of natural gas. In order to achieve high total plant efficiency associated with low energy consumption and low investment costs, a process concept has been developed based on all the components of the SOFC system. In the case of anode gas recycling an internal steam circuit exists. This has the advantage that there is no need for an external steam generator and the steam concentration in the anode gas is reduced. However, anode gas recycling has to be proven by experiments in a pre-reformer and for internal reforming. The addition of carbon dioxide clearly shows a decrease in catalyst activity, while for temperatures higher than 1000 K hydrogen leads to an increase of the measured methane conversion rates.

  19. Steam reforming of ethanol for hydrogen production over Cu/Co-Mg-Al-based catalysts prepared by hydrotalcite route.

    PubMed

    Homsi, Doris; Rached, Jihane Abou; Aouad, Samer; Gennequin, Cédric; Dahdah, Eliane; Estephane, Jane; Tidahy, Haingomalala Lucette; Aboukaïs, Antoine; Abi-Aad, Edmond

    2017-04-01

    The performances of different 5Cu/Co x Mg 6-x Al 2 (x = 0; 2; 4; 6) catalysts prepared by the wet impregnation method were investigated in the ethanol steam-reforming reaction (ESR) at 450 °C during 4 h under a steam/ethanol ratio of 3 (S/E = 3). The best catalyst among the prepared solids was 5Cu/Co 6 Al 2 as it showed a complete ethanol conversion and the highest hydrogen and carbon dioxide productivities. However, following 50 h of aging, the catalyst deactivated due to the formation of a high amount of carbonaceous products detected by differential scanning calorimetry/thermogravimetry. On the other hand, the 5Cu/Co 2 Mg 4 Al 2 catalyst showed a much lower quantity of coke deposition with no deactivation due to the basic character conferred by the magnesium oxide phase.

  20. Steam reforming catalyst

    DOEpatents

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  1. Advances in catalysts for internal reforming in high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Dicks, A. L.

    Catalytic steam reforming of natural gas is an attractive method of producing the hydrogen required by the present generation of fuel cells. The molten carbonate (MCFC) and solid oxide (SOFC) fuel cells operate at high enough temperatures for the endothermic steam reforming reaction to be carried out within the stack. For the MCFC, the conventional anodes have insufficient activity to catalyse the steam reforming of natural gas. For these cells, internal reforming can be achieved only with the addition of a separate catalyst, preferably located in close proximity to the anode. However, in the so-called `Direct Internal Reforming' configuration, attack from alkali in the MCFC may severely limit catalyst lifetime. In the case of the state-of-the-art SOFC, natural gas can be reformed directly on the nickel cermet anode. However, in the SOFC, temperature variations in the cell caused by the reforming reaction may limit the amount of internal reforming that can be allowed in practice. In addition, some external pre-reforming may be desirable to remove high molecular weight hydrocarbons from the fuel gas, which would otherwise crack to produce elemental carbon. Degradation of the SOFC anode may also be a problem when internal reforming is carried out. This has prompted several research groups to investigate the use of alternative anode materials.

  2. Heat and fuel coupled operation of a high temperature polymer electrolyte fuel cell with a heat exchanger methanol steam reformer

    NASA Astrophysics Data System (ADS)

    Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.

    2017-04-01

    In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.

  3. Advanced Catalysis Technologies: Lanthanum Cerium Manganese Hexaaluminate Combustion Catalysts for Flat Plate Reactor for Compact Steam Reformers

    DTIC Science & Technology

    2008-12-01

    to decompose the urea into carbon dioxide and ammonia. This increased the pH and caused sol condensation. The mixture was calcined in air at 550°C...propane to carbon dioxide and water. Its high manganese content provides a higher intrinsic activity than the other catalysts and thus the lowest...lean natural gas turbines in order to reduce NOx emissions to reforming catalyst to convert diesel and kerosene to hydrogen rich gases. Unlike

  4. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS)more » feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.« less

  5. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    PubMed

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    PubMed Central

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  7. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells.

    PubMed

    Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-05-23

    Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.

  8. Synthesis gas and olefins from the catalytic autothermal reforming of volatile and non-volatile liquids

    NASA Astrophysics Data System (ADS)

    Dreyer, Bradon Justin

    2007-12-01

    of NOx traps and hydrogen into diesel engines has shown potential in reducing NOx emissions into the environment. Both concepts are dependent on synthesis gas generated from portable, compact fuel reformers, such as CPO reactors. Chapter 1 also reviews previous research in CPO, along with several important experimental parameters, and outlines the remaining research directions in the remaining chapters. In Chapter 2, steam addition to the CPO of higher hydrocarbons was explored over rhodium-coated ceramic foam supports at millisecond contact times. Steam addition to the CPO of n-decane and n-hexadecane in air produced considerably higher H2 and CO2 and lower olefin and CO selectivities than traditional CPO. For steam to carbon feed ratios from 0.0 to 4.0, the reactor operated autothermally, and the H2 to CO product ratio increased from ˜1.0 to ˜4.0, which is essentially the equilibrium product composition near synthesis gas stoichiometry (C/O ˜1) at contact times of ˜7 milliseconds. In fuel-rich feeds exceeding the synthesis gas ratio (C/O > 1), steam addition suppressed olefins, promoted synthesis gas and water-gas shift products, and reduced catalyst surface carbon. Furthermore, steam addition to the CPO of the military fuel JP-8 was performed successfully, also increasing H2 and suppressing olefins. (Abstract shortened by UMI.)

  9. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    PubMed

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  10. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles

    PubMed Central

    Zheng, Liya; Zhang, Zili; Fennell, Paul S.

    2018-01-01

    The performance of combined CO2-sorbent/catalyst particles for sorption enhanced steam reforming (SESR), prepared via a simple mechanical mixing protocol, was studied using a spout-fluidised bed reactor capable of continuous solid fuel (biomass) feeding. The influence of particle size (300–500 and 710–1000 µm), CaO loading (60–100 wt %), Ni-loading (10–40 wt %) and presence of dicalcium silicate support (22.6 wt %) on SESR process performance were investigated. The combined particles were characterised by their density, porosity and CO2 carrying capacity with the analysis by thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH) and mercury intrusion porosimetry (MIP). All experiments were conducted with continuous oak biomass feeding at a rate of 0.9 g/min ± 10%, and the reactor was operated at 660 ± 5 °C, 1 atm and 20 ± 2 vol % steam which corresponds to a steam-to-carbon ratio of 1.2:1. Unsupported combined particles containing 21.0 wt % Ni and 79 wt % CaO were the best performing sorbent/catalyst particle screened in this study, when accounting for the cost of Ni and the improvement in H2 produced by high Ni content particles. SESR tests with these combined particles produced 61 mmol H2/gbiomass (122 g H2/kgbiomass) at a purity of 61 vol %. Significant coke formation within the feeding tube and on the surfaces of the particles was observed which was attributed to the low steam to carbon ratio utilised. PMID:29883427

  11. Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhawat, Dushyant; Berry, D.A.; Gardner, T.H.

    2007-06-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2more » and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed.« less

  12. Effects of fuel cell anode recycle on catalytic fuel reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    shekhawat, D.; Berry, D.; Gardner, T.

    2007-01-01

    The presence of steam in the reactant gas of a catalytic fuel reformer decreases the formation of carbon, minimizing catalyst deactivation. However, the operation of the reformer without supplemental water reduces the size, weight, cost, and overall complexity of the system. The work presented here examines experimentally two options for adding steam to the reformer inlet: (I) recycle of a simulated fuel cell anode exit gas (comprised of mainly CO2, H2O, and N2 and some H2 and CO) and (II) recycle of the reformate from the reformer exit back to the reformer inlet (mainly comprised of H2, CO, and N2more » and some H2O and CO2). As expected, anode gas recycle reduced the carbon formation and increased the hydrogen concentration in the reformate. However, reformer recycle was not as effective due principally to the lower water content in the reformate compared to the anode gas. In fact, reformate recycle showed slightly increased carbon formation compared to no recycle. In an attempt to understand the effects of individual gases in these recycle streams (H2, CO, CO2, N2, and H2O), individual gas species were independently introduced to the reformer feed. Published by Elsevier B.V.« less

  13. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl 2O 4

    DOE PAGES

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; ...

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  14. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  15. Development of compact fuel processor for 2 kW class residential PEMFCs

    NASA Astrophysics Data System (ADS)

    Seo, Yu Taek; Seo, Dong Joo; Jeong, Jin Hyeok; Yoon, Wang Lai

    Korea Institute of Energy Research (KIER) has been developing a novel fuel processing system to provide hydrogen rich gas to residential polymer electrolyte membrane fuel cells (PEMFCs) cogeneration system. For the effective design of a compact hydrogen production system, the unit processes of steam reforming, high and low temperature water gas shift, steam generator and internal heat exchangers are thermally and physically integrated into a packaged hardware system. Several prototypes are under development and the prototype I fuel processor showed thermal efficiency of 73% as a HHV basis with methane conversion of 81%. Recently tested prototype II has been shown the improved performance of thermal efficiency of 76% with methane conversion of 83%. In both prototypes, two-stage PrOx reactors reduce CO concentration less than 10 ppm, which is the prerequisite CO limit condition of product gas for the PEMFCs stack. After confirming the initial performance of prototype I fuel processor, it is coupled with PEMFC single cell to test the durability and demonstrated that the fuel processor is operated for 3 days successfully without any failure of fuel cell voltage. Prototype II fuel processor also showed stable performance during the durability test.

  16. Compact reactor for onboard hydrogen generation

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.

    1980-01-01

    Hydrogen, chemically stored as methanol, is promising internal-combustion fuel. Methanol is readily obtainable from natural products such as wood, compost, or various organic wastes. Steam reformation of methanol as source for hydrogen is relatively simple operation.

  17. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  18. Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossola, Filippo; Pereira-Hernández, Xavier Isidro; Evangelisti, Claudio

    2017-05-01

    The catalytic performances in steam reforming (SR) and aqueous phase reforming (APR) of glycerol of a bimetallic Pt-Mn catalyst supported on activated carbon are investigated and correlated with the surface properties of the catalyst. Under SR conditions, Mn showed a significant promoting effect over Pt/C, both in terms of hydrogen production rate and conversion, with a higher selectivity toward the glycerol dehydration products. Upon addition of Mn the amount of strong Lewis acid sites increased, promoting the dehydration of glycerol and favoring the CAO over CAC cleavage at expenses of hydrogen selectivity. Conversely, under APR conditions, a slightly higher hydrogenmore » selectivity and only minimal enhancement in hydrogen production were found, while the products selectivity was comparable to Pt/C. Most of Mn leached into the aqueous media, but the remaining (<5% of the fresh parent sample) might be alloyed with Pt and promote the CO desorption from neighbor Pt sites.« less

  19. Reforming options for hydrogen production from fossil fuels for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ersoz, Atilla; Olgun, Hayati; Ozdogan, Sibel

    PEM fuel cell systems are considered as a sustainable option for the future transport sector in the future. There is great interest in converting current hydrocarbon based transportation fuels into hydrogen rich gases acceptable by PEM fuel cells on-board of vehicles. In this paper, we compare the results of our simulation studies for 100 kW PEM fuel cell systems utilizing three different major reforming technologies, namely steam reforming (SREF), partial oxidation (POX) and autothermal reforming (ATR). Natural gas, gasoline and diesel are the selected hydrocarbon fuels. It is desired to investigate the effect of the selected fuel reforming options on the overall fuel cell system efficiency, which depends on the fuel processing, PEM fuel cell and auxiliary system efficiencies. The Aspen-HYSYS 3.1 code has been used for simulation purposes. Process parameters of fuel preparation steps have been determined considering the limitations set by the catalysts and hydrocarbons involved. Results indicate that fuel properties, fuel processing system and its operation parameters, and PEM fuel cell characteristics all affect the overall system efficiencies. Steam reforming appears as the most efficient fuel preparation option for all investigated fuels. Natural gas with steam reforming shows the highest fuel cell system efficiency. Good heat integration within the fuel cell system is absolutely necessary to achieve acceptable overall system efficiencies.

  20. Steam Reforming of CH4 Using Ni- Substituted Pyrochlore Catalysts

    NASA Astrophysics Data System (ADS)

    Haynes, Daniel J.

    The steam reforming of methane (SMR) continues to remain an important industrial reaction for large-scale production of H2 as well as synthesis gas mixtures which can be used for the production of useful chemicals (e.g. methanol). Although SMR is a rather mature technology, traditional nickel based catalysts used industrially are subjected to severe temperatures and reaction conditions, which lead to irreversible activity loss through sintering, support collapse, and carbon formation. Pyrochlore-based mixed oxide have been identified as refractory materials that can be modified through the substitution of catalytic metals and other promoting species into the structure to mitigate these issues causing deactivation. For this study, a lanthanum zirconate pyrochlore catalyst was substituted with Ni to determine whether the oxide structure could effectively stabilize the activity of the catalytic metal during the SMR. The effect of different variables including calcination temperature, a comparison of a substituted versus supported Ni pyrochlore catalyst, Ni weight loading, and Sr promotion have been evaluated to determine the location of the Ni in the structure, and their effect on catalytic behavior. It was revealed that the effect of calcination temperature on a 6wt% Ni substituted pyrochlore produced by the Pechini method demonstrated very little Ni was soluble in the pyrochlore lattice. It was further revealed that by XRD, TEM, and atom probe tomography that, despite the metal loading, Ni exsolves from the structure upon crystallization of the pyrochlore at 700°C, and forms NiO at the surface and grain boundaries. An additional separate La2ZrNiO6 perovskite phase also began to form at higher temperatures (>800°C). Increasing calcination temperature was found to lead to slight sintering of the NiO at the surface, which made the NiO more reducible. Meanwhile decreasing the Ni weight loading was found to produce a lower reduction temperature due to the presence of

  1. Steam reforming of fuel to hydrogen in fuel cell

    DOEpatents

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  2. Steam reforming of fuel to hydrogen in fuel cells

    DOEpatents

    Fraioli, Anthony V.; Young, John E.

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  3. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the abilitymore » of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).« less

  4. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  5. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.

    PubMed

    Kumar, Brajesh; Kumar, Shashi; Sinha, Shishir; Kumar, Surendra

    2018-08-01

    A thermodynamic equilibrium analysis on steam reforming process to utilize acetone-butanol-ethanol-water mixture obtained from biomass fermentation as biorenewable fuel has been performed to produce clean energy carrier H 2 via non-stoichiometric approach namely Gibbs free energy minimization method. The effect of process variables such as temperature (573-1473 K), pressure (1-10 atm), and steam/fuel molar feed ratio (F ABE  = 5.5-12) have been investigated on equilibrium compositions of products, H 2 , CO, CO 2 , CH 4 and solid carbon. The best suitable conditions for maximization of desired product H 2 , suppression of CH 4 , and inhibition of solid carbon are 973 K, 1 atm, steam/fuel molar feed ratio = 12. Under these conditions, the maximum molar production of hydrogen is 8.35 with negligible formation of carbon and methane. Furthermore, the energy requirement per mol of H 2 (48.96 kJ), thermal efficiency (69.13%), exergy efficiency (55.09%), exergy destruction (85.36 kJ/mol), and generated entropy (0.29 kJ/mol.K) have been achieved at same operating conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A novel approach to the experimental study on methane/steam reforming kinetics using the Orthogonal Least Squares method

    NASA Astrophysics Data System (ADS)

    Sciazko, Anna; Komatsu, Yosuke; Brus, Grzegorz; Kimijima, Shinji; Szmyd, Janusz S.

    2014-09-01

    For a mathematical model based on the result of physical measurements, it becomes possible to determine their influence on the final solution and its accuracy. However, in classical approaches, the influence of different model simplifications on the reliability of the obtained results are usually not comprehensively discussed. This paper presents a novel approach to the study of methane/steam reforming kinetics based on an advanced methodology called the Orthogonal Least Squares method. The kinetics of the reforming process published earlier are divergent among themselves. To obtain the most probable values of kinetic parameters and enable direct and objective model verification, an appropriate calculation procedure needs to be proposed. The applied Generalized Least Squares (GLS) method includes all the experimental results into the mathematical model which becomes internally contradicted, as the number of equations is greater than number of unknown variables. The GLS method is adopted to select the most probable values of results and simultaneously determine the uncertainty coupled with all the variables in the system. In this paper, the evaluation of the reaction rate after the pre-determination of the reaction rate, which was made by preliminary calculation based on the obtained experimental results over a Nickel/Yttria-stabilized Zirconia catalyst, was performed.

  8. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline,more » sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.« less

  9. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.

    PubMed

    Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun

    2016-05-01

    In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.

  10. Hydrogen generation having CO2 removal with steam reforming

    DOEpatents

    Kandaswamy, Duraiswamy; Chellappa, Anand S.; Knobbe, Mack

    2015-07-28

    A method for producing hydrogen using fuel cell off gases, the method feeding hydrocarbon fuel to a sulfur adsorbent to produce a desulfurized fuel and a spent sulfur adsorbent; feeding said desulfurized fuel and water to an adsorption enhanced reformer that comprises of a plurality of reforming chambers or compartments; reforming said desulfurized fuel in the presence of a one or more of a reforming catalyst and one or more of a CO2 adsorbent to produce hydrogen and a spent CO2 adsorbent; feeding said hydrogen to the anode side of the fuel cell; regenerating said spent CO2 adsorbents using the fuel cell cathode off-gases, producing a flow of hydrogen by cycling between said plurality of reforming chambers or compartments in a predetermined timing sequence; and, replacing the spent sulfur adsorbent with a fresh sulfur adsorbent at a predetermined time.

  11. Hydrogen production from steam reforming of ethylene glycol over iron loaded on MgO

    NASA Astrophysics Data System (ADS)

    Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Jie; Yang, Zhonglian

    2017-01-01

    In this study, a series of Fe-based catalysts loaded on MgO were prepared by a precipitation technique. And they were tested in hydrogen production from steam reforming of ethylene glycol (SRE), which was a representative model compound of fast bio-oil. The catalysts were characterized by XRD, SEM and H2-TPR analysis. The results showed that the crystalline phases of catalysts contained Fe2O3 (Hematite), Fe3O4 (Magnetite), Fe2MgO4 (iron magnesium oxide) and MgO, and morphology of MgO was changed from the rugby-ball like particles to spherical particles with the addition of Fe. In addition, the catalytic test results indicated that the 18%Fe/MgO catalyst exhibited the highest ethylene glycol conversion (˜99.8%) and H2 molar percent (˜77%) during at the following conditions: H2O/C molar ratio is 5˜7, the feeding rate is 14 mL/h and the reaction temperature at 600˜650°C. Furthermore, the 18%Fe/MgO catalyst can keep outstanding stability during SRE for 12 h.

  12. Solar central receiver reformer system for ammonia plants

    NASA Astrophysics Data System (ADS)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  13. Effect of SiO 2-ZrO 2 supports prepared by a grafting method on hydrogen production by steam reforming of liquefied natural gas over Ni/SiO 2-ZrO 2 catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Jeong Gil; Youn, Min Hye; Song, In Kyu

    SiO 2-ZrO 2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO 2-ZrO 2 supports on the performance of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts is investigated. SiO 2-ZrO 2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO 2-SiO 2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO 2-ZrO 2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO 2-SiO 2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO 2-ZrO 2 (Zr/Si = 0.54) catalyst is also responsible for its high performance.

  14. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes.

    PubMed

    Wu, Chunfei; Nahil, Mohamad A; Miskolczi, Norbert; Huang, Jun; Williams, Paul T

    2014-01-01

    Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H2 g(-1) plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 °C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis).

  15. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  16. Attrition resistant fluidizable reforming catalyst

    DOEpatents

    Parent, Yves O [Golden, CO; Magrini, Kim [Golden, CO; Landin, Steven M [Conifer, CO; Ritland, Marcus A [Palm Beach Shores, FL

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  17. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  18. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.

    2013-10-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives anmore » overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.« less

  19. Bench-Scale Monolith Autothermal Reformer Catalyst Screening Evaluations in a Micro-Reactor With Jet-A Fuel

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Yen, Judy C.H.; Budge, John R.

    2006-01-01

    Solid oxide fuel cell systems used in the aerospace or commercial aviation environment require a compact, light-weight and highly durable catalytic fuel processor. The fuel processing method considered here is an autothermal reforming (ATR) step. The ATR converts Jet-A fuel by a reaction with steam and air forming hydrogen (H2) and carbon monoxide (CO) to be used for production of electrical power in the fuel cell. This paper addresses the first phase of an experimental catalyst screening study, looking at the relative effectiveness of several monolith catalyst types when operating with untreated Jet-A fuel. Six monolith catalyst materials were selected for preliminary evaluation and experimental bench-scale screening in a small 0.05 kWe micro-reactor test apparatus. These tests were conducted to assess relative catalyst performance under atmospheric pressure ATR conditions and processing Jet-A fuel at a steam-to-carbon ratio of 3.5, a value higher than anticipated to be run in an optimized system. The average reformer efficiencies for the six catalysts tested ranged from 75 to 83 percent at a constant gas-hourly space velocity of 12,000 hr 1. The corresponding hydrocarbon conversion efficiency varied from 86 to 95 percent during experiments run at reaction temperatures between 750 to 830 C. Based on the results of the short-duration 100 hr tests reported herein, two of the highest performing catalysts were selected for further evaluation in a follow-on 1000 hr life durability study in Phase II.

  20. Fuel processing requirements and techniques for fuel cell propulsion power

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Ahmed, S.; Yu, M.

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  1. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  2. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization - 13400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Peterson, Reid A.

    2013-07-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. The goal of this campaign was to study the durability of the FBSR mineral product and the encapsulated FBSR product in a geo-polymer monolith. This paper gives an overview of resultsmore » obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory. (authors)« less

  3. Integrated reformer and shift reactor

    DOEpatents

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  4. Tri-reforming and combined reforming of methane for producing syngas with desired hydrogen/carbon monoxide ratios

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml

  5. Performance analysis of a SOFC under direct internal reforming conditions

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    This paper presents the performance analysis of a planar solid-oxide fuel cell (SOFC) under direct internal reforming conditions. A detailed solid-oxide fuel cell model is used to study the influences of various operating parameters on cell performance. Significant differences in efficiency and power density are observed for isothermal and adiabatic operational regimes. The influence of air number, specific catalyst area, anode thickness, steam to carbon (s/c) ratio of the inlet fuel, and extend of pre-reforming on cell performance is analyzed. In all cases except for the case of pre-reformed fuel, adiabatic operation results in lower performance compared to isothermal operation. It is further discussed that, though direct internal reforming may lead to cost reduction and increased efficiency by effective utilization of waste heat, the efficiency of the fuel cell itself is higher for pre-reformed fuel compared to non-reformed fuel. Furthermore, criteria for the choice of optimal operating conditions for cell stacks operating under direct internal reforming conditions are discussed.

  6. Flow Distribution Control Characteristics in Marine Gas Turbine Waste- Heat Recovery Systems. Phase 2. Flow Distribution Control in Waste-Heat Steam Generators

    DTIC Science & Technology

    1982-07-01

    waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed

  7. A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems

    NASA Astrophysics Data System (ADS)

    Matelli, José Alexandre; Bazzo, Edson

    This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.

  8. Methanol steam reforming over Ni-CeO 2 model and powder catalysts: Pathways to high stability and selectivity for H 2/CO 2 production

    DOE PAGES

    Liu, Zongyuan; Yao, Siyu; Johnston-Peck, Aaron; ...

    2017-08-25

    Here, nickel-ceria has been reported as a very good catalysts for the reforming of methane. Here, the methanol steam reforming reaction on both powder (Ni-CeO 2) and model (Ni-CeO 2-x(111)) catalysts was investigated. The active phase evolution and surface species transformation on powder catalysts were studied via in situ X-ray diffraction (XRD) and diffuse reflectance infrared transform spectroscopy (DRIFTS). Phase transitions of NiO → NiC → Ni and CeO 2 → CeO 2-x were observed during the reaction. The simultaneous production of H 2/CO 2 demonstrates that the active phase of the catalysts contains metallic Ni supported over partially reducedmore » ceria. The DRIFTS experiments indicate that a methoxy to formate transition is associated with the reduction of ceria whereas the formation of carbonate species results from the presence of metallic Ni. A study of the reaction of methanol with Ni-CeO 2-x(111) by X-ray photoelectron spectroscopy (XPS) points to the essential role of metal-support interactions in an oxygen transfer from ceria to Ni that contributes to the high selectivity of the catalysts.« less

  9. Methanol steam reforming over Ni-CeO 2 model and powder catalysts: Pathways to high stability and selectivity for H 2/CO 2 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zongyuan; Yao, Siyu; Johnston-Peck, Aaron

    Here, nickel-ceria has been reported as a very good catalysts for the reforming of methane. Here, the methanol steam reforming reaction on both powder (Ni-CeO 2) and model (Ni-CeO 2-x(111)) catalysts was investigated. The active phase evolution and surface species transformation on powder catalysts were studied via in situ X-ray diffraction (XRD) and diffuse reflectance infrared transform spectroscopy (DRIFTS). Phase transitions of NiO → NiC → Ni and CeO 2 → CeO 2-x were observed during the reaction. The simultaneous production of H 2/CO 2 demonstrates that the active phase of the catalysts contains metallic Ni supported over partially reducedmore » ceria. The DRIFTS experiments indicate that a methoxy to formate transition is associated with the reduction of ceria whereas the formation of carbonate species results from the presence of metallic Ni. A study of the reaction of methanol with Ni-CeO 2-x(111) by X-ray photoelectron spectroscopy (XPS) points to the essential role of metal-support interactions in an oxygen transfer from ceria to Ni that contributes to the high selectivity of the catalysts.« less

  10. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    NASA Astrophysics Data System (ADS)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  11. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies

    NASA Astrophysics Data System (ADS)

    Seo, Y.-S.; Shirley, A.; Kolaczkowski, S. T.

    With the aid of thermodynamic analysis using AspenPlus™, the characteristics of three different types of reforming process are investigated. These include: steam-methane reforming (SMR), partial oxidation (POX) and autothermal reforming (ATR). Thereby, favourable operating conditions are identified for each process. The optimum steam-to-carbon (S:C) ratio of the SMR reactor is found to be 1.9. The optimum air ratio of the POX reactor is 0.3 at a preheat temperature of 312 °C. The optimum air ratio and S:C ratio of the ATR reactor are 0.29 and 0.35, respectively at a preheat temperature of 400 °C. Simulated material and energy balances show that the CH 4 flow rates required to generate 1 mol s -1 of hydrogen are 0.364 mol s -1 for POX, 0.367 mol s -1 for ATR and 0.385 mol s -1 for the SMR. These results demonstrate that the POX reforming system has the lowest energy cost to produce the same amount of hydrogen from CH 4.

  12. Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.

    2007-09-16

    To predict the long-term fate of low- and high-level waste forms in the subsurface over geologic time scales, it is important to understand the behavior of the corroding waste forms under conditions the mimic to the open flow and transport properties of a subsurface repository. Fluidized bed steam reformation (FBSR), a supplemental treatment technology option, is being considered as a waste form for the immobilization of low-activity tank waste. To obtain the fundamental information needed to evaluate the behavior of the FBSR waste form under repository relevant conditions and to monitor the long-term behavior of this material, an accelerated weatheringmore » experiment is being conducted with the pressurized unsaturated flow (PUF) apparatus. Unlike other accelerated weathering test methods (product consistency test, vapor hydration test, and drip test), PUF experiments are conducted under hydraulically unsaturated conditions. These experiments are unique because they mimic the vadose zone environment and allow the corroding waste form to achieve its final reaction state. Results from this on-going experiment suggest the volumetric water content varied as a function of time and reached steady state after 160 days of testing. Unlike the volumetric water content, periodic excursions in the solution pH and electrical conductivity have been occurring consistently during the test. Release of elements from the column illustrates a general trend of decreasing concentration with increasing reaction time. Normalized concentrations of K, Na, P, Re (a chemical analogue for 99Tc), and S are as much as 1 × 104 times greater than Al, Cr, Si, and Ti. After more than 600 days of testing, the solution chemistry data collected to-date illustrate the importance of understanding the long-term behavior of the FBSR product under conditions that mimic the open flow and transport properties of a subsurface repository.« less

  13. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors.

    PubMed

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-03-23

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.

  14. The vacuum system reform and test of the super-critical 600mw unit

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Wan, Zhonghai; Lu, Jin; Chen, Wen; Cai, Wen

    2017-11-01

    The deficiencies of the designed vacuum system of the super-critical unit is pointed out in this paper, and then it is reformed by the steam ejector. The experimental results show that the vacuum of the condenser can be improved, the coal consumption can be reduced and the plant electricity consumption can be lowered dramatically at a small cost of the steam energy consumption. Meanwhile, the water-ring vacuum pumps cavitation problems can be solved.

  15. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports

    PubMed Central

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H.

    2013-01-01

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/AlS.G.) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/AlS.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/AlS.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size. PMID:28809270

  16. Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports.

    PubMed

    Yaakob, Zahira; Bshish, Ahmed; Ebshish, Ali; Tasirin, Siti Masrinda; Alhasan, Fatah H

    2013-05-30

    Selecting a proper support in the catalyst system plays an important role in hydrogen production via ethanol steam reforming. In this study, sol gel made alumina supports prepared for nickel (Ni) catalysts were calcined at different temperatures. A series of (Ni/Al S.G. ) catalysts were synthesized by an impregnation procedure. The influence of varying the calcination temperature of the sol gel made supports on catalyst activity was tested in ethanol reforming reaction. The characteristics of the sol gel alumina supports and Ni catalysts were affected by the calcination temperature of the supports. The structure of the sol gel made alumina supports was transformed in the order of γ → (γ + θ) → θ-alumina as the calcination temperature of the supports increased from 600 °C to 1000 °C. Both hydrogen yield and ethanol conversion presented a volcano-shaped behavior with maximum values of 4.3 mol/mol ethanol fed and 99.5%, respectively. The optimum values were exhibited over Ni/Al S.G800 (Ni catalyst supported on sol gel made alumina calcined at 800 °C). The high performance of the Ni/Al S.G800 catalyst may be attributed to the strong interaction of Ni species and sol gel made alumina which lead to high nickel dispersion and small particle size.

  17. Influence of the Crystal Structure of Titanium Oxide on the Catalytic Activity of Rh/TiO2 in Steam Reforming of Propane at Low Temperature.

    PubMed

    Yu, Lin; Sato, Katsutoshi; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi

    2018-06-21

    Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO 2 emissions due to their high-energy-conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C-C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre-reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO 2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO 2 catalysts for propane pre-reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H 2 pre-reduction were optimized over Rh/TiO 2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ-Al 2 O 3 . In contrast, the SMSI was too strong for Rh/TiO 2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO 2 . The result was very low activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol.

    PubMed

    Gonçalves, Alexandre A S; Faustino, Patrícia B; Assaf, José M; Jaroniec, Mietek

    2017-02-22

    One-pot synthesis of nanostructured ternary oxides of Ni, Al, and Ti was designed and performed via evaporation induced self-assembly (EISA). For the purpose of comparison, analogous oxides were also prepared by the impregnation method. The resulting materials were applied in two catalytic reactions: steam reforming of ethanol (SRE) for H 2 production (subjected to prior activation with H 2 ) and ethanol dehydration (ED; used without prior activation), to in situ analyze carbon accumulation by ethylene depletion when ethanol interacts with acidic sites present on the support. Modification of Ni-Al mixed oxides with titania was shown to have several benefits. CO 2 , NH 3 , and propylamine sorption data indicate a decrease in the strength of acidic and basic sites after addition of titania, which in turn slowed down the carbon accumulation during the ED reaction. These changes in interactions between ethanol and byproducts with the support led to different reaction pathways in SRE, indicating that the catalysts obtained by EISA with titania addition showed higher ethylene selectivity and CO 2 /CO ratios. The opposite was observed for the impregnated catalysts, which were less coke-stable during ED reactions and showed no ethylene selectivity in SRE. Carbon formed during ED reactions was shown to be thermodynamically less favorable and easier to decompose in the presence of titania. All catalysts studied displayed similar and high selectivities (∼80%) and yields (∼5.3 mol H2 /mol ethanol ) toward H 2 , which place them among the most active and selective catalysts for SRE. These results indicate the importance of tailoring the support surface acidity to achieve high reforming performance and higher selectivity toward SRE, one of the key processes to produce cleaner and efficient fuels. For an efficient reforming process, the yield of byproducts is low but still they affect the catalyst stability in the long-run, thus this work may impact future studies toward

  19. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors

    PubMed Central

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-01-01

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield. PMID:28333121

  20. Steam explosion of oil palm residues for the production of durable pellets

    DOE PAGES

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab; ...

    2015-01-03

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  1. Steam explosion of oil palm residues for the production of durable pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Pak Sui; Lam, Pak Yiu; Sokhansanj, Shahab

    Here we investigated the effect of steam explosion pretreatment on the physical and mechanical properties of the pellets made from empty fruit bunch (EFB) and palm kernel shell (PKS) and we compared to that of softwood Douglas fir (DF). We found that the high heating value of the empty fruit bunch was increased by 21% after steam explosion pretreatment. The pellet density of EFB and Douglas fir pellets did not change while the pellet density of PKS increased from 1.13 to 1.21 g/cm 3 after steam explosion. That may be attributed to the rapid volatilization of high mass fraction extractivesmore » during high pressure steaming and lead to the shrinkage of micropores of the PKS fibers. The maximum brealdng strength of steam exploded EFB and PKS were increased by 63% and 45%, respectively. The required compaction energy for the steam exploded EFB pellet is 44.50 J/g while that of the untreated EFB pellet is 30.15 J/g. Similar to Douglas fir, the required extrusion energy for the steam exploded EFB pellet was about 6 times than that of the untreated EFB pellet. The increased extrusion energy is mainly contributed by the increase in mono-saccharides by auto-hydrolysis during steam explosion pretreatment.« less

  2. Steam conversion of liquefied petroleum gas and methane in microchannel reactor

    NASA Astrophysics Data System (ADS)

    Dimov, S. V.; Gasenko, O. A.; Fokin, M. I.; Kuznetsov, V. V.

    2018-03-01

    This study presents experimental results of steam conversion of liquefied petroleum gas and methane in annular catalytic reactor - heat exchanger. The steam reforming was done on the Rh/Al2O3 nanocatalyst with the heat applied through the microchannel gap from the outer wall. Concentrations of the products of chemical reactions in the outlet gas mixture are measured at different temperatures of reactor. The range of channel wall temperatures at which the ratio of hydrogen and carbon oxide in the outlet mixture grows substantially is determined. Data on the composition of liquefied petroleum gas conversion products for the ratio S/C = 5 was received for different GHVS.

  3. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    efficient configuration to incorporate into the specific compact jet he1 reformer test rig. Additional information is included in the original extended abstract.

  4. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline.more » These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.« less

  5. Reforming the Exhaust Passage of Low-pressure Cylinder for 330MW Steam Turbine

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Cai, Wen; Chen, Wen; Lu, Jin; Hong-yan, Yang

    2018-06-01

    In concern of the velocity distribution of the exhaust passage of 330MW turbine is not uniform, which results in higher the upper temperature difference of the condenser and higher exhaust pressure. It is introduced in this article that based on mathematical simulation, steam-equalizing equipment is augmented at the exhaust area of the condenser which makes the decrease in the steam resistance, much more uniform velocity distribution, and the increase of the heat transfer coefficient. By comparison of the condenser performance test before the amending and after, the result shows that after the amending, the upper temperature difference of the condenser and the exhaust pressure decreases dramatically.

  6. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh andmore » ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported

  7. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    NASA Astrophysics Data System (ADS)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  8. The Role of Biomass Composition and Steam Treatment on Durability of Pellets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab

    Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less

  9. The Role of Biomass Composition and Steam Treatment on Durability of Pellets

    DOE PAGES

    Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...

    2018-03-03

    Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less

  10. Solar central receiver reformer system for ammonia plants

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  11. A miniature fuel reformer system for portable power sources

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Belavič, Darko; Hrovat, Marko; Hočevar, Stanko; Pohar, Andrej; Petrovčič, Janko; Musizza, Bojan

    2014-12-01

    A miniature methanol reformer system has been designed and built to technology readiness level exceeding a laboratory prototype. It is intended to feed fuel cells with electric power up to 100 W and contains a complete setup of the technological elements: catalytic reforming and PROX reactors, a combustor, evaporators, actuation and sensing elements, and a control unit. The system is engineered not only for performance and quality of the reformate, but also for its lightweight and compact design, seamless integration of elements, low internal electric consumption, and safety. In the paper, the design of the system is presented by focussing on its miniaturisation, integration, and process control.

  12. Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations

    NASA Astrophysics Data System (ADS)

    German, Ernst D.; Sheintuch, Moshe

    2017-02-01

    Microkinetic models of methane steam reforming (MSR) over bare platinum and rhodium (111) surfaces are analyzed in present work using calculated rate constants. The individual rate constants are classified into three different sets: (i) rate constants of adsorption and desorption steps of CH4, H2O, CO and of H2; (ii) rate constants of dissociation and formation of A-H bonds (A = C, O, and H), and (iii) rate constants of dissociation and formation of C-O bond. The rate constants of sets (i) and (iii) are calculated using transition state theory and published thermochemical data. The rate constants of H-dissociation reactions (set (ii)) are calculated in terms of a previously-developed approach that accounts for thermal metal lattice vibrations and for H tunneling through a potential barrier of height which depends on distance of AH from a surface. Pre-exponential factors of several group (ii) steps were calculated to be usually lower than the traditional kBT/h due to tunneling effect. Surface composition and overall MSR rates over platinum and rhodium surfaces are compared with those over nickel surface showing that operating conditions strongly affect on the activity order of the catalysts.

  13. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    NASA Astrophysics Data System (ADS)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.

  14. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.

    PubMed

    Mondal, Kartick; Sasmal, Sankar; Badgandi, Srikant; Chowdhury, Dipabali Roy; Nair, Vinod

    2016-11-01

    During the past decade, there has been increasing global concern over the rise of anthropogenic CO 2 emission into the Earth's atmosphere (J Air Waste Manage Assoc 53:645-715, 2003). The utilization of CO 2 to produce any valuable product is need of the hour. The production of syngas from CO 2 and CH 4 seems to be one of the promising alternatives in terms of industrial utilization, as it offers several advantages: (a) mitigation of CO 2 , (b) transformation of natural gas and CO 2 into valuable syngas, and (c) producing syngas with H 2 /CO ratio 1 which may further be used for the production of valuable petrochemicals (J Air Waste Manage Assoc 53:645-715, 2003). A conceptual design for the production of synthesis gas by dry reforming of methane is presented here. An economic assessment of this process with an integrated methanol production section as a case was conceptualized and compared with the conventional steam methane reforming route to produce methanol. The economic study indicated that dry reforming of natural gas/methane is a competitive process with lower operating and capital costs in comparison with steam reforming assuming negligible cost of CO 2 import.

  15. Steam drum design for direct steam generation

    NASA Astrophysics Data System (ADS)

    Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus

    2017-06-01

    For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.

  16. Chemical Looping Autothermal Reforming at a 120 kW Pilot Rig

    NASA Astrophysics Data System (ADS)

    Bofhàr-Nordenkampf, Johannes; Pröll, Tobias; Kolbitsch, Philipp; Hofbauer, Hermann

    Chemical looping with selective oxygen transport allows two step combustion or autothermal reforming without mixing of fuel and air. The reactor system consists of two reactors, an air reactor and a fuel reactor with a suitable oxygen carrier that transports the necessary oxygen for operation. In the present study, a highly active nickel based oxygen carrier is tested in a novel dual circulating fluidized bed (DCFB) system at a scale of 120 kW fuel power. The mean particle size of the oxygen carrier is 120 μm and the pilot rig is fueled with natural gas. For the investigated oxygen carrier high CH4 conversion is achieved. Air/fuel ratio is varied at three different fuel reactor temperatures. For chemical looping reforming one can observe synthesis gas composition close to thermodynamic equilibrium. In spite of the fact that no additional steam has been added to the fuel besides the one present through steam fluidization of the loop seals, coke formation does not occur at global stoichiometric air/fuel ratios above 0.46.

  17. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technologymore » will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.« less

  18. Radial Microchannel Reactor (RMR) used in Steam Reforming CH4

    DTIC Science & Technology

    2013-05-13

    process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market economies. Peter R...size of GTL process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market ...distribution of a 3.3:1 steam-methane mixture at 750 °C and 11 bar is: H2 45.8%, H2O 36.99%, CO 6.365%, CO2 6.681% and CH4 4.14% Barring any coking , this

  19. Energy Input and Quality of Pellets Made from Steam-Exploded Douglas Fir (Pseudotsuga menziesii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, Shahabaddine; Bi, X.T.; Lim, C. Jim

    Ground softwood Douglas fir (Pseudotsuga menziesii) was treated with pressurized saturated steam at 200-220 C (1.6-2.4 MPa) for 5-10 min in a sealed container. The contents of the container were released to the atmosphere for a sudden decompression. The steam-exploded wood particles were dried to 10% moisture content and pelletized in a single-piston-cylinder system. The pellets were characterized for their mechanical strength, chemical composition, and moisture sorption. The steamtreated wood required 12-81% more energy to compact into pellets than the untreated wood. Pellets made from steam-treated wood had a breaking strength 1.4-3.3 times the strength of pellets made from untreatedmore » wood. Steam-treated pellets had a reduced equilibrium moisture content of 2-4% and a reduced expansion after pelletization. There was a slight increase in the high heating value from 18.94 to 20.09 MJ/kg for the treated samples. Steam-treated pellets exhibited a higher lengthwise rigidity compared to untreated pellets.« less

  20. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline

  1. Study on loading coefficient in steam explosion process of corn stalk.

    PubMed

    Sui, Wenjie; Chen, Hongzhang

    2015-03-01

    The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Analysis of Korean Elementary Pre-Service Teachers' Changing Attitudes about Integrated STEAM Pedagogy through Developing Lesson Plans

    ERIC Educational Resources Information Center

    Kim, Dongryeul; Bolger, Molly

    2017-01-01

    Integrated curricula have become a major educational focus in Korea. Policy changes began in 2009 when the Korea Ministry of Education, Science, and Technology announced a new curriculum incorporating Science, Technology, Engineering, Arts, and Mathematics (STEAM). Various stages of educational reform have occurred since that time. This study…

  3. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  4. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  5. Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung

    In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.

  6. Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chick, Lawrence A.; Marina, Olga A.; Coyle, Christopher A.

    2013-08-15

    A button solid oxide fuel cell with a La0.6Sr0.4Co0.2Fe0.8O3 cathode and a nickel-YSZ anode was tested over a range of temperatures from 650 to 800°C and a range of pressures from 101 to 724 kPa. The fuel was simulated steam-reformed kerosene and the oxidant was air. The observed increases in open circuit voltages (OCV) were accurately predicted by the Nernst equation. Kinetics also increased, although the power boost due to kinetics was about two thirds as large as the boost due to OCV. The total power boost in going from 101 to 724 kPa at 750°C and 0.8 volts wasmore » 66%. Impedance spectroscopy demonstrated a significant decrease in electrodic losses at elevated pressures. Complex impedance spectra were dominated by a combination of low frequency processes that decreased markedly with increasing pressure. A composite of high-frequency processes also decreased with pressure, but to a lesser extent. An empirical algorithm that accurately predicts the increased fuel cell performance at elevated pressures was developed for our results and was also suitable for some, but not all, data reported in the literature.« less

  7. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    DOE PAGES

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; ...

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less

  8. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol; Herman, Connie; Crawford, Charles

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable tomore » glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.« less

  9. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark [East Amherst, NY; Shah, Minish Mahendra [East Amherst, NY; Jibb, Richard John [Amherst, NY

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  10. Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane

    NASA Astrophysics Data System (ADS)

    Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng

    2018-06-01

    A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.

  11. Mechanistic Insights of Ethanol Steam Reforming over Ni–CeO x (111): The Importance of Hydroxyl Groups for Suppressing Coke Formation

    DOE PAGES

    Liu, Zongyuan; Duchoň, Tomáš; Wang, Huanru; ...

    2015-07-30

    We have studied the reaction of ethanol and water over Ni–CeO 2-x(111) model surfaces to elucidate the mechanistic steps associated with the ethanol steam reforming (ESR) reaction. Our results provide insights about the importance of hydroxyl groups to the ESR reaction over Ni-based catalysts. Systematically, we have investigated the reaction of ethanol on Ni–CeO 2-x(111) at varying Ce³⁺ concentrations (CeO 1.8–2.0) with absence/presence of water using a combination of soft X-ray photoelectron spectroscopy (sXPS) and temperature-programmed desorption (TPD). Consistent with previous reports, upon annealing, metallic Ni formed on reduced ceria while NiO was the main component on fully oxidized ceria.more » Ni⁰ is the active phase leading to both the C–C and C–H cleavage of ethanol but is also responsible for carbon accumulation or coking. We have identified a Ni₃C phase that formed prior to the formation of coke. At temperatures above 600K, the lattice oxygen from ceria and the hydroxyl groups from water interact cooperatively in the removal of coke, likely through a strong metal–support interaction between nickel and ceria that facilitates oxygen transfer.« less

  12. 4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STEAM PLANT MARINE BOILERS WEST OF STEAM PLANT AND SOUTH OF ORIGINAL STEAM PLANT BOILERS, FROM SOUTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  13. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles.

    PubMed

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J

    2013-07-16

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator.

  14. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles

    PubMed Central

    Neumann, Oara; Feronti, Curtis; Neumann, Albert D.; Dong, Anjie; Schell, Kevin; Lu, Benjamin; Kim, Eric; Quinn, Mary; Thompson, Shea; Grady, Nathaniel; Nordlander, Peter; Oden, Maria; Halas, Naomi J.

    2013-01-01

    The lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations. Sterilization was verified using a standard Geobacillus stearothermophilus-based biological indicator. PMID:23836642

  15. A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst

    PubMed Central

    Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian

    2014-01-01

    A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620

  16. ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.

    2007-01-16

    ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated formore » the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.« less

  17. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Crawford, C.; Cozzi, A.

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates

  18. Plasma catalytic reforming of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can bemore » efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.« less

  19. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less

  20. 8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  1. Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.

    PubMed

    Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi

    2014-08-08

    The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. Copyright © 2014, American Association for the Advancement of Science.

  2. 77 FR 9974 - Notice of Entering Into a Compact With the Republic of Cape Verde

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... to improve planning systems and regulatory processes including tariff setting. MCC will support the... by reforming the water and sanitation and land management sectors, both critical constraints to... through economic growth, the Compact will fund two projects. The $41.1 million Water, Sanitation, and...

  3. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  4. Techno-economic analysis of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell

    NASA Astrophysics Data System (ADS)

    Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije

    2017-10-01

    Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.

  5. PREPARATION OF HIGH-DENSITY, COMPACTIBLE THORIUM OXIDE PARTICLES

    DOEpatents

    McCorkle, K.H.; Kleinsteuber, A.T.; Schilling, C.E.; Dean, O.C.

    1962-05-22

    A method is given for preparing millimeter-size, highdensity thorium oxide particles suitable for fabrication into nuclear reactor feel elements by means of vibratory compaction. A thorium oxide gel containing 3.7 to 7 weight per cent residual volatile nitrate and water is prepared by drying a thorium oxide sol. The gel is then slowly heated to a temperature of about 450DEC, and the resulting gel fragments are calcined. The starting sol is prepared by repeated dispersion of oxalate-source thorium oxide in a nitrate system or by dispersion of steam-denitrated thorium oxide in water. (AEC)

  6. Scale Model Test and Transient Analysis of Steam Injector Driven Passive Core Injection System for Innovative-Simplified Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).

  7. Steam trap monitor

    DOEpatents

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  8. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  9. Downhole steam quality measurement

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  10. Autothermal reforming of aliphatic and aromatic hydrocarbon liquids

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, M.; Voecks, G. E.

    1983-01-01

    Results are presented from a study of the autothermal reforming of paraffins and aromatics over nickel catalysts. The trials were performed to examine the carbon products that appear when steam is passed over hydrocarbon liquids to form H2-rich gases, i.e., the autothermal process (ATR). Attention was given to n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene with reactant preheat to 1000-1150 F. The carbon-formation limit was sought as a function of the steam-to-carbon and oxygen to carbon molar ratios at constant pressure and the preheat temperatures. The catalyst bed was examined after each trial to identify the locations and types of carbon formed using SEM, thermal gravimetric analysis, and X ray diffraction techniques. The hydrocarbon fuels each had a separate temperature and reaction profile, as well as carbon formation characteristics. No carbon formation was observed in the upper layer of the reactor bed, while both gas phase and surface-grown deposits were present in the lower part. The results are concluded of use in the study of No. 2 fuel oil for ATR feedstock.

  11. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    NASA Astrophysics Data System (ADS)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  12. Process And Apparatus To Accomplish Autothermal Or Steam Reforming Via A Reciprocating Compression Device

    DOEpatents

    Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd

    2004-09-21

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  13. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    PubMed

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.

    PubMed

    Andrew, Renny; Gokak, D T; Sharma, Pankaj; Gupta, Shalini

    2016-12-01

    Today, the impending stringent environmental norms and concerns about the depletion of fossil fuel reserves have added impetus on development of cutting edge technologies for production of alternative fuels from renewable sources, like biomass. The concept of biomass pyro-gasification offers a platform for production of (a) hydrogen, (b) hydrocarbons and (c) value added chemicals, etc. In this context, there exists potential for hydrogen production from biomass by superheated steam gasification. Apart from H 2 , gaseous products of biomass steam gasification contain CO, CH 4 and other hydrocarbons that can be converted to hydrogen through cracking, steam reforming and water gas shift reactions. In the present work, the characteristics of biomass steam gasification in an indigenously designed rotary tubular coiled-downdraft reactor for high value gaseous fuel production from rice husk was studied through a series of experiments. The robust reactor system enhances biomass conversion to gaseous products by improved mass and heat transfer within the system induced by a coiled flow pattern with increased heat transfer area. Also, the system has improved upon the reliability of operation and offered greater continuity of the process and easier control in comparison with a conventional process by making use of an innovative gas cooler assembly and efficient venturi-mixing system for biomass and steam. Subsequently, the effects of reactor temperature, steam-to-biomass ratio and residence time on overall product gas yield and hydrogen yield were investigated. From the experimental results, it can be deduced that an optimum reactor temperature of 750 °C, steam-to-biomass ratio of 2.0 and a residence time of 3.0 min contributed highest gas yield (1.252 Nm 3  kg -1 moisture-free biomass). Based on the obtained experimental results, a projected potential hydrogen yield of 8.6 wt% of the moisture-free biomass could be achieved, and is also practical for production of

  15. Radioactive demonstration of final mineralized waste forms for Hanford waste treatment plant secondary waste (WTP-SW) by fluidized bed steam reforming (FBSR) using the bench scale reformer platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2014-08-01

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as 137Cs, 129I, 99Tc, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW.« less

  16. Direct ethanol solid oxide fuel cell operating in gradual internal reforming

    NASA Astrophysics Data System (ADS)

    Nobrega, S. D.; Galesco, M. V.; Girona, K.; de Florio, D. Z.; Steil, M. C.; Georges, S.; Fonseca, F. C.

    2012-09-01

    An electrolyte supported solid oxide fuel cell (SOFC) using standard electrodes, doped-lanthanum manganite cathode and Ni-cermet anode, was operated with direct (anhydrous) ethanol for more than 100 h, delivering essentially the same power output as running on hydrogen. A ceria-based layer provides the catalytic activity for the gradual internal reforming, which uses the steam formed by the electrochemical oxidation of hydrogen for the decomposition of ethanol. Such a concept opens up the way for multi-fuel SOFCs using standard components and a catalytic layer.

  17. Steam trap monitor

    DOEpatents

    Ryan, Michael J.

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  18. 14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. STEAM CABINETS & SITZ BATH IN STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. Liquid hydrogen production via hydrogen sulfide methane reformation

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  20. Evaluation of HiPHES convective reformer design alternatives. Phase 2, Final issue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-08-01

    Phase I Stone & Webster presented three potential design configurations for a ceramic-tubed steam-methane reformer. These were the Tube-Within-a-Tube (TWIT) design, the Once-Through design, and the Monolith design. Although the TWIT design configuration appeared to be the most viable, the inclusion of a more detailed examination of design alternatives for the HiPHES reformer was deemed appropriate for the Phase II program. Of particular concern was the length of the ceramic tubes required for the TWIT design. To assist in this evaluation, Stone & Webster established a Development Team consisting of specialists in the areas of heat transfer, ceramic materials, exchangermore » design, vessel design, and potential users. Stone & Webster reviewed the critical areas of concern for a ceramic convective reformer, evaluated competing design configurations, and presented the results to the Development Team. This report presents Stone & Webster`s evaluations and the comments and recommendations of the Development Team. This effort comprised the majority of Task 1 of Phase II of Stone & Webster`s HiPHES project. The design review was executed in parallel with the material coupon screening tests at BP America. The goal of both tasks was to confirm the materials selection and reformer design configuration so that the conditions for the tube and joint tests to be conducted at Oak Ridge National Laboratory (ORNL) could be specified. The ORNL tests are intended to evaluate the reformer design configuration and materials of construction used for the reformer design in Phase II, and to be used in the demonstration unit in Phase III. The Task 1 (Evaluation of Alternative Reformer Designs) effort has identified a preferred design configuration for the proposed ceramic reformer. Additional engineering and material evaluation work is necessary before an operating prototype can be designed.« less

  1. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    NASA Astrophysics Data System (ADS)

    Soo Kim, Yeon; Wang, Wei-E.; Olander, D. R.; Yagnik, S. K.

    1997-07-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400°C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2/H 2O above which massive hydriding occurs at 400°C is ˜ 200. The critical H 2/H 20 ratio is shifted to ˜2.5 × 103 at 350°C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ˜5 h at a hydriding rate of ˜10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale.

  2. Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Roes, J.; Brandt, H.

    The University of Duisburg-Essen and the Center for Fuel Cell Technology (ZBT Duisburg GmbH) have developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. Fuel processor prototypes based on this concept were built up in the power range from 2.5 to 12.5 kW thermal hydrogen power for different applications and different industrial partners. The fuel processor concept contains all the necessary elements, a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers, in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PrOx) as CO purification. One of the built fuel processors is designed to deliver a thermal hydrogen power output of 2.5 kW according to a PEM fuel cell stack providing about 1 kW electrical power and achieves a thermal efficiency of about 75% (LHV basis after PrOx), while the CO content of the product gas is below 20 ppm. This steam reformer has been combined with a 1 kW PEM fuel cell. Recirculating the anodic offgas results in a significant efficiency increase for the fuel processor. The gross efficiency of the combined system was already clearly above 30% during the first tests. Further improvements are currently investigated and developed at the ZBT.

  3. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    PubMed

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  5. Downhole steam injector

    DOEpatents

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  6. Comparison of Iron and Tungsten Based Oxygen Carriers for Hydrogen Production Using Chemical Looping Reforming

    NASA Astrophysics Data System (ADS)

    Khan, M. N.; Shamim, T.

    2017-08-01

    Hydrogen production by using a three reactor chemical looping reforming (TRCLR) technology is an innovative and attractive process. Fossil fuels such as methane are the feedstocks used. This process is similar to a conventional steam-methane reforming but occurs in three steps utilizing an oxygen carrier. As the oxygen carrier plays an important role, its selection should be done carefully. In this study, two oxygen carrier materials of base metal iron (Fe) and tungsten (W) are analysed using a thermodynamic model of a three reactor chemical looping reforming plant in Aspen plus. The results indicate that iron oxide has moderate oxygen carrying capacity and is cheaper since it is abundantly available. In terms of hydrogen production efficiency, tungsten oxide gives 4% better efficiency than iron oxide. While in terms of electrical power efficiency, iron oxide gives 4.6% better results than tungsten oxide. Overall, a TRCLR system with iron oxide is 2.6% more efficient and is cost effective than the TRCLR system with tungsten oxide.

  7. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  8. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    PubMed

    Li, Shuirong; Gong, Jinlong

    2014-11-07

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  9. Elucidating the interaction between Ni and CeO x in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems

    DOE PAGES

    Liu, Zongyuan; Senanayake, Sanjaya D.; Rodriguez, Jose A.

    2016-11-15

    Bulk metallic nickel is a poor catalyst for the reforming of oxygenates being deactivated by the deposition of coke. In contrast, Ni-ceria is an active system for the catalytic extraction of H 2 from the ethanol steam reforming reaction (ESR, C 2H 5OH + 3H 2O ↔ 2CO 2 + 6H 2). Numerous studies, with model (well-defined crystal surfaces) and technical (high surface area powders) catalysts, have been devoted to understand the fundamental role of each catalyst component, the performance of adjacent sites in the metal-oxide interface, and the complex mechanistic steps that convert two oxygenated reactants (ethanol and Hmore » 2O) into H 2. The size and low loading of Ni on ceria facilitate metal-oxide support interactions that probably enhance the reactivity of the system. To establish the precise role of both Ni and Ce is challenging. However it is clear that both Ni and Ce are associated with the dissociation of H 2O (OH + H), while ceria readily adsorbs and partially dissociates ethanol (i.e. ethoxy formation). The most difficult step of Csingle bondC bond dissociation likely occurs only on Ni or at the Ni-Ce interface. H 2O and OH remain as important agents for the prevention of excess C build up during the Csingle bondH/Csingle bondC dissociation process. Often, deactivation upon C build up, is a direct result of Ni sintering and decoupling of the Ni-Ce interactions. One strategy to maintain good activity and stability is to protect the Ni-Ce interaction, and this can be achieved through the use of solid solutions (Ce 1–xNi xO 2–y) or by employing stabilizing agents such as W (Ni xW yCe zO 2). In this paper, we present and discuss the most recent work for the ESR reaction and show the important role of ceria which participates directly in the reaction and also enhances catalytic activity through metal-support interactions.« less

  10. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  11. Functioning efficiency of intermediate coolers of multistage steam-jet ejectors of steam turbines

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-03-01

    Designs of various types of intermediate coolers of multistage ejectors are analyzed and thermal effectiveness and gas-dynamic resistance of coolers are estimated. Data on quantity of steam condensed from steam-air mixture in stage I of an ejector cooler was obtained on the basis of experimental results. It is established that the amount of steam condensed in the cooler constitutes 0.6-0.7 and is almost independent of operating steam pressure (and, consequently, of steam flow) and air amount in steam-air mixture. It is suggested to estimate the amount of condensed steam in a cooler of stage I based on comparison of computed and experimental characteristics of stage II. Computation taking this hypothesis for main types of mass produced multistage ejectors into account shows that 0.60-0.85 of steam amount should be condensed in stage I of the cooler. For ejectors with "pipe-in-pipe" type coolers (EPO-3-200) and helical coolers (EO-30), amount of condensed steam may reach 0.93-0.98. Estimation of gas-dynamic resistance of coolers shows that resistance from steam side in coolers with built-in and remote pipe bundle constitutes 100-300 Pa. Gas-dynamic resistance of "pipein- pipe" and helical type coolers is significantly higher (3-6 times) compared with pipe bundle. However, performance by "dry" (atmospheric) air is higher for ejectors with relatively high gas-dynamic resistance of coolers than those with low resistance at approximately equal operating flow values of ejectors.

  12. Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.

    Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.

  13. Increased compactibility of acetames after roll compaction.

    PubMed

    Kuntz, Theresia; Schubert, Martin A; Kleinebudde, Peter

    2011-01-01

    A common technique for manufacturing granules in a continuous way is the combination of roll compaction and subsequent milling. Roll compaction can considerably impact tableting performance of a material. The purpose of this study was to investigate the influence of roll compaction/dry granulation on the compaction behavior of acetames, a class of active pharmaceutical substances, which are mainly used for the treatment of central nervous diseases. Some representatives of acetames were roll compacted and then compressed into tablets. Compactibility of granules was compared with the compaction behavior of the directly compressed drug powders. In contrast to many other materials, the roll compaction step induced an increase in compactibility for all investigated acetames. Specific surface areas of the untreated and the roll compacted drugs were determined by nitrogen adsorption. The raise in compactibility observed was accompanied by an increase in specific surface area during roll compaction. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks and the Effects on Thermal, Electrical, and Mechanical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin

    2007-04-30

    Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from themore » on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.« less

  15. Steamer of steam circulation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onodera, M.

    1986-09-23

    A conveyor steamer is described which consists of: a room enclosed with heat-insulated walls, floor, and ceiling, the room having an entrance and an exit for goods to be steamed, a conveyor means for carrying the goods to be steamed, the conveyor means traversing into the entrance of the room, through the room, and out of the exit of the room; a source of heated primary steam; first pipe means, arranged beneath the conveyor means, for jetting the heated primary steam upwardly from across the floor of the room; second pipe means disposed across the entire ceiling of the roommore » arranged above the conveyor means, for scavenging spent steam from across the entire ceiling of the room; and an ejector-condenser means, interconnected between the first pipe means, the source of primary heated steam and the second pipe means, for mixing the spent steam from the second pipe means with the heated primary steam in the first pipe means; whereby the spent steam mixed with the heated primary steam is caused to recirculate in the first pipe means through the room, thus saving energy and consuming less heated primary steam so that cost reductions will result.« less

  16. Hydrogen Production via a High-Efficiency Low-Temperature Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul KT Liu; Theo T. Tsotsis

    2006-05-31

    Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposedmore » to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18

  17. Conversion of mill-scale waste to nanoscale zero valent iron (nZVI) for 'green' hydrogen generation via metal-steam reforming

    NASA Astrophysics Data System (ADS)

    Kesavan, Sathees Kumar

    The Proton Exchange Membrane Fuel Cells (PEMFCs) are the most preferred and efficient energy conversion devices for automotive applications but demand high purity hydrogen which comes at a premium price. The currently pursued hydrogen generation methods suffer from issues such as, low efficiency, high cost, environmental non-benignity, and, in some cases, commercial non-viability. Many of these drawbacks including the CO contamination and, storage and delivery can be overcome by resorting to metal-steam reforming (MSR) using iron from steel industry's mill-scale waste. A novel solution-based room temperature technique using sodium borohydride (NaBH4) as the reducing agent has been developed that produces highly active nanoscale (30-40 nm) iron particles. A slightly modified version of this technique using a surfactant and water oil microemulsion resulted in the formation of 5 nm Fe particles. By using hydrazine (N2H4) as an inexpensive and more stable (compared to NaBH4) reductant, body centered cubic iron particles with edge dimensions ˜5 nm were obtained under mild solvothermal conditions in ethanol. The nanoscale zero valent iron (nZVI) powder showed improved kinetics and greater propensity for hydrogen generation than the coarser microscale iron obtained through traditional reduction techniques. To initiate and sustain the somewhat endothermic MSR process, a solar concentrator consisting of a convex polyacrylic sheet with aluminum reflective coating was fabricated. This unique combination of mill-scale waste as iron source, hydrazine as the reductant, mild process conditions for nZVI generation and solar energy as the impetus for actuating MSR, obviates several drawbacks plaguing the grand scheme of producing, storing and delivering pure and humidified H2 to a PEMFC stack.

  18. DFT Studies of Adsorption of Cu7-atom Nanoclusters on TiO2 Surfaces and Application to Methanol Steam Reforming Reactions

    NASA Astrophysics Data System (ADS)

    Taft, Michael J., Sr.

    Alcohol conversion to hydrogen, via steam reforming, is an alternative energy process that is promising for the future of clean energy economies. With advancements in fuel cell technologies, on-board hydrogen reforming could leverage already existing automotive designs and fuel infrastructure. The design of catalytic materials with tunable properties requires a level of insight that has yet to be achieved experimentally. The central objective of this project is to develop a working model of metal-oxide surface mediated copper clusters, since such catalytic beds have a wide-range of applications. More specifically, we investigate the catalytic framework of this process with theoretical models of the active metal (Cu) and metal­oxide support (TiO2). We employ a Density Functional Theory (DFT)-Generalized Gradient Approximation (GGA) approach for the quantum level electronic structure calculations of Cu, TiO2 and CH3OH. Additionally, we have generated anatase (A(001), A(101)) and rutile (R(100), R(110)) surface morphologies and 7­atom copper cluster complexes with those planes. To examine the possible influence of TiO2 on the adsorption properties of our active metal, Cu7, we have carried out adsorption studies with CH3OH. Our final data and observations predict that the Cu7 cluster adopts a symmetric pentagonal bipyramidal geometry with D5h symmetry. We find that the anatase morphology has a greater overall stability than rutile. The adsorption strength of the Cu7 cluster has been predicted in this study to be according to the following order: A(001) > A(101)> R(110). Indeed, the R(100) surface appears to be an unfavorable surface for metal cluster binding. Our data indicates that copper cluster stabilization on the metal-oxide surface depends on the nature of the crystal face. Again, we studied the adsorption properties of methanol on nascent Cu7 cluster, Cu7-TiO 2 complex and on pure TiO2-surface in A(001) polymorphic form. The calculations revealed that methanol

  19. Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue

    NASA Astrophysics Data System (ADS)

    Maiti, Sayantani; Llorca, Jordi; Dominguez, Montserrat; Colussi, Sara; Trovarelli, Alessandro; Priolkar, Kaustubh R.; Aquilanti, Giuliana; Gayen, Arup

    2016-02-01

    A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h-1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.

  20. Kern River steam expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1970-09-15

    The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less

  1. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    NASA Astrophysics Data System (ADS)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  2. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  3. ‘Cleanse or Die’: British Naval Hygiene in the Age of Steam, 1840–1900

    PubMed Central

    Smith, Elise Juzda

    2018-01-01

    This article focuses on the consolidation of naval hygiene practices during the Victorian era, a period of profound medical change that coincided with the fleet’s transition from sail to steam. The ironclads of the mid- to late- nineteenth century offered ample opportunities to improve preventive medicine at sea, and surgeons capitalised on new steam technologies to provide cleaner, dryer, and airier surroundings below decks. Such efforts reflected the sanitarian idealism of naval medicine in this period, inherited from the eighteenth-century pioneers of the discipline. Yet, despite the scientific thrust of Victorian naval medicine, with its emphasis on collecting measurements and collating statistics, consensus about the causes of disease eluded practitioners. It proved almost impossible to eradicate sickness at sea, and the enclosed nature of naval vessels showed the limitations – rather than the promise – of attempting to enforce absolute environmental controls. Nonetheless, sanitarian ideology prevailed throughout the steam age, and the hygienic reforms enacted throughout the fleet showed some of the same successes that attended the public health movement on land. It was thus despite shifting ideas about disease and new methods of investigation that naval medicine remained wedded to its sanitarian roots until the close of the nineteenth century. PMID:29553010

  4. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  5. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  6. On-board diesel autothermal reforming for PEM fuel cells: Simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzolino, Raffaello, E-mail: raffaello.cozzolino@unicusano.it; Tribioli, Laura

    2015-03-10

    Alternative power sources are nowadays the only option to provide a quick response to the current regulations on automotive pollutant emissions. Hydrogen fuel cell is one promising solution, but the nature of the gas is such that the in-vehicle conversion of other fuels into hydrogen is necessary. In this paper, autothermal reforming, for Diesel on-board conversion into a hydrogen-rich gas suitable for PEM fuel cells, has investigated using the simulation tool Aspen Plus. A steady-state model has been developed to analyze the fuel processor and the overall system performance. The components of the fuel processor are: the fuel reforming reactor,more » two water gas shift reactors, a preferential oxidation reactor and H{sub 2} separation unit. The influence of various operating parameters such as oxygen to carbon ratio, steam to carbon ratio, and temperature on the process components has been analyzed in-depth and results are presented.« less

  7. Steaming Clean

    ERIC Educational Resources Information Center

    Hoverson, Rick

    2006-01-01

    Schools can provide a cleaner, more healthful school environment by simply combining heat and water. Steam vapor systems use only tap water with no chemicals added. Low-pressure (12 psi to 65 psi) steam vapor sanitizes and deodorizes. This process can then be used safely in many situations, but is especially suited for restrooms and food-service…

  8. Distillate fuel-oil processing for phosphoric acid fuel cell power plants

    NASA Astrophysics Data System (ADS)

    1980-02-01

    Efforts to develop distillate oil steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high temperature steam reforming; autothermal reforming; autothermal gasification; and ultra desulfurization followed by steam reforming. Sulfur in the feed is a problem in the process development.

  9. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  10. Development of Technologies on Innovative-Simplified Nuclear Power Plant using High-Efficiency Steam Injectors

    NASA Astrophysics Data System (ADS)

    Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu; Iwaki, Chikako; Asanuma, Yutaka; Goto, Shoji

    A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.

  11. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoidmore » structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.« less

  12. Steam Pyrolysis of Polyimides: Effects of Steam on Raw Material Recovery.

    PubMed

    Kumagai, Shogo; Hosaka, Tomoyuki; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-11-17

    Aromatic polyimides (PIs) have excellent thermal stability, which makes them difficult to recycle, and an effective way to recycle PIs has not yet been established. In this work, steam pyrolysis of the aromatic PI Kapton was performed to investigate the recovery of useful raw materials. Steam pyrolysis significantly enhanced the gasification of Kapton at 900 °C, resulting in 1963.1 mL g(-1) of a H2 and CO rich gas. Simultaneously, highly porous activated carbon with a high BET surface area was recovered. Steam pyrolysis increased the presence of polar functional groups on the carbon surface. Thus, it was concluded that steam pyrolysis shows great promise as a recycling technique for the recovery of useful synthetic gases and activated carbon from PIs without the need for catalysts and organic solvents.

  13. Horizontal steam generator thermal-hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubra, O.; Doubek, M.

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less

  14. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  16. Method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  17. Fuel processor and method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  18. The Invisibility of Steam

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  19. Steam Turbines

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  20. STEAM GENERATOR FOR NUCLEAR REACTOR

    DOEpatents

    Kinyon, B.W.; Whitman, G.D.

    1963-07-16

    The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

  1. Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes

    NASA Astrophysics Data System (ADS)

    Markova, D.; Bazbauers, G.; Valters, K.; Alhucema Arias, R.; Weuffen, C.; Rochlitz, L.

    Experimental investigation of bio-ethanol autothermal reforming (ATR) and water-gas shift (WGS) processes for hydrogen production and regression analysis of the data is performed in the study. The main goal was to obtain regression relations between the most critical dependent variables such as hydrogen, carbon monoxide and methane content in the reformate gas and independent factors such as air-to-fuel ratio (λ), steam-to-carbon ratio (S/C), inlet temperature of reactants into reforming process (T ATRin), pressure (p) and temperature (T ATR) in the ATR reactor from the experimental data. Purpose of the regression models is to provide optimum values of the process factors that give the maximum amount of hydrogen. The experimental ATR system consisted of an evaporator, an ATR reactor and a one-stage WGS reactor. Empirical relations between hydrogen, carbon monoxide, methane content and the controlling parameters downstream of the ATR reactor are shown in the work. The optimization results show that within the considered range of the process factors the maximum hydrogen concentration of 42 dry vol. % and yield of 3.8 mol mol -1 of ethanol downstream of the ATR reactor can be achieved at S/C = 2.5, λ = 0.20-0.23, p = 0.4 bar, T ATRin = 230 °C, T ATR = 640 °C.

  2. Steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  3. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  4. High-efficiency condenser of steam from a steam-gas mixture

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  5. More steam for Kern River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, B.

    1973-02-01

    While production generally is declining elsewhere in California, the Kern River field continues to post gains. The field last year produced at an all-time high for the second year in a row, putting out at least 1.5 million bbl more than in its previous peak year. There is every reason to believe that gains will continue through this year. Steam is in the factor that underlies Kern River's resurgence, and Getty Oil Co., the field's premier steamer, recently added to its already imposing array of steam-generating equipment a pair of large boilers, each capable of generating 240 million btus permore » hr. Along with expansion of the steaming effort the company also expanded its water-treating facilities, making sure there will be plenty of feed water to fuel the steam generators at work in the field. The new boilers are being used to furnish steam to 136 wells in a steam displacement project. The purpose of going to a larger generator has been to gain higher efficiency. The components that have made Getty Oil the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells, steam generators and--since 1969--a computer. The entire project is described in detail.« less

  6. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. STEAM by Design

    ERIC Educational Resources Information Center

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  8. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    PubMed Central

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors. PMID:25097877

  9. 21 CFR 880.6880 - Steam sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steam sterilizer. 880.6880 Section 880.6880 Food... § 880.6880 Steam sterilizer. (a) Identification. A steam sterilizer (autoclave) is a device that is intended for use by a health care provider to sterilize medical products by means of pressurized steam. (b...

  10. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  11. Downhole steam quality measurement

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  12. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  13. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    This report documents a portion of the work performed on Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective of this program is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  14. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  15. Safety Picks up "STEAM"

    ERIC Educational Resources Information Center

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  16. Cyclic steaming in heavy oil diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Beatty, F.D.

    1995-12-31

    Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less

  17. Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.

    PubMed

    Zhang, Mingxing; Chen, Haiyan

    2018-04-20

    Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50  = 4.785 μm, and another particle size is d 50  = 8.999 μm. For particle size d 50  = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.

  18. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  19. On the road to reform: a sociocultural interpretation of reform

    NASA Astrophysics Data System (ADS)

    Mensah, Felicia Moore

    2011-09-01

    In this paper I discuss how reform in science education is interpreted by Barma as she recounts the story of Catherine, a grade 9 biology teacher, who reforms her teaching practices in response to a national curriculum reform in Quebec, Canada. Unlike some cases in response to reform, this case is hopeful and positive. Also in this paper, I address some familiar areas that must be considered when teachers undertake curriculum reform and how science educators may fulfill the role of facilitator and advocate in the support of teachers on the road to reform. The commentary focuses on how Barma retells the story through the lens of activity theory.

  20. Vapor generator steam drum spray head

    DOEpatents

    Fasnacht, Jr., Floyd A.

    1978-07-18

    A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

  1. Reforming Science: Structural Reforms

    PubMed Central

    2012-01-01

    Science has a critical role to play in addressing humanity's most important challenges in the twenty-first century. However, the contemporary scientific enterprise has developed in ways that prevent it from reaching maximum effectiveness and detract from the appeal of a research career. To be effective, the methodological and culture reforms discussed in the accompanying essay must be accompanied by fundamental structural reforms that include a renewed vigorous societal investment in science and scientists. PMID:22184420

  2. Steampunk: Full Steam Ahead

    ERIC Educational Resources Information Center

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  3. 7 CFR 29.3058 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  4. Running Out of Steam.

    ERIC Educational Resources Information Center

    Kumar, Promod

    2000-01-01

    Explains why schools should evaluate whether their older steam-heating systems are still cost-effective, or need to be repaired or replaced. The symptoms of deterioration are listed along with discussions on repair or replacement decision making on three areas of steam heating systems: boilers; distribution system; and terminal equipment. (GR)

  5. Primary care in Ontario, Canada: New proposals after 15 years of reform.

    PubMed

    Marchildon, Gregory P; Hutchison, Brian

    2016-07-01

    Primary care has proven to be extremely difficult to reform in Canada because of the original social compact between the state and physicians that led to the introduction of universal medical care insurance in the 1960s. However, in the past decade, the provincial government of Ontario has led the way in Canada in funding a suite of primary care practice models, some of which differ substantially from traditional solo and group physician practices based on fee-for-service payment. Independent evaluations show some positive improvements in patient care. Nonetheless, the Ontario government's large investment in the reform combined with high expectations concerning improved performance and the deteriorating fiscal position of the province's finances have led to major conflict with organized medicine over physician budgets and the government's consideration of an even more radical restructuring of the system of primary care in the province. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.

  6. 7 CFR 29.3548 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  7. 7 CFR 29.1060 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  8. 7 CFR 29.2300 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  9. 7 CFR 29.2552 - Steam-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  10. Process for purifying geothermal steam

    DOEpatents

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  11. Process for purifying geothermal steam

    DOEpatents

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  12. Non-catalytic recuperative reformer

    DOEpatents

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  13. Fitting the Pieces: Education Reform That Works. Studies of Education Reform.

    ERIC Educational Resources Information Center

    Klein, Steven; And Others

    Nearly all school reforms, regardless of their scope or intended target, share a number of characteristics. This report reviews the essential elements of planning, implementing, and sustaining school reform and presents eight key lessons to guide prospective reformers. The lessons are drawn from 12 major studies of education reform funded by the…

  14. Features of steam turbine cooling by the example of an SKR-100 turbine for supercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Arkadyev, B. A.

    2015-10-01

    Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.

  15. Experimental research of heterogeneous nuclei in superheated steam

    NASA Astrophysics Data System (ADS)

    Bartoš, Ondřej; Kolovratník, Michal; Šmíd, Bohuslav; Hrubý, Jan

    2016-03-01

    A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.

  16. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed...

  17. A SURVEY OF CONVENTIONAL STEAM BOILER EXPERIENCE APPLICABLE TO THE HTGR STEAM GENERATORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paget, J.A.

    1959-10-01

    BS>The steam generator of a high temperature gas-cooled reactor consists of tubular heating surface inside a shell which forms part of the primary He circuit of the reactor. When a tube fails in such a steam generator, moisture in the form of steam is released into the He steam and is carried through the reactor where it will cause corrosion and mass transfer of C in the core. A paramount consideration in the design of a steam generator for a high temperature gas-cooled reactor is the prevention of tube failures. Preference, therefore, should be given to a forced circulation design.more » The Loeffler Boiler would be the best from this standpoint alone since only steam enters the tubes, and its circulation rate can be maintained at an adequate value to insure cool tubes regardless of load fluctuations. The next type in the order of preference would be the forced recirculation boiler, since at least the boiier tubes always have an adequate cooling flow regardless of output. The third type in order of preference would be a Sulzer Type boiler since it has a separator to remove dissolved material from the water which is comparible in efficiency to a standard boiler drum and although the flow through evaporator and superheater fluctuates with load, the Sulzer Boiler can be operated as a forced recirculation boiler at low loads. The least desirable type would be a Benson or supercritical boiler which is completely dependent on input water purity for its survival. It is not claimed that Benson or supercritical boilers should not or will not be used in the future for gas-cooled reactors, but only that their use would be the least conservative choice from a tube failure standpoint at the present time. (auth)« less

  18. Optical steam quality measurement system and method

    DOEpatents

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  19. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  20. Sulfur poisoning of CeO[subscript 2]-Al[subscript 2]O[subscript 3]-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Chao; Chen, Yongsheng; Li, Yan

    2010-12-01

    In order to develop a better understanding on sulfur poisoning of reforming catalysts in fuel processing for hydrogen production, steam reforming of liquid hydrocarbons was performed over CeO{sub 2}-Al{sub 2}O{sub 3} supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 C. XANES was used to identify the sulfur species in the used catalysts and to study their impacts on the metal surface properties probed by XPS. It was found that both monometallic catalysts rapidly deactivated at 550 C, and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 C dramaticallymore » improved the sulfur tolerance of the Rh catalyst. XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The presence of sulfur induced severe carbon deposition on the Ni catalyst at 800 C. The superior sulfur tolerance of the Rh catalyst at 800 C may be associated with its capability in sulfur oxidation. It is likely that the formation of the oxygen-shielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh by inhibiting direct rhodium-sulfur interaction. Moreover, XPS indicated that the metal surface properties of the Rh catalysts after the reaction without and with sulfur at 800 C are similar, suggesting that sulfur poisoning on Rh was mitigated under the high-temperature condition. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic catalysts at 550 C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 C probably due to the severe carbon deposition on the bimetallic catalyst.« less

  1. Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2001-03-27

    A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

  2. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

    PubMed Central

    Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook

    2016-01-01

    The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (p<0.05), whereas protein content, redness value (a*-value), hardness, gumminess, and chewiness of superheated steam cooked chicken steak was lower than that in the other cooking treatments (p<0.05). Fat content and ash content, springiness, and cohesiveness were not significantly different among the chicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p<0.05), whereas no difference in flavor scores were observed among the other treatments (p>0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656

  3. Hockey-stick steam generator for LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallinan, G.J.; Svedlund, P.E.

    1981-01-01

    This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less

  4. Disinfection of Cystoscopes by Subatmospheric Steam and Steam and Formaldehyde at 80°C

    PubMed Central

    Alder, V. G.; Gingell, J. C.; Mitchell, J. P.

    1971-01-01

    A new method of disinfection adapted for endoscopic instruments uses low temperature steam at 80°C or steam and formaldehyde at 80°C. The process has considerable advantages over existing methods and more closely approaches the ideal requirements. ImagesFIG. 3FIG. 4FIG. 5 PMID:5569551

  5. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  6. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  7. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  8. 49 CFR 230.21 - Steam locomotive number change.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam locomotive number change. 230.21 Section 230... Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed... all documentation related to the steam locomotive by showing the old and new numbers: Old No. 000 New...

  9. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  10. 7 CFR 160.8 - Steam distilled wood turpentine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  11. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  12. 49 CFR 229.105 - Steam generator number.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...

  13. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    DOE PAGES

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; ...

    2017-07-04

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Here, our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy “Alloy 33” using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. In conclusion, our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr 2O 4) oxides, wherein the concentration of the FeCr 2O 4 phasemore » decreased from the surface to the bulk-oxide interface.« less

  14. The STEAM Project

    NASA Astrophysics Data System (ADS)

    von Schéele, F.; Steam Team

    The proposed satellite project "Stratosphere-Troposphere Exchange And climate Monitor" (STEAM) is dedicated to the investigation of chemical, dynamical, and radiative processes in the upper troposphere and lower stratosphere (UT/LS) altitude range and their links with the Earth climate and stratosphere evolution. The main objectives are to provide vertically and horizontally resolved information on the global distributions of UT/LS key species such as H2O, O3, and CO, and global fields of O3, H2O and halogen compounds responsible for the O3 destruction like ClO in the stratosphere. The UT/LS region plays an important role in the Earth's climate system. Despite its importance there is still a lack of accurate, height-resolved data from the UT/LS. Confronting 3-D climate and chemical-transport models with STEAM observations will improve our knowledge of this atmospheric region. Furthermore, it will be important to continue monitoring the evolution of the stratosphere regarding the expected decline of halogen compounds and recovery of the ozone layer. STEAM consists of a microwave limb-sounding instrument, operating in the 320-360 GHz range to sound the UT/LS and in the 485-505 GHz range to sound the stratosphere, and an optical instrument. By sounding the Earth atmosphere's limb from 5 to 28 km employing a new technique with 8 simultaneous measurements, STEAM will produce a global dataset of UT/LS key species with high vertical (1.5-2.5 km) and horizontal (30-50 km) resolution. The sub-mm band will cover 15 to 40 km. An optical instrument, co-aligned with the mm-wave band, will support micro-wave measurements with cloud indications and in addition provide stratospheric ozone, and aerosol and cloud property measurements. STEAM, planned for a launch in 2008, will be a collaboration between laboratories, industry and agencies in several countries. The Odin heritage of the project (e.g. microwave and optical instruments) provides technical maturity and will help to keep

  15. STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices

    ERIC Educational Resources Information Center

    Herro, Danielle; Quigley, Cassie

    2016-01-01

    This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…

  16. Health care reform 2010: a fresh view on tort reform.

    PubMed

    Stimson, C J; Dmochowski, Roger; Penson, David F

    2010-11-01

    We reviewed the state of medical malpractice tort reform in the context of a new political climate and the current debate over comprehensive health care reform. Specifically we asked whether medical malpractice tort reform is necessary, and evaluated the strengths and weaknesses of contemporary reform proposals. The medical, legal and public policy literature related to medical malpractice tort reform was reviewed and synthesized. We include a primer for understanding the current structure of medical malpractice law, identify the goals of the current system and analyze whether these goals are presently being met. Finally, we describe and evaluate the strengths and weaknesses of the current reform proposals including caps on damages, safe harbors and health care courts. Medical malpractice tort law is designed to improve health care quality and appropriately compensate patients for medical malpractice injuries, but is failing on both fronts. Of the 3 proposed remedies, caps on damages do little to advance the quality and compensatory goals, while safe harbors and health care courts represent important advancements in tort reform. Tort reform should be included in the current health policy debate because the current medical malpractice system is not adequately achieving the basic goals of tort law. While safe harbors and health care courts both represent reasonable remedies, health care courts may be preferred because they do not rely on jury determination in the absence of strong medical evidence. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.

    1983-09-01

    The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less

  18. Variable effect of steam injection level on beef muscles: semitendinosus and biceps femoris cooked in convection-steam oven.

    PubMed

    Zając, Marzena; Kącik, Sławomir; Palka, Krystyna; Widurek, Paweł

    2015-01-01

    Combi ovens are used very often in restaurants to heat up food. According to the producers the equipment allows to cook meat portions which are more tender and flavoursome comparing to conventional cooking techniques. Beef steaks from muscles semitendinosus and biceps femoris were cooked in convection-steam oven at three humidity levels: 10, 60 and 100%. Chemical composition, including total and insoluble collagen content and cook losses were analysed along with the texture and colour parameters. M. biceps femoris was the hardest and the most chewy at 100% steam saturation level and hardness measured for m. semitendinosus was the lowest at 10% of vapour injection. Changing the steam conditions in the oven chamber did not affect the detectable colour differences of m. biceps femoris, but it was significant for m. semitendinosus. Applying 100% steam saturation caused higher cook losses and the increase of insoluble collagen fractions in both analysed muscles. The results are beneficial for caterers using steam-convection ovens in terms of providing evidence that the heating conditions should be applied individually depending on the muscle used. The tenderness of m. semitendinosus muscle cooked at 10% steam saturation level was comparable to the tenderness obtained for the same muscle aged for 10 days and cooked with 100% steam saturation. Steaks from m. biceps femoris muscle should be cooked with maximum 60% saturation level to obtain higher tenderness.

  19. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng.

    PubMed

    In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong

    2017-07-01

    The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).

  20. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE PAGES

    Chang, Yan; Szybist, James P.; Pihl, Josh A.; ...

    2017-12-19

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  1. Catalytic EGR-Loop Reforming for High Efficiency in a Stoichiometric SI Engine through TCR and Dilution Limit Extension. 1. Catalyst Performance and Fuel Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan; Szybist, James P.; Pihl, Josh A.

    The use of fuel reformate from catalytic processes is known to have beneficial effects on the spark-ignited (SI) combustion process through enhanced dilution tolerance and decreased combustion duration, but in many cases reformate generation can incur a significant fuel penalty. Here, in this two-part investigation, we demonstrate that efficient catalytic fuel reforming can result in improved brake engine efficiency while maintaining stoichiometric exhaust under the right conditions. In part one of this investigation, we used a combination of thermodynamic equilibrium calculations and experimental fuel catalytic reforming measurements on an engine to characterize the best possible reforming performance and energetics overmore » a range of equivalence ratios and O 2 concentrations. Ideally, one might expect the highest levels of thermochemical recuperation for the highest catalyst equivalence ratios. However, reforming under these conditions is highly endothermic, and the available enthalpy for reforming is constrained. Thus for relatively high equivalence ratios, more methane and less H 2 and CO are produced. Our experiments revealed that this suppression of H 2 and CO could be countered by adding small amounts of O 2, yielding as much as 15 vol % H 2 at the catalyst outlet for 4 < Φ catalyst < 7 under quasi-steady-state conditions. Under these conditions the H 2 and CO yields were highest and there was significant water consumption, confirming the presence of steam reforming reactions. Analyses of the experimental catalyst measurements indicated the possibility of both endothermic and exothermic reaction stages and global reaction rates sufficient to enable the utilization of higher space velocities than those employed in our experiments. Finally, in a companion paper detailing part two of this investigation, we present results for the engine dilution tolerance and brake engine efficiency impacts of the reforming levels achieved.« less

  2. Equations for calculating the properties of dissociated steam

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Gudym, A. A.

    2017-08-01

    The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.

  3. Steam-assisted hot-pressing of construction plywood

    Treesearch

    Ronald W. Jokerst; Robert L. Geimer

    1994-01-01

    This study was designed to determine if steam injection pressing used for fiberboard, particleboard, and flakeboard could be adapted to the pressing of plywood. Plywood panels were fabricated with and without adhesive and then pressed to determine the effects of steam injection Lime, steam injection pressure, and press pressure on heat transfer rate, moisture...

  4. Reforming Again: Now Teachers

    ERIC Educational Resources Information Center

    Marx, Ronald W.

    2014-01-01

    Background: Educational reform responds to local and national pressures to improve educational outcomes, and reform efforts cycle as similar pressures recur. Currently, reform efforts focus on teachers, even though confidence in a host of American social institutions is dropping. One of the most widespread reforms regarding teachers is the…

  5. Dehumidification System with Steam Permeability Films

    NASA Astrophysics Data System (ADS)

    Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo

    In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.

  6. Steam distillation extraction of ginger essential oil: Study of the effect of steam flow rate and time process

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-01-01

    In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.

  7. Origin and transport of chloride in superheated geothermal steam

    USGS Publications Warehouse

    Truesdell, A.H.; Haizlip, J.R.; Armannsson, H.; D'Amore, F.

    1989-01-01

    Hydrogen chloride (HCl) is a known component of some volcanic gases and volcanic-related hydrothermal systems. It has recently been discovered in superheated steam in exploited geothermal systems, usually as a result of HCl-induced corrosion of well casing and steam gathering systems. Evaluation of four geothermal systems (Tatun, Taiwan; Krafla, Iceland; Larderello, Italy and The Geysers, USA) which produce CI-bearing steam provides evidence for the presence of Cl as HCl and the natural reservoir conditions which can produce HCl-bearing steam. Theoretical calculations defining the physical and chemical conditions of the reservoir liquid which can produce HCl-bearing steam are presented. The main factors are pH, temperature and Cl concentration. Lower pH, higher temperature and higher chlorinity allow more HCl to be volatilized with steam. In order to reach the surface in steam, the HCl cannot contact liquid water in which it is more soluble, essentially limiting transport to superheated steam. Temperature, pH and Cl concentration of reservoir liquids in each of the geothermal systems evaluated combine differently to produce HCl-bearing steam. ?? 1989.

  8. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  9. Comparative evaluation of surface and downhole steam-generation techniques

    NASA Astrophysics Data System (ADS)

    Hart, C.

    The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.

  10. Bridging the Gap: From Model Surfaces to Nanoparticle Analogs for Selective Oxidation and Steam Reforming of Methanol and Selective Hydrogenation Catalysis

    NASA Astrophysics Data System (ADS)

    Boucher, Matthew B.

    Most industrial catalysts are very complex, comprising of non-uniform materials with varying structures, impurities, and interaction between the active metal and supporting substrate. A large portion of the ongoing research in heterogeneous catalysis focuses on understanding structure-function relationships in catalytic materials. In parallel, there is a large area of surface science research focused on studying model catalytic systems for which structural parameters can be tuned and measured with high precision. It is commonly argued, however, that these systems are oversimplified, and that observations made in model systems do not translate to robust catalysts operating in practical environments; this discontinuity is often referred to as a "gap." The focus of this thesis is to explore the mutual benefits of surface science and catalysis, or "bridge the gap," by studying two catalytic systems in both ultra-high vacuum (UHV) and near ambient-environments. The first reaction is the catalytic steam reforming of methanol (SRM) to hydrogen and carbon dioxide. The SRM reaction is a promising route for on-demand hydrogen production. For this catalytic system, the central hypothesis in this thesis is that a balance between redox capability and weak binding of reaction intermediates is necessary for high SRM activity and selectivity to carbon dioxide. As such, a new catalyst for the SRM reaction is developed which incorporates very small amounts of gold (<1 atomic %) supported on zinc oxide nanoparticles with controlled crystal structures. The performance of these catalysts was studied in a fixed-bed micro-reactor system at ambient pressures, and their structure was characterized by high-resolution microscopic and spectroscopic techniques. Pre-existing oxygen defects in zinc oxide {0001} surfaces, and those created by a perturbation of the defect equilibrium by addition of gold, provide an anchoring site for highly dispersed gold species. By utilizing shape control of

  11. Mathematical modeling of control system for the experimental steam generator

    NASA Astrophysics Data System (ADS)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  12. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies.more » The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft

  13. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  14. 49 CFR 230.65 - Steam blocking view of engine crew.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...

  15. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  16. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  17. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2002-01-01

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  18. BWR Steam Dryer Alternating Stress Assessment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morante, R. J.; Hambric, S. A.; Ziada, S.

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  19. Payment Reform

    PubMed Central

    Schneider, Eric C.; Hussey, Peter S.; Schnyer, Christopher

    2011-01-01

    Abstract Insurers and purchasers of health care in the United States are on the verge of potentially revolutionary changes in the approaches they use to pay for health care. Recently, purchasers and insurers have been experimenting with payment approaches that include incentives to improve quality and reduce the use of unnecessary and costly services. The Patient Protection and Affordable Care Act of 2010 is likely to accelerate payment reform based on performance measurement. This article provides details of the results of a technical report that catalogues nearly 100 implemented and proposed payment reform programs, classifies each of these programs into one of 11 payment reform models, and identifies the performance measurement needs associated with each model. A synthesis of the results suggests near-term priorities for performance measure development and identifies pertinent challenges related to the use of performance measures as a basis for payment reform. The report is also intended to create a shared framework for analysis of future performance measurement opportunities. This report is intended for the many stakeholders tasked with outlining a national quality strategy in the wake of health care reform legislation. PMID:28083159

  20. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOEpatents

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  1. Beyond Reform: Transformation

    ERIC Educational Resources Information Center

    Davidson, Jill

    2007-01-01

    The Coalition of Essential Schools (CES) is not a reform movement. To reform is to make a thing again; reformation implies a stasis that doesn't deliver enough for the educational future. This issue of Horace demonstrates that Essential schools and the districts and networks that support them are at various points in the journey of transformation,…

  2. Health system reform.

    PubMed

    Ortolon, Ken

    2009-06-01

    A vote on reforming the nation's health care system seems likely this summer as President Obama makes good on a campaign pledge. Although the Democratic leadership in Congress appears ready to push through reform legislation before the next election, TMA and AMA leaders say very little is known about what that "reform" likely will look like.

  3. Cogeneration steam turbines from Siemens: New solutions

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  4. Experiences with industrial solar process steam generation in Jordan

    NASA Astrophysics Data System (ADS)

    Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus

    2017-06-01

    At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.

  5. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  6. Heat transfer during condensation of steam from steam-gas mixtures in the passive safety systems of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Portnova, N. M.; Smirnov, Yu B.

    2017-11-01

    A theoretical model for calculation of heat transfer during condensation of multicomponent vapor-gas mixtures on vertical surfaces, based on film theory and heat and mass transfer analogy is proposed. Calculations were performed for the conditions implemented in experimental studies of heat transfer during condensation of steam-gas mixtures in the passive safety systems of PWR-type reactors of different designs. Calculated values of heat transfer coefficients for condensation of steam-air, steam-air-helium and steam-air-hydrogen mixtures at pressures of 0.2 to 0.6 MPa and of steam-nitrogen mixture at the pressures of 0.4 to 2.6 MPa were obtained. The composition of mixtures and vapor-to-surface temperature difference were varied within wide limits. Tube length ranged from 0.65 to 9.79m. The condensation of all steam-gas mixtures took place in a laminar-wave flow mode of condensate film and turbulent free convection in the diffusion boundary layer. The heat transfer coefficients obtained by calculation using the proposed model are in good agreement with the considered experimental data for both the binary and ternary mixtures.

  7. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  8. Gases in steam from Cerro Prieto geothermal wells with a discussion of steam/gas ratio measurements

    USGS Publications Warehouse

    Nehring, N.L.; Fausto, L.J.J.

    1979-01-01

    As part of a joint USGS-CFE geochemical study of Cerro Prieto, steam samples were collected for gas analyses in April, 1977. Analyses of the major gas components of the steam were made by wet chemistry (for H2O,CO2,H2S and NH3) and by gas chromatography (He,H2,Ar,O2,N2 and hydrocarbons). The hydrocarbon gases in Cerro Prieto steam closely resemble hydrocarbons in steam from Larderello, Italy and The Geysers, California which, although they are vapor-dominated rather than hot-water geothermal systems, also have sedimentary aquifer rocks. These sedimentary geothermal hydrocarbons are characterized by the presence of branched C4-6 compounds and a lack of unsaturated compounds other than benzene. Relatively large amounts of benzene may be characteristic of high-temperature geothermal systems. All hydrocarbons in these gases other than methane most probably originate from the thermal metamorphosis of organic matter contained in the sediments. ?? 1979.

  9. [Defective function of bioindicators for steam sterilization].

    PubMed

    Botzenhart, K; Merkt-Kinzler, M

    1990-05-01

    It can be shown, that under certain conditions commercially available indicators with Bacillus stearothermophilus and packages of native spores from soil prepared according to DIN 58 946/4 react differently to treatment in a lab-type steam sterilizer. The differences were most evident when incomplete evacuation of air had to be supposed. These results lead to the conclusion that some bioindicators are not able to show the inefficient function of steam sterilizers caused by local residuals of air. This may be caused by the properties of the selected strain, by the conditions of growth and preparation of the spores and by the culture medium used after exposition. The results of our experiments as well as the resistance of mesophilic spore forming bacilli against dry heat described by other authors make it necessary to test the resistance of bioindicators for steam sterilization not only against steam according to DIN 58946/4 but also against dry heat or mixtures of steam and air.

  10. Brush Seals for Improved Steam Turbine Performance

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter

    2006-01-01

    GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.

  11. Equity in Reform: Case Studies of Five Middle Schools Involved in Systemic Reform

    NASA Astrophysics Data System (ADS)

    Kahle, Jane Butler; Kelly, Mary Kay

    Science and mathematics education reform documents of the last decade have called for improved teaching and learning for all children. To overcome inequalities, a systemic approach to reform has been adopted. The case studies synthesized in this analysis arc part of a larger effort to reform science and mathematics education systemically and assess the progress of systemic reform. The purpose of this study was to assess the progress toward achieving equitable systemic reform in five middle schools. A multiple-case study design was used, and qualitative data were collected. Kahle's Equity Metric was used to analyze the schools' progress toward achieving equitable systemic reform of mathematics and science. Two results occurred: Various equity issues were identified in the five case studies, and the metric proved efficacious in identifying barriers to or facilitators of equitable reform in the schools. Overall, the study illustrates how schools might assess their commitments to providing high-quality science and mathematics education to all students.

  12. NIST/ASME Steam Properties Database

    National Institute of Standards and Technology Data Gateway

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  13. K-65-12.8 condensing steam turbine

    NASA Astrophysics Data System (ADS)

    Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.

    2016-11-01

    A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.

  14. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    NASA Astrophysics Data System (ADS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  15. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Deutschmann, Olaf

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.

  16. Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form

    DOE PAGES

    Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; ...

    2015-12-31

    We proposed sodalites as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. We produced two samples made using a steam reformer samples using nonradioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of themore » non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 C) 9 and 40 C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. Moreover, the similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.« less

  17. Fixation of compressive deformation in wood by pre-steaming

    Treesearch

    M. Inoue; N. Sekino; T. Morooka; R.M. Rowell; M. Norimoto

    2008-01-01

    Wood block specimens pre-steamed at 120-220 °C for 5-20 min were compressed in the radial direction. The recovery of set decreased with increasing pre-steaming temperature and time. The reduction of set recovery correlated with the amount of weight loss in steaming irrespective of pre-steaming temperature and time. The weight loss for the highest level of...

  18. Let's make a deal: trading malpractice reform for health reform.

    PubMed

    Sage, William M; Hyman, David A

    2014-01-01

    Physician leadership is required to improve the efficiency and reliability of the US health care system, but many physicians remain lukewarm about the changes needed to attain these goals. Malpractice liability-a sore spot for decades-may exacerbate physician resistance. The politics of malpractice have become so lawyer-centric that recognizing the availability of broader gains from trade in tort reform is an important insight for health policy makers. To obtain relief from malpractice liability, physicians may be willing to accept other policy changes that more directly improve access to care and reduce costs. For example, the American Medical Association might broker an agreement between health reform proponents and physicians to enact federal legislation that limits malpractice liability and simultaneously restructures fee-for-service payment, heightens transparency regarding the quality and cost of health care services, and expands practice privileges for other health professionals. There are also reasons to believe that tort reform can make ongoing health care delivery reforms work better, in addition to buttressing health reform efforts that might otherwise fail politically.

  19. Optical wet steam monitor

    DOEpatents

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  20. Natural gas-assisted steam electrolyzer

    DOEpatents

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  1. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    NASA Astrophysics Data System (ADS)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  2. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Carney, Theodore Clayton; Fichtl, Christopher Allen

    The dynamic compaction response of CeO 2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO 2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  3. Social reform versus education reform: university nursing education in Canada, 1919-1960.

    PubMed

    Baumgart, A J; Kirkwood, R

    1990-05-01

    Nurses' struggle to attain educational parity with other professional groups is closely aligned with the struggle of women for social equality within Canadian institutions. The attempts of nursing educators to shift their perspective from social reform to educational reform and to develop nursing scholarship has been restricted by the cultural views of women. Consequently, nurses' gains in attaining higher education have been realized by reforms in social and health care policies thought suitable for women. With advancement in university nursing education closely tied to social reform, nurses were not expected, nor did they expect, to pursue scholarly enquiry or develop research endeavours. This paper suggests that the feminist movement offers nurses a social and psychological basis from which to complete the educational reform of nursing.

  4. Apparatus and method for acoustic monitoring of steam quality and flow

    DOEpatents

    Sinha, Dipen N.; Pantea, Cristian

    2016-09-13

    An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.

  5. Modeling and Simulation of U-tube Steam Generator

    NASA Astrophysics Data System (ADS)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  6. [Effectiveness and limits of the cleaners steam in hospitals].

    PubMed

    Meunier, O; Meistermann, C; Schwebel, A

    2009-05-01

    We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.

  7. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  8. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Reforming process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsche, R.T.; Pope, G.N.

    A process for reforming a naphtha feedstock is disclosed. The reforming process is effected at reforming conditions in contact with a catalyst comprising a platinum group metal component and a group iv-a metal component composited with an alumina support wherein said support is prepared by admixing an alpha alumina monohydrate with an aqueous ammoniacal solution having a ph of at least about 7.5 to form a stable suspension. A salt of a strong acid, e.g., aluminum nitrate, is commingled with the suspension to form an extrudable paste or dough. On extrusion, the extrudate is dried and calcined to form saidmore » alumina support.« less

  10. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  11. US PWR steam generator management: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welty, C.S. Jr.

    1997-02-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less

  12. Fast fluidized bed steam generator

    DOEpatents

    Bryers, Richard W.; Taylor, Thomas E.

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  13. 46 CFR 50.05-20 - Steam-propelled motorboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-propelled motorboats. 50.05-20 Section 50.05-20... Application § 50.05-20 Steam-propelled motorboats. (a) The requirements covering design of the propelling... than 40 feet in length and which are propelled by machinery driven by steam shall be in accordance with...

  14. Chemistry of Earth's Putative Steam Atmosphere

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Schaefer, L.

    2007-12-01

    The concept of a steam atmosphere generated by impact devolatilization of planetesimals accreted during Earth's formation is over 20 years old (Matsui and Abe, 1986; Lange and Ahrens, 1982). Surprisingly, with the possible exception of a few qualitative remarks, no one has critically assessed this scenario. We use thermochemical equilibrium and, where relevant, thermochemical kinetic calculations to model the chemistry of the "steam" atmosphere produced by impact volatilization of different types of accreting material. We present results for our nominal conditions (1500 K, total P = 100 bar). We also studied the effects of variable temperature and total pressure. The composition of the accreting material is modeled using average compositions of the Orgueil CI chondrite, the Murchison CM2 chondrite, the Allende CV3 chondrite, average ordinary (H, L, LL) chondrites, and average enstatite (EH, EL) chondrites. The major gases released from CI and CM chondritic material are H2O, CO2, H2, H2S, CO, CH4, and SO2 in decreasing order of abundance. About 10% of the atmosphere is CO2. The major gases released from CV chondritic material are CO2, H2O, CO, H2, and SO2 in decreasing order of abundance. About 20% of the total atmosphere is steam. The major gases released from average ordinary chondritic material are H2, CO, H2O, CO2, CH4, H2S, and N2 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with steam being about 10% of the total atmosphere. The major gases released from EH chondritic material are H2, CO, H2O, CO2, N2, and CH4 in decreasing order of abundance. The "steam" atmosphere is predominantly H2 + CO with about 10% of the total atmosphere as steam. This work was supported by the NASA Astrobiology and Origins Programs.

  15. Optical wet steam monitor

    DOEpatents

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  16. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution. Copyright © 2012 Wiley Periodicals, Inc.

  17. Non-Compact Cardiomyopathy or Ventricular Non-Compact Syndrome?

    PubMed Central

    2014-01-01

    Ventricular myocardial non-compaction has been recognized and defined as a genetic cardiomyopathy by American Heart Association since 2006. The argument on the nomenclature and pathogenesis of this kind of ventricular myocardial non-compaction characterized by regional ventricular wall thickening and deep trabecular recesses often complicated with chronic heart failure, arrhythmia and thromboembolism and usually overlap the genetics and phenotypes of other kind of genetic or mixed cardiomyopathy still exist. The proper classification and correct nomenclature of the non-compact ventricles will contribute to the precisely and completely understanding of etiology and its related patho-physiological mechanism for a better risk stratification and more personalized therapy of the disease individually. All of the genetic heterogeneity and phenotypical overlap and the variety in histopathological, electromechanical and clinical presentation indicates that some of the cardiomyopathies might just be the different consequence of myocardial development variations related to gene mutation and phenotype of one or group genes induced by the interacted and disturbed process of gene modulation at different links of gene function expression and some other etiologies. This review aims to establish a new concept of "ventricular non-compaction syndrome" based on the demonstration of the current findings of etiology, epidemiology, histopathology and echocardiography related to the disorder of ventricular myocardial compaction and myocardial electromechanical function development. PMID:25580189

  18. Educational Reform in Spain.

    ERIC Educational Resources Information Center

    Marchesi, Alvaro

    1992-01-01

    Reviews the Spanish educational system, focusing on reforms enacted in 1990. Discusses reform movement issues, including quality, curricular control, curricular homogeneity versus diversity, and influence of European context. Describes reform movement aims (i.e., extending basic education and modifying educational levels to improve quality) and…

  19. RETRAN analysis of multiple steam generator blow down caused by an auxiliary feedwater steam-line break

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltus, M.A.

    1987-01-01

    Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less

  20. Atuarfitsialak: Greenland's Cultural Compatible Reform

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  1. Efficiency of a hybrid-type plasma-assisted fuel reformation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveev, I.B.; Serbin, S.I.; Lux, S.M.

    2008-12-15

    The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existingmore » and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.« less

  2. In Situ Steam Fracture Experiments.

    DTIC Science & Technology

    1984-12-31

    pressure and tempera- ture data for use in validation of multi-phase flow models describing - condensation/vaporization, heat-transfer, and fluid/vapor...provide an excellent base for development and/or verification of steam-fracture models for low- permeability materials where heat transfer is significant...representative of post-shot cavity conditions. Steam flow tests have been performed at S-CUBED in a 3-meter long by 20-centimeter diameter sand column. In

  3. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Smoke box, steam pipes and pressure parts. 230.63... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and...

  4. Review of surface steam sterilization for validation purposes.

    PubMed

    van Doornmalen, Joost; Kopinga, Klaas

    2008-03-01

    Sterilization is an essential step in the process of producing sterile medical devices. To guarantee sterility, the process of sterilization must be validated. Because there is no direct way to measure sterility, the techniques applied to validate the sterilization process are based on statistical principles. Steam sterilization is the most frequently applied sterilization method worldwide and can be validated either by indicators (chemical or biological) or physical measurements. The steam sterilization conditions are described in the literature. Starting from these conditions, criteria for the validation of steam sterilization are derived and can be described in terms of physical parameters. Physical validation of steam sterilization appears to be an adequate and efficient validation method that could be considered as an alternative for indicator validation. Moreover, physical validation can be used for effective troubleshooting in steam sterilizing processes.

  5. Mandate-Based Health Reform and the Labor Market: Evidence from the Massachusetts Reform*

    PubMed Central

    Kolstad, Jonathan T.; Kowalski, Amanda E.

    2016-01-01

    We model the labor market impact of the key provisions of the national and Massachusetts “mandate-based” health reforms: individual mandates, employer mandates, and subsidies. We characterize the compensating differential for employer-sponsored health insurance (ESHI) and the welfare impact of reform in terms of “sufficient statistics.” We compare welfare under mandate-based reform to welfare in a counterfactual world where individuals do not value ESHI. Relying on the Massachusetts reform, we find that jobs with ESHI pay $2,812 less annually, somewhat less than the cost of ESHI to employers. Accordingly, the deadweight loss of mandate-based health reform was approximately 8 percent of its potential size. PMID:27037897

  6. Multifuel industrial steam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesko, J.E.

    An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less

  7. Project DEEP STEAM

    NASA Astrophysics Data System (ADS)

    Aeschliman, D. P.; Clay, R. G.; Donaldson, A. B.; Eisenhawer, S. W.; Fox, R. L.; Johnson, D. R.; Mulac, A. J.

    1982-01-01

    The objective of Project DEEP STEAM is to develop the technology to economically produce heavy oils from deep reservoirs. The tasks included in this project are the development of thermally efficient delivery systems and downhole steam generation systems. During the period January 1-March 31, 1981, effort has continued on a low pressure combustion downhole generator (Rocketdyne), and on two high pressure designs (Foster-Miller Associates, Sandia National Laboratories). The Sandia design was prepared for deployment in the Wilmington Field at Long Beach, California. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. Initial bare string field data are reported on the insulated tubular test at Lloydminster, Saskatchewan, Canada.

  8. Education Reforms: Lessons from History

    ERIC Educational Resources Information Center

    Hunt, Thomas C.

    2005-01-01

    Policy makers in education have long embraced reform. Unfortunately, education reforms have consistently been plagued by the reformers' lack of knowledge and appreciation of the history of education. Accordingly, the latest reform, touted as a panacea, meets with failure, and the search for the magic elixir begins anew. The ahistorical nature of…

  9. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    PubMed

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  10. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    PubMed Central

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  11. Spiral inlets for steam turbines

    NASA Astrophysics Data System (ADS)

    Škach, Radek; Uher, Jan

    2017-09-01

    This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.

  12. Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang

    A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.

  13. Industrial steam systems and the energy-water nexus.

    PubMed

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  14. Laboratory investigations of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.; O'Neal, II

    1983-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used in modeling pressure transient behavior in vapor dominated geothermal systems. Transient, superheated steam flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure and then making a step increase in pressure at one end of the sample while monitoring the pressure transient breakthrough at the other end. It was found in experiments run at 100°, 125°, and 146°C that the time required for steam pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10–25 times longer than predicted by conventional superheated steam flow theory. It is hypothesized that the delay in the steam pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10°C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. This function was assumed to be an equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved.

  15. Measuring Reform Practices in Science and Mathematics Classrooms: The Reformed Teaching Observation Protocol.

    ERIC Educational Resources Information Center

    Sawada, Daiyo; Piburn, Michael D.; Judson, Eugene; Turley, Jeff; Falconer, Kathleen; Benford, Russell; Bloom, Irene

    2002-01-01

    Describes the Reformed Teaching Observation Protocol (RTOP), a 25-item classroom observation protocol that is standards-based, inquiry-oriented, and student-centered. Provides the definition for reform and the basis for evaluation of the Arizona Collaborative for Excellence in the Preparation of Teachers (ACEPT). Concludes that reform, as defined…

  16. Steam distribution and energy delivery optimization using wireless sensors

    NASA Astrophysics Data System (ADS)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  17. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  18. Professionally responsible malpractice reform.

    PubMed

    Brody, Howard; Hermer, Laura D

    2011-07-01

    Medical malpractice reform is both necessary and desirable, yet certain types of reform are clearly preferable to others. We argue that "traditional" tort reform remedies such as stringent damage caps not only fail to address the root causes of negligence and the adverse effects that fear of suit can have on physicians, but also fail to address the needs of patients. Physicians ought to view themselves as professionals who are dedicated to putting patients' interests ahead of their own. Professionally responsible malpractice reform should therefore be at least as patient-centered as it is physician-centered. Examples of more professionally responsible malpractice reform exist where institutions take a pro-active approach to identification, investigation, and remediation of possible malpractice. Such programs should be implemented more generally, and state laws enacted to facilitate them.

  19. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time.

    PubMed

    Wu, Li; Wang, Bujun

    2016-07-01

    We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Secondary School Reform and Technology Planning: Lessons Learned from a Ten Year School Reform Initiative

    ERIC Educational Resources Information Center

    Bain, Alan

    2004-01-01

    The lessons learned from a decade long, site based school reform project are used to examine the relationship between technology integration and school reform. The nature of the reforms will be described along with implications and conclusions for technology planning. Six key school reform takeaways will be shared that are necessary to build a…

  1. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO 2(111) catalysts: An in situ study of C–C and O–H bond scission

    DOE PAGES

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; ...

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO 2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni 0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeO x and the interface provide an ensemble effect in the active chemistry that leads to H 2. Ni 0 is the active phase leading tomore » both C–C and C–H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeO x is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeO x is a Ce 3+(OH) x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni 0 and Ce 3+(OH) x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.« less

  2. Reforming Reforms: Changing Incentives in Education Finance in Vermont

    ERIC Educational Resources Information Center

    Schmidt, Stephen J.; Scott, Karen

    2006-01-01

    In 1997, Vermont passed Act 60, which reformed its education finance system to achieve greater equality of spending. The reform encouraged wealthy towns to reduce spending; it was politically unpopular and was replaced, in 2004, by Act 68. We analyze the spending incentives created by the two acts and estimate the effects the change will have on…

  3. Tidal Waves of School Reform: Types of Reforms, Government Controls, and Community Advocates.

    ERIC Educational Resources Information Center

    Mitchell, Samuel

    The more revolutionary, drastic education reform efforts are usually supported by new governmental legislation. This book offers three case studies of drastic reform carried out in Kentucky, Alberta, and Chicago. The reforms can be visualized in terms of how close they are to the alternative aims of expert guidance, social activism, and an…

  4. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  5. Steam generator for liquid metal fast breeder reactor

    DOEpatents

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  6. Antioxidants from steamed used tea leaves and their reaction behavior.

    PubMed

    Nomizu, Kayoko; Hashida, Koh; Makino, Rei; Ohara, Seiji

    2008-07-01

    The most efficient steaming conditions below 200 degrees C for extracting antioxidants from used tea leaves and their reaction behavior during the steaming treatment were investigated. The antioxidative activity of the steamed extracts increased with increasing steaming temperature, and the yield of the ethyl acetate extract fraction from each steamed extract showing the greatest antioxidative activity also increased. Caffeine, (-)-catechin, (-)-epicatechin, (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin gallate, (-)-epicatechin gallate, (-)-gallocatechin gallate, (-)-epigallocatechin gallate and gallic acid were identified from the ethyl acetate extract fraction. Quantitative analyses demonstrated that the catechins with a 2,3-cis configuration decreased with increasing steaming temperature, whereas the corresponding epimers at the C-2 position increased. Each pair of epimers showed similar antioxidative activity to each other, indicating that the epimerization reaction did not contribute to the improved antioxidative activity. It is concluded from these results that the improvement in antioxidative activity at higher steaming temperatures was due to the increased yield of catechins and other antioxidants.

  7. Common morality and moral reform.

    PubMed

    Wallace, K A

    2009-01-01

    The idea of moral reform requires that morality be more than a description of what people do value, for there has to be some measure against which to assess progress. Otherwise, any change is not reform, but simply difference. Therefore, I discuss moral reform in relation to two prescriptive approaches to common morality, which I distinguish as the foundational and the pragmatic. A foundational approach to common morality (e.g., Bernard Gert's) suggests that there is no reform of morality, but of beliefs, values, customs, and practices so as to conform with an unchanging, foundational morality. If, however, there were revision in its foundation (e.g., in rationality), then reform in morality itself would be possible. On a pragmatic view, on the other hand, common morality is relative to human flourishing, and its justification consists in its effectiveness in promoting flourishing. Morality is dependent on what in fact does promote human flourishing and therefore, could be reformed. However, a pragmatic approach, which appears more open to the possibility of moral reform, would need a more robust account of norms by which reform is measured.

  8. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  9. Factors affecting science reform: Bridging the gap between reform initiatives and teaching practices

    NASA Astrophysics Data System (ADS)

    Pensak, Karl John

    In response to the perceived deficiencies in science education today, and to the expressed need for research into the culture of schools (due primarily to the failure of many science reforms in the past), this study used a broad based approach to study the gap between science education research and science education practice. This study identified 47 factors that may encourage or inhibit science curriculum reform. A survey was conducted to determine which factors were perceived to be important by local and national K-12 classroom teachers, science supervisors/coordinators, and college/university professors. Continual staff development (scheduled as part of teachers' work day/week/month), funding (for long-term staff development, teacher training and support, science laboratory facilities and materials), teacher motivation and "ownership" of the reform, the need for collaborative opportunities for classroom teachers, teachers' college preparation, textbook reform, community support, and reform initiatives that are "in tune" with assessment, are major factors identified as having a substantial affect on the successful adoption, implementation, and institutionalization of science reforms.

  10. Subscale Diffuser Testing, E-3 produces first steam

    NASA Image and Video Library

    2007-10-25

    Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.

  11. Subscale Diffuser Testing, E-3 produces first steam

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Phase 2 of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at Stennis Space Center reached a milestone Oct. 25 when the E-3 Test Facility produced superheated (500+ degrees) steam for approximately 3 seconds at more than 400 psi. The test team, led by Barry Robinson of NASA's Test Projects Office, followed that success with further tests to lengthen the duration of steam production. On Nov. 1, they were able to maintain a consistent pressure and temperature of steam for 60 seconds. In December, the team began Phase 3 of the testing, providing data for the design and procurement to build the full-scale version of the steam diffuser for SSC's A-3 Test Stand.

  12. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  13. CHARACTERIZATION OF FRACTURED BEDROCK FOR STEAM INJECTION

    EPA Science Inventory

    The most difficult setting in which to conduct groundwater remediation is that where chlorinated solvents have penetrated fractured bedrock. To demonstrate the potential viability of steam injection as a means of groundwater clean-up in this type of environment, steam will be in...

  14. ENGINEERING BULLETIN: IN SITU STEAM EXTRACTION TREATMENT

    EPA Science Inventory

    In situ steam extraction removes volatile and semivolatile hazardous contaminants from soil and groundwater without excavation of the hazardous waste. Waste constituents are removed in situ by the technology and are not actually treated. The use of steam enhances the stripping of...

  15. Alkali-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1986-09-02

    This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less

  16. 3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ORIGINAL THREE STEAM PLANT BOILERS ALONG WEST SIDE OF STEAM PLANT BUILDING, FROM SOUTHWEST. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  17. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive...

  18. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  19. Performance of equipment used in high-pressure steam floods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, M.E.; Bramley, B.G.

    1966-01-01

    Recovery of low-gravity, high-viscosity crude oil from relatively shallow reservoirs is becoming feasible through the application of steam flooding. Pan American Petroleum Corp. initiated a pilot steam flood with a 5.36 million btu/hr, 1,500-psi steam generator at the Winkleman Dome Field in West Central Wyoming in March, 1964. After 1 yr of operation, this steamer was replaced with a larger unit capable of 12 million-btu/hr, 2,500-psi steam generators, one at the Salt Creek Shannon Field and another at the Fourbear Field, both in Wyoming. This paper discusses the equipment used in high-pressure steam flooding and reviews some of the problemsmore » that have been encountered in the application of the equipment. Where determined, a suggested solution is presented.« less

  20. Steam vaporizers: A danger for paediatric burns.

    PubMed

    Lonie, Sarah; Baker, Paul; Teixeira, Rodrigo

    2016-12-01

    Steam vaporizers are used to humidify air in dry environments. They are marketed to moisten children's airway secretions and thus to help relieve symptoms associated with upper respiratory tract infections. Unfortunately the steam emitted from the unit can also pose a significant risk of burns to children. Our study aimed to ascertain patterns of injury and treatment outcomes from steam burns resulting from these devices. Potential preventative measures are discussed. Children who had sustained vaporizer scald burns were identified at the outpatient burns clinic over a 10-month period (November 2014-August 2015). Medical records were reviewed retrospectively and data collected on pattern of injury, management and outcomes. Ten children were treated for vaporizer steam burns over the study period. The mean age was 1.6 years and 8 (80%) patients were male. Operative intervention was undergone in 5 (50%) cases; four acutely and one as a secondary reconstructive procedure. Hand burns accounted for 8 (80%) of cases. Steam vaporizers can cause significant burns in the paediatric population. Toddlers were most at risk, frequently sustaining hand burns that underwent skin grafting. Greater public awareness of the danger is indicated and measures to prevent such injuries should be addressed by appropriate authorities. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  1. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  2. Recent Developments in Superheated Steam Processing of Foods-A Review.

    PubMed

    Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh

    2016-10-02

    Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.

  3. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  4. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  5. Gas turbine row #1 steam cooled vane

    DOEpatents

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  6. Reforming Districts: How Districts Support School Reform. A Research Report. Document R-03-6

    ERIC Educational Resources Information Center

    McLaughlin, Milbrey; Talbert, Joan

    2003-01-01

    School districts have participated in multiple rounds of education reform activity in the past few decades, yet few have made headway on system-wide school improvement. This paper addresses the questions of whether districts matter for school reform progress and what successful "reforming" districts do to achieve system change and to…

  7. Highly Flexible and Efficient Solar Steam Generation Device.

    PubMed

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 49 CFR 230.106 - Steam locomotive frame.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section 230.106... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and...

  9. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  10. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  11. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  12. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  13. 21 CFR 890.5250 - Moist steam cabinet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Moist steam cabinet. 890.5250 Section 890.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam...

  14. Health reform through tax reform: a primer.

    PubMed

    Furman, Jason

    2008-01-01

    Tax incentives for employer-sponsored insurance and other medical spending cost about $200 billion annually and have pervasive effects on coverage and costs. This paper surveys a range of proposals to reform health care, either by adding new tax incentives or by limiting or replacing the existing tax incentives. Replacing the current tax preference for insurance with an income-related, refundable tax credit has the potential to expand coverage and reduce inefficient spending at no net federal cost. But such an approach by itself would entail substantial risks, so complementary reforms to the insurance market are essential to ensure success.

  15. Reform and Non-Reform in Education: The Political Costs and Benefits of Reform Policies in France and Japan.

    ERIC Educational Resources Information Center

    Weiler, Hans N.; Miyake, Eriko

    This paper examines how the perception and anticipation of political costs and benefits affects decisions about whether and how plans for educational reforms are to be pursued. Two case studies of major educational reform attempts are described: France and Japan. The study analyzes the two societies' underlying dilemmas, which manifest themselves…

  16. Optimization of steam-vortex plasma-torch start-up

    NASA Astrophysics Data System (ADS)

    Mikhailov, B. I.

    2011-12-01

    We propose a new optimal method of steam-vortex plasma-torches start-up; this method completely prevents the danger of water steam condensation in the arc chamber and all undesirable consequences of it.

  17. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  18. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  19. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  20. 49 CFR 230.63 - Smoke box, steam pipes and pressure parts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Smoke box, steam pipes and pressure parts. 230.63... Appurtenances Steam Pipes § 230.63 Smoke box, steam pipes and pressure parts. The smoke box, steam pipes and... individual conducting the inspection must enter the smoke box to conduct the inspection, looking for signs of...

  1. Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1995-12-31

    This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less

  2. 49 CFR 230.12 - Movement of non-complying steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying steam locomotives. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS General General Inspection Requirements § 230.12 Movement of non-complying steam locomotives. (a) General...

  3. Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam

    NASA Astrophysics Data System (ADS)

    Kalitko, V. A.

    2010-03-01

    On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.

  4. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  5. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  6. Compact propane fuel processor for auxiliary power unit application

    NASA Astrophysics Data System (ADS)

    Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.

    With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.

  7. Health care reform: clarifying the concepts.

    PubMed

    Miller, A M

    1993-01-01

    Despite agreement about problems with the health care system, there is disagreement about the remedy. Like most health care reform debates, this article focuses on financing methods rather than service delivery. Reform strategies are intentionally oversimplified into four categories: employer-based or "play or pay"; single-payer and modifications, such as expanding Medicaid or Medicare; market competition; and managed competition, which appears to be favored by the Clinton administration. Cost-control mechanisms and insurance reforms are applicable to all four financing methods. Reform is inevitable. The challenge for nurses is to understand reform issues and then influence policymakers to initiate reforms that make essential medical and preventive services universally available.

  8. 22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. STEAM PLANT TURBINE DECK FROM SOUTH END OF BUILDING, SHOWING TOPS OF DIESEL ENGINES AT FAR NORTH END, PRIOR TO INSTALLATION OF STEAM UNIT NO. 4. Ca. 1948 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  9. 49 CFR 230.37 - Steam test following repairs or alterations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam test following repairs or alterations. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.37 Steam test following repairs or alterations...

  10. Production of superheated steam from vapor-dominated geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, A.H.; White, D.E.

    1973-01-01

    Vapor-dominated geothermal systems such as Larderello, Italy, The Geysers, California, and Matsukawa, Japan yield dry or superheated steam when exploited. Models for these systems are examined along with production data and the thermodynamic properties of water, steam and rock. It is concluded that these systems initially consist of a water and steam filled reservoir, a water-saturated cap rock, and a water or brine-saturated deep reservoir below a water table. Most liquid water in all parts of the system is relatively immobilized in small pores and crevices; steam dominates the large fractures and voids of the reservoir and is the continuous, pressure-controlling phase. With production, the pressure is lowered and the liquid water boils, causing massive transfer of heat from the rock and its eventual drying. Passage of steam through already dried rock produces superheating. After an initial vaporization of liquid water in the reservoir, the decrease in pressure produces increased boiling below the deep water table. With heavy exploitation, boiling extends deeper into hotter rock and the temperature of the steam increases. This model explains most features of the published production behavior of these systems and can be used to guide exploitation policies. ?? 1973.

  11. Solar process steam for a pharmaceutical company in Jordan

    NASA Astrophysics Data System (ADS)

    Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.

    2016-05-01

    This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.

  12. Letters to a Young Education Reformer

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2017-01-01

    In "Letters to a Young Education Reformer," Frederick M. Hess distills knowledge from twenty-five years of working in and around school reform. Inspired by his conversations with young, would-be reformers who are passionate about transforming education, the book offers a window into Hess's thinking about what education reform is and…

  13. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.

    PubMed

    Wu, Sy-Juen; Sun, Changquan 'Calvin'

    2007-05-01

    Pharmaceutical granules prepared by roller compaction often exhibit significant loss of tabletability, that is, reduction in tensile strength, when compared to virgin powder. This may be attributed to granule size enlargement for highly plastic materials, for example, microcrystalline cellulose. The sensitivity of powder compaction properties on granule size variations impacts the robustness of the dry granulation process. We hypothesize that such sensitivity of compaction properties on granule size is minimum for brittle materials because extensive fracture of brittle granules during compaction minimizes differences in initial granule size. We tested the hypothesis using three common brittle excipients. Results show that the fine (44-106 microm), medium (106-250 microm), and coarse (250-500 microm) granules exhibit essentially identical tabletability below a certain critical compaction pressure, 100, 140, and 100 MPa for spray-dried lactose monohydrate, anhydrous dibasic calcium phosphate, and mannitol, respectively. Above respective critical pressure, tabletability lines diverge with smaller granules exhibiting slightly higher tablet tensile strength at identical compaction conditions. Overall, tabletability of brittle granules is insensitive to granule size enlargement. The results provide a scientific basis to the common practice of incorporating brittle filler to a typical tablet formulation processed by roller compaction granulation. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Women, Class, and School Reform.

    ERIC Educational Resources Information Center

    Mickelson, Roslyn Arlin; Wadsworth, Angela L.

    1996-01-01

    Analyzes ordinary women's role in shaping school reform in their community, highlighting interplay of class conflict, regionalism, and gender roles in reform efforts. The women protesting the Odyssey Project framed the debate as a juncture between a national, elitist reform movement and a local grassroots countermovement protecting children,…

  15. Prospects for Health Care Reform.

    ERIC Educational Resources Information Center

    Kastner, Theodore

    1992-01-01

    This editorial reviews areas of health care reform including managed health care, diagnosis-related groups, and the Resource-Based Relative Value Scale for physician services. Relevance of such reforms to people with developmental disabilities is considered. Much needed insurance reform is not thought to be likely, however. (DB)

  16. The Effects of Educational Reform

    ERIC Educational Resources Information Center

    Vasquez-Martinez, Claudio-Rafael; Giron, Graciela; De-La-Luz-Arellano, Ivan; Ayon-Bañuelos, Antonio

    2013-01-01

    Educational reform implies questions of social production and of state regulation that are the key words in educational reform, education and educational policies. These reforms are always on the political agenda of countries and involve international organisms, since education is a vehicle of development for social progress. A point of departure…

  17. Methods of increasing thermal efficiency of steam and gas turbine plants

    NASA Astrophysics Data System (ADS)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  18. Reforming Our Expectations about Juvenile Justice

    ERIC Educational Resources Information Center

    Rodriguez, Pamela F.; Baille, Daphne M.

    2010-01-01

    Typing the term "juvenile justice reform" into a Google[TM] search will result in 60 pages of entries. But what is meant by juvenile justice reform? What does it look like? How will one know when it is achieved? This article defines juvenile justice reform, discusses the principles of effective reform, and describes the practice of…

  19. 2. Credit BG. Looking west at east facade of Steam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA

  20. Surgical energy device using steam jet for robotic assisted surgery.

    PubMed

    Yoshiki, Hitoshi; Tadano, Kotaro; Ban, Daisuke; Ohuchi, Katsuhiro; Tanabe, Minoru; Kawashima, Kenji

    2015-01-01

    In robotic assisted surgery, the carbonization and the adherence of coagulated tissues caused by surgical energy devices are problems. We propose a surgical energy device using a steam jet to solve the problems. The device applies a steam jet and performs coagulation and hemostasis. The exposed tissue is heated quickly with latent heat of the steam. The carbonization and the adherence of the tissue can be avoided. We prototyped a steam jet coagulator to prove the concept. The coagulator was mounted on the laparoscopic surgical robot. The effectiveness of the coagulation and hemostasis using steam was confirmed by the in vitro experiment on the chicken's liver and the in vivo experiments on the pig's spleen under the robotic assisted laparoscopic environment.

  1. Steam dispatching control system demonstration at Fort Benjamin Harrison. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diks, C.L.; Moshage, R.E.; Lin, M.C.

    1993-07-01

    Currently most Army Central steam heating systems operate by maintaining a constant steam pressure regardless of actual steam demand. This method offers some operational convenience, but is often the cause of significant energy losses. Researchers at the U.S. Army Construction Engineering Research Laboratories (USACERL) have investigated the Steam Dispatching Control System (SDCS), a control system that lowers supply steam pressure-and therefore steam temperature-to slightly above the amount needed to meet the steam demand. The lower Steam temperature and reduction in steam loss (from leaks and faulty traps) result in lower heat losses and higher energy savings. Limiting steam pressure canmore » diminish the amount of excess heat loss in the distribution system while still meeting the demand. The Army's Facilities Engineering Applications Program (FEAP) chose Fort Benjamin Harrison, IN, as the Army demonstration site for SDCS. Researchers found that use of SDCS is technically and economically viable improvement over current operating procedures. Analysis based on demonstration results show that the simple payback for SDCS is less than 1 year. The results of this demonstration are generally applicable to installations with a large central heating plant and a substantial steam distribution system. Findings, indicate that energy savings form SDCS are significant regardless of what type of fuel powers the boiler. The authors note that, during the initial evaluation of a potential SDCS application, attention must be paid to the condensate return to ensure that it will operate properly. Fort Benjamin Harrison, IN, Steam Dispatching Control System(SDCS), Central heating plants, energy conservation.« less

  2. Trona-enhanced steam foam oil recovery process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, H.C.

    1988-03-01

    In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less

  3. Bore tube assembly for steam cooling a turbine rotor

    DOEpatents

    DeStefano, Thomas Daniel; Wilson, Ian David

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  4. Steam sterilisation's energy and water footprint.

    PubMed

    McGain, Forbes; Moore, Graham; Black, Jim

    2017-03-01

    Objective The aim of the present study was to quantify hospital steam steriliser resource consumption to provide baseline environmental data and identify possible efficiency gains. We sought to find the amount of steriliser electricity and water used for active cycles and for idling (standby), and the relationship between the electricity and water consumption and the mass and type of items sterilised. Methods We logged a hospital steam steriliser's electricity and water meters every 5min for up to 1 year. We obtained details of all active cycles (standard 134°C and accessory or 'test' cycles), recording item masses and types. Relationships were investigated for both the weight and type of items sterilised with electricity and water consumption. Results Over 304 days there were 2173 active cycles, including 1343 standard 134°C cycles that had an average load mass of 21.2kg, with 32% of cycles <15kg. Electricity used for active cycles was 32652kWh (60% of total), whereas the water used was 1243495L (79%). Standby used 21457kWh (40%) electricity and 329200L (21%) water. Total electricity and water consumption per mass sterilised was 1.9kWhkg -1 and 58Lkg -1 , respectively. The linear regression model predicting electricity use was: kWh=15.7+ 0.14×mass (in kg; R 2 =0.58, P<0.01). Models for water and item type were poor. Electricity and water use fell from 3kWhkg -1 and 200Lkg -1 , respectively, for 5-kg loads to 0.5kWhkg -1 and 20Lkg -1 , respectively, for 40-kg loads. Conclusions Considerable electricity and water use occurred during standby, load mass was only moderately predictive of electricity consumption and light loads were common yet inefficient. The findings of the present study are a baseline for steam sterilisation's environmental footprint and identify areas to improve efficiencies. What is known about the topic? There is increasing interest in the environmental effects of healthcare. Life cycle assessment ('cradle to grave') provides a scientific

  5. Modifications of steam condensation model implemented in commercial solver

    NASA Astrophysics Data System (ADS)

    Sova, Libor; Jun, Gukchol; ŠÅ¥astný, Miroslav

    2017-09-01

    Nucleation theory and droplet grow theory and methods how they are incorporated into numerical solvers are crucial factors for proper wet steam modelling. Unfortunately, they are still covered by cloud of uncertainty and therefore some calibration of these models according to reliable experimental results is important for practical analyses of steam turbines. This article demonstrates how is possible to calibrate wet steam model incorporated into commercial solver ANSYS CFX.

  6. Steam Oxidation Testing in the Severe Accident Test Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pint, Bruce A.

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative wouldmore » significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.« less

  7. 49 CFR 231.17 - Specifications common to all steam locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Specifications common to all steam locomotives... Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required on...) Locomotives having headlights which can not be safely and conveniently reached from pilot-beam or steam chests...

  8. Laboratory investigations of the physics of steam flow in a porous medium

    USGS Publications Warehouse

    Herkelrath, W.N.; Moench, A.F.

    1982-01-01

    Experiments were carried out in the laboratory to test a theory of transient flow of pure steam in a uniform porous medium. This theory is used extensively in modeling pressure-transient behavior in vapor-dominated geothermal systems. Transient, superheated steam-flow experiments were run by bringing a cylinder of porous material to a uniform initial pressure, and then making a step increase in pressure at one end of the sample, while monitoring the pressure-transient breakthrough at the other end. It was found in experiments run at 100?, 125?, and 146?C that the time required for steam-pressure transients to propagate through an unconsolidated material containing sand, silt, and clay was 10 to 25 times longer than predicted by theory. It is hypothesized that the delay in the steam-pressure transient was caused by adsorption of steam in the porous sample. In order to account for steam adsorption, a sink term was included in the conservation of mass equation. In addition, energy transfer in the system has to be considered because latent heat is released when steam adsorption occurs, increasing the sample temperature by as much as 10?C. Finally, it was recognized that the steam pressure was a function of both the temperature and the amount of adsorption in the sample. For simplicity, this function was assumed to be in equilibrium adsorption isotherm, which was determined by experiment. By solving the modified mass and energy equations numerically, subject to the empirical adsorption isotherm relationship, excellent theoretical simulation of the experiments was achieved. The experiments support the hypothesis that adsorption of steam can strongly influence steam pressure-transient behavior in porous media; the results suggest that the modified steam-flow theory, which includes steam adsorption terms, should be used in modeling steam flow in vapor-dominated geothermal systems.

  9. 7 CFR 305.23 - Steam sterilization treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE PHYTOSANITARY TREATMENTS Heat Treatments § 305.23 Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period...

  10. Working on reform. How workers' compensation medical care is affected by health care reform.

    PubMed

    Himmelstein, J; Rest, K

    1996-01-01

    The medical component of workers' compensation programs-now costing over $24 billion annually-and the rest of the nation's medical care system are linked. They share the same patients and providers. They provide similar benefits and services. And they struggle over who should pay for what. Clearly, health care reform and restructuring will have a major impact on the operation and expenditures of the workers' compensation system. For a brief period, during the 1994 national health care reform debate, these two systems were part of the same federal policy development and legislative process. With comprehensive health care reform no longer on the horizon, states now are tackling both workers' compensation and medical system reforms on their own. This paper reviews the major issues federal and state policy makers face as they consider reforms affecting the relationship between workers' compensation and traditional health insurance. What is the relationship of the workers' compensation cost crisis to that in general health care? What strategies are being considered by states involved in reforming the medical component of workers compensation? What are the major policy implications of these strategies?

  11. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order,more » also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m 2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is

  12. Examining Students' Opinions about STEAM Activities

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Topsakal, Unsal Umdu

    2017-01-01

    The purpose of this study is to determine the opinions of students about STEAM activities. This qualitative study was conducted on the with 7th grade students (n = 37) who are studying at a public school in Istanbul. A purposeful sampling was used in this study. Nine STEAM activities were used while teaching Force and Energy unit. An evaluation…

  13. Education Reform and Students At Risk. Volume I: Findings and Recommendations. Studies of Education Reform.

    ERIC Educational Resources Information Center

    Rossi, Robert J.; Stringfield, Samuel C.

    Despite the widespread attention given to education reform, no substantial knowledge base has existed for identifying and implementing specific effective reforms. This document, the first of three volumes, presents findings of a study that sought to identify the essential mechanics of effective reforms for students at risk. The study also…

  14. Health care reforms.

    PubMed

    Marušič, Dorjan; Prevolnik Rupel, Valentina

    2016-09-01

    In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country.

  15. STEAM CARRYUNDER MEASUREMENT BY MEANS OF TWO-PHASE PUMP PERFORMANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemi, R.O.; Steamer, A.G.

    1960-10-01

    Pump tests were conducted at the Moss Landing Steam Separation Facility at operating pressures of 600 and 1000 psig to provide a method for determining the rate of steam carryunder. Pump power input and head were measured as functions of water flow and steam flow to the pump suction. The pump tested had a rated flow of 1700 gpm and a rated head of 148 feet. It was found that in this facility, steam carryander can be measured to 0.1% by measuring the recirculating water pump input power and Pump head. (auth)

  16. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cepcek, S.

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  17. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  19. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...

  20. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Roast beef parboiled and steam roasted. 319.81 Section 319.81 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that...