Sample records for compact stellar remnants

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekki, Kenji

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers canmore » have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.« less

  2. G306.3-0.9: A Newly Discovered Young Galactic Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Reynolds, Mark T.; Loi, Syheh T.; Murphy, Tara; Miller, Jon M.; Maitra, Dipankar; Gueltekin, Kayhan; Gehrels, Neil; Kennea, Jamie A.; Siegel, Michael H.; Gelbord, Jonathan; hide

    2013-01-01

    We present X-ray and radio observations of the new Galactic supernova remnant (SNR) G306.3-0.9, recently discovered by Swift. Chandra imaging reveals a complex morphology, dominated by a bright shock. The X-ray spectrum is broadly consistent with a young SNR in the Sedov phase, implying an age of 2500 yr for a distance of 8 kpc, plausibly identifying this as one of the 20 youngest Galactic SNRs. Australia Telescope Compact Array imaging reveals a prominent ridge of radio emission that correlates with the X-ray emission. We find a flux density of 160 mJy at 1 GHz, which is the lowest radio flux recorded for a Galactic SNR to date. The remnant is also detected at 24µm, indicating the presence of irradiated warm dust. The data reveal no compelling evidence for the presence of a compact stellar remnant.

  3. A population of compact elliptical galaxies detected with the Virtual Observatory.

    PubMed

    Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric

    2009-12-04

    Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.

  4. Supernova kicks and dynamics of compact remnants in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Bortolas, Elisa; Mapelli, Michela; Spera, Mario

    2017-08-01

    The Galactic Centre (GC) is a unique place to study the extreme dynamical processes occurring near a supermassive black hole (SMBH). Here, we investigate the role of supernova (SN) explosions occurring in massive binary systems lying in a disc-like structure within the innermost parsec. We use a regularized algorithm to simulate 3 × 104 isolated three-body systems composed of a stellar binary orbiting the SMBH. We start the integration when the primary member undergoes an SN explosion and analyse the impact of SN kicks on the orbits of stars and compact remnants. We find that SN explosions scatter the lighter stars in the pair on completely different orbits, with higher eccentricity and inclination. In contrast, stellar-mass black holes (BHs) and massive stars retain memory of the orbit of their progenitor star. Our results suggest that SN kicks are not sufficient to eject BHs from the GC. We thus predict that all BHs that form in situ in the central parsec of our Galaxy remain in the GC, building up a cluster of dark remnants. In addition, the change of neutron star (NS) orbits induced by SNe may partially account for the observed dearth of NSs in the GC. About 40 per cent of remnants stay bound to the stellar companion after the kick; we expect up to 70 per cent of them might become X-ray binaries through Roche lobe filling. Finally, the eccentricity of some light stars becomes >0.7 as an effect of the SN kick, producing orbits similar to those of the G1 and G2 dusty objects.

  5. MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Fryer, Chris L.

    2012-09-20

    It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 M{sub Sun }. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes (BHs). However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars (NSs) andmore » BHs. The heaviest NSs reach a maximum of two solar masses, while the lightest BHs are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower-mass NSs and heavier BHs. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapse supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 ms) timescale.« less

  6. Very high-resolution observations of compact radio sources in the directions of supernova remnants

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Shaffer, D. B.

    1981-01-01

    Compact radio sources whose positions lie within the outlines of supernova remnants may be the stellar remnants of supernova explosions and, if they are related to the supernova remnants, may be used to explore the nature of any morphological connection between the Galactic and extragalactic radio sources. Three such compact sources, G 127.11+0.54, CL 4, and 2051+433, have been observed at 10.65 GHz with an array of very long baseline interferometers having elements in the USA and West Germany. The radio source 2051+433 was also observed briefly at 5.01 GHz. The measured size of CL 4 at 10.65 GHz is about 0.0005 arcsec and seems to be dominated by the effects of interstellar scattering. No fringes were seen in 2051+433, and results indicate there is no compact component of 2051+433 smaller than 0.001 arcsec radiating at 10.65 GHz above a level of about 50 mJy. The possibility is presented that G 127.11+0.54 is a Galactic object. It is found to consist of two components separated by about 0.002 arcsec and oriented perpendicular to both the radio bridge of the supernova remnant G 127.1+0.5 and the underlying optical image. G 127.11+0.54, if Galactic, lies at the extreme low-luminosity end of an apparent continuum of Galactic and extragalactic compact radio source luminosities.

  7. Shedding light on baryonic dark matter.

    PubMed

    Silk, J

    1991-02-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10(6) to 10(8) solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by non-degenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable x-ray signal associated with dark matter aggregations in galaxy halos and galaxy cluster cores.

  8. Shedding light on baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  9. The Close Stellar Companions to Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico

    2016-03-01

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.

  10. Constraining the number of compact remnants near Sgr A*

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick; Nayakshin, Sergei

    2007-05-01

    Due to dynamical friction stellar mass black holes and neutron stars are expected to form high-density cusps in the inner parsec of our Galaxy. These compact remnants, expected to number around 20000, may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. Here we build a simple but detailed time-dependent model of such emission. The possibility that these accretion flows are radiatively inefficient is taken into account and brings in some uncertainty in the conclusions. Despite this uncertainty, we find that at least several X-ray sources of this nature should be detectable with Chandra at any one time. Turning this issue around, we also ask a question of what current observational constraints might be telling us about the total number of compact remnants. In our `best guess' model, a cusp of ~40000 remnants overpredicts the number of discrete sources and the total X-ray luminosity of the inner parsec, and is hence ruled out. In the most radiatively inefficient scenario that we consider, the radiative efficiency is set to be as small as ɛ = 10-5. In this rather unlikely scenario, a cusp of ~40000 black holes would be allowed by the data, but several individual sources should still be visible. Future observations of the distribution and orbits of the cold ionized gas in the inner parsec of our Galaxy will put tighter constraints on the cusp of compact remnants.

  11. VLBI of supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bartel, N.; Karimi, B.; Bietenholz, M. F.

    2017-04-01

    Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.

  12. Predicting gravitational lensing by stellar remnants

    NASA Astrophysics Data System (ADS)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less

  14. The formation of ultra compact dwarf galaxies and massive globular clusters. Quasar-like objects to test for a variable stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.

    2017-12-01

    The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.

  15. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  16. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  17. Is the Link Between the Observed Velocities of Neutron Stars and their Progenitors a Simple Mass Relationship?

    NASA Astrophysics Data System (ADS)

    Bray, J. C.

    2017-11-01

    While the imparting of velocity `kicks' to compact remnants from supernovae is widely accepted, the relationship of the `kick' to the progenitor is not. We propose the `kick' is predominantly a result of conservation of momentum between the ejected and compact remnant masses. We propose the `kick' velocity is given by v kick = α(M ejecta/M remnant)+β, where α and β are constants we wish to determine. To test this we use the BPASS v2 (Binary Population and Spectral Synthesis) code to create stellar populations from both single star and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply `kicks' to neutron stars from supernovae in these models using a grid of α and β values, (from 0 to 200 km s-1 in steps of 10 km s-1), in three different `kick' orientations, (isotropic, spin-axis aligned and orthogonal to spin-axis) and weighted by three different Salpeter initial mass functions (IMF's), with slopes of -2.0, -2.35 and -2.70. We compare our synthetic 2D and 3D velocity probability distributions to the distributions provided by Hobbs et al. (1995).

  18. Searching for the pulsar in SN1987A

    NASA Astrophysics Data System (ADS)

    Staveley-Smith, Lister; Manchester, Dick; Zanardo, Giovanna

    2013-10-01

    We propose to search for a pulsar in the remnant of SN1987A. The existence of a neutron star formed after the explosion of the progenitor, Sk -69-202, is predicted by stellar evolution theory. Early neutrino detection by three separate ground-based detectors appears to confirm the formation of neutrons. Moreover, recent Compact Array observations hint at the presence of a flat-spectrum component near the centre of the remnant, possibly the result of synchrotron emission from a pulsar-powered nebula. However, the initial mass of the SN1987A progenitor is close to the limit where collapse into a black hole is predicted. It is therefore possible that fallback of matter onto the neutron star resulted in later formation of a black hole, or even a quark star. Detection or otherwise of the SN1987A pulsar would make a powerful contribution to stellar evolution theory.

  19. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  20. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  1. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Seth, A. C.

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc)more » away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.« less

  2. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  3. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  4. A Renewed Look at the Planetary Nebula Luminosity Function: Circumstellar Extinction and Contamination From Compact Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Ciardullo, Robin; Feldmeier, John; Jacoby, George H.; McCarron, Adam; Herrmann, Kimberly

    2018-01-01

    The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since 1988, but there are still unsolved problems associated with its use. The two most serious involve PNLF distances beyond ~ 10 Mpc, which tend to be slightly smaller than those of other methods, and the lack of a theoretical explanation for the technique. We investigate these questions using a combination of narrow-band imaging data from the KPNO 4-m telescope, and recent LRS2 spectroscopy from the Hobby-Eberly Telescope.For the first project, we consider the implications of spectroscopic investigations by Kreckel et al. (2017), who found that in M74, several of the brightest planetary nebula (PN) candidates found by Herrmann et al. (2008) are actually compact supernova remnants (SNRs). First, we measure the [O III] and H-alpha fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 8 Mpc. We also obtain spectroscopy of bright PN candidates in the Fireworks Galaxy, NGC 6946, to test for PN/SNR confusion via the strengths of the [N II] and [S II] emission lines. Both experiments suggest that compact supernova remnants are not an important source of contamination in photometric surveys for extragalactic PNe.For the second project, we, for the first time, determine the de-reddened PNLF of an old stellar population. By performing spectroscopy of the brightest PN in M31’s bulge and measuring the objects’ Balmer decrements, we remove the effects of circumstellar extinction and derive the true location of the PNLF’s bright-end cutoff. In future studies, these data can be used to directly test the latest PNLF models, which combine modern post-AGB stellar evolutionary tracks with the physics of expanding nebulae.

  5. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  6. Nonthermal X-Ray Emission from the Shell-Type Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Gaensler, Bryan M.; Dame, T. M.; Hughes, John P.; Plucinsky, Paul P.; Green, Anne

    2002-01-01

    Recent Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations of G347.3-0.5, a supernova remnant (SNR) discovered in the ROSAT All-Sky Survey, reveal nonthermal emission from a region along the northwestern shell. Here we report on new pointed ASCA observations of G347.3-0.5 that confirm this result for all the bright shell regions and also reveal similar emission, although with slightly different spectral properties, from the remainder of the SNR. Curiously, no thermal X-ray emission is detected anywhere in the remnant. We derive limits on the amount of thermal emitting material present in G347.3-0.5 and present new radio continuum, CO, and infrared results that indicate that the remnant is distant and of moderate age. We show that our observations are broadly consistent with a scenario that has most of the supernova remnant shock wave still within the stellar wind bubble of its progenitor star, while part of it appears to be interacting with denser material. A point source at the center of the remnant has spectral properties similar to those expected for a neutron star and may represent the compact relic of the supernova progenitor.

  7. Accretion onto stellar mass black holes

    NASA Astrophysics Data System (ADS)

    Deegan, Patrick

    2009-12-01

    I present work on the accretion onto stellar mass black holes in several scenarios. Due to dynamical friction stellar mass black holes are expected to form high density cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold dense gas present there, and give rise to potentially observable X-ray emission. I build a simple but detailed time-dependent model of such emission. Future observations of the distribution and orbits of the gas in the inner parsec of Sgr A* will put tighter constraints on the cusp of compact remnants. GRS 1915+105 is an LMXB, whose large orbital period implies a very large accretion disc and explains the extraordinary duration of its current outburst. I present smoothed particle hydrodynamic simulations of the accretion disc. The models includes the thermo-viscous instability, irradiation from the central object and wind loss. I find that the outburst of GRS 1915+105 should last a minimum of 20 years and up to ˜ 100 years if the irradiation is playing a significant role in this system. The predicted recurrence times are of the order of 104 years, making the duty cycle of GRS 1915+105 to be a few 0.1%. I present a simple analytical method to describe the observable behaviour of long period black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for the surface density in the disc, outburst and quiescence times are calculated as a function of orbital period. LMXBs are an important constituent of the X-ray light function (XLF) of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital period, with implications for modelling the XLF.

  8. A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66

    NASA Technical Reports Server (NTRS)

    Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.

    2004-01-01

    We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.

  9. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (r2, allowing for strong new constraints on their formation and evolutionary path

  10. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation - II

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    2018-01-01

    The study of stellar-remnant black holes (BH) in dense stellar clusters is now in the spotlight, especially due to their intrinsic ability to form binary black holes (BBH) through dynamical encounters, which potentially coalesce via gravitational-wave (GW) radiation. In this work, which is a continuation from a recent study (Paper I), additional models of compact stellar clusters with initial masses ≲ 105 M⊙ and also those with small fractions of primordial binaries (≲ 10 per cent) are evolved for long term, applying the direct N-body approach, assuming state-of-the-art stellar-wind and remnant-formation prescriptions. That way, a substantially broader range of computed models than that in Paper I is achieved. As in Paper I, the general-relativistic BBH mergers continue to be mostly mediated by triples that are bound to the clusters rather than happen among the ejected BBHs. In fact, the number of such in situ BBH mergers, per cluster, tends to increase significantly with the introduction of a small population of primordial binaries. Despite the presence of massive primordial binaries, the merging BBHs, especially the in situ ones, are found to be exclusively dynamically assembled and hence would be spin-orbit misaligned. The BBHs typically traverse through both the LISA's and the LIGO's detection bands, being audible to both instruments. The 'dynamical heating' of the BHs keeps the electron-capture-supernova (ECS) neutron stars (NS) from effectively mass segregating and participating in exchange interactions; the dynamically active BHs would also exchange into any NS binary within ≲1 Gyr. Such young massive and open clusters have the potential to contribute to the dynamical BBH merger detection rate to a similar extent as their more massive globular-cluster counterparts.

  11. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-01-01

    Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.

  12. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  13. Impacts of the Detection of Cassiopeia A Point Source.

    PubMed

    Umeda; Nomoto; Tsuruta; Mineshige

    2000-05-10

    Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.

  14. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  15. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  16. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  17. Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory

    NASA Astrophysics Data System (ADS)

    Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.

    2015-12-01

    The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.

  18. Study of a new central compact object: The neutron star in the supernova remnant G15.9+0.2

    NASA Astrophysics Data System (ADS)

    Klochkov, D.; Suleimanov, V.; Sasaki, M.; Santangelo, A.

    2016-08-01

    We present our study of the central point source CXOU J181852.0-150213 in the young Galactic supernova remnant (SNR) G15.9+0.2 based on the recent ~90 ks Chandra observations. The point source was discovered in 2005 in shorter Chandra observations and was hypothesized to be a neutron star associated with the SNR. Our X-ray spectral analysis strongly supports the hypothesis of a thermally emitting neutron star associated with G15.9+0.2. We conclude that the object belongs to the class of young cooling low-magnetized neutron stars referred to as central compact objects (CCOs). We modeled the spectrum of the neutron star with a blackbody spectral function and with our hydrogen and carbon neutron star atmosphere models, assuming that the radiation is uniformly emitted by the entire stellar surface. Under this assumption, only the carbon atmosphere models yield a distance that is compatible with a source located in the Galaxy. In this respect, CXOU J181852.0-150213 is similar to two other well-studied CCOs, the neutron stars in Cas A and in HESS J1731-347, for which carbon atmosphere models were used to reconcile their emission with the known or estimated distances.

  19. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yang; Fang, Min; Yang, Ji

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant'smore » radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.« less

  1. New perspectives on the supernova remnant Puppis A based on a radio polarization study

    NASA Astrophysics Data System (ADS)

    Reynoso, E. M.; Velázquez, P. F.; Cichowolski, S.

    2018-06-01

    We present a polarization study towards the supernova remnant (SNR) Puppis A based on original observations performed with the Australia Telescope Compact Array. Based on the analysis of a feature detected outside the SNR shell (called `the tail' throughout the paper), it was possible to disentangle the emission with origin in Puppis A itself from that coming from the foreground Vela SNR. We found a very low polarization fraction, of about 3 per cent on average. The upper limit of the magnetic field component parallel to the line of sight is estimated to be B∥ ˜ 20 μG. The statistical behaviour of the magnetic vectors shows two preferential directions, almost perpendicular to each other, which are approximately aligned with the flat edges of Puppis A. A third, narrow peak oriented perpendicular to the Galactic plane suggests the existence of an interstellar magnetic field locally aligned in this direction. There is evidence that the magnetic vectors along the shell are aligned with the shock front direction. The low polarization fraction and the statistical behaviour of the magnetic vectors are compatible with a scenario where the SNR evolves inside a stellar wind bubble with a box-like morphology, produced by the interaction of the different stellar winds, one of them magnetized, launched by the SN progenitor. This scenario can furthermore explain the morphology of Puppis A, rendering little support to the previously accepted picture which involved strong density gradients to explain the flat, eastern edge of the shell.

  2. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysismore » revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.« less

  3. Neutron Stars in Supernova Remnants and Beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  4. Formation of S0 galaxies through mergers. Antitruncated stellar discs resulting from major mergers

    NASA Astrophysics Data System (ADS)

    Borlaff, Alejandro; Eliche-Moral, M. Carmen; Rodríguez-Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez-González, Pablo G.; Zamorano, Jaime; Gallego, Jesús; Beckman, John

    2014-10-01

    Context. Lenticular galaxies (S0s) are more likely to host antitruncated (Type III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent to make these breaks. Aims: We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods: We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results: Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, because of the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type III S0s fulfill: hi ∝ RbrkIII, ho ∝ RbrkIII, and μbrkIII ∝ RbrkIII, where hi and ho are the scalelengths of the inner and outer discs, and μbrkIII and RbrkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0s are structurally unrelated phenomena according to the studied photometric planes. Conclusions: Major mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies. Table 3 is available in electronic form at http://www.aanda.org

  5. Neutron Star/supernova Remnant Associations

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  6. Stellar cannibalism in fits and starts

    NASA Astrophysics Data System (ADS)

    Marsh, Thomas

    2017-12-01

    Dense stellar remnants called white dwarfs are often found in binary star systems. Satellite observations suggest a previously unknown way in which a white dwarf can draw material from its companion star.

  7. Stellar, remnant, planetary, and dark-object masses from astrometric microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.

    2002-01-01

    With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  8. Evolution of Supernova Remnants Near the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, A.; Piran, T.; Sari, R.

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less

  9. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  10. AKARI Near-infrared Spectroscopy of the Extended Green Object G318.05+0.09: Detection of CO Fundamental Ro-vibrational Emission

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Mori, Tamami; Sakon, Itsuki; Ardaseva, Aleksandra

    2016-10-01

    We present the results of near-infrared (2.5-5.4 μm) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25 μm, 4.67 μm, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7 μm. The former source is located close to the ultra compact H II region IRAS 14498-5856 and is identified as an embedded massive young stellar object (YSO). The spectrum of the latter source can be interpreted by blueshifted (-3000 ˜ -6000 km s-1) optically thin emission of the fundamental ro-vibrational transitions (v=1{--}0) of CO molecules with temperatures of 12000-3700 K without noticeable H2 and H I emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.

  11. Neutrino-Driven Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.

  12. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  13. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  14. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  15. HIDING IN PLAIN SIGHT: RECORD-BREAKING COMPACT STELLAR SYSTEMS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, Michael A.; Vo, Richard P.; Romanowsky, Aaron J.

    2015-07-20

    Motivated by the recent, serendipitous discovery of the densest known galaxy, M60-UCD1, we present two initial findings from a follow-up search, using the Sloan Digital Sky Survey, Subaru/Suprime-Cam, and Hubble Space Telescope imaging, and SOuthern Astrophysical Research (SOAR)/Goodman spectroscopy. The first object discovered, M59-UCD3, has a similar size to M60-UCD1 (half-light radius of r{sub h} ∼ 20 pc) but is 40% more luminous (M{sub V} ∼ −14.6), making it the new densest-known galaxy. The second, M85-HCC1, has a size like a typical globular cluster (GC; r{sub h} ∼ 1.8 pc) but is much more luminous (M{sub V} ∼ −12.5). Thismore » hypercompact cluster is by far the densest confirmed free-floating stellar system, and is equivalent to the densest known nuclear star clusters. From spectroscopy, we find that both objects are relatively young (∼9 and ∼3 Gyr, respectively), with metal-abundances that resemble those of galaxy centers. Their host galaxies show clear signs of large-scale disturbances, and we conclude that these dense objects are the remnant nuclei of recently accreted galaxies. M59-UCD3 is an ideal target for follow-up with high-resolution imaging and spectroscopy to search for an overweight central supermassive black hole as was discovered in M60-UCD1. These findings also emphasize the potential value of ultra-compact dwarfs and massive GCs as tracers of the assembly histories of galaxies.« less

  16. A simple physical model for X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.

    1977-01-01

    In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.

  17. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  18. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  19. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  20. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  1. Stellar dynamics. The fastest unbound star in our Galaxy ejected by a thermonuclear supernova.

    PubMed

    Geier, S; Fürst, F; Ziegerer, E; Kupfer, T; Heber, U; Irrgang, A; Wang, B; Liu, Z; Han, Z; Sesar, B; Levitan, D; Kotak, R; Magnier, E; Smith, K; Burgett, W S; Chambers, K; Flewelling, H; Kaiser, N; Wainscoat, R; Waters, C

    2015-03-06

    Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ~1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova. Copyright © 2015, American Association for the Advancement of Science.

  2. I-Love-Q Anisotropically

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolas

    2015-04-01

    Recent work shows that rotating incompressible stars with anisotropic matter in the weak-field limit become prolate, which is rather counter-intuitive. We construct slowly-rotating, incompressible and anisotropic stellar solutions in full General Relativity valid to quadratic order in spin and show that the stellar shape shifts from prolate to oblate as one increases the relativistic effect. Anisotropic stars are also interesting because they can be more compact than isotropic stars, and can even be as compact as black holes. We present how stellar multipole moments approach the black hole limit as one increases the compactness, suggesting that they reach the black hole limit continuously.

  3. The influence of massive black hole binaries on the morphology of merger remnants

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  4. The fate of the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  5. Outcomes of Grazing Impacts between Sub-Neptunes in Kepler  Multis

    NASA Astrophysics Data System (ADS)

    Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic

    2018-01-01

    Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.

  6. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  7. Deep Radio Imaging with MERLIN of the Supernova Remnants in M82

    NASA Astrophysics Data System (ADS)

    Muxlow, T. W. B.; Pedlar, A.; Riley, J. D.; McDonald, A. R.; Beswick, R. J.; Wills, K. A.

    An 8 day MERLIN deep integration at 5GHz of the central region of the starburst galaxy M82 has been used to investigate the radio structure of a number of supernova remnants in unprecedented detail revealing new shells and partial shell structures for the first time. In addition, by comparing the new deep 2002 image with an astrometrically aligned image from 36 hours of data taken in 1992, it has been possible to directly measure the expansion velocities of 4 of the most compact remnants in M82. For the two most compact remnants, 41.95+575 and 43.31+592, expansion velocities of 2800 ± 300 km s-1 and 8750 ± 400 km s-1 have been derived. These confirm and refine the measured expansion velocities which have been derived from VLBI multi-epoch studies. For remnants 43.18+583 and 44.01+596, expansion velocities of 10500 ± 750 km s -1 and 2400 ± 250 km s-1 have been measured for the first time. In addition, the peak of the radio emission for SNR 45.17+612 has moved between the two epochs implying velocities around 7500km s-1. The relatively compact remnants in M82 are thus found to be expanding over a wide range of velocities which appear unrelated to their size. The new 2002 map is the most sensitive high-resolution image yet made of M82, achieving an rms noise level of 17µJy beam-1. This establishes a first epoch for subsequent deep studies of expansion velocities for many SNR within M82.

  8. HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-02-01

    Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and γ-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G 15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV γ-ray source, HESS J1818-154, located in the center and contained within the shell of G 15.4+0.1 is detected by H.E.S.S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 ± 0.3stat ± 0.2sys and an integral flux of F(> 0.42 TeV) = (0.9 ± 0.3stat ± 0.2sys) × 10-12 cm-2 s-1. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G 15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE γ-ray emission provide strong evidence of a PWN located inside the shell of G 15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and γ-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G 15.4+0.1.

  9. Caught in the Act: Gas and Stellar Velocity Dispersions in a Fast Quenching Compact Star-Forming Galaxy at z~1.7

    NASA Astrophysics Data System (ADS)

    Barro, Guillermo; Faber, Sandra M.; Dekel, Avishai; Pacifici, Camilla; Pérez-González, Pablo G.; Toloba, Elisa; Koo, David C.; Trump, Jonathan R.; Inoue, Shigeki; Guo, Yicheng; Liu, Fengshan; Primack, Joel R.; Koekemoer, Anton M.; Brammer, Gabriel; Cava, Antonio; Cardiel, Nicolas; Ceverino, Daniel; Eliche, Carmen; Fang, Jerome J.; Finkelstein, Steven L.; Kocevski, Dale D.; Livermore, Rachael C.; McGrath, Elizabeth

    2016-04-01

    We present Keck I MOSFIRE spectroscopy in the Y and H bands of GDN-8231, a massive, compact, star-forming galaxy at a redshift of z ˜ 1.7. Its spectrum reveals both Hα and [N II] emission lines and strong Balmer absorption lines. The Hα and Spitzer MIPS 24 μm fluxes are both weak, thus indicating a low star-formation rate of SFR ≲ 5{--}10 {M}⊙ yr-1. This, added to a relatively young age of ˜700 Myr measured from the absorption lines, provides the first direct evidence for a distant galaxy being caught in the act of rapidly shutting down its star formation. Such quenching allows GDN-8231 to become a compact, quiescent galaxy, similar to three other galaxies in our sample, by z ˜ 1.5. Moreover, the color profile of GDN-8231 shows a bluer center, consistent with the predictions of recent simulations for an early phase of inside-out quenching. Its line-of-sight velocity dispersion for the gas, {σ }{{{LOS}}}{{gas}} = 127 ± 32 km s-1, is nearly 40% smaller than that of its stars, {σ }{{{LOS}}}\\star = 215 ± 35 km s-1. High-resolution hydro-simulations of galaxies explain such apparently colder gas kinematics of up to a factor of ˜1.5 with rotating disks being viewed at different inclinations and/or centrally concentrated star-forming regions. A clear prediction is that their compact, quiescent descendants preserve some remnant rotation from their star-forming progenitors.

  10. THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.

    2016-04-20

    We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less

  11. COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Hochmuth, Nicholas Baeza; Geller, Margaret J.

    We search the Sloan Digital Sky Survey and the Baryon Oscillation Sky Survey to identify ∼5500 massive compact quiescent galaxy candidates at 0.2 < z < 0.8. We robustly classify a subsample of 438 E+A galaxies based on their spectral properties and make this catalog publicly available. We examine sizes, stellar population ages, and kinematics of galaxies in the sample and show that the physical properties of compact E+A galaxies suggest that they are a progenitor of massive compact quiescent galaxies. Thus, two classes of objects—compact E+A and compact quiescent galaxies—may be linked by a common formation scenario. The typicalmore » stellar population age of compact E+A galaxies is <1 Gyr. The existence of compact E+A galaxies with young stellar populations at 0.2 < z < 0.8 means that some compact quiescent galaxies first appear at intermediate redshifts. We derive a lower limit for the number density of compact E+A galaxies. Assuming passive evolution, we convert this number density into an appearance rate of new compact quiescent galaxies at 0.2 < z < 0.8. The lower limit number density of compact quiescent galaxies that may appear at z < 0.8 is comparable to the lower limit of the total number density of compact quiescent galaxies at these intermediate redshifts. Thus, a substantial fraction of the z < 0.8 massive compact quiescent galaxy population may descend from compact E+A galaxies at intermediate redshifts.« less

  12. Neutron stars in supernova remnants and beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the supernova remnants can be products of an off-centered supernova explosion in a preexisting bubble created by the wind of a moving massive star. A cavity supernova explosion of a moving star results in a considerable offset of the neutron star birth-place from the geometrical center of the supernova remnant. Therefore: a) the high transverse velocities inferred for a number of neutron stars through their association with supernova remnants can be reduced; b) the proper motion vector of a neutron star should not necessarily point away from the geometrical center of the associated supernova remnant. Taking into account these two facts allow us to enlarge the circle of possible neutron star/supernova remnant associations, and could significantly affect the results of previous studies of associations. The possibilities of our approach are illustrated with some examples. We also show that the concept of an off-centered cavity supernova explosion could be used to explain the peculiar structures of a number of supernova remnants and for searches for stellar remnants possibly associated with them.

  13. Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ˜1.2: Massive Compact Galaxies Are Older than More Extended Ones

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Giavalisco, Mauro; Bezanson, Rachel; Cappelluti, Nico; Cassata, Paolo; Liu, Teng; Lee, Bomee; Tundo, Elena; Vanzella, Eros

    2017-04-01

    We report the detection of morphology-dependent stellar age in massive quenched galaxies (QGs) at z ˜ 1.2. The sense of the dependence is that compact QGs are 0.5-2 Gyr older than normal-sized ones. The evidence comes from three different age indicators—{D}n4000, {{{H}}}δ , and fits to spectral synthesis models—applied to their stacked optical spectra. All age indicators consistently show that the stellar populations of compact QGs are older than those of their normal-sized counterparts. We detect weak [O II] emission in a fraction of QGs, and the strength of the line, when present, is similar between the two samples; however, compact galaxies exhibit a significantly lower frequency of [O II] emission than normal ones. Fractions of both samples are individually detected in 7 Ms Chandra X-ray images (luminosities ˜1040-1041 erg s-1). The 7 Ms stacks of nondetected galaxies show similarly low luminosities in the soft band only, consistent with a hot gas origin for the X-ray emission. While both [O II] emitters and nonemitters are also X-ray sources among normal galaxies, no compact galaxy with [O II] emission is an X-ray source, arguing against an active galactic nucleus (AGN) powering the line in compact galaxies. We interpret the [O II] properties as further evidence that compact galaxies are older and further along in the process of quenching star formation and suppressing gas accretion. Finally, we argue that the older age of compact QGs is evidence of progenitor bias: compact QGs simply reflect the smaller sizes of galaxies at their earlier quenching epoch, with stellar density most likely having nothing directly to do with cessation of star formation.

  14. The Connection Between X-ray Binaries and Star Clusters in the Antennae

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, R.; Prestwich, A.

    2011-05-01

    High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.

  15. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  16. The unusual gamma-ray burst GRB 101225A explained as a minor body falling onto a neutron star.

    PubMed

    Campana, S; Lodato, G; D'Avanzo, P; Panagia, N; Rossi, E M; Della Valle, M; Tagliaferri, G; Antonelli, L A; Covino, S; Ghirlanda, G; Ghisellini, G; Melandri, A; Pian, E; Salvaterra, R; Cusumano, G; D'Elia, V; Fugazza, D; Palazzi, E; Sbarufatti, B; Vergani, S D

    2011-11-30

    The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

  17. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-04-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  18. Identification of the central compact object in the young supernova remnant 1E 0102.2-7219

    NASA Astrophysics Data System (ADS)

    Vogt, Frédéric P. A.; Bartlett, Elizabeth S.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ghavamian, Parviz; Ruiter, Ashley J.; Terry, Jason P.

    2018-06-01

    Oxygen-rich young supernova remnants1 are valuable objects for probing the outcome of nucleosynthetic processes in massive stars, as well as the physics of supernova explosions. Observed within a few thousand years after the supernova explosion2, these systems contain fast-moving oxygen-rich and hydrogen-poor filaments visible at optical wavelengths: fragments of the progenitor's interior expelled at a few thousand kilometres per second during the supernova explosion. Here we report the identification of the compact object in the supernova remnant 1E 0102.2-7219 in reprocessed Chandra X-ray Observatory data, enabled by the discovery of a ring-shaped structure visible primarily in optical recombination lines of Ne i and O i. The optical ring has a radius of (2.10 ± 0.35)″ ≡ (0.63 ± 0.11) pc, and is expanding at a velocity of 90 .5-30+40 km s-1. It surrounds an X-ray point source with an intrinsic X-ray luminosity Li (1.2-2.0 keV) = (1.4 ± 0.2) × 1033 erg s-1. The energy distribution of the source indicates that this object is an isolated neutron star: a central compact object akin to those present in the Cas A3-5 and Pup A6 supernova remnants, and the first of its kind to be identified outside of our Galaxy.

  19. Universal relations for differentially rotating relativistic stars at the threshold to collapse

    NASA Astrophysics Data System (ADS)

    Bozzola, Gabriele; Stergioulas, Nikolaos; Bauswein, Andreas

    2018-03-01

    A binary neutron star merger produces a rapidly and differentially rotating compact remnant whose lifespan heavily affects the electromagnetic and gravitational emissions. Its stability depends on both the equation of state (EOS) and the rotation law and it is usually investigated through numerical simulations. Nevertheless, by means of a sufficient criterion for secular instability, equilibrium sequences can be used as a computational inexpensive way to estimate the onset of dynamical instability, which, in general, is close to the secular one. This method works well for uniform rotation and relies on the location of turning points: stellar models that are stationary points in a sequence of equilibrium solutions with constant rest mass or angular momentum. Here, we investigate differentially rotating models (using a large number of EOSs and different rotation laws) and find that several universal relations between properly scaled gravitational mass, rest mass and angular momentum of the turning-point models that are valid for uniform rotation are insensitive to the degree of differential rotation, to high accuracy.

  20. Collapsing supra-massive magnetars: FRBs, the repeating FRB121102 and GRBs

    NASA Astrophysics Data System (ADS)

    Gupta, Patrick Das; Saini, Nidhi

    2018-02-01

    Fast Radio Bursts (FRBs) last for ˜ few milli-seconds and, hence, are likely to arise from the gravitational collapse of supra-massive, spinning neutron stars after they lose the centrifugal support (Falcke & Rezzolla 2014). In this paper, we provide arguments to show that the repeating burst, FRB 121102, can also be modeled in the collapse framework provided the supra-massive object implodes either into a Kerr black hole surrounded by highly magnetized plasma or into a strange quark star. Since the estimated rates of FRBs and SN Ib/c are comparable, we put forward a common progenitor scenario for FRBs and long GRBs in which only those compact remnants entail prompt γ -emission whose kick velocities are almost aligned or anti-aligned with the stellar spin axes. In such a scenario, emission of detectable gravitational radiation and, possibly, of neutrinos are expected to occur during the SN Ib/c explosion as well as, later, at the time of magnetar implosion.

  1. A chirp, a roar and a whisper

    NASA Astrophysics Data System (ADS)

    Wijers, Ralph

    2018-02-01

    In 2017, gravitational waves and electromagnetic radiation were detected from the merger of two stellar remnants called neutron stars. An observational analysis reveals how this radiation was released from the merger.

  2. A broadband study of the emission from the composite supernova remnant MSH 11-62

    DOE PAGES

    Slane, Patrick; Hughes, John P.; Temim, Tea; ...

    2012-03-30

    MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. Our observations suggest a relatively young system expanding into a low-density region. We present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We also identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses asmore » particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify γ-ray emission originating from MSH 11-62. Furthermore, with density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the γ-ray emission.« less

  3. A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62

    NASA Technical Reports Server (NTRS)

    Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.; hide

    2012-01-01

    MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.

  4. High-resolution radio and X-ray observations of the supernova remnant W28

    NASA Technical Reports Server (NTRS)

    Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.

    1983-01-01

    The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.

  5. Speeding Clouds May Reveal Invisible Black Holes

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Several small, speeding clouds have been discovered at the center of our galaxy. A new study suggests that these unusual objects may reveal the lurking presence of inactive black holes.Peculiar Cloudsa) Velocity-integrated intensity map showing the location of the two high-velocity compact clouds, HCN0.0090.044 and HCN0.0850.094, in the context of larger molecular clouds. b) and c) Latitude-velocity and longitude-velocity maps for HCN0.0090.044 and HCN0.0850.094, respectively. d) and e) spectra for the two compacts clouds, respectively. Click for a closer look. [Takekawa et al. 2017]Sgr A*, the supermassive black hole marking the center of our galaxy, is surrounded by a region roughly 650 light-years across known as the Central Molecular Zone. This area at the heart of our galaxy is filled with large amounts of warm, dense molecular gas that has a complex distribution and turbulent kinematics.Several peculiar gas clouds have been discovered within the Central Molecular Zone within the past two decades. These clouds, dubbed high-velocity compact clouds, are characterized by their compact sizes and extremely broad velocity widths.What created this mysterious population of energetic clouds? The recent discovery of two new high-velocity compact clouds, reported on in a paper led by Shunya Takekawa (Keio University, Japan), may help us to answer this question.Two More to the CountUsing the James Clerk Maxwell Telescope in Hawaii, Takekawa and collaborators detected the small clouds near the circumnuclear disk at the centermost part of our galaxy. These two clouds have velocity spreads of -80 to -20 km/s and -80 to 0 km/s and compact sizes of just over 1 light-year. The clouds similar appearances and physical properties suggest that they may both have been formed by the same process.Takekawa and collaborators explore and discard several possible origins for these clouds, such as outflows from massive protostars (no massive, luminous stars have been detected affiliated with these clouds), interaction with supernova remnants (no supernova remnants have been detected toward the clouds), and cloudcloud collisions (such collisions leave other signs, like cavities in the parent cloud, which are not detected here).Masses and velocities of black holes that could create the two high-velocity compact clouds fall above the red and blue lines here. [Takekawa et al. 2017]Revealed on the PlungeAs an alternative explanation, Takekawa and collaborators propose that these two small,speeding cloudswere each created when a massive compact object plunged into a nearby molecular cloud. Since we dont seeany luminous stellar counterparts to the high-velocity compact clouds, this suggests that the responsibleobjects were invisible black holes. As each black hole tore through a molecular cloud, it dragged some of the clouds gas along behind it to form the high-velocity compact cloud.Does this explanation make sense statistically? The authors point out that the number of black holes predicted to silently lurk in the central 30 light-years of the Milky Way is around 10,000. This makes it entirely plausible that we could have caught sight of two of them as they revealed their presence while plunging through molecular clouds.If the authors interpretation is correct, then high-velocity compact clouds provide an excellent opportunity: we can search for these speeding bodiesto potentially discover inactive black holes that would otherwise go undetected.CitationShunya Takekawa et al 2017 ApJL 843 L11. doi:10.3847/2041-8213/aa79ee

  6. High Energy Observational Investigations of Supernova Remnants and their Interactions with Surroundings

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yue

    2013-09-01

    Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.

  7. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  8. Classifying and Finding Nearby Compact Stellar Systems

    NASA Astrophysics Data System (ADS)

    Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie

    2018-01-01

    Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.

  9. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-06

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  10. The AIMSS Project - III. The stellar populations of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Janz, Joachim; Norris, Mark A.; Forbes, Duncan A.; Huxor, Avon; Romanowsky, Aaron J.; Frank, Matthias J.; Escudero, Carlos G.; Faifer, Favio R.; Forte, Juan Carlos; Kannappan, Sheila J.; Maraston, Claudia; Brodie, Jean P.; Strader, Jay; Thompson, Bradley R.

    2016-02-01

    In recent years, a growing zoo of compact stellar systems (CSSs) have been found whose physical properties (mass, size, velocity dispersion) place them between classical globular clusters (GCs) and true galaxies, leading to debates about their nature. Here we present results using a so far underutilized discriminant, their stellar population properties. Based on new spectroscopy from 8-10m telescopes, we derive ages, metallicities, and [α/Fe] of 29 CSSs. These range from GCs with sizes of merely a few parsec to compact ellipticals (cEs) larger than M32. Together with a literature compilation, this provides a panoramic view of the stellar population characteristics of early-type systems. We find that the CSSs are predominantly more metal rich than typical galaxies at the same stellar mass. At high mass, the cEs depart from the mass-metallicity relation of massive early-type galaxies, which forms a continuous sequence with dwarf galaxies. At lower mass, the metallicity distribution of ultracompact dwarfs (UCDs) changes at a few times 107 M⊙, which roughly coincides with the mass where luminosity function arguments previously suggested the GC population ends. The highest metallicities in CSSs are paralleled only by those of dwarf galaxy nuclei and the central parts of massive early types. These findings can be interpreted as CSSs previously being more massive and undergoing tidal interactions to obtain their current mass and compact size. Such an interpretation is supported by CSSs with direct evidence for tidal stripping, and by an examination of the CSS internal escape velocities.

  11. QUANTITATIVE EVALUATION OF THE HYPOTHESIS THAT BL LACERTAE OBJECTS ARE QSO REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F.

    2014-11-20

    We evaluate with numerical simulations the hypothesis that BL Lacertae objects (BLLs) are the remnants of quasi-stellar objects. This hypothesis is based on their highly peculiar redshift evolution. They have a comoving space density that increases with decreasing redshift, contrary to all other active galactic nuclei. We assume that relativistic jets are below detection in young radio-quiet quasars and increase in strength with cosmic time so that they eventually are detected as BLLs. Our numerical simulations fit very well the observed redshift distributions of BLLs. There are strong indications that only the high-synchrotron-peaked BLLs could be QSO remnants.

  12. Origin of the Elements

    NASA Astrophysics Data System (ADS)

    Truran, J. W., Jr.; Heger, A.

    2003-12-01

    Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).

  13. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  14. Mapping out the origins of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration

    2017-03-01

    We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.

  15. An Explosion of Infrared Color

    NASA Image and Video Library

    2010-12-09

    This oddly colorful nebula is the supernova remnant IC 443 as seen by NASA Wide-field Infrared Survey Explorer; the Jellyfish nebula is particularly interesting because it provides a look into how stellar explosions interact with their environment.

  16. Echoes of a Stellar Ending

    NASA Image and Video Library

    2012-03-14

    Listed as Cassiopeia A, this remnant of the supernova is one of the brightest radio sources in the known universe. More recently, NASA WISE telescope detected infrared echoes of the flash of light rippling outwards from the supernova.

  17. After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.

    2018-03-01

    The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

  18. Relativistic model for anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2017-12-01

    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  19. A supermassive black hole in an ultra-compact dwarf galaxy.

    PubMed

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  20. Stellar Debris in the Large Magellanic Cloud

    NASA Image and Video Library

    2006-12-08

    This is a composite image of N49, the brightest supernova remnant in optical light in the Large Magellanic Cloud; the image combines data from the Chandra X-ray Telescope blue and NASA Spitzer Space Telescope red.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessandrini, Emiliano; Lanzoni, Barbara; Ferraro, Francesco R.

    We present the results of a set of N -body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes (BHs)). To this end, clusters characterized by different initial concentrations and different fractions of dark remnants have been modeled. We find that an increasing fraction of stellar-mass BHs significantly delay the mass segregation of BSSs and the visible stellar component. In order to trace the evolution of BSS segregation, we introducemore » a new parameter ( A {sup +}), which can be easily measured when the cumulative radial distribution of these stars and a reference population are available. Our simulations show that A {sup +} might also be used as an approximate indicator of the time remaining to the core collapse of the visible component.« less

  2. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, G. H.; Heitzenroeder, P.; Lyon, J.

    Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less

  4. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE PAGES

    Luque, E.

    2016-02-09

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  5. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  6. A central compact object in Kes 79: the hypercritical regime and neutrino expectation

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Fraija, N.

    2016-11-01

    We present magnetohydrodynamical simulations of a strong accretion on to magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the centre of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called central compact objects (CCOs), which exhibits no evidence for a surrounding pulsar wind nebula. In this work, we show that the submergence of the magnetic field during the hypercritical phase can explain such behaviour for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733 ± 364. In addition, we compute the flavour ratio on Earth for a progenitor model.

  7. Formation of Compact Ellipticals in the merging star cluster scenario

    NASA Astrophysics Data System (ADS)

    Urrutia Zapata, Fernanda Cecilia; Theory and star formation group

    2018-01-01

    In the last years, extended old stellar clusters have been observed. They are like globular clusters (GCs) but with larger sizes(a limit of Re=10 pc is currently seen as reasonable). These extended objects (EOs) cover a huge range of mass. Objects at the low mass end with masses comparable to normal globular clusters are called extended clusters or faint fuzzies Larsen & Brodie (2000) and objects at the high-mass end are called ultra compact dwarf galaxies (UCDs). Ultra compact dwarf galaxies are compact object with luminositys above the brigtest known GCs. UCDs are more compact than typical dwarf galaxies but with comparable luminosities. Usually, a lower mass limit of 2 × 10^6 Solar masses is applied.Fellhauer & Kroupa (2002a,b) demostrated that object like ECs, FFs and UCDs can be the remnants of the merger of star clusters complexes, this scenario is called the Merging Star Cluster Scenario. Amore concise study was performed by Bruens et al. (2009, 2011).Our work tries to explain the formation of compact elliptical(cE). These objects are a comparatively rare class of spheroidal galaxies, possessing very small Re and high central surface brightnesses (Faber 1973). cEs have the same parameters as extended objects but they are slightly larger than 100 pc and the luminosities are in the range of -11 to -12 Mag.The standard formation sceanrio of these systems proposes a galaxy origin. CEs are the result of tidal stripping and truncation of nucleated larger systems. Or they could be a natural extension of the class of elliptical galaxies to lower luminosities and smaller sizes.We want to propose a completely new formation scenario for cEs. In our project we try to model cEs in a similar way that UCDs using the merging star cluster scenario extended to much higher masses and sizes. We think that in the early Universe we might have produced sufficiently strong star bursts to form cluster complexes which merge into cEs. So far it is observationally unknown if cEs are dark matter dominated objects. If our scenario is true, then they would be dark matter free very extended and massive "star clusters".

  8. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  9. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  10. Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2017-06-01

    Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.

  11. Hubble Sees Stars and a Stripe in Celestial Fireworks

    NASA Image and Video Library

    2008-07-01

    A delicate ribbon of gas floats eerily in our galaxy. This image, taken by NASA Hubble Space Telescope, is a very thin section of a supernova remnant caused by a stellar explosion that occurred more than 1,000 years ago.

  12. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  13. Where Tori Fear to Tread: Hypermassive Neutron Star Remnants and Absolute Event Horizons or Topics in Computational General Relativity

    NASA Astrophysics Data System (ADS)

    Kaplan, Jeffrey Daniel

    2014-01-01

    Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnetism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.

  14. Detection regimes of the cosmological gravitational wave background from astrophysical sources

    NASA Astrophysics Data System (ADS)

    Coward, David; Regimbau, Tania

    2006-09-01

    Key targets for gravitational wave (GW) observatories, such as LIGO and the next generation interferometric detector, Advanced LIGO, include core-collapse of massive stars and the final stage of coalescence of compact stellar remnants. The combined GW signal from such events occurring throughout the Universe will produce an astrophysical GW background (AGB), one that is fundamentally different from the GW background by very early Universe processes. One can classify contributions to the AGB for different classes of sources based on the strength of the GW emissions from the individual sources, their peak emission frequency, emission duration and their event rate density distribution. This article provides an overview of the detectability regimes of the AGB in the context of current and planned gravitational wave observatories. We show that there are two important AGB signal detection regimes, which we define as 'continuous' and 'popcorn noise'. We describe how the 'popcorn noise' AGB regime evolves with observation time and we discuss how this feature distinguishes it from the GW background produced from very early Universe processes.

  15. Failed Supernovae Explain the Compact Remnant Mass Function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2014-04-01

    One explanation for the absence of higher mass red supergiants (16.5 M ⊙ <~ M <~ 25 M ⊙) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M ⊙). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ~20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  16. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  17. Galaxy triplets in Sloan Digital Sky Survey Data Release 7 - II. A connection with compact groups?

    NASA Astrophysics Data System (ADS)

    Duplancic, Fernanda; O'Mill, Ana Laura; Lambas, Diego G.; Sodré, Laerte; Alonso, Sol

    2013-08-01

    We analyse a sample of 71 triplets of luminous galaxies derived from the work of O'Mill et al. We compare the properties of triplets and their members with those of control samples of compact groups, the 10 brightest members of rich clusters and galaxies in pairs. The triplets are restricted to have members with spectroscopic redshifts in the range 0.01 ≤ z ≤ 0.14 and absolute r-band luminosities brighter than Mr = -20.5. For these member galaxies, we analyse the stellar mass content, the star formation rates, the Dn(4000) parameter and (Mg - Mr) colour index. Since galaxies in triplets may finally merge in a single system, we analyse different global properties of these systems. We calculate the probability that the properties of galaxies in triplets are strongly correlated. We also study total star formation activity and global colours, and define the triplet compactness as a measure of the percentage of the system total area that is filled by the light of member galaxies. We concentrate in the comparison of our results with those of compact groups to assess how the triplets are a natural extension of these compact systems. Our analysis suggests that triplet galaxy members behave similarly to compact group members and galaxies in rich clusters. We also find that systems comprising three blue, star-forming, young stellar population galaxies (blue triplets) are most probably real systems and not a chance configuration of interloping galaxies. The same holds for triplets composed of three red, non-star-forming galaxies, showing the correlation of galaxy properties in these systems. From the analysis of the triplet as a whole, we conclude that, at a given total stellar mass content, triplets show a total star formation activity and global colours similar to compact groups. However, blue triplets show a high total star formation activity with a lower stellar mass content. From an analysis of the compactness parameter of the systems we find that light is even more concentrated in triplets than in compact groups. We propose that triplets composed of three luminous galaxies, should not be considered as an analogous of galaxy pairs with a third extra member, but rather they are a natural extension of compact groups.

  18. G25.5 + 0.2 - A very young galactic supernova remnant

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Ekers, R. D.; Goss, W. M.; Sramek, R. A.; Roberts, Douglas A.

    1989-01-01

    Radio emission has been detected from a compact source which satisfies the criteria for a very young galactic supernova remnant. The source, G25.5 + 0.2 has a partially-filled shell structure, a total integrated flux density at 20 cm of 315 mJy, and a flat spectrum between 2 and 20 cm. Observations at 843 and 327 MHz indicate thermal absorption at low frequencies with a turnover in the spectrum near 1 GHz. It is suggested that the lower limit for the age of the supernova remnant is 25 yr, while the upper limit is about 100 yr. It is concluded that G25.5 + 0.2 could be the youngest known supernova remnant in the Galaxy.

  19. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  20. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  1. Packing extra mass in compact stellar structures: an interplay between Kalb-Ramond field and extra dimensions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2018-05-01

    We have derived the Buchdahl's limit for a relativistic star in presence of the Kalb-Ramond field in four as well as in higher dimensions. It turns out that the Buchdahl's limit gets severely affected by the inclusion of the Kalb-Ramond field. In particular, the Kalb-Ramond field in four spacetime dimensions enables one to pack extra mass in any compact stellar structure of a given radius. On the other hand, a completely opposite picture emerges if the Kalb-Ramond field exists in higher dimensions, where the mass content of a compact star is smaller compared to that in general relativity. Implications are discussed.

  2. An atlas of H-alpha-emitting regions in M33: A systematic search for SS433 star candidates

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Ford, Holland; Doggett, Jesse; Long, Knox S.

    1995-01-01

    We report finding charts and accurate positions for 432 compact H-alpha emitting regions in the Local Group galaxy M 33 (NGC 598), in an effort to isolate candidates for an SS433-like stellar system. The objects were extracted from narrow band images, centered in the rest-frame H-alpha (lambda 6563 A) and in the red continuum at 6100 A. The atlas is complete down to V approximately equal to 20 and includes 279 compact HII regions and 153 line emitting point-like sources. The point-like sources undoubtedly include a variety of objects: very small HII regions, early type stars with intense stellar winds, and Wolf-Rayet stars, but should also contain objects with the characteristics of SS433. This extensive survey of compact H-alpha regions in M 33 is a first step towards the identification of peculiar stellar systems like SS433 in external galaxies.

  3. White dwarfs in the Gaia era

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.

    2018-04-01

    The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.

  4. OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp

    2015-02-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less

  5. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    1997-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of x-rays observed with the ROSAT PSPC. Here we report on ASCA observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an x-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  6. A Chandra Study of Supernova Remnants in the Large and Small Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Schenck, Andrew Corey

    2017-08-01

    In the first part of this thesis we measure the interstellar abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC), based on the observational data of sixteen supernova remnants (SNRs) in the LMC as available in the public archive of the Chandra X-ray Observatory (Chandra). We find lower abundances than previous measurements based on a similar method using data obtained with the Advanced Satellite for Astrophysics and Cosmology (ASCA). We discuss the origins of the discrepancy between our Chandra and the previous ASCA measurements. We conclude that our measurements are generally more reliable than the ASCA results thanks to the high-resolution imaging spectroscopy with our Chandra data, although there remain some systematic uncertainties due to the use of different spectral modelings between the previous work and ours. We also discuss our results in comparison with the LMC abundance measurements based on optical observations of stars. The second part of this thesis is a detailed study of a core-collapse SNR B0049-73.6 in the Small Magellanic Cloud (SMC). Based on our deep Chandra observation, we detect metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data. We find that the central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15M. progenitor. We reveal that the central ring-like (in projection) ejecta nebula extends to ˜9 pc from the SNR center. This suggests that the contact discontinuity (CD) may be located at a further distance from the SNR center than the previous estimate (˜6 pc). Based on our estimated larger size of the CD, we suggest that the significant effect from the presence of a Fe-Ni bubble at the SNR center (as proposed by the previous work) may not be required to describe the overall dynamics of this SNR. Applying the Sedov-Taylor similarity solutions, we estimate the dynamical age of ˜17,000 yr and an explosion energy of E0 ˜ 1:7 x 1051 erg for B0049-73.6. We place a stringent upper limit of LX ˜ 6:0 x 1032 erg s-1 on the 0.3-7.0 keV band luminosity for the embedded compact stellar remnant at the center of B0049-73.6. Our tight estimate for the X-ray luminosity upper limit suggests that the compact stellar remnant of this SNR may be a similar object to those in a peculiar class of low-luminosity neutron stars (e.g., the so-called Dim Isolated neutron stars) or may possibly be a black hole. Finally, we demonstrate our adaptive mesh grid method for the analysis of the rich SNR data. We developed our own computer software to implement this technique which is useful for an efficient spatially-resolved spectroscopic study of high-quality datasets of SNRs. As part of this software we also implement automated spectral model fits for all individual spectra extracted from our adaptively defined small sub- regions. We illustrate the utility of this technique with an example study of SNR N63A in the LMC.

  7. Radial oscillations and stability of compact stars in Eddington-inspired Born-Infeld gravity

    NASA Astrophysics Data System (ADS)

    Sham, Y.-H.; Lin, L.-M.; Leung, P. T.

    2012-09-01

    We study the hydrostatic equilibrium structure of compact stars in the Eddington-inspired Born-Infeld gravity recently proposed by Bañados and Ferreira [Phys. Rev. Lett. 105, 011101 (2010)]. We also develop a framework to study the radial perturbations and stability of compact stars in this theory. We find that the standard results of stellar stability still hold in this theory. The frequency square of the fundamental oscillation mode vanishes for the maximum-mass stellar configuration. The dependence of the oscillation mode frequencies on the coupling parameter κ of the theory is also investigated. We find that the fundamental mode is insensitive to the value of κ, while higher-order modes depend more strongly on κ.

  8. Progress Toward Attractive Stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, G H; Brown, T G; Gates, D A

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS designmore » space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.« less

  9. Multi-wavelength Observations of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hernandez Santisteban, Juan Venancio

    2016-11-01

    The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.

  10. Environmental influences on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1993-01-01

    We investigate the role of mergers and interactions in the evolution of galaxies by studying galaxies in compact groups. Compact groups of galaxies have high spatial densities and low velocity dispersions making these regions ideal laboratories in which to study the effect of interactions and mergers. Based on a detailed spectroscopic and multi-color imaging study, we find that both the isophotal shapes and the stellar kinematics indicate that many of the elliptical galaxies in compact groups have been affected by tidal interactions. At the same time, however, we find that only a few elliptical galaxies in compact groups have evidence for the young stellar populations that would be expected if they are the result of recent merger of two spiral galaxies. Therefore, we conclude that tidal interactions affect galaxy properties at the current epoch, but the bulk of basic galaxy formation and transformation must have occurred at much higher redshift.

  11. POX 186: the ultracompact blue compact dwarf galaxy reveals its nature

    NASA Astrophysics Data System (ADS)

    Doublier, V.; Kunth, D.; Courbin, F.; Magain, P.

    2000-01-01

    High resolution, ground based R and I band observations of the ultra compact dwarf galaxy POX 186 are presented. The data, obtained with the ESO New Technology Telescope (NTT), are analyzed using a new deconvolution algorithm which allows one to resolve the innermost regions of this stellar-like object into three Super-Star Clusters (SSC). Upper limits to both masses (M ~ 105 Msun) and physical sizes (<=60pc) of the SSCs are set. In addition, and maybe most importantly, extended light emission underlying the compact star-forming region is clearly detected in both bands. The R-I color rules out nebular Hα contamination and is consistent with an old stellar population. This casts doubt on the hypothesis that Blue Compact Dwarf Galaxies (BCDG) are young galaxies. based on observations carried out at NTT in La Silla, operated by the European Southern Observatory, during Director's Discretionary Time.

  12. A distance estimate to the Cygnus Loop based on the distances to two stars located within the remnant

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Milisavljevic, Dan

    2018-04-01

    Underlying nearly every quantitative discussion of the Cygnus Loop supernova remnant is uncertainty about its distance. Here, we present optical images and spectra of nebulosities around two stars whose mass-loss material appears to have interacted with the remnant's expanding shock front and thus can be used to estimate the Cygnus Loop's distance. Narrow passband images reveal a small emission-line nebula surrounding an M4 red giant near the remnant's eastern nebula NGC 6992. Optical spectra of the nebula show it to be shock-heated with significantly higher electron densities than seen in the remnant's filaments. This along with a bow-shaped morphology suggests it is likely red giant mass-loss material shocked and accelerated by passage of the Cygnus Loop's blast wave. We also identify a B7 V star located along the remnant's northwestern limb, which also appears to have interacted with the remnant's shock wave. It lies within a small arc of nebulosity in an unusually complex region of curved and distorted filaments along the remnant's northern shock front suggestive of a localized disturbance of the shock front due to the B star's stellar winds. Based on the assumption that these two stars lie inside the remnant, combined with an estimated distance to a molecular cloud situated along the remnant's western limb, we propose a distance to the Cygnus Loop of 1.0 ± 0.2 kpc. Although larger than several recent estimates of 500-800 pc, a distance ≃1 kpc helps resolve difficulties with the remnant's postshock cosmic ray and gas pressure ratio and estimated supernova explosion energy.

  13. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  14. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  15. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  16. The Proper Motion of the Central Compact Object RX J0822-4300 in the Supernova Remnant Puppis A

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Prinz, Tobias; Winkler, P. Frank; Petre, Robert

    2012-01-01

    Using the High Resolution Camera (HRC) aboard the Chandra X-ray Observatory, we have re-examined the proper motion of the central compact object RX J0822-4300 in the supernova remnant Puppis A. New data from 2010 August, combined with three archival data sets from as early as 1999 December, provide a baseline of 3886 days (more than 10 1/2 years) to perform the measurement. Correlating the four positions of RX J0822-4300 measured in each data set implies a projected proper motion of mu = 71 +/- 12 mas/yr. For a distance of 2 kpc this proper motion is equivalent to a recoil velocity of 672 +/- 115 km/s. The position angle is found to be 244 +/- 11 degrees. Both the magnitude and direction of the proper motion are in agreement with RX J0822-4300 originating near the optical expansion center of the supernova remnant. For a displacement of 371 +/- 31 arcsec between its birth place and today's position we deduce an age of (5.2 +/- 1.0) 10(exp 3) yrs for RX J0822-4300. The age inferred from the neutron star proper motion and filament motions can be considered as two independent measurements of the same quantity. They average to 4450 +/- 750 yrs for the age of the supernova remnant Puppis A.

  17. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  18. A Newly Discovered Supernova Remnant and MSH 11-62 and 3C58

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    2000-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of X-rays observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Here we report on Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an X-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  19. SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.

    2013-04-01

    We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant ofmore » a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.« less

  20. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  1. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix

    2017-06-01

    Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.

  2. Accreting Compact Object at the Center of the Supernova Remnant RCW 103.

    NASA Astrophysics Data System (ADS)

    Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.

    2002-05-01

    We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.

  3. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advancedmore » Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.« less

  4. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  5. Inferences about binary stellar populations using gravitational wave observations

    NASA Astrophysics Data System (ADS)

    Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel

    2018-01-01

    With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.

  6. Comparing Low-Redshift Compact Dwarf Starbursts in the RESOLVE Survey with High-Redshift Blue Nuggets

    NASA Astrophysics Data System (ADS)

    Palumbo, Michael Louis; Kannappan, Sheila; Snyder, Elaine; Eckert, Kathleen; Norman, Dara; Fraga, Luciano; Quint, Bruno; Amram, Philippe; Mendes de Oliveira, Claudia; RESOLVE Team

    2018-01-01

    We identify and characterize a population of compact dwarf starburst galaxies in the RESOLVE survey, a volume-limited census of galaxies in the local universe, to probe the possibility that these galaxies are related to “blue nuggets,” a class of intensely star-forming and compact galaxies previously identified at high redshift. Blue nuggets are thought to form as the result of intense compaction events that drive fresh gas to their centers. They are expected to display prolate morphology and rotation along their minor axes. We report IFU observations of three of our compact dwarf starburst galaxies, from which we construct high-resolution velocity fields, examining the evidence for minor axis or otherwise misaligned rotation. We find multiple cases of double nuclei in our sample, which may be indicative of a merger origin as in some blue nugget formation scenarios. We compare the masses, radii, gas-to-stellar mass ratios, star formation rates, stellar surface mass densities, and environmental contexts of our sample to expectations for blue nuggets.

  7. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  8. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  9. Large Binocular Telescope/LUCIFER spectroscopy: kinematics of a compact early-type galaxy at z ≃ 1.4

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Saracco, P.; Gargiulo, A.; Tamburri, S.; Lonoce, I.

    2014-04-01

    We present a high signal-to-noise ratio (S/N > 10) medium-resolution (R = 2000) Large Binocular Telescope/LUCIFER spectrum of the early-type galaxy (ETG) S2F1-142 at z ≃ 1.4. By means of the CaT line at 8662 Å, we measured its redshift z = 1.386 ± 0.001 and we estimated its velocity dispersion σ v=340^{-60}_{+120} km s-1. Its corresponding virial mass is 3.9 × 1011 M⊙, compatible with the stellar mass estimates obtained assuming initial mass functions (IMFs) less dwarf rich than the Salpeter one. S2F1-142 is a compact galaxy with Re = 3.1 ± 0.2 kpc, i.e. an effective radius more than three times smaller than the average Re of ETGs with the same mass in the local Universe. At the same time, we found local and high-redshift galaxies with a similar mass content and similar effective radius confirming that it is fully consistent with the already available measures of Re and σv both in the local and in the distant Universe. Considering the distribution of Re and σv as a function of the stellar mass content of ETGs, both in the local and in the distant Universe, we noticed that the measured velocity dispersions of the more compact galaxies are on average slightly lower than expected on the basis of their compactness and the virial theorem, suggesting that (i) their dark matter content is lower than in the more diffuse galaxies and/or (ii) their luminosity profiles are steeper than in the more diffuse galaxies and/or (iii) their larger compactness is an apparent effect caused by the overestimate of their stellar mass content (due to bottom lighter IMF and/or systematic affecting the stellar mass estimates).

  10. NASA Scientists Witness a Supernova Cosmic Rite of Passage

    NASA Astrophysics Data System (ADS)

    2005-11-01

    Scientists using NASA's Chandra X-ray Observatory have witnessed a cosmic rite of passage, the transition from a supernova to a supernova remnant, a process that has never been seen in much detail until now, leaving it poorly defined. A supernova is a massive star explosion; the remnant is the beautiful glowing shell that evolves afterwards. When does a supernova become supernova remnant? When does the shell appear and what powers its radiant glow? A science team led by Dr. Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., has taken a fresh look at a supernova that exploded in 1970, called SN 1970G, just off the handle of the Big Dipper. This is the oldest supernova ever seen by X-ray telescopes. Chandra X-ray Image of SN 1970G Chandra X-ray Image of SN 1970G "Some astronomers have thought there's a moment when the supernova remnant magically turns on years after the supernova itself has faded away, when the shock wave of the explosion finally hits and lights up the interstellar medium," said Immler. "By contrast, our results show that a new supernova quickly and seamlessly evolves into a supernova remnant. The star's own debris, and not the interstellar medium gas, fuels the remnant." These results appear in The Astrophysical Journal, co-authored by Dr. Kip Kuntz, also of Goddard. They support previous Chandra observations of SN 1987A by Dr. Sangwook Park of Penn State. Using new data from Chandra and archived data from the European-led ROSAT and XMM-Newton observatories, Immler and Kuntz pieced together how SN 1970G evolved over the years. They found telltale signs of a supernova remnant - bright X-ray light - yet no evidence of interstellar gas, even across a distance around the site of the explosion 35 times larger than our solar system. Instead, the material that is heated by the supernova shock to glow in X-ray light, what we call the remnant, is from the stellar wind of the star itself and not distant gas in the interstellar medium. This wind, comprising energetic ions, was shed by the progenitor star thousands to million of years before the explosion. If this were from the interstellar medium, it would be much denser than this stellar wind. NOAO Optical Image of SN 1970G NOAO Optical Image of SN 1970G Immler and Kuntz next studied the density profiles of all other supernovae that have been detected over the past two decades. Sure enough, the low-density circumstellar matter from the stellar wind was the source of X-rays, not the interstellar medium. Immler said that historical supernova remnants such as Cassiopeia A, which exploded some 320 years ago, also show no signs of activity from the interstellar medium. This is more than just a name game, more than hypothetically changing SN 1970G to SNR 1970G. "We have to rethink this notion that a shock wave from the supernova crashes into the interstellar medium to create a supernova remnant," said Immler. "The luminous supernova remnants that we see can be created without the need of a dense interstellar medium. In fact, our study showed that all supernovae detected in X-rays over the past 25 years live in a low-density environment." SN 1970G is located in the galaxy M101, also called the Pinwheel Galaxy, a stunning spiral galaxy about 22 million light years away in the constellation Ursa Major, home of the Big Dipper. Although the galaxy itself is visible from dark skies with binoculars, telescopes cannot resolve much structure in SN 1970G, unlike for supernova remnants in our Milky Way galaxy. Discovered with an optical telescope in 1970, SN 1970G was not seen with X-ray telescopes until the 1990s. Immler's work at NASA Goddard is supported through the Universities Space Research Association. Kuntz is supported through University of Maryland, Baltimore County. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the Agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  11. Perspectives on Ultraluminous X-ray sources after the discovery of Ultraluminous Pulsars

    NASA Astrophysics Data System (ADS)

    Zampieri, L.; Ambrosi, E.; Fiore, A.; Pintore, F.; Turolla, R.; Israel, GL.; Stella, L.; Casella, P.; Papitto, A.; Rodriguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Belfiore, A.; Esposito, P.; Marelli, M.; Novara, G.; Salvaterra, R.; Salvetti, D.; Mereghetti, S.; Wolter, A.

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are observationally defined as non-nuclear extragalactic X-ray point sources with inferred (isotropic) luminosity exceeding the Eddington limit for a ˜ 10 M_{⊙} compact object. While in the past few years a certain evidence (and a general consensus) has been gathered in favour of the existence of black hole (BH) remnants in ULXs, the recent discovery of three Ultraluminous X-ray Pulsars has unexpectedly revealed what is likely to be a significant population of neutron star (NS) ULXs. These findings challenge more than ever our present understanding of these sources, their accretion mechanism/history, and their formation pathways. After reviewing some of these intriguing observational facts, we will summarize some perspective studies that we are carrying out to model the multiwavelength variability and broadband spectra of ULXs, including the contribution of an accretion column for NS systems. We derive the luminosity emitted by the latter assuming that a multipolar component dominates the magnetic field close to the NS. The focus is on comparing the simulated multiwavelength emission properties of stellar-mass/massive BHs to those of NS systems, and on confronting the model predictions with the available observations of Pulsar ULXs.

  12. Detection strategies for extreme mass ratio inspirals

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2011-05-01

    The capture of compact stellar remnants by galactic black holes provides a unique laboratory for exploring the near-horizon geometry of the Kerr spacetime, or possible departures from general relativity if the central cores prove not to be black holes. The gravitational radiation produced by these extreme mass ratio inspirals (EMRIs) encodes a detailed map of the black hole geometry, and the detection and characterization of these signals is a major scientific goal for the LISA mission. The waveforms produced are very complex, and the signals need to be coherently tracked for tens of thousands of cycles to produce a detection, making EMRI signals one of the most challenging data analysis problems in all of gravitational wave astronomy. Estimates for the number of templates required to perform an exhaustive grid-based matched-filter search for these signals are astronomically large, and far out of reach of current computational resources. Here I describe an alternative approach that employs a hybrid between genetic algorithms and Markov chain Monte Carlo techniques, along with several time-saving techniques for computing the likelihood function. This approach has proven effective at the blind extraction of relatively weak EMRI signals from simulated LISA data sets.

  13. Double Neutron Star Mergers and Short Gamma-ray Bursts: Long-lasting High-energy Signatures and Remnant Dichotomy

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Toomey, Michael W.; Fang, Ke; Oikonomou, Foteini; Kimura, Shigeo S.; Hotokezaka, Kenta; Kashiyama, Kazumi; Ioka, Kunihito; Mészáros, Peter

    2018-02-01

    The recent detection of gravitational waves and electromagnetic counterparts from the double neutron star merger event GW+EM170817 supports the standard paradigm of short gamma-ray bursts (SGRBs) and kilonovae/macronovae. It is important to reveal the nature of the compact remnant left after the merger, either a black hole or neutron star, and their physical link to the origin of the long-lasting emission observed in SGRBs. The diversity of the merger remnants may also lead to different kinds of transients that can be detected in future. Here we study the high-energy emission from the long-lasting central engine left after the coalescence, under certain assumptions. In particular, we consider the X-ray emission from a remnant disk and the nonthermal nebular emission from disk-driven outflows or pulsar winds. We demonstrate that late-time X-ray and high-frequency radio emission can provide useful constraints on properties of the hidden compact remnants and their connections to long-lasting SGRB emission, and we discuss the detectability of nearby merger events through late-time observations at ∼30–100 days after the coalescence. We also investigate the GeV–TeV gamma-ray emission that occurs in the presence of long-lasting central engines and show the importance of external inverse Compton radiation due to upscattering of X-ray photons by relativistic electrons in the jet. We also search for high-energy gamma rays from GW170817 in the Fermi-LAT data and report upper limits on such long-lasting emission. Finally, we consider the implications of GW+EM170817 and discuss the constraints placed by X-ray and high-frequency radio observations.

  14. Innovations in compact stellarator coil design

    NASA Astrophysics Data System (ADS)

    Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.

    2001-03-01

    Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.

  15. Chandrasekhar Limit: An Elementary Approach Based on Classical Physics and Quantum Theory

    ERIC Educational Resources Information Center

    Pinochet, Jorge; Van Sint Jan, Michael

    2016-01-01

    In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the "Chandrasekhar limit." This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons…

  16. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  17. Talks also presented at the Symposium

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.

    2017-11-01

    Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.

  18. Structure of merger remnants. I - Bulgeless progenitors

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1992-01-01

    The study examines mergers of identical galaxies consisting of self-gravitating disks and halos in the context of the suggestion that such events may form elliptical galaxies. It is shown that the luminous remnants of such mergers do indeed share many common properties with observed ellipticals. Specifically, the end states of the simulations considered rotate slowly in regions of relatively high surface density, having typical values of less than about 0.2 there. Morphologically, the remnants display a variety of structures, including shells and loops comprising loosely bound material and boxy and disky isophotes. The luminous matter is well-fitted by ellipsoidal generalizations of Hernquists's (1990, 1992) model for elliptical galaxies, implying that the surface brightness profiles are essentially de Vaucouleurs-like over a large radial interval. It is proposed that mergers of pure stellar disks do not represent an attractive mechanism for the production of massive elliptical galaxies.

  19. Chandra X-Ray Observatory Image of Cassiopeia A

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an extraordinary first image from the Chandra X-Ray Observatory (CXO), the supernova remnant Cassiopeia A, tracing the aftermath of a gigantic stellar explosion in such sturning detail that scientists can see evidence of what may be a neutron star or black hole near the center. The red, green, and blue regions in this image of the supernova remnant Cassiopeia A show where the intensity of low, medium, and high energy X-rays, respectively, is greatest. The red material on the left outer edge is enriched in iron, whereas the bright greenish white region on the low left is enriched in silicon and sulfur. In the blue region on the right edge, low and medium energy X-rays have been filtered out by a cloud of dust and gas in the remnant . The image was made with the CXO's Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS). Photo credit: NASA/CXC/SAO/Rutgers/J.Hughes

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-08-01

    This is an extraordinary first image from the Chandra X-Ray Observatory (CXO), the supernova remnant Cassiopeia A, tracing the aftermath of a gigantic stellar explosion in such sturning detail that scientists can see evidence of what may be a neutron star or black hole near the center. The red, green, and blue regions in this image of the supernova remnant Cassiopeia A show where the intensity of low, medium, and high energy X-rays, respectively, is greatest. The red material on the left outer edge is enriched in iron, whereas the bright greenish white region on the low left is enriched in silicon and sulfur. In the blue region on the right edge, low and medium energy X-rays have been filtered out by a cloud of dust and gas in the remnant . The image was made with the CXO's Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS). Photo credit: NASA/CXC/SAO/Rutgers/J.Hughes

  1. Integral Field Spectroscopy of the Merger Remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, John; Husemann, Bernd; Kuntschner, Harald; Martín-Navarro, Ignacio

    2018-01-01

    The merging of galaxies is a key aspect of the hierarchical ΛCDM Universe. The formation of massive quiescent elliptical galaxies may be explained through the merger of two star-forming disc galaxies. Despite nearly a century of effort, our understanding of this complex transformational process is remains incomplete and requires diligent observational study.NGC 7252 is one of the nearest starbursting major-merger galaxy remnants, formed about 1 Gyr after the collision of presumably two disc galaxies. It is therefore an ideal laboratory to study the underlying processes involved in transformation of two disc galaxies to an elliptical galaxy via a merger.We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50’’ × 50’’ of NGC 7252 to map the stellar and ionized gas kinematics, and the distribution and conditions of the ionized gas, revealing the extent of ongoing star formation and recent star formation history.Contrary to previous studies we find the inner gas disc not to be counter-rotating with respect to the overall stellar angular momentum. However, the stellar kinematics appear to be complex with a superposition of at least two nearly perpendicular angular momentum components. The host galaxy is still blue with g - i ~ 0.8 with an ongoing star formation rate of 2.2 ± 0.6 Msun/yr, placing NGC 7252 close to the blue cloud of galaxies and consistent with a disc-like molecular depletion time of ~2 Gyr.Although NGC 7252 appears as a fading starburst galaxy at the center, the elliptical-like major merger remnant appears to active, inconsistent with a fast quenching scenario. NGC 7252 may take several Gyr to reach the red sequence of galaxies unless star formation becomes quenched by either AGN feedback or inefficient gas conversion, leading to an H I-rich elliptical galaxy.

  2. Compact binary merger and kilonova: outflows from remnant disc

    NASA Astrophysics Data System (ADS)

    Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying

    2018-05-01

    Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).

  3. Kinematics of the Ultra-High-Velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Yamada, Masaya; Oka, Tomoharu; Tanaka, Kunihiko; Nomura, Mariko; Takekawa, Shunya; Iwata, Yuhei; Tokuyama, Sekito; Tanabe, Keisuke; Tsujimoto, Shiho; Furusawa, Maiko

    2017-01-01

    High-velocity compact cloud (HVCC) is a peculiar category of molecular clouds detected in the central molecular zone of our Galaxy (Oka et al. 1998, 2007, and 2012). They are characterized by compact appearances (d < 5 pc) and very large velocity widths (Δ V > 50 km s-1). Some of them show high CO J=3-2/J=1-0 intensity ratios (>= 1.5), indicating that they consist of dense and warm molecular gas. Dispite a number of efforts, we have not reached a comprehensive interpretation of HVCCs. Recently, we detected an extraordinaly broad velocity width feature, the `Bullet', in the molecular cloud interacting with the W44 supernova remnant. The Bullet shares essential properties with HVCCs. Because of its proximity, a close inspection of the Bullet must contribute to the understanding of HVCCs.

  4. Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions

    NASA Astrophysics Data System (ADS)

    Sham, Y.-H.; Leung, P. T.; Lin, L.-M.

    2013-03-01

    We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.

  5. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions, and 10 re-mergers of the 40% gas remnants. All simulations were run using a version of GADGET-2 [173] that included subresolution models of radiative cooling, star formation, and supernova and AGN feedback. The potential was frozen at the last snapshot of each simulation and the orbits of ~50,000 randomly chosen stars were integrated for ~100 dynamical times, and classified based on their Fourier spectra using the algorithm of [30]. The 40% gas remnants were found to be dominated by minor-axis tube orbits in their inner regions, whereas box orbits were the dominant orbit family in the inner parts of the dissipationless disk-disk and remnant-remnant systems. The phase space available to minor-axis tube orbits in even the 5% gas remnants was much larger than that in the dissipationless remnants, but the 5% gas remnants are not fast rotators because these orbits tend to be isotropically distributed at low gas fractions. Some of the remnants show significant minor axis rotation, due to large orientation twists in their outer parts (in the 40% gas remnants) and asymmetrically rotating major-axis tube orbits throughout the remnants (in the re-mergers).

  6. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  7. Theoretical constraints on the properties of low-mass neutron stars from the equation of state of nuclear matter in the inner crust

    NASA Astrophysics Data System (ADS)

    Wen, Yong-Mei; Wen, De-Hua

    2017-06-01

    By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.

  8. Organic molecules, ions, and rare isotopologues in the remnant of the stellar-merger candidate, CK Vulpeculae (Nova 1670)

    NASA Astrophysics Data System (ADS)

    Kamiński, T.; Menten, K. M.; Tylenda, R.; Karakas, A.; Belloche, A.; Patel, N. A.

    2017-11-01

    Context. CK Vulpeculae (CK Vul) is an enigmatic star whose outburst was observed in 1670-72. A stellar-merger event was proposed to explain its ancient eruption. Aims: We aim to investigate the composition of the molecular gas recently discovered in the remnant of CK Vul. Deriving the chemical, elemental, and isotopic composition is crucial for identifying the nature of the object and obtaining clues on its progenitor(s). Methods: We observed millimeter and submillimeter-wave spectra of CK Vul using the IRAM 30 m and APEX telescopes. Radiative-transfer modeling of the observed molecular features was performed to yield isotopic ratios for various elements. Results: The spectra of CK Vul reveal a very rich molecular environment of low excitation (Tex ≲ 12 K). Atomic carbon and twenty-seven different molecules, including two ions, were identified. They range from simple diatomic to complex polyatomic species of up to seven atoms large. The chemical composition of the molecular gas is indicative of carbon and nitrogen-driven chemistry but oxides are also present. Additionally, the abundance of fluorine may be enhanced. The spectra are rich in isotopologues that are very rare in most known sources. All stable isotopes of C, N, O, Si, and S are observed and their isotopic ratios are derived. Conclusions: The composition of the remnant's molecular gas is most peculiar and gives rise to a very unique millimeter and submillimeter spectrum. The observation of ions and complex molecules suggests the presence of a photoionizing source but its nature (a central star or shocks) remains unknown. The elemental and isotopic composition of the gas cannot be easily reconciled with standard stellar nucleosynthesis but processing in hot CNO cycles and partial helium burning can explain most of the chemical peculiarities. The isotopic ratios of CK Vul are remarkably close to those of presolar "nova grains" but the link of Nova 1670 to objects responsible for these grains is unclear. The accuracy of isotopic ratios can be improved by future observations at higher angular resolutions and with realistic models of the kinematical structure of the remnant. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A78

  9. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  10. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    NASA Astrophysics Data System (ADS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, L.; Chrzanowski, J.; Heitzenroeder, P.

    The National Compact Stellarator Experiment (NCSX) has been under construction at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3D plasma that combines stellarator and tokamak physics advantages. The complex geometry and tight fabrication tolerances of NCSX create some unique engineering and assembly challenges. The NCSX project was cancelled in May 2008; construction activities are presently being phased out in an orderly fashion. This paper will describe the progress of the fabrication and assembly activities of NCSX. Completion of the coil fabrication is onmore » track for the summer of 2008. All three of the vacuum vessel 120 degrees sections have been delivered. Assembly of vacuum vessel services began in May 2006 and is now complete. Assembly of the modular coils into 3-packs for safe storage is presently underway. (C) 2008 Elsevier B.V. All rights reserved.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Carreras, B.A.; Hirshman, S.P.

    Significant progress has been made in the development of new modest-size compact stellarator devices that could test optimization principles for the design of a more attractive reactor. These are 3 and 4 field period low-aspect-ratio quasi-omnigenous (QO) stellarators based on an optimization method that targets improved confinement, stability, ease of coil design, low-aspect-ratio, and low bootstrap current.

  13. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  14. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of evolved stars. These formulae can be used to better compute the outcome of common-envelope evolution with rapid evolution codes. We find that the new formulae are necessary for accurate predictions of the properties of post-common envelope systems. Finally, we use detailed remnant models of massive stars to investigate whether hydrogen may be retained after a common-envelope phase to the point of core-collapse and so be observable in supernovae. We find that this is possible and thus common-envelope evolution may contribute to the formation of Type IIb supernovae.

  15. Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data

    NASA Astrophysics Data System (ADS)

    Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.; Balbinot, E.; Bechtol, K.; Drlica-Wagner, A.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Yanny, B.; Abbott, T.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Zhang, Y.

    2016-05-01

    We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 ≲ MV ≲ -2.21, respectively. The half-light radius of this object, rh ˜ 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (ɛ ˜ 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature.

  16. Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-03-01

    We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and radii of compact objects.

  17. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  18. Supernova remnant S 147 and its associated neutron star(s)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  19. Pulsar Wind Nebulae inside Supernova Remnants as Cosmic-Ray PeVatrons

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka; Kisaka, Shota; Yamazaki, Ryo

    2018-07-01

    We propose that cosmic ray PeVatrons are pulsar wind nebulae (PWNe) inside supernova remnants (SNRs). The PWN initially expands into the freely expanding stellar ejecta. Then, the PWN catches up with the shocked region of the SNR, where particles can be slightly accelerated by the back and forth motion between the PWN and the SNR, and some particles diffuse into the PWN. Afterwards the PWN is compressed by the SNR, where the particles in the PWN are accelerated by the adiabatic compression. Using a Monte Carlo simulation, we show that particles accelerated by the SNR to 0.1 PeV can be reaccelerated to 1 PeV until the end of the PWN compression.

  20. Pulsar Wind Nebulae inside Supernova Remnants as Cosmic-Ray PeVatrons

    NASA Astrophysics Data System (ADS)

    Ohira, Yutaka; Kisaka, Shota; Yamazaki, Ryo

    2018-05-01

    We propose that cosmic-ray PeVatrons are pulsar wind nebulae (PWNe) inside supernova remnants (SNRs). The PWN initially expands into the freely expanding stellar ejecta. Then, the PWN catches up with the shocked region of the SNR, where particles can be slightly accelerated by the back and forth motion between the PWN and the SNR, and some particles diffuse into the PWN. Afterwards the PWN is compressed by the SNR, where the particles in the PWN are accelerated by the adiabatic compression. Using a Monte Carlo simulation, we show that particles accelerated by the SNR to 0.1 PeV can be reaccelerated to 1 PeV until the end of the PWN compression.

  1. SuperMassive Blackholes grow from stellar BHs of star formation history?

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    The origin of the supermassive black hole masses M SMBH discovered at the highest redshifts is still actively debated. Moreover the statistically significant relation of M SMBH with bulge luminosities L V , extended on several magnitude orders, confirms a common physical process linking small (<= 1pc) to large (kpcs) size scales. The Spectral Energy Distributions (SEDs) of two z=3.8 radio galaxies 4C41.17 and TN J2007-1316, best-fitted by evolved early type galaxy and starburst scenarios also imply masses of stellar remnants. Computed with the evolutionary code Pegase.3, the cumulated stellar black hole mass M sBH reach up to several 109M⊙, similar to M SMBH at same z. We propose the SMBH growth is due to the migration of the stellar dense residues (sBH) towards the galaxy core by dynamical friction. Discussed in terms of time-scales, this process which is linking AGN and star formation, also fully justifies the famous relation M SMBH -L V .

  2. Unbound Young Stellar Systems: Star Formation on the Loose

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2018-07-01

    Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.

  3. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Mendel, J. T.; Förster Schreiber, N. M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; Chan, J.; Davies, R. I.; Davies, R. L.; Fabricius, M.; Fossati, M.; Galametz, A.; Lang, P.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.

    2018-03-01

    Using integral field spectroscopy, we investigate the kinematic properties of 35 massive centrally dense and compact star-forming galaxies (SFGs; {log}{\\overline{M}}* [{M}ȯ ]=11.1, {log}({{{Σ }}}1{kpc}[{M}ȯ {kpc}}-2])> 9.5, {log}({M}* /{r}e1.5[{M}ȯ {kpc}}-1.5])> 10.3) at z ∼ 0.7–3.7 within the KMOS3D survey. We spatially resolve 23 compact SFGs and find that the majority are dominated by rotational motions with velocities ranging from 95 to 500 km s‑1. The range of rotation velocities is reflected in a similar range of integrated Hα line widths, 75–400 km s‑1, consistent with the kinematic properties of mass-matched extended galaxies from the full KMOS3D sample. The fraction of compact SFGs that are classified as “rotation-dominated” or “disklike” also mirrors the fractions of the full KMOS3D sample. We show that integrated line-of-sight gas velocity dispersions from KMOS3D are best approximated by a linear combination of their rotation and turbulent velocities with a lesser but still significant contribution from galactic-scale winds. The Hα exponential disk sizes of compact SFGs are, on average, 2.5 ± 0.2 kpc, 1–2× the continuum sizes, in agreement with previous work. The compact SFGs have a 1.4× higher active galactic nucleus (AGN) incidence than the full KMOS3D sample at fixed stellar mass with an average AGN fraction of 76%. Given their high and centrally concentrated stellar masses, as well as stellar-to-dynamical mass ratios close to unity, the compact SFGs are likely to have low molecular gas fractions and to quench on a short timescale unless replenished with inflowing gas. The rotation in these compact systems suggests that their direct descendants are rotating passive galaxies. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs 092A-0091, 093.A-0079, 094.A-0217, 095.A-0047, 096.A-0025, 097.A-0028, and 098.A-0045).

  4. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  5. The Peculiar, Asymmetric Core-Collapse Supernova Remnant G350.1-0.3

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen

    2017-09-01

    We propose a 200 ks observation of one of the most peculiar supernova remnants known: G350.1-0.3. This mysterious object resembles no other known SNR in radio or X-rays, It contains a compact central object (CCO) which may or may not be related. Previous spectral analyses are contradictory, but there appears to be strong iron emission and an extreme overabundance of nickel. Age estimates suggest it could be as young as 600 years old. Our proposed observation should be able to measure expansion since 2009, confirming or refuting the age estimate, and will allow spectroscopy on small scales to confirm enhanced abundances and search for shocked ambient material and nonthermal emission. If the CCO originated at the remnant center, its motion will also be detected.

  6. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  7. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  8. SNR 1E0102.2-7219 after Six Years with Chandra

    NASA Astrophysics Data System (ADS)

    Rutkowski, M. J.; Schlegel, E. M.; Keohane, J.

    2005-12-01

    We present Chandra X-ray Observatory archived observations of the supernova remnant 1E0102.2-7219 in the Small Magellanic Cloud. Combining 22 ACIS-I observations for 230 ks of total exposure time, we present ACIS images with an unprecedented signal to noise ratio for this remnant. We present three upper limits on the X-ray flux for the remnant's elusive central compact object, which are consistent with current neutron star cooling models, based on a Cas A-like blackbody spectrum. Additionally, we discuss the elliptical structure of the remnant and the relative positions of the blast wave, the reverse shock, and the extent of 1E0102.2-7219's rim. This research was supported by the NSF REU Program at SAO under Eric Schlegel, whose research was supported by contract number NAS8-39073 from NASA to SAO for operation of the Chandra X-Ray Observatory. Jonathan Keohane's research was supported by Chandra award GO3-4070C.

  9. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  10. Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae

    NASA Astrophysics Data System (ADS)

    Marek, A.; Janka, H.-T.; Müller, E.

    2009-03-01

    We present two-dimensional (axisymmetric) neutrino-hydrodynamic simulations of the long-time accretion phase of a 15 M_⊙ progenitor star after core bounce and before the launch of a supernova explosion, when non-radial hydrodynamic instabilities like convection occur in different regions of the collapsing stellar core and the standing accretion shock instability (SASI) leads to large-amplitude oscillations of the stalled shock with a period of tens of milliseconds. Our simulations were performed with the Prometheus-Vertex code, which includes a multi-flavor, energy-dependent neutrino transport scheme and employs an effective relativistic gravitational potential. Testing the influence of a stiff and a soft equation of state for hot neutron star matter, we find that the non-radial mass motions in the supernova core impose a time variability on the neutrino and gravitational-wave signals with larger amplitudes, as well as higher frequencies in the case of a more compact nascent neutron star. After the prompt shock-breakout burst of electron neutrinos, a more compact accreting remnant produces higher neutrino luminosities and higher mean neutrino energies. The observable neutrino emission in the SASI sloshing direction exhibits a modulation of several ten percent in the luminosities and around 1 MeV in the mean energies with most power at typical SASI frequencies between roughly 20 and 100 Hz. The modulation is caused by quasi-periodic variations in the mass accretion rate of the neutron star in each hemisphere. At times later than ~50-100 ms after bounce, the gravitational-wave amplitude is dominated by the growing low-frequency (⪉200 Hz) signal associated with anisotropic neutrino emission. A high-frequency wave signal results from nonradial gas flows in the outer layers of the anisotropically accreting neutron star. Right after bounce such nonradial mass motions occur due to prompt post-shock convection in both considered cases and contribute mostly to the early wave production around 100 Hz. Later they are instigated by the SASI and by convective overturn that vigorously stir the neutrino-heating and cooling layers, and also by convective activity developing below the neutrinosphere. The gravitational-wave power then peaks at about 300-800 Hz, connected to changes in the mass quadrupole moment on a timescale of milliseconds. Distinctively higher spectral frequencies originate from the more compact and more rapidly contracting neutron star. Both the neutrino and gravitational-wave emission therefore carry information that is characteristic of the properties of the nuclear equation of state in the hot remnant. The detectability of the SASI effects in the neutrino and gravitational-wave signals is briefly discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Brooks; A.H. Reiman; G.H. Neilson

    High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has amore » substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.« less

  12. Compact Stellar Groups in the 30 Doradus Nebula and their Nebular Environment

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan

    1997-07-01

    We propose to further knowledge of the stellar content of 30 Doradus by examining the images of all OB stars in a current, major ground-based spectral-classification study, using the archival WFPC2 {and possibly PC1} data. It is expected, and indeed already known in a few cases, that many of them will be compact multiple systems resolved by WFPC. It is essential to account for such structure in luminosity, mass, and evolutionary inferences. We shall derive the most accurate possible photometric results for the resulting components, and we shall propose spatially resolved HST spectroscopy of them in Cycle 8. It should be emphasized that we are not addressing R136, the subject of other programs, but the rich, massive population throughout the Nebula beyond the central core, especially to the north and west where there is evidence for a younger generation, whose formation was possibly triggered by the energetic activity of the core. In addition, preliminary inspection of some of the WFPC2 data has shown many intricate structures in the ambient dust and ionized gas, including possible pre-stellar objects, which we shall describe and relate to the associated stellar component and known IR sources as appropriate.

  13. A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant.

    PubMed

    Ho, Wynn C G; Heinke, Craig O

    2009-11-05

    The surface of hot neutron stars is covered by a thin atmosphere. If there is accretion after neutron-star formation, the atmosphere could be composed of light elements (H or He); if no accretion takes place or if thermonuclear reactions occur after accretion, heavy elements (for example, Fe) are expected. Despite detailed searches, observations have been unable to confirm the atmospheric composition of isolated neutron stars. Here we report an analysis of archival observations of the compact X-ray source in the centre of the Cassiopeia A supernova remnant. We show that a carbon atmosphere neutron star (with low magnetic field) produces a good fit to the spectrum. Our emission model, in contrast with others, implies an emission size consistent with theoretical predictions for the radius of neutron stars. This result suggests that there is nuclear burning in the surface layers and also identifies the compact source as a very young ( approximately 330-year-old) neutron star.

  14. A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars {sup ,} {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.

    2014-10-01

    We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M {sub ☉} and treat the zeropointmore » of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77« less

  15. Anisotropic strange star with Tolman V potential

    NASA Astrophysics Data System (ADS)

    Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.

    In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.

  16. Hubble Space Telescope observations of the optical counterpart to a ultra-compact high-velocity cloud

    NASA Astrophysics Data System (ADS)

    Sand, David J.

    2017-01-01

    As part of a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs), our team has uncovered five Local Volume dwarf galaxies, two of which were not previously known. Among these was AGC 226067, also known as ALFALFA-Dw1, which appeared to be made up of several HI and blue optical clumps based on ground-based data, with at least one HII region. Here we present Hubble Space Telescope Advanced Camera for Surveys data of AGC 226067. The data show that AGC 226067 is made up of a ~7-30 Myr old stellar population with a [Fe/H]~-0.6. Further, there is no evidence for an old stellar population associated with the system, down to a limit of MV>-8. Based on this and the position of AGC 226067 in the outskirts of the M86 subgroup of the Virgo cluster we present various arguments for the origin of this strange stellar system.

  17. II Zw 40 - 30 Doradus on Steroids

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus; Lee, Janice C.; Levesque, Emily M.

    2017-11-01

    We obtained HST COS G140L spectra of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster embedded in a radio-bright nebula, similar to those observed in the related blue compact dwarfs NGC 5253 and Henize 2-10. The ultraviolet spectrum of II Zw 40 is exceptional in terms of the strength of He II 1640, O III] 1666 and C III] 1909. We determined reddening, age, and the cluster mass from the ultraviolet data. The super nebula and the ionizing cluster exceed the ionizing luminosity and stellar mass of the local benchmark 30 Doradus by an order of magnitude. Comparison with stellar evolution models accounting for rotation reveals serious short-comings: these models do not account for the presence of Wolf-Rayet-like stars at young ages observed in II Zw 40. Photoionization modeling is used to probe the origin of the nebular lines and determine gas phase abundances. C/O is solar, in agreement with the result of the stellar-wind modeling.

  18. Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?

    NASA Astrophysics Data System (ADS)

    Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.

    2018-04-01

    The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.

  19. THE NUCLEUS OF THE PLANETARY NEBULA EGB 6 AS A POST-MIRA BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope ( HST ) images to show that the compact nebula is a point-like source, located 0.″16 (∼118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot.more » We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I -band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ∼1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Benacquista, Matthew

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength ofmore » the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.« less

  1. Key issues review: numerical studies of turbulence in stars

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey

    2016-10-01

    Three major problems of single-star astrophysics are convection, magnetic fields and rotation. Numerical simulations of convection in stars now have sufficient resolution to be truly turbulent, with effective Reynolds numbers of \\text{Re}>{{10}4} , and some turbulent boundary layers have been resolved. Implications of these developments are discussed for stellar structure, evolution and explosion as supernovae. Methods for three-dimensional (3D) simulations of stars are compared and discussed for 3D atmospheres, solar rotation, core-collapse and stellar boundary layers. Reynolds-averaged Navier-Stokes (RANS) analysis of the numerical simulations has been shown to provide a novel and quantitative estimate of resolution errors. Present treatments of stellar boundaries require revision, even for early burning stages (e.g. for mixing regions during He-burning). As stellar core-collapse is approached, asymmetry and fluctuations grow, rendering spherically symmetric models of progenitors more unrealistic. Numerical resolution of several different types of three-dimensional (3D) stellar simulations are compared; it is suggested that core-collapse simulations may be under-resolved. The Rayleigh-Taylor instability in explosions has a deep connection to convection, for which the abundance structure in supernova remnants may provide evidence.

  2. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  3. The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.

    2013-12-01

    Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.

  4. The Turbulent Origin of Spin-Orbit Misalignment in Planetary Systems

    DOE PAGES

    Fielding, Drummond B.; McKee, Christopher F.; Socrates, Aristostle; ...

    2015-05-13

    The turbulent environment from which stars form may lead to misalignment between the stellar spin and the remnant protoplanetary disk. By using hydrodynamic and magnetohydrodynamic simulations, we demonstrate that a wide range of stellar obliquities may be produced as a by-product of forming a star within a turbulent environment. We present a simple semi-analytic model that reveals this connection between the turbulent motions and the orientation of a star and its disk. Our results are consistent with the observed obliquity distribution of hot Jupiters. Migration of misaligned hot Jupiters may, therefore, be due to tidal dissipation in the disk, rathermore » than tidal dissipation of the star-planet interaction.« less

  5. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  6. Astroserver - Research Services in the Stellar Webshop

    NASA Astrophysics Data System (ADS)

    Németh, Péter

    2017-12-01

    A quick look at research and development in astronomy shows that we live in exciting times. Exoplanetary systems, supernovae, and merging binary black holes were far out of reach for observers two decades ago and now such phenomena are recorded routinely. This quick development would not have been possible without the ability for researchers to be connected, to think globally and to be mobile. Classical short-term positions are not always suitable to support these conditions and freelancing may be a viable alternative.We introduce the Astroserver framework, which is a new freelancing platform for scientists, and demonstrate through examples how it contributed to some recent projects related to hot subdwarf stars and binaries. These contributions, which included spectroscopic data mining, computing services and observing services, as well as artwork, allowed a deeper look into the investigated systems. The work on composite spectra binaries provided new details for the hypervelocity wide subdwarf binary PB 3877 and found diverse and rare systems with sub-giant companions in high-resolution spectroscopic surveys. The models for the peculiar abundance pattern of the evolved compact star LP 40-365 showed it to be a bound hypervelocity remnant of a supernova Iax event. Some of these works also included data visualizations to help presenting the new results. Such services may be of interest for many researchers.

  7. High resolution observations of Cassiopeia A at meter wavelengths. [pulsar source in supernova remnant

    NASA Technical Reports Server (NTRS)

    Hutton, L. K.; Clark, T. A.; Erickson, W. C.; Resch, G. M.; Vandenberg, N. R.; Knowles, S. H.; Youmans, A. B.

    1974-01-01

    Very long baseline interferometric (VLBI) observations of the supernova remnant Cassiopeia A, at 74 MHz with a 12,000-wavelength baseline and at 111 MHz with a 18,500-wavelength baseline, are reported. The fringe amplitudes are strongly varying on a time scale of about 15 to 30 minutes. The location of the extra source must lie outside the supernova remnant shell possibly associated with a concentration of emission north of the shell, or lying outside the gap in the northeastern side of the shell. The flux and spectral index deduced for the compact source depend on the assumed size, with a range of 100 Jy to 500 Jy at 74 MHz. If the source is associated with the supernova explosion, it must have been traveling at least 5000 km s/2.

  8. INTERACTION BETWEEN THE SUPERNOVA REMNANT HB 3 AND THE NEARBY STAR-FORMING REGION W3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yang, Ji; Fang, Min

    We performed millimeter observations of CO lines toward the supernova remnant (SNR) HB 3. Substantial molecular gas around −45 km s{sup −1} is detected in the conjunction region between the SNR HB 3 and the nearby W3 complex. This molecular gas is distributed along the radio continuum shell of the remnant. Furthermore, the shocked molecular gas indicated by line wing broadening features is also distributed along the radio shell and inside it. By both morphological correspondence and dynamical evidence, we confirm that the SNR HB 3 interacts with the −45 km s{sup −1} molecular cloud (MC), in essence, with the nearby H ii region/MC complexmore » W3. The redshifted line wing broadening features indicate that the remnant is located at the nearside of the MC. With this association, we could place the remnant at the same distance as the W3/W4 complex, which is 1.95 ± 0.04 kpc. The spatial distribution of aggregated young stellar object candidates shows a correlation with the shocked molecular strip associated with the remnant. We also find a binary clump of CO at ( l = 132.°94, b = 1.°12) around −51.5 km s{sup −1} inside the projected extent of the remnant, and it is associated with significant mid-infrared emission. The binary system also has a tail structure resembling the tidal tails of interacting galaxies. According to the analysis of CO emission lines, the larger clump in this binary system is about stable, and the smaller clump is significantly disturbed.« less

  9. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  10. Observational Evidence for High Neutronization in Supernova Remnants: Implications for Type Ia Supernova Progenitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-Rodríguez, Héctor; Badenes, Carles; Andrews, Brett

    The physical process whereby a carbon–oxygen white dwarf explodes as a Type Ia supernova (SN Ia) remains highly uncertain. The degree of neutronization in SN Ia ejecta holds clues to this process because it depends on the mass and the metallicity of the stellar progenitor, and on the thermodynamic history prior to the explosion. We report on a new method to determine ejecta neutronization using Ca and S lines in the X-ray spectra of Type Ia supernova remnants (SNRs). Applying this method to Suzaku data of Tycho, Kepler , 3C 397, and G337.2−0.7 in the Milky Way, and N103B inmore » the Large Magellanic Cloud, we find that the neutronization of the ejecta in N103B is comparable to that of Tycho and Kepler , which suggests that progenitor metallicity is not the only source of neutronization in SNe Ia. We then use a grid of SN Ia explosion models to infer the metallicities of the stellar progenitors of our SNRs. The implied metallicities of 3C 397, G337.2−0.7, and N103B are major outliers compared to the local stellar metallicity distribution functions, indicating that progenitor metallicity can be ruled out as the origin of neutronization for these SNRs. Although the relationship between ejecta neutronization and equivalent progenitor metallicity is subject to uncertainties stemming from the {sup 12}C + {sup 16}O reaction rate, which affects the Ca/S mass ratio, our main results are not sensitive to these details.« less

  11. Supernovae-generated high-velocity compact clouds

    NASA Astrophysics Data System (ADS)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  12. Bursts of star formation in computer simulations of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comins, N.F.

    1984-09-01

    A three-dimensional Stochastic Self-Propagating Star Formation (SSPSF) model of compact galacies is presented. Two phases of gas, active and inactive, are present, and permanent depletion of gas in the form of long lived, low mass stars and remnants occurs. Similarly, global infall of gas from a galactic halo or through galactic cannibalism is permitted. We base our parameters on the observed properties of the compact blue galaxy I Zw 36. Our results are that bursts of star formation occur much more frequently in these runs than continuous nonbursting star formation, suggesting that the blue compact galaxies are probably undergoing burstsmore » rather than continuous, nonbursting low-level star formation activity.« less

  13. Periastron shifts of stellar orbits near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Rubilar, G. F.; Eckart, A.

    2001-07-01

    The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.

  14. Application of Magnetic and Geotechnical Methods for Archaeological Site Investigations

    DTIC Science & Technology

    2011-07-01

    national historic preservation act NRM natural remnant magnetism NS north-south nT nano Tesla ID inside diameter OSB oriented strand board psi...3.4 Soil Box Experiments Compaction tests were conducted by loading soil into a wooden box (1 m3) constructed of oriented strand board ( OSB ) and

  15. Constraints on core collapse from the black hole mass function

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2015-01-01

    We model the observed black hole mass function under the assumption that black hole formation is controlled by the compactness of the stellar core at the time of collapse. Low-compactness stars are more likely to explode as supernovae and produce neutron stars, while high-compactness stars are more likely to be failed supernovae that produce black holes with the mass of the helium core of the star. Using three sequences of stellar models and marginalizing over a model for the completeness of the black hole mass function, we find that the compactness ξ2.5 above which 50% of core collapses produce black holes is ξ _{2.5}^{50%}=0.24 (0.15 < ξ _{2.5}^{50%} < 0.37 at 90% confidence). The models also predict that f = 0.18 (0.09 < f < 0.39) of core collapses fail. We tested four other criteria for black hole formation based on ξ2.0 and ξ3.0, the compactnesses at enclosed masses of 2.0 or 3.0 rather than 2.5 M⊙, the mass of the iron core MFe, and the mass inside the oxygen burning shell MO. We found that ξ2.0 works as well as ξ2.5, while ξ3.0, MFe and MO are significantly worse. As expected from the high compactness of 20-25 M⊙ stars, black hole formation in this mass range provides a natural explanation of the red supergiant problem.

  16. Life in the Outer Limits: Insight into Hierarchical Merging from the Outermost Structure of the Andromeda Stellar Halo

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael; Majewski, S. R.; Patterson, R. J.; Guhathakurta, P.; Gilbert, K.; Kalirai, J. S.; Tollerud, E. J.; SPLASH Team

    2014-01-01

    Owing to their large dynamical timescales, the stellar haloes of Milky Way (MW) sized galaxies represent ideal environments to test modern theories of galaxy formation in the Lambda-CDM paradigm. Only in stellar haloes can the remnants of hierarchical accretion be preserved over long timescales as in-tact dwarf satellites or as tidal debris and can be easily distinguished from the underlying smooth structure. Stellar haloes, however, remain some of the most difficult galactic structures to constrain due to their large angular extent and extremely low surface brightness. Thus, the basic properties of stellar haloes -- the overall stellar distribution, substructure fraction, global kinematics and detailed stellar content -- remained relatively unconstrained. In this thesis, we present several projects designed to understand the current structure and the the formation of the Andromeda (M31) stellar halo, the only stellar halo -- besides our own -- that is within reach of current ground based facilities on the large scale required to constrain the basic properties of stellar haloes. First, we describe a seven season imaging campaign comprising the backbone of the Spectroscopic and Photometric Landscape of the Andromeda Stellar Halo (SPLASH) program. This survey is unique in its application of the Washington + DDO51 filter system to select individual M31 RGB stars without spectroscopic follow up. Second, we use the SPLASH photometric survey to identify sample of halo stars at projected radii of 120 kpc, for which we have obtained spectroscopic follow-up. Third, we add this large radius sample to the existing spectroscopic results from SPLASH, and use this unique sample to explore the stellar kinematics of the halo at large radii with full azimuthal coverage. Lastly, we preview on-going work to constrain the formation of the Andromeda stellar halo, using both in-tact satellites and resolved M31 halo members as tracers of its accretion history.

  17. Faint dwarf galaxies in Hickson Compact Group 90*

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Taylor, Matthew A.; Puzia, Thomas H.; Muñoz, Roberto P.; Eigenthaler, Paul; Georgiev, Iskren Y.; Goudfrooij, Paul; Hilker, Michael; Lançon, Ariane; Mamon, Gary; Mieske, Steffen; Miller, Bryan W.; Peng, Eric W.; Sánchez-Janssen, Rubén

    2016-12-01

    We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with Very Large Telescope/Visible Multi-Object Spectrograph. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range 0.7 ≲ reff/kpc ≲ 1.5 with luminosities of -11.65 ≲ MU ≲ -9.42 and -12.79 ≲ MI ≲ -10.58 mag, corresponding to a colour range of (U - I)0 ≃ 1.1-2.2 mag and surface brightness levels of μU ≃ 28.1 mag arcsec-2 and μI ≃ 27.4 mag arcsec-2. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z⊙ metallicities we obtain stellar masses in the range M*|Z⊙ ≃ 105.7 - 6.3 M⊙ and M_{*}|_{0.02 Z_{⊙} ≃ 10^{6.3-8} M_{⊙}. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than ˜2 Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with ˜2 kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of reff ≃ 46-63 pc and magnitude MU, 0 = -7.42 mag and (U - I)0 = 1.51 mag, which is consistent with a nuclear stellar disc with a stellar mass in the range 104.9 - 6.5 M⊙.

  18. Can Minor Merging Account for the Size Growth of Quiescent Galaxies? New Results from the CANDELS Survey

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Ellis, Richard S.; Bundy, Kevin; Treu, Tommaso

    2012-02-01

    The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5 and stellar masses M * > 1010.7 M ⊙ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey. At each redshift, the most compact sources are those with little or no star formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5 ± 0.3 over this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical annulus 10 h -1 kpc < R < 30 h -1 kpc, we estimate the minor merger rate over 0.4 < z < 2. We find that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater. Mergers of these companions will typically increase the host mass by 6% ± 2% per merger timescale. We estimate the minimum growth rate necessary to explain the declining abundance of compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate. We find that mergers may explain most of the size evolution observed at z <~ 1 if a relatively short merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional physical processes.

  19. Roentgen Satellite (ROSAT)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Objectives of NASA's participation in the ROSAT mission are to: a) measure the spatial, spectral, and temporal characteristics of discrete cosmic sources including normal stars, collapsed stellar objects, and active galactic nuclei; b) perform spectroscopic mapping of extended X-ray sources including supernova remnants, galaxies, and clusters of galaxies; and c) conduct the above observations of cosmic sources with unprecedented sensitivity and spatial resolution over the 0.1 - 2.0 keV energy band.

  20. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  1. Diffuse remnants of supernova explosions of moving massive stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    The modification of the ambient interstellar medium by the wind of massive stars (the progenitors of most of supernovae) results in that the structure and evolution of diffuse supernova remnants (SNRs) significantly deviate from those derived from standard models of SNRs based of the Sedov-Taylor solution. The stellar proper motion and the regular interstellar magnetic field affect the symmetry of the processed medium and cause the SNR to be non-spherically-symmetric. We show that taking into account these effects allows us to explain the diverse morphologies of the known SNRs (the particular attention is paid to the elongated axisymmetric SNRs and the SNRs consisting of two partially overlapping shells) and to infer the ``true" supernova explosion sites in some peculiar SNRs (therefore to search for new neutron stars associated with them).

  2. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kains, N.; Calamida, A.; Sahu, K. C.

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  3. Microlensing Constraints on the Mass of Single Stars from HST Astrometric Measurements

    DOE PAGES

    Kains, N.; Calamida, A.; Sahu, K. C.; ...

    2017-07-14

    Here, we report on the first results from a large-scale observing campaign aiming to use astrometric microlensing to detect and place limits on the mass of single objects, including stellar remnants. We used the Hubble Space Telescope to monitor stars near the Galactic Center for three years, and we measured the brightness and positions of ~2 million stars at each observing epoch. In addition to this, we monitored the same pointings using the VIMOS imager on the Very Large Telescope. The stars we monitored include several bright microlensing events observed from the ground by the OGLE collaboration. In this paper,more » we present the analysis of our photometric and astrometric measurements for six of these events, and derive mass constraints for the lens in each of them. Although these constraints are limited by the photometric precision of ground-based data, and our ability to determine the lens distance, we were able to constrain the size of the Einstein ring radius thanks to our precise astrometric measurements—the first routine measurements of this type from a large-scale observing program. In conclusion, this demonstrates the power of astrometric microlensing as a tool to constrain the masses of stars, stellar remnants, and, in the future, extrasolar planets, using precise ground- and space-based observations.« less

  4. Type II supernovae as a significant source of interstellar dust.

    PubMed

    Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike

    2003-07-17

    Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

  5. Outflow-Induced Dynamical and Radiative Instability in Stellar Envelopes with an Application to Luminous Blue Variables and Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.

  6. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  7. A LOW STELLAR OBLIQUITY FOR WASP-47, A COMPACT MULTIPLANET SYSTEM WITH A HOT JUPITER AND AN ULTRA-SHORT PERIOD PLANET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Ojeda, Roberto; Isaacson, Howard; Marcy, Geoffrey W.

    We have detected the Rossiter–Mclaughlin effect during a transit of WASP-47b, the only known hot Jupiter with close planetary companions. By combining our spectroscopic observations with Kepler photometry, we show that the projected stellar obliquity is λ = 0° ± 24°. We can firmly exclude a retrograde orbit for WASP-47b, and rule out strongly misaligned prograde orbits. Low obliquities have also been found for most of the other compact multiplanet systems that have been investigated. The Kepler-56 system, with two close-in gas giants transiting their subgiant host star with an obliquity of at least 45{sup ◦}, remains the only clearmore » counterexample.« less

  8. Probing for Pulsars: An XMM Study of the Composite SNRS G327.1-1.1 and CTA1

    NASA Technical Reports Server (NTRS)

    Slane, Patrick; Mushotzky, Richard F. (Technical Monitor)

    2003-01-01

    The subject grant is for analysis of XMM data from the supernova remnant CTA1. Our investigation centered on the study of the compact source Rx 50007.0+7302 that, based on our previous observations, appears to be a neutron star powering a wind nebula in the remnant interior. This compact source has also been suggested as the counterpart of the EGRET source 2EG J0008+7307. The analysis of the data from the compact source is complete. We find that the spectrum of the source is well described by a power law with the addition of a soft thermal component that may correspond to emission from hot polar cap regions or to cooling emission from a light element atmosphere over the entire star. There is evidence of extended emission on small spatial scales which may correspond to structure in the underlying synchrotron nebula. Extrapolation of the nonthermal emission component to gamma-ray energies yields a flux that is consistent with that of 2EG J0008+7307, thus strengthening the proposition that there is a gamma-ray emitting pulsar at the center of CTA 1. Our timing studies with the EPIC pn data revealed no evidence for pulsations, however; we set an upper limit of 61% on the pulsed fraction from this source. The results from this study were presented in a poster at the recent IAU Symposium in Sydney, Australia. A paper summarizing these results, entitled "Xray Observations of the Compact Source in CTA 1" (Slane et al.) has been submitted for publication in the Astrophysical Journal.

  9. Central Stellar Mass Deficits in the Bulges of Local Lenticular Galaxies, and the Connection with Compact z ~ 1.5 Galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2013-05-01

    We have used the full radial extent of images from the Hubble Space Telescope's Advanced Camera for Surveys and Wide Field Planetary Camera 2 to extract surface brightness profiles from a sample of six, local lenticular galaxy candidates. We have modeled these profiles using a core-Sérsic bulge plus an exponential disk model. Our fast rotating lenticular disk galaxies with bulge magnitudes MV <~ -21.30 mag have central stellar deficits, suggesting that these bulges may have formed from "dry" merger events involving supermassive black holes (BHs) while their surrounding disk was subsequently built up, perhaps via cold gas accretion scenarios. The central stellar mass deficits M def are roughly 0.5-2 M BH (BH mass), rather than ~10-20 M BH as claimed from some past studies, which is in accord with core-Sérsic model mass deficit measurements in elliptical galaxies. Furthermore, these bulges have Sérsic indices n ~3, half-light radii Re < 2 kpc and masses >1011 M ⊙, and therefore appear to be descendants of the compact galaxies reported at z ~ 1.5-2. Past studies which have searched for these local counterparts by using single-component galaxy models to provide the z ~ 0 size comparisons have overlooked these dense, compact, and massive bulges in today's early-type disk galaxies. This evolutionary scenario not only accounts for what are today generally old bulges—which must be present in z ~ 1.5 images—residing in what are generally young disks, but it eliminates the uncomfortable suggestion of a factor of three to five growth in size for the compact, z ~ 1.5 galaxies that are known to possess infant disks.

  10. A Multiwavelength Study of Cygnus X-1: The First Mid-Infrared Spectroscopic Detection of Compact Jets

    NASA Technical Reports Server (NTRS)

    Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern

    2011-01-01

    We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.

  11. The pseudo-symmetric optimization of the National Compact Stellarator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaev, M.Y.; Mikhailov, M.I.; Monticello, D.A.

    1999-08-01

    A new experiment, the National Compact Stellarator Experiment (NCSX) [Monticello {ital et al.} {open_quotes}Physics Consideration for the Design of NCSX,{close_quotes} {ital Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998} (European Physical Society, Petit-Lancy), paper 1.187], hopes to overcome the deleterious ripple transport usually associated with stellarators by creating a quasi-axisymmetric configuration. A quasi-axisymmetric configuration is one in which the Fourier spectrum of the magnetic field strength in so-called Boozer coordinates is dominated by the toroidal angle averaged (n=0) components. In this article the concept of pseudosymmetry is used to improve ripple transport in a four-periodmore » variant of NCSX. By definition, pseudosymmetric magnetic configurations have no locally trapped particles. To obtain a pseudosymmetric configuration, different target functions are considered. It is found that a target function equal to the area of ripple of the magnetic field magnitude along the field line is very effective in reducing the neoclassical transport coefficient. {copyright} {ital 1999 American Institute of Physics.}« less

  12. Correlation between diffuse interstellar bands (DIBs) and interstellar extinction using data from Bosscha Compact Spectrograph

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Malasan, H. L.; Aprilia; Arifyanto, M. I.; Lallement, R.; Irfan, M.; Puspitaningrum, E.

    2018-04-01

    A longstanding challenge in astronomical spectroscopy is to uncover the carriers of diffuse interstellar bands (DIBs). They are broad absorption features due to the interstellar matter (ISM). They are seen in stellar spectra of background stars or other astronomical objects. Although we do not know utterly the carriers of the DIBs, they can be a promising tracer of the ISM. One of the interesting properties is their correlations with the interstellar (IS) extinction. For each band, the correlation has considerable dispersion and differences that possibly due to the IS physical conditions. Some DIBs are sensitive to the stellar radiation field, and some are not. To study the effect, we measured the DIB observed in Be/B stars spectra. The stars were observed by using Bosscha Compact Spectrograph at the Bosscha Observatory, Lembang, Indonesia. We performed an automated fitting of a combination of a smooth stellar continuum, the DIB profile, and a synthetic telluric transmission to the spectrum. The DIB measurements were compared to the general DIBs-extinction relationship. The correlation is found to be in good agreement with previous determinations.

  13. GW170817 Most Likely Made a Black Hole

    NASA Astrophysics Data System (ADS)

    Pooley, David; Kumar, Pawan; Wheeler, J. Craig; Grossan, Bruce

    2018-06-01

    There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, ∼2.7 {M}ȯ , implies that the remnant could be either a massive rotating neutron star, or a black hole. We report Chandra Director’s Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5–8 keV band with an efficiency of 10‑3, for a dipole magnetic field with 3 × 1011 G < B < 1014 G, a rising X-ray signal would result and would be brighter than that observed by day 107; we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly rotating magnetized neutron star, the total energy in the external shock should rise by a factor ∼102 (to ∼1052 erg) after a few years; therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.

  14. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  15. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find thatmore » some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.« less

  16. Point X-ray sources in the SNR G 315.4-2.30 (MSH 14-63, RCW 86)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Vikhlinin, A. A.

    2003-04-01

    We report the results of a search for a point X-ray source (stellar remnant) in the southwest protrusion of the supernova remnant G 315.4-2.30 (MSH 14-63, RCW 86) using the archival data of the Chandra X-ray Observatory. The search was motivated by a hypothesis that G 315.4-2.30 is the result of an off-centered cavity supernova explosion of a moving massive star, which ended its evolution just near the edge of the main-sequence wind-driven bubble. This hypothesis implies that the southwest protrusion in G 315.4-2.30 is the remainder of a pre-existing bow shock-like structure created by the interaction of the supernova progenitor's wind with the interstellar medium and that the actual location of the supernova blast center is near the center of this hemispherical structure. We have discovered two point X-ray sources in the ``proper" place. One of the sources has an optical counterpart with the photographic magnitude 13.38+/-0.40, while the spectrum of the source can be fitted with an optically thin plasma model. We interpret this source as a foreground active star of late spectral type. The second source has no optical counterpart to a limiting magnitude ~ 21. The spectrum of this source can be fitted almost equally well with several simple models (power law: photon index =1.87; two-temperature blackbody: kT1 =0.11 keV, R1 =2.34 km and kT2 =0.71 keV, R2 =0.06 km; blackbody plus power law: kT =0.07 keV, photon index =2.3). We interpret this source as a candidate stellar remnant (neutron star), while the photon index and non-thermal luminosity of the source (almost the same as those of the Vela pulsar and the recently discovered pulsar PSR J 0205+6449 in the supernova remnant 3C 58) suggest that it can be a young ``ordinary" pulsar.

  17. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.

  18. The formation of compact groups of galaxies. I: Optical properties

    NASA Technical Reports Server (NTRS)

    Diaferio, Antonaldo; Geller, Margaret J.; Ramella, Massimo

    1994-01-01

    The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.

  19. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including gas-rich disks and compact spheroids) and cosmological merger trees, and discuss prospects for comparisons with data from the new generation of IFU surveys like SAMI.

  20. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  1. Initial Parameters of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Turolla, R.

    2012-12-01

    A subpopulation of neutron stars (NSs), known as central compact objects (CCOs) in supernova remnants, are suspected to be low-field objects basing on P - ṗ measurements for three of them. The birth rate of low-field NSs is probably comparable with the birth rate of normal radio pulsars. However, among compact objects in High-Mass X-ray Binaries (HMXBs) we do not see robust candidates for low-field NSs. We propose that this contradiction can be solved if magnetic fields of CCOs was buried due to strong fall-back, and then the field emerges on the time scale 104 -105 yrs.

  2. CONSTRAINTS ON MACHO DARK MATTER FROM COMPACT STELLAR SYSTEMS IN ULTRA-FAINT DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Timothy D.

    2016-06-20

    I show that a recently discovered star cluster near the center of the ultra-faint dwarf galaxy Eridanus II provides strong constraints on massive compact halo objects (MACHOs) of ≳5 M {sub ⊙} as the main component of dark matter. MACHO dark matter will dynamically heat the cluster, driving it to larger sizes and higher velocity dispersions until it dissolves into its host galaxy. The stars in compact ultra-faint dwarf galaxies themselves will be subject to the same dynamical heating; the survival of at least 10 such galaxies places independent limits on MACHO dark matter of masses ≳10 M {sub ⊙}.more » Both Eri II’s cluster and the compact ultra-faint dwarfs are characterized by stellar masses of just a few thousand M {sub ⊙} and half-light radii of 13 pc (for the cluster) and ∼30 pc (for the ultra-faint dwarfs). These systems close the ∼20–100 M {sub ⊙} window of allowed MACHO dark matter and combine with existing constraints from microlensing, wide binaries, and disk kinematics to rule out dark matter composed entirely of MACHOs from ∼10{sup −7} M {sub ⊙} up to arbitrarily high masses.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroz, P.E.

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less

  4. VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System

    NASA Astrophysics Data System (ADS)

    Cantiello, M.

    VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  5. Rotation-induced YORP break-up of small bodies to produce post-main-sequence debris

    NASA Astrophysics Data System (ADS)

    Veras, D.; Jacobson, S. A.; Gänsicke, B. T.

    2017-09-01

    We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to the debris orbiting and ultimately polluting white dwarfs. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  6. Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments

    NASA Astrophysics Data System (ADS)

    Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group

    2018-01-01

    We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.

  7. Physical plausibility of cold star models satisfying Karmarkar conditions

    NASA Astrophysics Data System (ADS)

    Fuloria, Pratibha; Pant, Neeraj

    2017-11-01

    In the present article, we have obtained a new well behaved solution to Einstein's field equations in the background of Karmarkar spacetime. The solution has been used for stellar modelling within the demand of current observational evidences. All the physical parameters are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically realizable. The obtained compactness parameter is within the Buchdahl limit, i.e. 2M/R ≤ 8/9 . The TOV equation is well maintained inside the fluid spheres. The stability of the models has been further confirmed by using Herrera's cracking method. The models proposed in the present work are compatible with observational data of compact objects 4U1608-52 and PSRJ1903+327. The necessary graphs have been shown to authenticate the physical viability of our models.

  8. A near-infrared imaging survey of interacting galaxies - The disk-disk merger candidates subset

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Bushouse, H. A.

    1991-01-01

    Near-infrared imaging obtained for systems believed to be advanced disk-disk mergers are presented and discussed. These systems were chosen from a sample of approximately 170 objects from the Arp Atlas of Peculiar Galaxies which have been imaged in the JHK bands as part of an investigation into the stellar component of interacting galaxies. Of the eight remnants which show optical signs of a disk-disk merger, the near-infrared surface brightness profiles are well-fitted by an r exp 1/4 law over all measured radii in four systems, and out to radii of about 3 kpc in three systems. These K band profiles indicate that most of the remnants in the sample either have finished or are in the process of relaxing into a mass distribution like that of normal elliptical galaxies.

  9. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  10. On the origin of bursts in blue compact dwarf galaxies: clues from kinematics and stellar populations

    NASA Astrophysics Data System (ADS)

    Koleva, M.; De Rijcke, S.; Zeilinger, W. W.; Verbeke, R.; Schroyen, J.; Vermeylen, L.

    2014-06-01

    Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth outer regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infrared spectra using a full spectrum fitting technique, which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the stellar velocity to velocity dispersion ratio ((v/σ)⋆) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early-type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with the gaseous kinematics of star-forming dwarfs. The stellar velocity fields of our objects are very disturbed and the star formation regions are often kinematically decoupled from the rest of the galaxy. These regions can be more or less metal rich with respect to the galactic body and sometimes they are long lived. These characteristics prevent us from pinpointing a unique trigger of the star formation, even within the same galaxy. Gas impacts, mergers, and in-spiraling gas clumps are all possible star formation igniters for our targets.

  11. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.

  12. Operation in low edge safety factor regime and passive disruption avoidance due to stellarator rotational transform in the Compact Toroidal Hybrid

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2015-11-01

    Low edge safety factor operation at a value less than two (q (a) = 1 /ttot (a) < 2) is routine on the Compact Toroidal Hybrid device. Presently, the operational space of this current carrying stellarator extends down to q (a) = 1 . 2 without significant n = 1 kink mode activity after the initial plasma current rise of the discharge. The disruption dynamics of these low q (a) plasmas depend upon the fraction of rotational transform produced by external stellarator coils to that generated by the plasma current. We observe that when about 10% of the total rotational transform is supplied by the stellarator coils, low q (a) disruptions are passively suppressed and avoided even though q (a) < 2 . When the plasma does disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, mode numbers of m / n = 3 / 2 and 4 / 3 observed by external magnetic sensors, and m / n = 1 / 1 activity observed by core soft x-ray emissivity measurements. Even though q (a) passes through and becomes much less than two, external n = 1 kink mode activity does not appear to play a significant role in the observed disruption phenomenology. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  13. Supernova research with VLBI

    NASA Astrophysics Data System (ADS)

    Bartel, Norbert; Bietenholz, Michael F.

    2016-06-01

    Core-collapse supernovae have been monitored with VLBI from shortly after the explosion to many years thereafter. Radio emission is produced as the ejecta hit the stellar wind left over from the dyingstar. Images show the details of the interaction as the shock front expands into the circumstellar medium. Measurements of the velocity and deceleration of the expansion provide information on both the ejecta and the circumstellar medium. VLBI observations can also search for the stellar remnant of the explosion, a neutron star or a black hole. Combining the transverse expansion rate with the radial expansion rate from optical spectra allows a geometric determination of the distance to the host galaxy. We will present results from recent VLBI observations, focus on their interpretations, and show updated movies of supernovae from soon after their explosion to the present.

  14. Dense CO in Mrk 71-A: Superwind Suppressed in a Young Super Star Cluster

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; Herrera, C. N.; Silich, Sergiy; Reiter, Megan; James, Bethan L.; Jaskot, A. E.; Micheva, Genoveva

    2017-11-01

    We report the detection of CO(J=2-1) coincident with the super star cluster (SSC) Mrk 71-A in the nearby Green Pea analog galaxy, NGC 2366. Our observations with the Northern Extended Millimeter Array reveal a compact, ˜7 pc, molecular cloud whose mass ({10}5 {M}⊙ ) is similar to that of the SSC, consistent with a high star formation efficiency, on the order of 0.5. There are two spatially distinct components separated by 11 {km} {{{s}}}-1. If expanding, these could be due to momentum-driven stellar wind feedback. Alternatively, we may be seeing remnants of the infalling, colliding clouds responsible for triggering the SSC formation. The kinematics are also consistent with a virialized system. These extreme, high-density, star-forming conditions inhibit energy-driven feedback; the co-spatial existence of a massive, molecular cloud with the SSC supports this scenario, and we quantitatively confirm that any wind-driven feedback in Mrk 71-A is momentum-driven, rather than energy-driven. Since Mrk 71-A is a candidate Lyman continuum emitter, this implies that energy-driven superwinds may not be a necessary condition for the escape of ionizing radiation. In addition, the detection of nebular continuum emission yields an accurate astrometric position for the Mrk 71-A. We also detect four other massive molecular clouds in this giant star-forming complex.

  15. The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79

    NASA Astrophysics Data System (ADS)

    Shabaltas, Natalia; Lai, Dong

    2012-04-01

    Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 1010 G) but an anomalously large (~64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed "Temperature Template with Full Transport" (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 1014 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the "visible" dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.

  16. Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.

    2009-01-01

    Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.

  17. Studying Variance in the Galactic Ultra-compact Binary Population

    NASA Astrophysics Data System (ADS)

    Larson, Shane L.; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  18. Galactic archaeology in action space

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn

    2009-05-01

    Working in action space offers an instructive alternative view of the process of hierarchical assembly in galaxies, but performing the necessary canonical transformation formally requires both complete phase space information of a stellar population and knowledge of the correct galactic potential, neither of which is generally available. I use the approximate-action method pioneered by MacMillan and Binney (2008) to examine the remnant of a late-time merger in M31, which was modeled by Fardal et al. (2007).

  19. Hubble Captures Celestial Fireworks Within the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  20. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    2000-07-01

    This is a color Hubble Space Telescope (HST) heritage image of supernova remnant N49, a neighboring galaxy, that was taken with Hubble's Wide Field Planetary Camera 2. Color filters were used to sample light emitted by sulfur, oxygen, and hydrogen. The color image was superimposed on a black and white image of stars in the same field also taken with Hubble. Resembling a fireworks display, these delicate filaments are actually sheets of debris from a stellar explosion.

  1. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  2. A 3D View of a Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    The outlined regions mark the 57 knots in Tycho selected by the authors for velocity measurements. Magenta regions have redshifted line-of-sight velocities (moving away from us); cyan regions have blueshifted light-of-sight velocities (moving toward us). [Williams et al. 2017]The Tycho supernova remnant was first observed in the year 1572. Nearly 450 years later, astronomers have now used X-ray observations of Tycho to build the first-ever 3D map of a Type Ia supernova remnant.Signs of ExplosionsSupernova remnants are spectacular structures formed by the ejecta of stellar explosions as they expand outwards into the surrounding interstellar medium.One peculiarity of these remnants is that they often exhibit asymmetries in their appearance and motion. Is this because the ejecta are expanding into a nonuniform interstellar medium? Or was the explosion itself asymmetric? The best way we can explore this question is with detailed observations of the remnants.Histograms of the velocity in distribution of the knots in the X (green), Y (blue) and Z (red) directions (+Z is away from the observer). They show no evidence for asymmetric expansion of the knots. [Williams et al. 2017]Enter TychoTo this end, a team of scientists led by Brian Williams (Space Telescope Science Institute and NASA Goddard SFC) has worked to map out the 3D velocities of the ejecta in the Tycho supernova remnant. Tycho is a Type Ia supernova thought to be caused by the thermonuclear explosion of a white dwarf in a binary system that was destabilized by mass transfer from its companion.After 450 years of expansion, the remnant now has the morphological appearance of a roughly circular cloud of clumpy ejecta. The forward shock wave from the supernova, however, is known to have twice the velocity on one side of the shell as on the other.To better understand this asymmetry, Williams and collaborators selected a total of 57 knots in Tychos ejecta, spread out around the remnant. They then used 12 years of Chandra X-ray observations to measure both the knots proper motion in the plane of the sky and their line-of-sight velocity. These two measurements were then combined to build a full 3D map of the motion of the ejecta.3D hydrodynamical simulations of Tycho, stopped at the current epoch. These show that both initially smooth (top) and initially clumpy (bottom) ejecta models are consistent with the current observations of the morphology and dynamics of Tychos ejecta. [Adapted from Williams et al. 2017]Symmetry and ClumpsWilliams and collaborators found that the knots have total velocities that range from 2400 to 6600 km/s. Unlike the forward shock of the supernova, Tychos ejecta display no asymmetries in their motion which suggests that the explosion itself was symmetric. The more likely explanation is a density gradient in the interstellar medium, which could slow the shock wave on one side of the remnant without yet affecting the motion of the clumps of ejecta.As a final exploration, the authors attempt to address the origin of Tychos clumpiness. The fact that some of Tychos ejecta knots precede its outer edge has raised the question of whether the ejecta started out clumpy, or if they began smooth and only clumped during expansion. Williams and collaborators matched the morphological and dynamical data to simulations, demonstrating that neither scenario can be ruled out at this time.This first 3D map of a Type Ia supernova represents an important step in our ability to understand these stellar explosions. The authors suggest that well be able to expand on this map in the future with additional observations from Chandra, as well as with new data from future X-ray observatories that will be able to detect fainter emission.CitationBrian J. Williams et al 2017 ApJ 842 28. doi:10.3847/1538-4357/aa7384

  3. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  4. The 4 micron spectra of compact infrared sources

    NASA Technical Reports Server (NTRS)

    Hofmann, R.; Larson, H. P.; Fink, U.

    1986-01-01

    High resolution 5 arcsec spectra in the 4 micron region are presented of the central 5 arcsec of the compact near infrared sources K3-50, W51-IRS2 East, and G333.6-0.2. From measured Br-alpha/Pf-beta line ratios and previously published infrared and radio maps, it is concluded that standard recombination theory fails to explain our observations in at least two cases. It is demonstrated that the data are consistent with thermal excitation of the hydrogen lines in strong stellar winds. The Pf-beta Hu-epsilon line ratio, which is completely insensitive to differential extinction, confirms the need for the stellar wind model for the core of G333.6-0.2. From the (K III) line it is estimated that the potassium abundance in G333.6-0.2 is at least equal to the solar value, and possibly enhanced by a factor up to 10.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.Y. Fu; L.P. Ku; M.H. Redi

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less

  6. Strange stars in f(R,Script T) gravity

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.

    2018-03-01

    In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).

  7. Hiding in Plain Sight: An Abundance of Compact Massive Spheroids in the Local Universe

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Dullo, Bililign T.; Savorgnan, Giulia A. D.

    2015-05-01

    It has been widely remarked that compact, massive, elliptical-like galaxies are abundant at high redshifts but exceedingly rare in the universe today, implying significant evolution such that their sizes at z ˜ 2 ± 0.6 have increased by factors of 3 to 6 to become today’s massive elliptical galaxies. These claims have been based on studies that measured the half-light radii of galaxies as though they are all single-component systems. Here we identify 21 spheroidal stellar systems within 90 Mpc that have half-light, major-axis radii {{R}e}≲ 2 kpc, stellar masses 0.7× {{10}11}\\lt {{M}*}/ {{M}⊙ }\\lt 1.4× {{10}11}, and Sérsic indices typically around a value of n = 2-3. This abundance of compact, massive spheroids in our own backyard—with a number density of 6.9× {{10}-6} Mpc-3 (or 3.5 × 10-5 Mpc-3 per unit dex-1 in stellar mass)—and with the same physical properties as the high-redshift galaxies, had been overlooked because they are encased in stellar disks that usually result in galaxy sizes notably larger than 2 kpc. Moreover, this number density is a lower limit because it has not come from a volume-limited sample. The actual density may be closer to 10-4, although further work is required to confirm this. We therefore conclude that not all massive “spheroids” have undergone dramatic structural and size evolution since z ˜ 2 ± 0.6. Given that the bulges of local early-type disk galaxies are known to consist of predominantly old stars that existed at z ˜ 2, it seems likely that some of the observed high-redshift spheroids did not increase in size by building (three-dimensional) triaxial envelopes as commonly advocated, and that the growth of (two-dimensional) disks has also been important over the past 9-11 billion years.

  8. ALMA reveals starburst-like interstellar medium conditions in a compact star-forming galaxy at z 2 using [CI] and CO

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Decarli, Roberto; Man, Allison W. S.; Nelson, Erica J.; Béthermin, Matthieu; De Breuck, Carlos; Mainieri, Vincenzo; van Dokkum, Pieter G.; Gullberg, Bitten; van Kampen, Eelco; Spaans, Marco; Trager, Scott C.

    2017-06-01

    We present ALMA detections of the [CI] 1-0, CO J = 3-2, and CO J = 4-3 emission lines, as well as the ALMA band 4 continuum for a compact star-forming galaxy (cSFG) at z = 2.225, 3D-HST GS30274. As is typical for cSFGs, this galaxy has a stellar mass of 1.89 ± 0.47 × 1011M⊙, with a star formation rate (SFR) of 214 ± 44 M⊙ yr-1 putting it on the star-forming "main-sequence", but with an H-band effective radius of 2.5 kpc, making it much smaller than the bulk of "main-sequence" star-forming galaxies. The intensity ratio of the line detections yield an ISM density ( 6 × 104 cm-3) and a UV-radiation field ( 2 × 104G0), similar to the values in local starburst and ultra-luminous infrared galaxy environments. A starburst phase is consistent with the short depletion times (tH2,dep ≤ 140 Myr) we find in 3D-HST GS30274 using three different proxies for the H2 mass ([CI], CO, dust mass). This depletion time is significantly shorter than in more extended SFGs with similar stellar masses and SFRs. Moreover, the gas fraction of 3D-HST GS30274 is smaller than typically found in extended galaxies. We measure the CO and [CI] kinematics and find a FWHM line width of 750 ± 41 km s-1. The CO and [CI] FWHM are consistent with a previously measured Hα FWHM for this source. The line widths are consistent with gravitational motions, suggesting we are seeing a compact molecular gas reservoir. A previous merger event, as suggested by the asymmetric light profile, may be responsible for the compact distribution of gas and has triggered a central starburst event. This event gives rise to the starburst-like ISM properties and short depletion times in 3D-HST GS30274. The centrally located and efficient star formation is quickly building up a dense core of stars, responsible for the compact distribution of stellar light in 3D-HST GS30274.

  9. Trapping of Neutrinos in Extremely Compact Stars and the Influence of Brane Tension on This Process

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdenäěk; Hladík, Jan; Urbanec, Martin

    We present estimates on the efficiency of neutrino trapping in brany extremely compact stars, using the simplest model with uniform distribution of energy density, assuming massless neutrinos and uniform distribution of neutrino emissivity. Computation have been done for two different uniform-density stellar solution in the Randall-Sundrum II type braneworld, namely with the Reissner-Nordström-type of geometry and the second one, derived by Germani and Maartens.1

  10. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  11. Observations of (S III) emission from Galactic radio sources - The detection of distant planetary nebulae and a search for supernova remnant emission

    NASA Technical Reports Server (NTRS)

    Kistiakowsky, V.; Helfand, D. J.

    1993-01-01

    Narrow-band near-infrared imaging observations at wavelengths corresponding to forbidden S III 9069,9532 A have been carried out at the MDM 1.3 m telescope for 23 radio sources near the Galactic plane in an attempt to detect emission associated with nebulae marking the endpoints of stellar evolution. While none of the known remnants or remnant candidates were detected, 10 of the 11 PN candidates from a new radio imaging survey of the Galactic plane were clearly seen in the forbidden S III 9532 A line. We present a calculation of the relative efficacy of searching for PNe in the forbidden O III and forbidden S III lines; for the majority of all PNe, the observed forbidden S III 9532 A line is predicted to be stronger than forbiden O III 5007 A whenever the visual extinction exceeds 3 magnitudes. This makes forbidden S III the superior tracer of PNe at distances exceeding a few kpc. We briefly comment on the significance of this approach to defining the spatial distribution of the PN population of the Galaxy.

  12. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  13. Intermediate-mass black holes from Population III remnants in the first galactic nuclei

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba; Haiman, Zoltán

    2016-08-01

    We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical N-body simulations of Population III remnant black holes (BHs) embedded in gas-rich protogalaxies at redshifts z ≳ 10. We model the effects of gas drag on the BHs' orbits, and allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial BH configurations lead to the formation of one (but never more than one) IMBH in the centre of the protogalaxy, reaching a mass of 103-5 M⊙ through hyper-Eddington growth. Our results suggest a viable pathway to forming the earliest massive BHs in the centres of early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH companion, making these systems observable in gravitational waves as extreme mass-ratio inspirals with eLISA.

  14. Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at z ∼ 4.5

    NASA Astrophysics Data System (ADS)

    Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.

    2018-04-01

    Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

  15. CAN STELLAR MIXING EXPLAIN THE LACK OF TYPE Ib SUPERNOVAE IN LONG-DURATION GAMMA-RAY BURSTS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.

    2013-08-10

    The discovery of supernovae associated with long-duration gamma-ray burst observations is primary evidence that the progenitors of these outbursts are massive stars. One of the principle mysteries in understanding these progenitors has been the fact that all of these gamma-ray-burst-associated supernovae are Type Ic supernovae with no evidence of helium in the stellar atmosphere. Many studies have focused on whether or not this helium is simply hidden from spectral analyses. In this Letter, we show results from recent stellar models using new convection algorithms based on our current understanding of stellar mixing. We demonstrate that enhanced convection may lead tomore » severe depletion of stellar helium layers, suggesting that the helium is not observed simply because it is not in the star. We also present light curves and spectra of these compact helium-depleted stars compared to models with more conventional helium layers.« less

  16. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  17. A conformally flat realistic anisotropic model for a compact star

    NASA Astrophysics Data System (ADS)

    Ivanov, B. V.

    2018-04-01

    A physically realistic stellar model with a simple expression for the energy density and conformally flat interior is found. The relations between the different conditions are used without graphic proofs. It may represent a real pulsar.

  18. How Massive Single Stars End Their Life

    NASA Technical Reports Server (NTRS)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  19. Nustar: Bringing the High-Energy Universe into Focus

    NASA Technical Reports Server (NTRS)

    Fineberg, Larry

    2016-01-01

    This is a presentation to students at the University of Florida in the Small Satellite Design Club. The subject matter is the NuSTAR mission and covers topics about the spacecraft itself and the launch campaign. NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high-energy X-ray mission. Studies the hottest, densest, most energetic phenomena in the Universe. Purpose is to search for black holes, map the remnants of stellar explosions, and study the most extreme active galaxies.

  20. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  1. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  2. Mass ejection in failed supernovae: variation with stellar progenitor

    NASA Astrophysics Data System (ADS)

    Fernández, Rodrigo; Quataert, Eliot; Kashiyama, Kazumi; Coughlin, Eric R.

    2018-05-01

    We study the ejection of mass during stellar core-collapse when the stalled shock does not revive and a black hole forms. Neutrino emission during the protoneutron star phase causes a decrease in the gravitational mass of the core, resulting in an outward going sound pulse that steepens into a shock as it travels out through the star. We explore the properties of this mass ejection mechanism over a range of stellar progenitors using spherically symmetric, time-dependent hydrodynamic simulations that treat neutrino mass-loss parametrically and follow the shock propagation over the entire star. We find that all types of stellar progenitor can eject mass through this mechanism. The ejected mass is a decreasing function of the surface gravity of the star, ranging from several M⊙ for red supergiants to ˜0.1 M⊙ for blue supergiants and ˜10-3 M⊙ for Wolf-Rayet stars. We find that the final shock energy at the surface is a decreasing function of the core-compactness, and is ≲ 1047-1048 erg in all cases. In progenitors with a sufficiently large envelope, high core-compactness, or a combination of both, the sound pulse fails to unbind mass. Successful mass ejection is accompanied by significant fallback accretion that can last from hours to years. We predict the properties of shock breakout and thermal plateau emission produced by the ejection of the outer envelope of blue supergiant and Wolf-Rayet progenitors in otherwise failed supernovae.

  3. Gamma-ray evidence for a stellar-mass black hole near the Galactic center

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven; Lingenfelter, Richard E.

    1989-01-01

    An analysis of the time variability of the observed 511-keV line emission from the direction of the Galactic center and the correlation of its variations in the continuum emission above 511 keV from the same direction suggest the existence of a compact object at or near the Galactic center. A possible mechanism of the observed positron annihilation is consistent with a compact interaction region of the order of 10 to the 8th cm. A black hole of several hundred solar masses is favored as a candidate for this compact object; arguments in support of this suggestion are presented.

  4. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elia, D.; Molinari, S.; Schisano, E.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate intomore » 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.« less

  5. Exploring the nature of the Lyman-α emitter CR7

    NASA Astrophysics Data System (ADS)

    Hartwig, Tilman; Latif, Muhammad A.; Magg, Mattis; Bromm, Volker; Klessen, Ralf S.; Glover, Simon C. O.; Whalen, Daniel J.; Pellegrini, Eric W.; Volonteri, Marta

    2016-10-01

    CR7 is the brightest Lyman-α emitter observed at z > 6, which shows very strong Lyman-α and He II 1640 Å line luminosities, but no metal-line emission. Previous studies suggest that CR7 hosts either young primordial stars with a total stellar mass of ˜107 M⊙ or a black hole of ≳106 M⊙. Here, we explore different formation scenarios for CR7 with a semi-analytical model, based on the random sampling of dark matter merger trees. We are unable to reproduce the observational constraints with a primordial stellar source, given our model assumptions, due to the short stellar lifetimes and the early metal enrichment. Black holes that are the remnants of the first stars are either not massive enough, or reside in metal-polluted haloes, ruling out this possible explanation of CR7. Our models instead suggest that direct collapse black holes, which form in metal-free haloes exposed to large Lyman-Werner fluxes, are more likely the origin of CR7. However, this result is derived under optimistic assumptions and future observations are necessary to further constrain the nature of CR7.

  6. Host Galaxies, Obscuration, and Nuclear Structure of Three Nearby Compact Symmetric Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Conway, John; Reynolds, Chris

    2001-08-01

    We present three-band Hubble Space Telescope imaging of three nearby (z<=0.1) compact symmetric objects: 4C 31.04, 1946+708, and 1146+596. These objects were chosen on the basis of proximity to Earth as well as H I 21 cm line absorption. The inner H-band isophotes of these galaxies are well fitted by Nuker models, typical of nearby elliptical galaxies. Each shows a significant flattening in the isophotal profile at radii ~0.5", as well as significant variations in ellipticity and P.A. However, as previous authors have noted, neither is uncommon for elliptical galaxies. All three objects show modest departures from Nuker law models at radii of 1-5 h-160 kpc. Each galaxy shows large well-distributed dust features, which are somewhat concentrated in the nuclear regions in features that resemble disks or tori. We find that the amount of dust in these galaxies is about 10 times higher than normal for elliptical galaxies and radio galaxy hosts. The major axes of the nuclear dust disks tend to be oriented roughly perpendicular to the radio axis. One galaxy, 4C 31.04, exhibits bright nuclear regions well aligned with the radio axis, while another, 1146+596, shows a significant near-IR excess resembling a stellar bar along its dust disk. The combination of outwardly normal isophotal profiles with significant variations in P.A. and ellipticity is consistent with the host galaxies being relatively recent merger remnants and the mergers having occurred >~108 yr ago. Such a merger could have ``triggered'' the onset of the current active phase seen in these objects, but our data require a significant time delay between the merger event and the onset of nuclear activity. However, these data are also consistent with the hypothesis that the onset of nuclear activity in radio galaxies is due to relatively minor ``feeding'' events and/or the formation of ``bars within bars,'' events which would disturb the internal kinematics only slightly.

  7. A class of compact dwarf galaxies from disruptive processes in galaxy clusters.

    PubMed

    Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S

    2003-05-29

    Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

  8. Post-main-sequence debris from rotation-induced YORP break-up of small bodies

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Jacobson, Seth A.; Gänsicke, Boris T.

    2014-12-01

    Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  9. The effect of stellar-mass black holes on the central kinematics of ω Cen: a cautionary tale for IMBH interpretations

    NASA Astrophysics Data System (ADS)

    Zocchi, Alice; Gieles, Mark; Hénault-Brunet, Vincent

    2018-06-01

    The search for intermediate-mass black holes (IMBHs) in the centre of globular clusters is often based on the observation of a central cusp in the surface brightness profile and a rise towards the centre in the velocity dispersion profiles. Similar signatures, however, could result from other effects, that need to be taken into account in order to determine the presence (or the absence) of an IMBH in these stellar systems. Following our previous exploration of the role of radial anisotropy in shaping these observational signatures, we analyse here the effects produced by the presence of a population of centrally concentrated stellar-mass black holes. We fit dynamical models to ω Cen data, and we show that models with ˜5% of their mass in black holes (consistent with ˜100% retention fraction after natal kicks) can reproduce the data. When simultaneously considering both radial anisotropy and mass segregation, the best-fit model includes a smaller population of remnants, and a less extreme degree of anisotropy with respect to the models that include only one of these features. These results underline that before conclusions about putative IMBHs can be made, the effects of stellar-mass black holes and radial anisotropy need to be properly accounted for.

  10. Multi-dimensional simulations of the expanding supernova remnant of SN 1987A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, T. M.; Staveley-Smith, L.; Reville, B.

    The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There is still a large number of outstanding questions, such as the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that anmore » asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove and McKee progenitor with an envelope mass of 10 M {sub ☉} and an energy of 1.5 × 10{sup 44} J. A termination shock in the progenitor's stellar wind at a distance of 0.''43-0.''51 provides a good fit to the turn on of radio emission around day 1200. For the H II region, a minimum distance of 0.''63 ± 0.''01 and maximum particle number density of (7.11 ± 1.78) × 10{sup 7} m{sup –3} produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.« less

  11. Blue compact dwarfs - Extreme dwarf irregular galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Observational data on the most extreme members of the irregular dwarf (dI) galaxy class, the blue compact dwarfs (BCDs), are characterized, reviewing the results of recent investigations. The properties of the young stellar population, the ionized gas, the older star population, and the gas and dust of BCDs are contrasted with those of other dIs; BCD morphology is illustrated with sample images; and the value of BCDs (as nearby 'young' chemically unevolved galaxies) for studies of galaxy formation, galactic evolution, and starburst triggering mechanisms is indicated.

  12. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  13. Supernova remnants in the GC region

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul

    2016-07-01

    Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.

  14. Three-dimensional analysis of tokamaks and stellarators

    PubMed Central

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  15. Central stellar mass deficits of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tsige Dullo, Bililign; Graham, Alister

    2016-01-01

    The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black holes (SMBHs) from pre-merged galaxies. We quantify these deficits using the core-Sérsic model for the largest ever sample of early-type galaxies and find Mdef ˜ 0.5 to 4 MBH (SMBH mass). We find that lenticular disc galaxies with bulge magnitudes MV ≤ -21.0 mag also have central stellar deficits, suggesting that their bulges may have formed from major merger events while their surroundingdisc was subsequently built up, perhaps via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact galaxies found at z ˜ 1.5 to 2.

  16. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Geier, S.; Marsh, T. R.; Wang, B.; Dunlap, B.; Barlow, B. N.; Schaffenroth, V.; Chen, X.; Irrgang, A.; Maxted, P. F. L.; Ziegerer, E.; Kupfer, T.; Miszalski, B.; Heber, U.; Han, Z.; Shporer, A.; Telting, J. H.; Gänsicke, B. T.; Østensen, R. H.; O'Toole, S. J.; Napiwotzki, R.

    2013-06-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30°11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently strong to trigger the explosion of the core. The helium star will then be ejected at such high velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km s-1, sufficient for it to leave the Galaxy. The identification of both progenitor and remnant provides a consistent picture of the formation and evolution of underluminous SNIa.

  17. Evolution of the X-ray luminosity in young HII galaxies

    NASA Astrophysics Data System (ADS)

    Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.

    2009-10-01

    In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiersen, W.; Heitzenroeder, P.; Neilson, G. H.

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The stellarator core is designed to produce a compact 3-D plasma that combines stellarator and tokamak physics advantages. The engineering challenges of NCSX stem from its complex geometry. From the project's start in April, 2003 to September, 2004, the fabrication specifications for the project's two long-lead components, the modular coil winding forms and the vacuum vessel, were developed. An industrial manufacturing R&D program refined the processes for their fabrication as well as production cost andmore » schedule estimates. The project passed a series of reviews and established its performance baseline with the Department of Energy. In September 2004, fabrication was approved and contracts for these components were awarded. The suppliers have completed the engineering and tooling preparations and are in production. Meanwhile, the project completed preparations for winding the coils at PPPL by installing a coil manufacturing facility and developing all necessary processes through R&D. The main activities for the next two years will be component manufacture, coil winding, and sub-assembly of the vacuum vessel and coil subsets. Machine sector sub-assembly, machine assembly, and testing will follow, leading to First Plasma in July 2009.« less

  19. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  20. The Arduous Journey to Black Hole Formation in Potential Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D.

    2012-07-01

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity—objects that are proposed as likely progenitors of long-duration γ-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.

  1. THE ARDUOUS JOURNEY TO BLACK HOLE FORMATION IN POTENTIAL GAMMA-RAY BURST PROGENITORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessart, Luc; O'Connor, Evan; Ott, Christian D., E-mail: Luc.Dessart@oamp.fr, E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu

    2012-07-20

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity-objects that are proposed as likely progenitors of long-duration {gamma}-ray bursts (LGRBs). We perform one-dimensional+rotation stellar-collapse simulations on the progenitor models of Woosley and Heger, and critically assess their potential for the formation of a black hole and a Keplerian disk (namely, a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromise the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black holemore » formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black hole formation, most of them also retain a large amount of angular momentum in the core, making them prone to a magneto-rotational explosion, therefore preferentially leaving behind a proto-magnetar. A large progenitor angular-momentum budget is often the sole criterion invoked in the community today to assess the suitability for producing a collapsar. This simplification ignores equally important considerations such as the core compactness, which conditions black hole formation, the core angular momentum, which may foster a magneto-rotational explosion preventing black hole formation, or the metallicity and the residual envelope mass which must be compatible with inferences from observed LGRB/SNe. Our study suggests that black hole formation is non-trivial, that there is room for accommodating both collapsars and proto-magnetars as LGRB progenitors, although proto-magnetars seem much more easily produced by current stellar-evolutionary models.« less

  2. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    NASA Astrophysics Data System (ADS)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  3. Formation of the First Star Clusters and Massive Star Binaries by Fragmentation of Filamentary Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Yoshida, Naoki; Sakurai, Yuya; Fujii, Michiko S.

    2018-03-01

    We perform a set of cosmological simulations of early structure formation incorporating baryonic streaming motions. We present a case where a significantly elongated gas cloud with ∼104 solar mass (M ⊙) is formed in a pre-galactic (∼107 M ⊙) dark halo. The gas streaming into the halo compresses and heats the massive filamentary cloud to a temperature of ∼10,000 Kelvin. The gas cloud cools rapidly by atomic hydrogen cooling, and then by molecular hydrogen cooling down to ∼400 Kelvin. The rapid decrease of the temperature and hence of the Jeans mass triggers fragmentation of the filament to yield multiple gas clumps with a few hundred solar masses. We estimate the mass of the primordial star formed in each fragment by adopting an analytic model based on a large set of radiation hydrodynamics simulations of protostellar evolution. The resulting stellar masses are in the range of ∼50–120 M ⊙. The massive stars gravitationally attract each other and form a compact star cluster. We follow the dynamics of the star cluster using a hybrid N-body simulation. We show that massive star binaries are formed in a few million years through multi-body interactions at the cluster center. The eventual formation of the remnant black holes will leave a massive black hole binary, which can be a progenitor of strong gravitational wave sources similar to those recently detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

  4. SNR-shock impact on star formation

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Dincel, B.

    2016-06-01

    While stars form out of cores of molecular clouds due to gravitational collapse of the clouds, external pressure caused by shock waves of stellar winds or supernovae are believed to be responsible for triggering star formation. However, since massive stars evolve fast and their supernova remnants (SNRs) can only be observed up to an age of around 10^5 years, SNRs found near star-forming regions have most likely resulted from the same generation of stars as the young stellar objects (YSOs). Shock waves of these SNRs might show interaction with the existing YSOs and change their nature. We study YSO candidates in Galactic SNRs CTB 109, IC 443 and HB21, which are known to show interaction with molecular clouds and have associated infrared emission. By photometric and spectroscopic studies of YSOs in the optical and the near-infrared, we aim to find clear observational evidences for an interaction of SNR-shocks with YSOs.

  5. UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazzati, Davide; Blackwell, Christopher H.; Morsony, Brian J.

    We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting enginesmore » result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.« less

  6. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  7. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE/ASM (chapter 8), establishing an improved orbital ephemeris and suggesting the system may be in a state of rapid post- supernova evolution. In chapter 8 we follow this up with a direct search for the X-ray supernova remnant expected from such a system, concluding that with present observations the diffuse emission from Cir X-1 is indistinguishable from scattering by dust-grains in the interstellar medium.

  8. Effects of stellar outflows on interstellar sulfur oxide chemistry

    NASA Technical Reports Server (NTRS)

    Welch, W. J.; Vogel, S.; Terebey, S.; Dreher, J.; Jackson, J.; Carlstrom, J.

    1986-01-01

    Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows.

  9. A new relativistic stellar model with anisotropic fluid in Karmarkar space-time

    NASA Astrophysics Data System (ADS)

    Singh, Ksh. Newton; Pant, Neeraj; Troconis, O.

    2017-02-01

    We are presenting a new class of well-behaved solutions in embedding class-I. We proceed our calculations by assuming a new type of grr metric potential and solved for the other metric gtt using Karmarkar condition. The necessary condition that any solutions of Einstein's field equations to be class-I is to satisfy Karmarkar condition and sufficient condition is to satisfy Pandey-Sharma condition i.e. R2323 ≠ 0. The solution also satisfies strong energy condition, null energy condition, dominant energy condition and weak energy condition. The obtained compactness parameter is within Buchdahl limit i.e. 2 M / R ≤ 8 / 9. The solution also satisfies the causality condition and can represent stable stellar fluid system as the adiabatic index Γ > 4 / 3 and the stability factor holds - 1 ≤ vt2- vr2 ≤ 0 good. Finally, we have tuned our solution for two compact stars PSR J1614-2230 and 4U1608-52 which are well-behaved in all respects.

  10. A kinematic study of 0509-67.5, the second youngest supernova remnant in the Large Magellanic Cloud, and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Hovey, Luke

    2016-05-01

    Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509?67.5 that we observe today. I find a continuum of possible offsets, which are sensitive to assumptions that are made about the evolutionary history of the remnant, and use the uncertainties in these calculations to determine the area in which to search for a leftover progenitor companion star in the event that the explosion resulted from a single-degenerate system. The stars within this search area are explored with a multi-band photometric study, wherein we determine the mass ranges for these candidates. Chapter four concludes this thesis, recapping the main results from chapters 2 and 3, and highlights the future projects I will carry out that are motivated by my findings in this comprehensive study of the supernova remnant 0509--67.5.

  11. Exploring properties of high-density matter through remnants of neutron-star mergers

    NASA Astrophysics Data System (ADS)

    Bauswein, Andreas; Stergioulas, Nikolaos; Janka, Hans-Thomas

    2016-03-01

    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational consequences of a scenario of two families of compact stars including hadronic and quark matter stars. We find that this scenario leaves a distinctive imprint on the postmerger gravitational-wave signal. In particular, a strong discontinuity in the dominant postmerger frequency as function of the total mass will be a strong indication for two families of compact stars.

  12. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  13. XMM-Newton observations of the supernova remnant IC 443. II. Evidence of stellar ejecta in the inner regions

    NASA Astrophysics Data System (ADS)

    Troja, E.; Bocchino, F.; Miceli, M.; Reale, F.

    2008-07-01

    Aims: We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, to derive important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. Methods: We present XMM-Newton images of IC 443, a median photon energy map, silicon and sulfur equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. Results: The hard X-ray thermal emission (1.4-5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT > 1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collisional ionization equilibrium model, and strong emission lines of Mg, Si, and S, requiring oversolar metal abundances. Dynamically, the location of the ejecta ring suggests an SNR age of ~4000 yr. The presence of overionized plasma in the inner regions of IC 443, addressed in previous works, is much less evident in our observations.

  14. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

    NASA Astrophysics Data System (ADS)

    Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P. N.; Brüggen, M.; Harwood, J. J.; Jamrozy, M.; Jarvis, M. J.; Mahony, E. K.; McKean, J.; Röttgering, H. J. A.

    2016-01-01

    Context. Remnant radio galaxies represent the final dying phase of radio galaxy evolution in which the jets are no longer active. Remnants are rare in flux-limited samples, comprising at most a few percent. As a result of their rarity and because they are difficult to identify, this dying phase remains poorly understood and the luminosity evolution is largely unconstrained. Aims: Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. Methods: By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum, we probed characteristic timescales of the radio activity. Results: The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core that is associated with the host galaxy located at z = 0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. We find that the source has remained visible in the remnant phase for about 60 Myr, significantly longer than its active phase of 15 Myr, despite being located outside a cluster. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of ~ 300 km s-1. This interaction may have played a role in the triggering and/or shut-down of the radio jets. Conclusions: The spectral shape of this remnant radio galaxy differs from most of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. Our results demonstrate that remnant radio galaxies can show a wide range of evolutionary paths and spectral properties. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.

  15. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  16. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity.

  17. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE PAGES

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme; ...

    2015-01-01

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  18. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  19. The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foglizzo, Thierry; Kazeroni, Rémi; Guilet, Jérôme

    The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernovamore » remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. Lastly, we analyse the potential of this complementary research tool for supernova theory. We also review its potential for public outreach in science museums.« less

  20. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-05-30

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.

  1. Antimatter in the universe

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.

    2011-03-01

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  2. Antimatter in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A. D., E-mail: dolgov@itep.ru

    2011-03-15

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  3. Coronal Physics and the Chandra Emission Line Project

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.; Drake, J. J.

    2000-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.

  4. Coronal Physics and the Chandra Emission Line Project

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy

    1999-01-01

    With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for plasma spectral modeling codes. These codes are to interpret data from stellar coronae, galaxies and clusters of galaxies. supernova remnants and other astrophysical sources, but they have been called into question in recent years as problems with understanding moderate resolution ASCA and EUVE data have arisen. The Emission Line Project is a collaborative effort to improve the models, with Phase 1 being the comparison of models with observed spectra of Capella, Procyon, and HR, 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent to which common simplifying assumptions (coronal equilibrium, time-independence, negligible optical depth) apply. We will discuss recent advances in our understanding of stellar coronae in this context.

  5. Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer Observations of the GLIMPSE9 Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John; Trombley, Christine

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ~1 mag, indicating an interstellar extinction A _K_s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun, integrated down to 1 M sun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  6. A central black hole in M32

    NASA Technical Reports Server (NTRS)

    Tonry, John L.

    1987-01-01

    Observations are presented of the stellar rotation and velocity dispersion in M32. The projected rotation curve has an unresolved cusp at the center, with an amplitude of at least 60 km/s. The stellar velocity dispersion is constant at 56 + or - 5 km/s to a radius of 20 arcsec; a central bump in the observed dispersion is an artifact due to the rotation. The form of the rotation is such that isophotes have constant angular rotation velocity. The three-dimensional rotation field is modeled and the internal mean rotation of the stars around the center of M32 must reach at least 90 km/s at a radius of 2 pc. Hydrostatic equilibrium then requires 3-10 x 10 to the 6th solar masses of dark mass within the central parsec of M32. The possibility that M32 is undergoing core collapse and that this dark mass consists of dark stellar remnants is discussed, but ultimately rejected because the time scale for core collapse of M32 should be 2000 Hubble times. A more likely explanation of this dark mass, especially because of the presence of an X-ray point source at the center of M32, is a massive black hole.

  7. Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Points, S. D.; Crawford, E. J.; Dickel, J.; Filipović, M. D.; Haberl, F.; Maggi, P.; Whelan, E. T.

    2016-02-01

    Aims: We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506-7025 and MCSNR J0527-7104 in the Large Magellanic Cloud. Methods: We used observational data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broad-band emission and used Spitzer and H I data to gain a picture of the environment into which the remnants are expanding. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics. Results: Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, which is consistent with reverse shock-heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, which is consistent with swept-up interstellar medium, was observed in MCSNR J0506-7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506-7025 to be ~16-28 kyr, with an initial explosion energy of (0.07-0.84) × 1051 erg. A soft shell was absent in MCSNR J0527-7104, with only ejecta emission visible in an extremely elongated morphology that extends beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We find that the radio spectral index of MCSNR J0506-7025 is consistent with the standard -0.5 for supernova remnants. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot with a mean fractional polarisation across the remnant of P ≅ (20 ± 6)%. Conclusions: The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506-7025 and MCSNR J0527-7104 make them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  8. A survey for dwarf galaxy remnants around 14 globular clusters in the outer halo

    NASA Astrophysics Data System (ADS)

    Sollima, A.; Martínez Delgado, D.; Muñoz, R. R.; Carballo-Bello, J. A.; Valls-Gabaud, D.; Grebel, E. K.; Santana, F. A.; Côté, P.; Djorgovski, S. G.

    2018-06-01

    We report the results of a systematic photometric survey of the peripheral regions of a sample of 14 globular clusters in the outer halo of the Milky Way at distances dGC > 25 kpc from the Galactic Centre. The survey is aimed at searching for the remnants of the host satellite galaxies where these clusters could originally have been formed before being accreted on to the Galactic halo. The limiting surface brightness varies within our sample, but reaches μV, lim = 30-32 mag arcsec-2. For only two globular clusters (NGC 7492 and Whiting 1; already suggested to be associated with the Sagittarius galaxy), we detect extended stellar populations that cannot be associated with either the clusters themselves or with the surrounding Galactic field population. We show that the lack of substructures around globular clusters at these Galactocentric distances is still compatible with the predictions of cosmological simulations whereby in the outer halo the Galactic globular cluster system is built up through hierarchical accretion at early epochs.

  9. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.

  10. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.

  11. New Evidence Links Stellar Remains to Oldest Recorded Supernova

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Recent observations have uncovered evidence that helps to confirm the identification of the remains of one of the earliest stellar explosions recorded by humans. The new study shows that the supernova remnant RCW 86 is much younger than previously thought. As such, the formation of the remnant appears to coincide with a supernova observed by Chinese astronomers in 185 A.D. The study used data from NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory, "There have been previous suggestions that RCW 86 is the remains of the supernova from 185 A.D.," said Jacco Vink of University of Utrecht, the Netherlands, and lead author of the study. "These new X-ray data greatly strengthen the case." When a massive star runs out of fuel, it collapses on itself, creating a supernova that can outshine an entire galaxy. The intense explosion hurls the outer layers of the star into space and produces powerful shock waves. The remains of the star and the material it encounters are heated to millions of degrees and can emit intense X-ray radiation for thousands of years. Animation of a Massive Star Explosion Animation of a Massive Star Explosion In their stellar forensic work, Vink and colleagues studied the debris in RCW 86 to estimate when its progenitor star originally exploded. They calculated how quickly the shocked, or energized, shell is moving in RCW 86, by studying one part of the remnant. They combined this expansion velocity with the size of the remnant and a basic understanding of how supernovas expand to estimate the age of RCW 86. "Our new calculations tell us the remnant is about 2,000 years old," said Aya Bamba, a coauthor from the Institute of Physical and Chemical Research (RIKEN), Japan. "Previously astronomers had estimated an age of 10,000 years." The younger age for RCW 86 may explain an astronomical event observed almost 2000 years ago. In 185 AD, Chinese astronomers (and possibly the Romans) recorded the appearance of a new bright star. The Chinese noted that it sparkled like a star and did not appear to move in the sky, arguing against it being a comet. Also, the observers noticed that the star took about eight months to fade, consistent with modern observations of supernovas. RCW 86 had previously been suggested as the remnant from the 185 AD event, based on the historical records of the object's position. However, uncertainties about the age provided significant doubt about the association. "Before this work I had doubts myself about the link, but our study indicates that the age of RCW 86 matches that of the oldest known supernova explosion in recorded history," said Vink. "Astronomers are used to referencing results from 5 or 10 years ago, so it's remarkable that we can build upon work from nearly 2000 years ago." The smaller age estimate for the remnant follows directly from a higher expansion velocity. By examining the energy distribution of the X-rays, a technique known as spectroscopy, the team found most of the X-ray emission was caused by high-energy electrons moving through a magnetic field. This is a well-known process that normally gives rise to low-energy radio emission. However, only very high shock velocities can accelerate the electrons to such high energies that X-ray radiation is emitted. "The energies reached in this supernova remnant are extremely high," said Andrei Bykov, another team member from the Ioffe Institute, St. Peterburg, Russia. "In fact, the particle energies are greater than what can be achieved by the most modern particle accelerators." The difference in age estimates for RCW 86 is due to differences in expansion velocities measured for the supernova remnant. The authors speculate that these variations arise because RCW 86 is expanding into an irregular bubble blown by a wind from the progenitor star before it exploded. In some directions, the shock wave has encountered a dense region outside the bubble and slowed down, whereas in other regions the shock remains inside the bubble and is still moving rapidly. These regions give the most accurate estimate of the age. The study describing these results appeared in the September 1 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory, Cambridge, Mass., controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. XMM-Newton is an European Space Agency science mission managed at the European Space Research and Technology Centre, Noordwijk, the Netherlands for the Directorate of the Scientific Programme. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  12. Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, C.; Deng, L.

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.

  13. Quasi-Axially Symmetric Stellarators with 3 Field Periods

    NASA Astrophysics Data System (ADS)

    Garabedian, Paul; Ku, Long-Poe

    1998-11-01

    Compact hybrid configurations with 2 field periods have been studied recently as candidates for a proof of principle experiment at PPPL, cf. A. Reiman et al., Physics design of a high beta quasi-axially symmetric stellarator, J. Plas. Fus. Res. SERIES 1, 429(1998). This enterprise has led us to the discovery of a family of quasi-axially symmetric stellarators with 3 field periods that seem to have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit may be as high as 6% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. A detailed manuscript describing some of this work will be published soon, cf. P.R. Garabedian, Quasi-axially symmetric stellarators, Proc. Natl. Acad. Sci. USA 95 (1998).

  14. Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomphrey, N.; Lazarus, E.; Zarnstorff, M.

    2007-05-15

    Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes.« less

  15. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  16. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  17. I-Love-Q relations: from compact stars to black holes

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-05-01

    The relations between most observables associated with a compact star, such as the mass and radius of a neutron star or a quark star, typically depend strongly on their unknown internal structure. The recently discovered I-Love-Q relations (between the moment of inertia, the tidal deformability and the quadrupole moment) are however approximately insensitive to this structure. These relations become exact for stationary black holes (BHs) in General Relativity as shown by the no-hair theorems, mainly because BHs are vacuum solutions with event horizons. In this paper, we take the first steps toward studying how the approximate I-Love-Q relations become exact in the limit as compact stars become BHs. To do so, we consider a toy model for compact stars, i.e. incompressible stars with anisotropic pressure, which allows us to model an equilibrium sequence of stars with ever increasing compactness that approaches the BH limit arbitrarily closely. We numerically construct such a sequence in the slow-rotation and in the small-tide approximations by extending the Hartle-Thorne formalism, and then extract the I-Love-Q trio from the asymptotic behavior of the metric tensor at spatial infinity. We find that the I-Love-Q relations approach the BH limit in a nontrivial way, with the quadrupole moment and the tidal deformability changing sign as the compactness and the amount of anisotropy are increased. Through a generalization of Maclaurin spheroids to anisotropic stars, we show that the multipole moments also change sign in the Newtonian limit as the amount of anisotropy is increased because the star becomes prolate. We also prove analytically that the stellar moment of inertia reaches the BH limit as the compactness reaches a critical BH value in the strongly anisotropic limit. Modeling the BH limit through a sequence of anisotropic stars, however, can fail when considering other theories of gravity. We calculate the scalar dipole charge and the moment of inertia in a particular parity-violating modified theory and find that these quantities do not tend to their BH counterparts as the anisotropic stellar sequence approaches the BH limit.

  18. An Answer to Fermi’s Paradox In the Prevalence of Ocean Worlds?

    NASA Astrophysics Data System (ADS)

    Stern, S. Alan

    2017-10-01

    The Fermi Paradox (e.g., [1]) asks the question about extraterrestrial civilizations, “Where are they?” Given speculations based on numerical evaluations of the Drake Equation that would seem to indicate that the likelihood of precisely N=1 communicating extraterrestrial civilizations in the Universe is small, i.e., that we are unique, the Fermi Paradox remains a puzzle. Many possible explanations have been proffered. We suggest another—namely that the great majority of worlds with biology and civilizations are interior water ocean worlds (WOWs). Interior WOWs appear to be particularly conducive to the development of life owing to several key advantages, including these two: (1) Environmental Independence to Stellar Type, Multiplicity, and Distance. Owing to the several to hundreds of kilometers depth of typical Type II liquid water oceans, and the overlying thermal insulation provided by the planetary lid atop these oceans, the energy balance, temperature, pressure, and toxicity in Type II ocean worlds is only weakly coupled to their host star’s stellar type, stellar multiplicity, stellar distance, and stellar evolutionary stage (i.e., from protostars with winds and high activity through the main sequence to stellar remnants). (2) Environmental Stability. Again owing to the depth of typical Type II oceans and the overlaying thermal insulation provided by the planetary lid atop these oceans, these environments are protected from numerous kinds of external risks to life, such as impacts, radiation, surface climate and obliquity cycles, poisonous atmospheres, and nearby deleterious astrophysical events such as novae and supernovae, hazards stellar flares, and even phenomena like the Faint Early Sun. Interior WOWs are naturally cut off from communication by their interior nature below a thick roof of ice or rock and ice, therefore do not easily reveal themselves. In this talk I will examine this new idea in more detail. [1] Hart, M.H., 1975. Explanation for the Absence of Extraterrestrials on Earth. Quarterly Journal of the Royal Astronomical Society, Vol. 16, p.128-135.

  19. Hot subdwarfs: Small stars marking important events in stellar evolution. Ludwig Biermann Award Lecture 2014

    NASA Astrophysics Data System (ADS)

    Geier, S.

    2015-06-01

    Hot subdwarfs are considered to be the compact helium cores of red giants which lost almost their entire hydrogen envelope. What causes this enormous mass loss is still unclear. Binary interactions are invoked, and a significant fraction of the hot subdwarf population is indeed found in close binaries. In a large project we search for close binary sdBs with the most and the least massive companions. Significantly enhancing the known sample of close binary sdBs we performed the first comprehensive study of this population. Triggered by the discovery of two sdB binaries with close brown dwarf companions in the course of this project, we were able to show that the interaction of stars with substellar companions is an important channel to form sdB stars. Finally, we discovered a unique and very compact binary system consisting of an sdB and a massive white dwarf which qualifies as a progenitor candidate for a supernova of type Ia. In addition to that, we could connect those explosions to the class of hypervelocity hot subdwarf stars which we consider as the surviving companions of such events. Being the stripped cores of red giants, hot subdwarfs turned out to be important markers of peculiar events in stellar evolution ranging all the way from star-planet interactions to the progenitors of stellar explosions used to measure the expansion of our Universe.

  20. Observational Implications of a Fall-back Crust around a Quark-nova Compact Remnant: Application to AXPs and SGRs

    NASA Astrophysics Data System (ADS)

    Leahy, Denis A.; Ouyed, R.; Niebergal, B.

    2006-12-01

    Mass is ejected from a quark stars formed by the Quark-Nova process (Ouyed, Dey and Dey, 2002 A&A, 390, L39; Keranen, Ouyed and Jaikumar 2005 ApJ, 681, 485). Some fraction of this ejecta is below escape velocity and falls back toward the compact object. If the magnetic field of the compact object is high enough, the fall-back material forms a shell of iron-rich material which then evolves quasi-statically. We explore the formation and evolution of such a fall-back crust (so-called because the material originates in the crust of the neutron star progenitor to the quark-nova). We find the resulting properites have application to the observed properties of Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). These observed features of SGRs and AXPs are: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated persistant increases in period derivative ; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an Iron line as observed in SGR1900+14; (v) the correlation between the far-Infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that only the youngest SGRs/AXPs are most likely to exhibit strong bursting. We acknowledge funding for this research from the Natural Science and Engineering Research Council of Canada.

  1. NGC 2782: A Merger Remnant with Young Stars in its Gaseous Tidal Tail

    NASA Technical Reports Server (NTRS)

    Torres-Flores, S.; de Oliveira, C. Mendes; de Mello, D. F.; Scarano, S. Jr.; Urrutia-Viscarra, R.

    2012-01-01

    We have searched for young star-forming regions around the merger remnant NGC 2782. By using GALEX FUV and NUV imaging and HI data we found seven UV sources, located at distances greater than 26 kpc from the center of NGG 2782, and coinciding with its western HI tidal tail. These regions were resolved in several smaller systems when Gemini/GMOS r-band images were used. We compared the observed colors to stellar population synthesis models and we found that these objects have ages of l to ll11yr and masses ranging from 10(exp 3.9) to l0(exp 4.6) Solar Mass. By using Gemini/GMOS spectroscopic data we confirm memberships and derive high metallicities for three of the young regions in the tail (12+log(O/H)=8.74+/-0.20, 8.81+/-0.20 and 8.78+/-0.20). These metallicities are similar to the value presented by the nuclear region of NGG 2782 and also similar to the value presented for an object located close to the main body of NGG 2782. The high metallicities measured for the star-forming regions in the gaseous tidal tail of NGG 2782 could be explained if they were formed out of highly enriched gas which was once expelled from the center of the merging galaxies when the system collided. An additional possibility is that the tail has been a nursery of a few generations of young stellar systems which ultimately polluted this medium with metals, further enriching the already pre-enriched gas ejected to the tail when the galaxies collided.

  2. A new anisotropic compact star model having Matese & Whitman mass function

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Ratanpal, B. S.

    2016-07-01

    Present paper proposed a new singularity free model of anisotropic compact star. The Einstein field equations are solved in closed form by utilizing Matese & Whitman mass function. The model parameters ρ, pr and pt all are well behaved inside the stellar interior and our model satisfies all the required conditions to be physically acceptable. The model given in the present work is compatible with observational data of compact objects like SAX J 1808.4-3658 (SS1), SAX J 1808.4-3658 (SS2) and 4U 1820-30. A particular model of 4U 1820-30 is studied in detail and found that it satisfies all the condition needed for physically acceptable model. The present work is the generalization of Sharma and Ratanpal (Int. J. Mod. Phys. D 22:1350074, 2013) model for compact stars admitting quadratic equation of state.

  3. Star formation history of Canis Major R1. I. Wide-Field X-ray study of the young stellar population

    NASA Astrophysics Data System (ADS)

    Gregorio-Hetem, J.; Montmerle, T.; Rodrigues, C. V.; Marciotto, E.; Preibisch, T.; Zinnecker, H.

    2009-11-01

    Aims: The CMa R1 star-forming region contains several compact clusters as well as many young early-B stars. It is associated with a well-known bright rimmed nebula, the nature of which is unclear (fossil HII region or supernova remnant). To help elucidate the nature of the nebula, our goal was to reconstruct the star-formation history of the CMa R1 region, including the previously unknown older, fainter low-mass stellar population, using X-rays. Methods: We analyzed images obtained with the ROSAT satellite, covering 5 sq. deg. Complementary VRI photometry was performed with the Gemini South telescope. Colour-magnitude and colour-colour diagrams were used in conjunction with pre-main sequence evolutionary tracks to derive the masses and ages of the X-ray sources. Results: The ROSAT images show two distinct clusters. One is associated with the known optical clusters near Z CMa, to which 40 members are added. The other, which we name the “GU CMa” cluster, is new, and contains 60 members. The ROSAT sources are young stars with masses down to M_star 0.5 M_⊙, and ages up to 10 Myr. The mass functions of the two clusters are similar, but the GU CMa cluster is older than the cluster around Z CMa by at least a few Myr. Also, the GU CMa cluster is away from any molecular cloud, implying that star formation must have ceased; on the contrary (as already known), star formation is very active in the Z CMa region. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  4. Stellarator Coil Design and Plasma Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are givenmore » that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, S.; Man, A. W. S.; Krühler, T.

    Quiescent massive galaxies at z ∼ 2 are thought to be the progenitors of present-day massive ellipticals. Observations revealed them to be extraordinarily compact. Until now, the determination of stellar ages, star formation rates, and dust properties via spectroscopic measurements has been feasible only for the most luminous and massive specimens (∼3 × M*). Here we present a spectroscopic study of two near-infrared-selected galaxies that are close to the characteristic stellar mass M* (∼0.9 × M* and ∼1.3 × M*) and whose observed brightness has been boosted by the gravitational lensing effect. We measure the redshifts of the two galaxiesmore » to be z = 1.71 ± 0.02 and z = 2.15 ± 0.01. By fitting stellar population synthesis models to their spectrophotometric spectral energy distributions we determine their ages to be 2.4{sup +0.8}{sub -0.6} Gyr and 1.7 ± 0.3 Gyr, respectively, which implies that the two galaxies have higher mass-to-light ratios than most quiescent z ∼ 2 galaxies in other studies. We find no direct evidence for active star formation or active galactic nucleus activity in either of the two galaxies, based on the non-detection of emission lines. Based on the derived redshifts and stellar ages we estimate the formation redshifts to be z=4.3{sup +3.4}{sub -1.2} and z=4.3{sup +1.0}{sub -0.6}, respectively. We use the increased spatial resolution due to the gravitational lensing to derive constraints on the morphology. Fitting Sérsic profiles to the de-lensed images of the two galaxies confirms their compactness, with one of them being spheroid-like and the other providing the first confirmation of a passive lenticular galaxy at a spectroscopically derived redshift of z ∼ 2.« less

  6. Probing the nature of the pre-merging system Hickson Compact Group 31 through integral field unit data★

    NASA Astrophysics Data System (ADS)

    Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.

    2015-10-01

    We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.

  7. The Perseus Cluster: Bridging the Extremes of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Harris, William

    2017-08-01

    The Perseus cluster (Abell 426) at d=75 Mpc is as massive and diverse as Virgo and Coma and displays a rich laboratory for studying galaxy evolution. Its massive X-ray halo gas component and its high proportion of large early-type galaxies point to a long history of dynamical interaction amongst the cluster members. The central supergiant, NGC 1275, is perhaps the most active galaxy in the local universe, with a spectacular network of H-alpha filaments, cooling flows, feedback, and prominent star formation in plain view. We propose to use the Globular Cluster (GC) populations in the Perseus region with two-band imaging to pursue three connected goals: the stellar Intracluster Medium (ICM); its Ultra-Diffuse Galaxies (UDGs); and the GC populations in the Perseus core galaxies. Our analysis of a few HST/ACS Archival images covering the Perseus core strongly indicates that a substantial Intragalactic GC component is present. Our newly discovered sample of UDGs in Perseus covers the entire parameter space of these intriguing galaxies and will be thoroughly sampled in our study: are they 'failed' underluminous galaxies with high masses, or are they a mixed bag? For all our goals, the GC populations will act as powerful tracers of the dominant old stellar populations - their metallicity distributions and total populations in the ICM, the UDGs, and the three largest E galaxies in Perseus. As a bonus, we expect to find 200 new Ultra-Compact Dwarfs (UCDs) and half a dozen rare compact ellipticals (cEs). The scientific payoffs will include a broader understanding of the nature and history of all these types of galaxies and their stripped stellar material.

  8. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  9. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  10. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, W. W.; Leahy, D. A., E-mail: tww@bao.ac.cn

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. Thismore » new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.« less

  11. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  12. On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.

    1993-01-01

    A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.

  13. Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.

  14. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  15. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  16. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  17. A Disk Origin for the Monoceros Ring and A13 Stellar Overdensities

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Price-Whelan, Adrian M.; Tzanidakis, Anastasios; Johnston, Kathryn V.; Laporte, Chervin F. P.; Sesar, Branimir

    2018-02-01

    The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of d ∼ 11 kpc and 15 kpc observed at low Galactic latitudes toward the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars (f RR:MG) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low f RR:MG. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and f RR:MG.

  18. XMM-Newton studies of the supernova remnant G350.0-2.0

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2016-11-01

    We report the results of XMM-Newton observations of the Galactic mixed-morphology supernova remnant G350.0-2.0. Diffuse thermal X-ray emission fills the north-western part of the remnant surrounded by radio shell-like structures. We did not detect any X-ray counterpart of the latter structures, but found several bright blobs within the diffuse emission. The X-ray spectrum of the most part of the remnant can be described by a collisionally ionized plasma model VAPEC with solar abundances and a temperature of ≈0.8 keV. The solar abundances of plasma indicate that the X-ray emission comes from the shocked interstellar material. The overabundance of Fe was found in some of the bright blobs. We also analysed the brightest point-like X-ray source 1RXS J172653.4-382157 projected on the extended emission. Its spectrum is well described by the two-temperature optically thin thermal plasma model MEKAL typical for cataclysmic variable stars. The cataclysmic variable source nature is supported by the presence of a faint (g ≈ 21) optical source with non-stellar spectral energy distribution at the X-ray position of 1RXS J172653.4-382157. It was detected with the XMM-Newton optical/UV monitor in the U filter and was also found in the archival Hα and optical/near-infrared broad-band sky survey images. On the other hand, the X-ray spectrum is also described by the power law plus thermal component model typical for a rotation powered pulsar. Therefore, the pulsar interpretation of the source cannot be excluded. For this source, we derived the upper limit for the pulsed fraction of 27 per cent.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx}more » 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.« less

  20. PSR J0538+2817 as the remnant of the first supernova explosion in a massive binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    It is generally accepted that the radio pulsar PSR J 0538 2817 is associated with the supernova remnant SNR S 147 The only problem for the association is the obvious discrepancy Kramer et al 2003 between the kinematic age of the system of sim 30 kyr estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar s proper motion and the characteristic age of the pulsar of sim 600 kyr To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one Kramer et al 2003 Romani Ng 2003 We propose an alternative explanation of the age discrepancy based on the fact that PSR J 0538 2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion that disrupted the binary system and that a much younger second neutron star not necessarily manifesting itself as a radio pulsar should be associated with S 147 We use the existing observational data on the system PSR J 0538 2817 SNR S 147 to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star so that the supernova explosion occurred within a wind bubble surrounded by a massive shell and to constrain the parameters of the binary system We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector

  1. PSR J0538+2817 As The Remnant Of The First Supernova Explosion in a Massive Binary

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is generally accepted that the radio pulsar PSR J0538+2817 is associated with the supernova remnant (SNR) S147. The only problem for the association is the obvious discrepancy (Kramer et al. 2003) between the kinematic age of the system of ~30 kyr (estimated from the angular offset of the pulsar from the geometric center of the SNR and pulsar's proper motion) and the characteristic age of the pulsar of ~600 kyr. To reconcile these ages one can assume that the pulsar was born with a spin period close to the present one (Kramer et al. 2003; Romani & Ng 2003). We propose an alternative explanation of the age discrepancy based on the fact that PSR J0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as indicated by its characteristic age. Our proposal implies that S147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S147. We use the existing observational data on the system PSR J0538+2817/SNR S147 to suggest that the progenitor of the supernova that formed S147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  2. Forming H-shaped and barrel-shaped nebulae with interacting jets

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  3. NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

    NASA Astrophysics Data System (ADS)

    2005-10-01

    Intricate wisps of glowing gas float amid a myriad of stars in this image created by combining data from NASA's Hubble Space Telescope and Chandra X-ray Observatory. The gas is a supernova remnant, cataloged as N132D, ejected from the explosion of a massive star that occurred some 3,000 years ago. This titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy of our own Milky Way. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. Deep within the remnant, the Hubble visible light image reveals a crescent-shaped cloud of pink emission from hydrogen gas, and soft purple wisps that correspond to regions of glowing oxygen emission. A dense background of colorful stars in the LMC is also shown in the Hubble image. The large horseshoe-shaped gas cloud on the left-hand side of the remnant is glowing in X-rays, as imaged by Chandra. In order to emit X-rays, the gas must have been heated to a temperature of about 18 million degrees Fahrenheit (10 million degrees Celsius). A supernova-generated shock wave traveling at a velocity of more than four million miles per hour (2,000 kilometers per second) is continuing to propagate through the low-density medium today. The shock front where the material from the supernova collides with ambient interstellar material in the LMC is responsible for these high temperatures. Chandra image of N132D Chandra image of N132D, 2002 It is estimated that the star that exploded as a supernova to produce the N132D remnant was 10 to 15 times more massive than our own Sun. As fast-moving ejecta from the explosion slam into the cool, dense interstellar clouds in the LMC, complex shock fronts are created. A supernova remnant like N132D provides a rare opportunity for direct observation of stellar material, because it is made of gas that was recently hidden deep inside a star. Thus it provides information on stellar evolution and the creation of chemical elements such as oxygen through nuclear reactions in their cores. Such observations also help reveal how the interstellar medium (the gas that occupies the vast spaces between the stars) is enriched with chemical elements because of supernova explosions. Later on, these elements are incorporated into new generations of stars and their accompanying planets. Visible only from Earth's southern hemisphere, the LMC is an irregular galaxy lying about 160,000 light-years from the Milky Way. The supernova remnant appears to be about 3,000 years old, but since its light took 160,000 years to reach us, the explosion actually occurred some 163,000 years ago. This composite image of N132D was created by the Hubble Heritage team from visible-light data taken in January 2004 with Hubble's Advanced Camera for Surveys, and X-ray images obtained in July 2000 by Chandra's Advanced CCD Imaging Spectrometer. This marks the first Hubble Heritage image that combines pictures taken by two separate space observatories. The Hubble data include color filters that sample starlight in the blue, green, and red portions of the spectrum, as well as the pink emission from glowing hydrogen gas. The Chandra data are assigned blue in the color composite, in accordance with the much higher energy of the X-rays, emitted from extremely hot gas. This gas does not emit a significant amount of optical light, and was only detected by Chandra. Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: J.C. Green (Univ. of Colorado) and the Cosmic Origins Spectrograph (COS) GTO team; NASA/CXO/SAO Electronic image files, video, illustrations and additional information are available at: http://hubblesite.org/news/2005/30 http://heritage.stsci.edu/2005/30 The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  4. PREFACE: 14th Annual International Astrophysics Conference: Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond

    NASA Astrophysics Data System (ADS)

    Zank, G. P.

    2015-09-01

    The 14th Annual International Astrophysics Conference was held at the Sheraton Tampa Riverwalk Hotel, Tampa, Florida, USA, during the week of 19-24 April 2015. The meeting drew some 75 participants from all over the world, representing a wide range of interests and expertise in the energization of particles from the perspectives of theory, modelling and simulations, and observations. The theme of the meeting was "Linear and Nonlinear Particle Energization throughout the Heliosphere and Beyond." Energetic particles are ubiquitous to plasma environments, whether collisionless such as the supersonic solar wind, the magnetospheres of planets, the exospheres of nonmagnetized planets and comets, the heliospheric-local interstellar boundary regions, interstellar space and supernova remnant shocks, and stellar wind boundaries. Energetic particles are found too in more collisional regions such as in the solar corona, dense regions of the interstellar medium, accretion flows around stellar objects, to name a few. Particle acceleration occurs wherever plasma boundaries, magnetic and electric fields, and turbulence are present. The meeting addressed the linear and nonlinear physical processes underlying the variety of particle acceleration mechanisms, the role of particle acceleration in shaping different environments, and acceleration processes common to different regions. Both theory and observations were addressed with a view to encouraging crossdisciplinary fertilization of ideas, concepts, and techniques. The meeting addressed all aspects of particle acceleration in regions ranging from the Sun to the interplanetary medium to magnetospheres, exospheres, and comets, the boundaries of the heliosphere, and beyond to supernova remnant shocks, galactic jets, stellar winds, accretion flows, and more. The format of the meeting included 25-minute presentations punctuated by two 40-minute talks, one by Len Fisk that provided an historical overview of particle acceleration in the heliosphere (see the paper by Fisk, L., 50 Years of Research on Particle Acceleration in the Heliosphere, in this volume), and another by Len Burlaga, who presented a summary of the exciting new interstellar medium magnetic field observations being returned by Voyager 1 (see the paper by Burlaga, L., Voyager Observations of the Magnetic Field in the Heliosheath and the LISM, in this volume).

  5. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy

    NASA Astrophysics Data System (ADS)

    Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.

    2018-04-01

    The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  6. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.

    PubMed

    Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J

    2018-04-04

    The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{supmore » 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.« less

  8. Quantifying the impact of mergers on the angular momentum of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Lagos, Claudia del P.; Stevens, Adam R. H.; Bower, Richard G.; Davis, Timothy A.; Contreras, Sergio; Padilla, Nelson D.; Obreschkow, Danail; Croton, Darren; Trayford, James W.; Welker, Charlotte; Theuns, Tom

    2018-02-01

    We use EAGLE to quantify the effect galaxy mergers have on the stellar specific angular momentum of galaxies, jstars. We split mergers into dry (gas-poor)/wet (gas-rich), major/minor and different spin alignments and orbital parameters. Wet (dry) mergers have an average neutral gas-to-stellar mass ratio of 1.1 (0.02), while major (minor) mergers are those with stellar mass ratios ≥0.3 (0.1-0.3). We correlate the positions of galaxies in the jstars-stellar mass plane at z = 0 with their merger history, and find that galaxies of low spins suffered dry mergers, while galaxies of normal/high spins suffered predominantly wet mergers, if any. The radial jstars profiles of galaxies that went through dry mergers are deficient by ≈0.3 dex at r ≲ 10 r50 (with r50 being the half-stellar mass radius), compared to galaxies that went through wet mergers. Studying the merger remnants reveals that dry mergers reduce jstars by ≈30 per cent, while wet mergers increase it by ≈10 per cent, on average. The latter is connected to the build-up of the bulge by newly formed stars of high rotational speed. Moving from minor to major mergers accentuates these effects. When the spin vectors of the galaxies prior to the dry merger are misaligned, jstars decreases by a greater magnitude, while in wet mergers corotation and high orbital angular momentum efficiently spun-up galaxies. We predict what would be the observational signatures in the jstars profiles driven by dry mergers: (i) shallow radial profiles and (ii) profiles that rise beyond ≈10 r50, both of which are significantly different from spiral galaxies.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redi, M.H.; Mynick, H.E.; Suewattana, M.

    Hamiltonian coordinate, guiding-center code calculations of the confinement of suprathermal ions in quasi-axisymmetric stellarator (QAS) designs have been carried out to evaluate the attractiveness of compact configurations which are optimized for ballooning stability. A new stellarator particle-following code is used to predict ion loss rates and particle confinement for thermal and neutral beam ions in a small experiment with R = 145 cm, B = 1-2 T and for alpha particles in a reactor-size device. In contrast to tokamaks, it is found that high edge poloidal flux has limited value in improving ion confinement in QAS, since collisional pitch-angle scatteringmore » drives ions into ripple wells and stochastic field regions, where they are quickly lost. The necessity for reduced stellarator ripple fields is emphasized. The high neutral beam ion loss predicted for these configurations suggests that more interesting physics could be explored with an experiment of less constrained size and magnetic field geometry.« less

  10. Anisotropic charged stellar models in Generalized Tolman IV spacetime

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Fatema, Saba

    2015-01-01

    With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.

  11. John Ellard Gore: "Giant Suns and Miniature Stars"

    NASA Astrophysics Data System (ADS)

    Holberg, Jay B.

    2007-12-01

    The Irish amateur astronomer John Ellard Gore (1845-1910) was a founding member of the British Astronomical Association and a prolific author of popular astronomy between 1880 and 1910. He is perhaps best remembered for his books `The Visible Universe’ (1893), an English language translation of Camille Flammarion's `Popular Astronomy’ (1894) and his contributions to Agnes Clerk's `Astronomy’ (1898). I consider a little known investigation that Gore undertook into the question of stellar `sizes’ using binary stars. This led him to the realization of the existence of "Giant Suns” as well as "Miniature Stars” the latter included the sun. Gore also considered the existence of hyper-dense compact objects, now known as white dwarfs. Unfortunately Gore rejected the reality of the latter stellar types. Gore based his conclusions on a formula developed by fellow Irish astronomer W.H.S. Monck, who was reaching similar conclusions about Giant stars through the study of stellar motions.

  12. High-beta extended MHD simulations of stellarators

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.

    2016-10-01

    The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  13. The progenitors of the first red sequence galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Barro, G.; Faber, S.; Perez-Gonzalez, P.; Koo, D.; Williams, C.; Kocevski, D.; Trump, J.; Mozena, M.

    2013-07-01

    Nearby galaxies come in two flavors: red quiescent galaxies (QGs) with old stellar populations, and blue young star-forming galaxies (SFGs). This color bimodality seems to be already in place at z = 2 - 3, presenting also strong correlations with size and morphology. Surprisingly, massive QGs at higher redshifts are ~5 times smaller than local, equal mass analogs. In contrast, most of the massive SFGs at these redshifts are still relatively large disks. The strong bimodality in both SFR and sizes indicates that some SFGs must experience strong structural transformations accompanied by a rapid truncation of the star-formation to match the observed properties of QGs. Using high-resolution HST/WFC3 F160W imaging from the CANDELS survey in GOODS-S and UDS, along with multi-wavelength ancillary data, we analyze stellar masses, SFRs and sizes of a sample of massive (M* > 1010 M ⊙) galaxies at z = 1.4 - 3.0 to identify a population of compact SFGs with similar structural properties as compact QGs at z~2. We also find that the number density of QGs increases rapidly since z = 3. Among these, the number of compact QGs builds up first, and only at z < 1.8 we do start finding a sizable number of extended QGs. This suggests that the bulk of these galaxies are assembled at late times by both continuous migration (quenching) of non-compact SFGs and size growth of cQGs. As a result of this growth, the population of cQGs disappears by z~1. Simultaneously, we identify a population of compact SFGs (cSFGs) whose number density decreases steadily with time since z = 3.0, being almost completely absent at z < 1.4. The number of cSFGs makes up less than 20% of all massive SFGs, but they present similar number densities as cQGs down to z~2, suggesting an evolutionary link between the two populations.

  14. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general guidelines for the detection of faint stellar systems with 8 m class telescopes. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University; and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  15. STELLAR POPULATIONS IN COMPACT GALAXY GROUPS: A MULTI-WAVELENGTH STUDY OF HCGs 16, 22, AND 42, THEIR STAR CLUSTERS, AND DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.

    2013-06-20

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy. We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to bemore » double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 ''associates'' (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.« less

  16. HIERARCHICAL STRUCTURE FORMATION AND MODES OF STAR FORMATION IN HICKSON COMPACT GROUP 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S. C.; Durrell, P. R.; Elmegreen, D. M.

    2010-02-15

    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 (HCG 31) is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of < 10 Myr old star clusters (SCs) that suffuse the system. From the colors and luminosities of the young SCs, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local universe despite the unusual compact group environment. Furthermore, the specific frequency ofmore » the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z = 1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F-it appears to be a truly new structure. The low-velocity dispersion of the system components, available reservoir of H I, and current star formation rate of {approx}10 M {sub sun} yr{sup -1} indicate that HCG 31 is likely to both exhaust its cold gas supply and merge within {approx}1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.« less

  17. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; hide

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  18. Stellar Populations in Compact Galaxy Groups: a Multi-wavelength Study of HCGs 16, 22, and 42, Their Star Clusters, and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Maybhate, A.; Charlton, J. C.; Fedotov, K.; Durrell, P. R.; Mulchaey, J. S.; English, J.; Desjardins, T. D.; Gallagher, S. C.; Walker, L. M.; hide

    2013-01-01

    We present a multi-wavelength analysis of three compact galaxy groups, Hickson compact groups (HCGs) 16, 22, and 42, which describe a sequence in terms of gas richness, from space- (Swift, Hubble Space Telescope (HST), and Spitzer) and ground-based (Las Campanas Observatory and Cerro Tololo Inter-American Observatory) imaging and spectroscopy.We study various signs of past interactions including a faint, dusty tidal feature about HCG 16A, which we tentatively age-date at <1 Gyr. This represents the possible detection of a tidal feature at the end of its phase of optical observability. Our HST images also resolve what were thought to be double nuclei in HCG 16C and D into multiple, distinct sources, likely to be star clusters. Beyond our phenomenological treatment, we focus primarily on contrasting the stellar populations across these three groups. The star clusters show a remarkable intermediate-age population in HCG 22, and identify the time at which star formation was quenched in HCG 42. We also search for dwarf galaxies at accordant redshifts. The inclusion of 33 members and 27 "associates" (possible members) radically changes group dynamical masses, which in turn may affect previous evolutionary classifications. The extended membership paints a picture of relative isolation in HCGs 16 and 22, but shows HCG 42 to be part of a larger structure, following a dichotomy expected from recent studies. We conclude that (1) star cluster populations provide an excellent metric of evolutionary state, as they can age-date the past epochs of star formation; and (2) the extended dwarf galaxy population must be considered in assessing the dynamical state of a compact group.

  19. X-ray studies of highly magnetized neutron stars and their environs

    NASA Astrophysics Data System (ADS)

    Kumar, Harsha Sanjeev

    Supernova explosions are among the most energetic events known in the universe, leaving supernova remnants (SNRs) as their relics. The cores of massive stars collapse to form neutron stars, among the most compact and strongest magnets in the cosmos. The thesis studies a sample of such magnetic "beauties" in X-rays, the magnetars and high-magnetic field pulsars (HBPs), with the motivation to understand their evolutionary links. We also address the connection between these sources by investigating their environs through their securely associated SNRs. Magnetars have ultra-high magnetic fields B ~ 1014 -- 1015 Gauss (G) and include the soft-gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). The HBPs have magnetic fields B ~ 1013 -- 10 14 G, intermediate between the classical rotation-powered pulsars (B ~ 1012 G) and magnetars. We focussed on two HBPs: J1119-6127 and J1846-0258, with similar spin-properties and associated with the SNRs G292.2-0.5 and Kes 75, respectively. In our studies, magnetar-like behavior was discovered from the Crab-like pulsar J1846-0258, clearly establishing a connection between the HBPs and magnetars for the first time, while no such behavior has been observed from PSR J1119-6127 so far. J1119-6127's overall X-ray properties together with its compact pulsar wind nebula resemble more the classical rotation-powered pulsars. We studied two magnetars, one from each sub-class: SGR 0501+4516 and AXP 1E 1841-045. The spectral and statistical analysis of the bursts and the persistent X-ray emission properties observed from them were found consistent with the magnetar model predictions as well as those seen in other SGRs. Finally, we probed the environment of these stellar magnets by performing a detailed X-ray imaging and spatially resolved spectroscopic study of two SNRs: G292.2-0.5 and Kes 73 associated with J1119-6127 and 1E 1841-045, respectively. We found that both SNRs point to very massive progenitors ( ≳ 25 solar masses), further supporting the growing evidence for magnetars originating from massive progenitors using other multiwavelength studies.

  20. The Nucleus of the Planetary Nebula EGB 6 as a Post-Mira Binary

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.; Ciardullo, Robin; Esplin, Taran L.; Hawley, Steven A.; Liebert, James; Munari, Ulisse

    2016-08-01

    EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both the near-infrared (NIR) and mid-infrared (MIR). In a 2013 paper, we used Hubble Space Telescope (HST) images to show that the compact nebula is a point-like source, located 0.″16 (˜118 AU) from the WD. We attributed the NIR excess to an M dwarf companion star, which appeared to coincide with the dense emission knot. We now present new ground-based NIR spectroscopy, showing that the companion is actually a much cooler source with a continuous spectrum, apparently a dust-enshrouded low-luminosity star. New HST images confirm common proper motion of the emission knot and red source with the WD. The I-band, NIR, and MIR fluxes are variable, possibly on timescales as short as days. We can fit the spectral energy distribution (SED) with four blackbodies (the WD, a ˜1850 K NIR component, and MIR dust at 385 and 175 K). Alternatively, we show that the NIR/MIR SED is very similar to that of Class 0/I young stellar objects. We suggest a scenario in which the EGB 6 nucleus is descended from a wide binary similar to the Mira system, in which a portion of the wind from an AGB star was captured into an accretion disk around a companion star; a remnant of this disk has survived to the present time and is surrounded by gas photoionized by UV radiation from the WD. Based in part on data obtained with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Also based in part on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Inter-American Observatory.

  1. The Origins of the Ultra Compact Dwarfs in the halos of the central cluster galaxies in Fornax and Virgo

    NASA Astrophysics Data System (ADS)

    Voggel, Karina Theresia

    2015-08-01

    Ultra-Compact Dwarf Galaxies (UCDs) have filled the size gap (10-100pc) in the scaling relations of early-type stellar systems. Before their discovery, no objects were known in the parameter space between globular clusters (GCs) and dwarf galaxies. The nature of UCDs is widely debated. Two formation channels have been suggested: either UCDs are surviving nuclei of tidally stripped dwarf galaxies, or they constitute the high mass end of the GC population. In this work we establish new strategies to constrain the formation channel of UCDs, looking for the observational signatures of stripped nuclei.Before falling into a galaxy cluster dwarf galaxies initially host their own GC system. Through tidal interaction the GCs outside of the shrinking tidal radius are lost and disperse in the general GC population of the cluster, whereas GCs inside the tidal radius remain bound to the dwarf galaxy. Therefore, we expect to find some GCs close to the stripped nuclei that have not been removed yet, but dragged towards the nucleus via dynamical friction.We tested this prediction in the halo of NGC 1399, the central Fornax cluster galaxy, where we find a local overabundance of GCs on scales of 0.5 to 1 kpc around UCDs. A similar analysis of GC overdensities around UCDs in the halo of M87, the central Virgo cluster galaxy, is ongoing. Such a clustering signal of GCs around UCDs could be a hint that these UCDs formed as nuclei, and what we see is the remnant GC population of the ancestor galaxy.We also have studied the detailed structural composition of ~100 UCDs in the halo of NGC 1399 by analyzing their surface brightness profiles. We present new evidence for faint asymmetric structures and tidal tails around several UCDs, possible tracers for the assembly history of the central cluster galaxy. With new numbers on the abundance of tidal features and close GC companions within large UCD samples, the contribution of each formation channel to the GC/UCD populations in galaxy halos can be constrained.

  2. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  3. Magnetic braking of stellar cores in red giants and supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch

    2014-10-01

    Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less

  4. Survival of a brown dwarf after engulfment by a red giant star.

    PubMed

    Maxted, P F L; Napiwotzki, R; Dobbie, P D; Burleigh, M R

    2006-08-03

    Many sub-stellar companions (usually planets but also some brown dwarfs) orbit solar-type stars. These stars can engulf their sub-stellar companions when they become red giants. This interaction may explain several outstanding problems in astrophysics but it is unclear under what conditions a low mass companion will evaporate, survive the interaction unchanged or gain mass. Observational tests of models for this interaction have been hampered by a lack of positively identified remnants-that is, white dwarf stars with close, sub-stellar companions. The companion to the pre-white dwarf AA Doradus may be a brown dwarf, but the uncertain history of this star and the extreme luminosity difference between the components make it difficult to interpret the observations or to put strong constraints on the models. The magnetic white dwarf SDSS J121209.31 + 013627.7 may have a close brown dwarf companion but little is known about this binary at present. Here we report the discovery of a brown dwarf in a short period orbit around a white dwarf. The properties of both stars in this binary can be directly observed and show that the brown dwarf was engulfed by a red giant but that this had little effect on it.

  5. Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann (Editor); Garcia, Michael (Editor)

    2005-01-01

    NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.

  6. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  7. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE PAGES

    Zhang, Yuanyuan; Bell, Eric F.

    2017-01-13

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  8. M32 analogs? A population of massive ultra-compact dwarf and compact elliptical galaxies in intermediate-redshift clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan; Bell, Eric F.

    Here, we report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates inmore » $$0.2\\lt z\\lt 0.6$$ massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around $${10}^{9}{M}_{\\odot }$$. More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data.« less

  9. MUCHFUSS: Status and Highlights

    NASA Astrophysics Data System (ADS)

    Geier, S.; Kupfer, T.; Barlow, B.; Schaffenroth, V.; Fürst, F.; Heuser, C.; Ziegerer, E.; Heber, U.; Marsh, T.; Maxted, P.; Östensen, R.; O'Toole, S.; Gänsicke, B.; Napiwotzki, R.

    2014-04-01

    The MUCHFUSS project aims at finding sdBs with massive compact companions. Here we report on the current status of our spectroscopic and photometric follow-up campaigns and present some highlight results. We derive orbital solutions of seven new sdB binaries and estimate the fraction of close substellar companions to sdBs. Finally, we present an ultracompact sdB+WD binary as possible progenitor of a thermonuclear supernova and connect it to the only known hypervelocity subdwarf star, which might be the donor remnant of such an event.

  10. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.

  11. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valsecchi, Francesca; Rasio, Frederic A.; Rappaport, Saul

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effectsmore » of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.« less

  12. Linking Dynamical and Stellar Evolution in the Metal-Poor Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2017-08-01

    We propose a 5 orbit HST program to acquire UV imaging at the center of the ancient, metal-poor globular cluster NGC 6341 (M92). Our program is designed to achieve two science goals with a single data set, 1.) to directly measure the diffusion of stars through the massive cluster's core, 2.) to pinpoint the phase of post main-sequence evolution at which [Fe/H] = -2.3 stars lose their mass. Our novel technique will achieve these goals by using the full power of WFC3's exquisite UV sensitivity at <0.3 microns combined with its high spatial resolution. We will uncover 1000 newly-formed white dwarfs in the center of M92 and track how their spatial distribution changes as they get older on the cooling sequence. Having just experienced significant mass loss, the youngest remnants with ages <10s of Myr will still be moving slowly like their 0.8 Msun progenitors, whereas the older remnants with t_cool > 100s Myr will be fully relaxed. Using the methodology we developed and successfully applied to 47 Tuc (Heyl et al. 2015a; 2015b), we will watch this dynamical evolution to measure the diffusion coefficient due to gravitational relaxation in the cluster's core and the past timing of stellar mass loss that was responsible for the current cluster mass segregation profile. M92 is the ideal target for this study as it complements our existing study of the relatively metal-rich cluster 47 Tuc; it has an extremely low metallicity of [Fe/H] = -2.3, very low foreground reddening (E(B-V) = 0.02), moderate concentration index, and a theoretically-expected relaxation timescale in its core of 90 Myr, which nicely splits the young and old white dwarfs that can be observed with Hubble.

  13. Role of pressure anisotropy on relativistic compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Banerjee, Ayan; Hansraj, Sudan

    2018-02-01

    We investigate a compact spherically symmetric relativistic body with anisotropic particle pressure profiles. The distribution possesses characteristics relevant to modeling compact stars within the framework of general relativity. For this purpose, we consider a spatial metric potential of Korkina and Orlyanskii [Ukr. Phys. J. 36, 885 (1991)] type in order to solve the Einstein field equations. An additional prescription we make is that the pressure anisotropy parameter takes the functional form proposed by Lake [Phys. Rev. D 67, 104015 (2003), 10.1103/PhysRevD.67.104015]. Specifying these two geometric quantities allows for further analysis to be carried out in determining unknown constants and obtaining a limit of the mass-radius diagram, which adequately describes compact strange star candidates like Her X-1 and SMC X-1. Using the anisotropic Tolman-Oppenheimer-Volkoff equations, we explore the hydrostatic equilibrium and the stability of such compact objects. Then, we investigate other physical features of this model, such as the energy conditions, speeds of sound, and compactness of the star, in detail and show that our results satisfy all the required elementary conditions for a physically acceptable stellar model. The results obtained are useful in analyzing the stability of other anisotropic compact objects like white dwarfs, neutron stars, and gravastars.

  14. Baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  15. Recognition of compact astrophysical objects

    NASA Technical Reports Server (NTRS)

    Ogelman, H. (Editor); Rothschild, R. (Editor)

    1977-01-01

    NASA's Laboratory for High Energy Astrophysics and the Dept. of Physics and Astrophysics at the Univ. of Md. collaberated on a graduate level course with this title. This publication is an edited version of notes used as the course text. Topics include stellar evolution, pulsars, binary stars, X-ray signatures, gamma ray sources, and temporal analysis of X-ray data.

  16. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; hide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  17. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  18. Looking for early black holes signatures in the anisotropies of Cosmic backgrounds

    NASA Astrophysics Data System (ADS)

    Cappelluti, Nico

    2016-04-01

    We currently do not know how Super Massive Black Holes are seeded and grow to form the observed massive QSO at z~7. This is puzzling, because at that redshift the Universe was still too young to allow the growth of such massive black holes from stellar remnant black hole seeds. Theoretical models, taking into account the paucity of metals in the early Universe, explain this by invoking the formation of massive black holes seeds at z>10 as Direct Collapse Black holes of remnants of dead POPIII stars. As of today we cannot claim any detection of any high-z (z>7) black hole in their early stage of life. However, our recent measures of the arcminute scale joint fluctuations of the Cosmic X-ray Background and the Cosmic Infrared Background by Chandra and Spitzer can be explained by a population of highly absorbed z>10 Direct Collapse Black Holes.I will review the recent discoveries obtained with different instruments and by different teams and critically discuss these findings and the interpretations.

  19. HST/WFPC2 Photometry in the 30 Doradus Nebula Beyond R136

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Walborn, N. R.

    30 Doradus is the nearest and hence best resolved extragalactic starburst. Knowledge of its stellar content is vital to the interpretation of more distant starbursts, as well as to fundamental astrophysical problems such as the IMF, stellar mass limits, stellar evolution, and the structure of giant H II regions. In spite of the relative proximity of 30 Dor, it is essential to apply the highest possible spatial resolution to disentangle compact multiple systems and groups, which are characteristic of massive young regions and a source of systematic errors in astrophysical inferences if they are not resolved. Recents studies of the stellar content of 30 Doradus with HST/WFPC2 have concentrated on the central cluster core, R136 (Hunter et al. 1995, 1996, 1997; Nota et al. 1998). Followup HST/FOS spectroscopy was performed in and around R136 to a radius of about 15 arcsec, and the most spectacular concentration of the most massive young stars known was discovered (Massey & Hunter 1998; Heap et al. 1998). However, R136 and its immediate surroundings account for only a third to a half of the ionization of 30 Dor. Other very massive stars and stellar systems are distributed throughout the several-arcminute extent of the Nebula. They include objects both older and younger than R136; there is evidence that the formation of the latter has been triggered by the energetic activity of R136. So far, these important surrounding populations have been investigated only with groundbased observations (Parker 1993; Walborn & Blades 1997). In the latter spectral classification study, five spatially and/or temporally distinct stellar components were isolated within the Nebula. But numerous multiple systems remain unresolved in these populations, particularly in the younger ones. In this paper, we report HST/WFPC2 photometry of the 30 Doradus stellar content surrounding R136, with emphasis on the numerous multiple systems and compact clusterings found there. Of particular interest are systems in the bright nebular filaments where current massive-star formation is taking place, as revealed by both groundbased and HST/NICMOS infrared images. Special attention is given to the objects included in the above groundbased spectral-classification studies. Magnitudes and colors are derived for the newly resolved components of the multiple systems, while their ages and evolutionary status will be inferred insofar as possible. However, it is well known that the effective temperatures and masses of hot stars are degenerate when derived from photometry alone. Hence, this project is viewed as preparation for followup spatially resolved spectroscopy with HST/STIS, in order to advance our knowledge of the entire stellar content of 30 Doradus to the current state of the art, as is warranted by its unique status.

  20. Black hole-neutron star binary merger: Dependence on black hole spin orientation and equation of state

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kyohei; Kyutoku, Koutarou; Nakano, Hiroyuki; Okawa, Hirotada; Shibata, Masaru; Taniguchi, Keisuke

    2015-07-01

    We systematically performed numerical-relativity simulations for black hole-neutron star (BH-NS) binary mergers with a variety of the BH spin orientation and nuclear-theory-based equations of state (EOS) of the NS. The initial misalignment angles of the BH spin measured from the direction of the orbital angular momentum are chosen in the range of itilt,0≈30 ° -90 ° . We employed four models of nuclear-theory-based zero-temperature EOS for the NS in which the compactness of the NS is in the range of C =MNS/RNS=0.138 -0.180 , where MNS and RNS are the mass and the radius of the NS, respectively. The mass ratio of the BH to the NS, Q =MBH/MNS , and the dimensionless spin parameter of the BH, χ , are chosen to be Q =5 and χ =0.75 , together with MNS=1.35 M⊙ so that the BH spin misalignment has a significant effect on tidal disruption of the NS. We obtain the following results: (i) The inclination angles of itilt,0<70 ° and itilt,0<50 ° are required for the formation of a remnant disk with its mass larger than 0.1 M⊙ for the cases C =0.140 and C =0.160 , respectively, while the disk mass is always smaller than 0.1 M⊙ for C ≳0.175 . The ejecta with its mass larger than 0.01 M⊙ is obtained for itilt,0<85 ° with C =0.140 , for itilt,0<65 ° with C =0.160 , and for itilt,0<30 ° with C =0.175 . (ii) The rotational axis of the dense part of the remnant disk with its rest-mass density larger than 109 g /cm3 is approximately aligned with the remnant BH spin for itilt,0≈30 ° . On the other hand, the disk axis is misaligned initially with ˜30 ° for itilt,0≈60 ° , and the alignment with the remnant BH spin is achieved at ˜50 - 60 ms after the onset of merger. The accretion time scale of the remnant disk is typically ˜100 ms and depends only weakly on the misalignment angle and the EOS. (iii) The ejecta velocity is typically ˜0.2 - 0.3 c and depends only weakly on the misalignment angle and the EOS of the NS, while the morphology of the ejecta depends on its mass. (iv) The gravitational-wave spectra contains the information of the NS compactness in the cutoff frequency for itilt,0≲60 ° .

  1. Probing crustal structures from neutron star compactness

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-10-01

    With various sets of the parameters that characterize the equation of state (EOS) of nuclear matter, we systematically examine the thickness of a neutron star crust and of the pasta phases contained therein. Then, with respect to the thickness of the phase of spherical nuclei, the thickness of the cylindrical phase and the crust thickness, we successfully derive fitting formulas that express the ratio of each thickness to the star's radius as a function of the star's compactness, the incompressibility of symmetric nuclear matter and the density dependence of the symmetry energy. In particular, we find that the thickness of the phase of spherical nuclei has such a strong dependence on the stellar compactness as the crust thickness, but both of them show a much weaker dependence on the EOS parameters. Thus, via determination of the compactness, the thickness of the phase of spherical nuclei as well as the crust thickness can be constrained reasonably, even if the EOS parameters remain to be well-determined.

  2. LISA: Astrophysics Out to z Approximately 10 with Low-Frequency Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.

  3. Hydrodynamic simulations of stellar wind disruption by a compact X-ray source

    NASA Technical Reports Server (NTRS)

    Blondin, John M.; Kallman, Timothy R.; Fryxell, Bruce A.; Taam, Ronald E.

    1990-01-01

    This paper presents two-dimensional numerical simulations of the gas flow in the orbital plane of a massive X-ray binary system, in which the mass accretion is fueled by a radiation-driven wind from an early-type companion star. These simulations are used to examine the role of the compact object (either a neutron star or a black hole) in disturbing the radiatively accelerating wind of the OB companion, with an emphasis on understanding the origin of the observed soft X-ray photoelectric absorption seen at late orbital phases in these systems. On the basis of these simulations, it is suggested that the phase-dependent photoelectric absorption seen in several of these systems can be explained by dense filaments of compressend gas formed in the nonsteady accreation bow shock and wake of the compact object.

  4. A new exact anisotropic solution of embedding class one

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; T. T., Smitha; Rahaman, Farook

    2016-07-01

    We have presented a new anisotropic solution of Einstein's field equations for compact-star models. Einstein's field equations are solved by using the class-one condition (S.N. Pandey, S.P. Sharma, Gen. Relativ. Gravit. 14, 113 (1982)). We constructed the expression for the anisotropy factor ( Δ by using the pressure anisotropy condition and thereafter we obtained the physical parameters like energy density, radial and transverse pressure. These models parameters are well-behaved inside the star and satisfy all the required physical conditions. Also we observed the very interesting result that all physical parameters depend upon the anisotropy factor ( Δ. The mass and radius of the present compact-star models are quite compatible with the observational astrophysical compact stellar objects like Her X-1, RXJ 1856-37, SAX J1808.4-3658(SS1), SAX J1808.4-3658(SS2).

  5. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  6. Study of stellar structures in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    This paper is devoted to study the compact objects whose pressure and density are related through polytropic equation-of-state (EoS) and MIT bag model (for quark stars) in the background of f(R,T) gravity. We solve the field equations together with the hydrostatic equilibrium equation numerically for the model f(R,T) = R + αR2 + λT and discuss physical properties of the resulting solution. It is observed that for both types of stars (polytropic and quark stars), the effects of model parameters α and λ remain the same. We also obtain that the energy conditions are satisfied and stellar configurations are stable for both EoS.

  7. A search for N-type galaxies

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1971-01-01

    A large number of distant clusters of galaxies was examined for the presence of a bright compact galaxy or blue stellar object. Nearly 600 square degrees of sky were searched using glass copies of the National Geographic Society-Palomar Observatory Sky Survey plates, and over 20 fields were selected for observation. The objects were examined for infrared and ultraviolet excesses, using wideband filter photography and spectroscopy. Initial findings include a faint, distant cluster of galaxies near the quasi-stellar radio source 4C 37.43 with a red shift of 0.370. One of these galaxies has an emission line at 6895 A, indicating a possible red shift of 0.377 of the 5007 A line of (0 III).

  8. Hot, Massive Stars in I Zw 18

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.; Malumuth, E.

    2011-01-01

    I Zw 18 is one of the most primitive blue, compact dwarf galaxies. The ionized gas in I Zw 18 has a low oxygen abundance (O approx.1/30 Osun) and nitrogen abundance (N-1/100 Nsun) (Pequignot 2008). We have obtained a far-UV spectrum of the northwest massive star cluster of I Zw 18 using Hubble's Cosmic Origins Spectrograph (COS). The spectrum is compatible with continuous star-formation over the past approx.10 Myr, and a very low metallicity, log Z/Zsun 1.7, although the stellar surface may be enhanced in carbon. Stellar wind lines are very weak, and the edge velocity of wind lines is very low (approx.250 km/s).

  9. Wet disc contraction to galactic blue nuggets and quenching to red nuggets

    NASA Astrophysics Data System (ADS)

    Dekel, A.; Burkert, A.

    2014-02-01

    We study the origin of high-redshift, compact, quenched spheroids (red nuggets) through the dissipative shrinkage of gaseous discs into compact star-forming systems (blue nuggets). The discs, fed by cold streams, undergo violent disc instability that drives gas into the centre (along with mergers). The inflow is dissipative when its time-scale is shorter than the star formation time-scale. This implies a threshold of ˜0.28 in the cold-to-total mass ratio within the disc radius. For the typical gas fraction ˜0.5 at z ˜ 2, this threshold is traced back to a maximum spin parameter of ˜0.05, implying that ˜half the star-forming galaxies contract to blue nuggets, while the rest form extended stellar discs. Thus, the surface density of blue galaxies is expected to be bimodal about ˜109 M⊙ kpc-2, slightly increasing with mass. The blue nuggets are expected to be rare at low z when the gas fraction is low. The blue nuggets quench to red nuggets by complementary internal and external mechanisms. Internal quenching by a compact bulge, in a fast mode and especially at high z, may involve starbursts, stellar and active galactic nucleus feedback, or Q-quenching. Quenching due to hot-medium haloes above 1012 M⊙ provides maintenance and a slower mode at low redshift. These predictions are confirmed in simulations and are consistent with observations at z = 0-3.

  10. Chandra Maps Vital Elements From Supernova

    NASA Astrophysics Data System (ADS)

    1999-12-01

    A team of astronomers led by Dr. John Hughes of Rutgers University in Piscataway, NJ has used observations from NASA's orbital Chandra X-ray Observatory to make an important new discovery that sheds light on how silicon, iron, and other elements were produced in supernova explosions. An X-ray image of Cassiopeia A (Cas A), the remnant of an exploded star, reveals gaseous clumps of silicon, sulfur, and iron expelled from deep in the interior of the star. The findings appear online in the Astrophysical Journal Letters at http://www.journals.uchicago.edu/ and are slated for print publication on Jan. 10, 2000. Authors of the paper, "Nucleosynthesis and Mixing in Cassiopeia A", are Hughes, Rutgers graduate student Cara Rakowski, Dr. David Burrows of the Pennsylvania State University, University Park, PA and Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics, Cambridge, MA. According to Hughes, one of the most profound accomplishments of twentieth century astronomy is the realization that nearly all of the elements other than hydrogen and helium were created in the interiors of stars. "During their lives, stars are factories that take the simplest element, hydrogen, and convert it into heavier ones," he said. "After consuming all the hydrogen in their cores, stars begin to evolve rapidly, until they finally run out of fuel and begin to collapse. In stars ten times or so more massive than our Sun, the central parts of the collapsing star may form a neutron star or a black hole, while the rest of the star is blown apart in a tremendous supernova explosion." Supernovae are rare, occurring only once every 50 years or so in a galaxy like our own. "When I first looked at the Chandra image of Cas A, I was amazed by the clarity and definition," said Hughes. "The image was much sharper than any previous one and I could immediately see lots of new details." Equal in significance to the image clarity is the potential the Chandra data held for measuring the composition of the various knots and filaments of stellar material visible in Cas A. Not only could the astronomers determine the composition of many knots in the remnant from the Chandra data, they were also able to infer where in the exploding star the knots had originated. For example, the most compact and brightest knots were composed mostly of silicon and sulfur, with little or no iron. This pointed to an origin deep in the star's interior where the temperatures had reached three billion degrees during the collapse and resulting supernova. Elsewhere, they found fainter features that contained significant amounts of iron as well as some silicon and sulfur. This material was produced even deeper in the star, where the temperatures during the explosion had reached higher values of four to five billion degrees. When Hughes and his collaborators compared where the compact silicon-rich knots and fainter iron-rich features were located in Cas A, they discovered that the iron-rich features from deepest in the star were near the outer edge of the remnant. This meant that they had been flung the furthest by the explosion that created Cas A. Even now this material appears to be streaming away from the site of the explosion with greater speed than the rest of the remnant. By studying the Cas A Chandra data further, astronomers hope to identify which of the several processes proposed by theoretical studies is likely to be the correct mechanism for explaining supernova explosions, both in terms of the dynamics and elements they produce. "In addition to understanding how iron and the other elements are produced in stars, we also want to learn how it gets out of stars and into the interstellar medium. This is why the study of supernovas and supernova remnants is so important," said Hughes. "Once released from stars, newly-created elements can then participate in the formation of new stars and planets in a great cycle that has gone on numerous times already. It is remarkable to realize that our planet Earth and indeed even humanity itself is part of this vast cosmic cycle." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on August 19, 1999. ACIS was built by Pennsylvania State University, and the Massachusetts Institute of Technology, Cambridge, MA. Press: Fact Sheet (08/99) To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  11. Ruprecht 3: An old star cluster remnant?

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2003-02-01

    2MASS J and H photometry and integrated spectroscopy are employed to study the nature of the poorly populated compact concentration of stars Ruprecht 3, which was previously catalogued as an open cluster. The integrated spectrum remarkably resembles that of a moderately metal-rich globular cluster. The distribution of the object stars in the colour-magnitude diagram is compatible with that of a 1.5 +/- 0.5 Gyr open cluster or older, depending on whether the bluer stars are interpreted as turnoff stars or blue stragglers, respectively. We derive for the object a distance from the Sun dsun = 0.72 +0.04-0.03 kpc and a colour excess E(B-V) = 0.04. Although a globular cluster remnant cannot be ruled out, the integrated spectrum resemblance to that of a globular cluster probably reflects a stochastic effect owing to the few brighter stars. The structural and photometric properties of Ruprecht 3 are compatible with what would be expected for an intermediate-age open cluster remnant. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  12. High-energy Emission from the Composite Supernova Remnant MSH 15-56

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.

    2013-01-01

    MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  13. Color Composite Image of the Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is a color composite of the supernova remnant E0102-72: x-ray (blue), optical (green), and radio (red). E0102-72 is the remnant of a star that exploded in a nearby galaxy known as the Small Magellanic Cloud. The star exploded outward at speeds in excess of 20 million kilometers per hour (12 million mph) and collided with surrounding gas. This collision produced two shock waves, or cosmic sonic booms, one traveling outward, and the other rebounding back into the material ejected by the explosion. The radio image, shown in red, was made using the Australia Telescope Compact Array. The radio waves are due to extremely high-energy electrons spiraling around magnetic field lines in the gas and trace the outward moving shock wave. The Chandra X-ray Observatory image, shown in blue, shows gas that has been heated to millions of degrees by the rebounding, or reverse shock wave. The x-ray data show that this gas is rich in oxygen and neon. These elements were created by nuclear reactions inside the star and hurled into space by the supernova. The Hubble Space Telescope optical image, shown in green, shows dense clumps of oxygen gas that have 'cooled' to about 30,000 degrees. Photo Credit: X-ray (NASA/CXC/SAO); optical (NASA/HST): radio: (ACTA)

  14. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  15. Nuclear planetology: understanding habitable planets as Galactic bulge stellar remnants (black dwarfs) in a Hertzsprung-Russell (HR) diagram

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    The Hertzsprung-Russell (HR) diagram is one of the most important diagrams in astronomy. In a HR diagram, the luminosity of stars and/or stellar remnants (white dwarf stars, WD's), relative to the luminosity of the sun, is plotted versus their surface temperatures (Teff). The Earth shows a striking similarity in size (radius ≈ 6.370 km) and Teff of its outer core surface (Teff ≈ 3800 K at the core-mantle-boundary) with old WD's (radius ≈ 6.300 km) like WD0346+246 (Teff ≈ 3820 K after ≈ 12.7 Ga [1]), which plot in the HR diagram close to the low-mass extension of the stellar population or main sequence. In the light of nuclear planetology [2], Earth-like planets are regarded as old, down-cooled and differentiated black dwarfs (Fe-C BLD's) after massive decompression, the most important nuclear reactions involved being 56Fe(γ,α)52Cr (etc.), possibly responsible for extreme terrestrial glaciations events ("snowball" Earth), together with (γ,n), (γ,p) and fusion reactions like 12C(α,γ)16O. The latter reaction might have caused oxidation of the planet from inside out. Nuclear planetology is a new research field, tightly constrained by a coupled 187Re-232Th-238U systematics. By means of nuclear/quantum physics and taking the theory of relativity into account, it aims at understanding the thermal and chemical evolution of Fe-C BLD's after gravitational contraction (e.g. Mercury) or Fermi-pressure controlled collapse (e.g. Earth) events after massive decompression, leading possibly to an r-process event, towards the end of their cooling period [2]. So far and based upon 187Re-232Th-238U nuclear geochronometry, the Fe-C BLD hypothesis can successfully explain the global terrestrial MORB 232Th/238U signature [3]. Thus, it may help to elucidate the DM (depleted mantle), EMI (enriched mantle 1), EMII (enriched mantle 2) or HIMU (high U/Pb) reservoirs, and the 187Os/188Os isotopic dichotomy in Archean magmatic rocks and sediments [4]. Here I present a conceptual model constraining the evolution of a rocky planet like Earth or Mercury from a stellar precursor of the oldest population to a Fe-C BLD, shifting through different spectral classes in a HR diagram after massive decompression and tremendous energy losses. In the light of WD/BLD cosmochronology [1], solar system bodies like Earth, Mercury and Moon are regarded as captured interlopers from the Galactic bulge, Earth and Moon possibly representing remnants of an old binary system. Such a preliminary scenario is supported by similar ages obtained from WD's for the Galactic halo [1] and, independently, by means of 187Re-232Th-238U nuclear geochronometry [2, 4, 5], together with recent observations extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way [6]. This might be further elucidated in the near future by Th/U cosmochronometry based upon a nuclear production ratio Th/U = 0.96 [5] and additionally by means of a newly developed nucleogeochronometric age dating method for stellar spectroscopy, which will be presented in a forthcoming paper. The model shall stimulate geochemical data interpretation from a different perspective to constrain the (thermal) evolution of a habitable planet as to its geo-, bio-, hydro- and atmosphere. [1] Fontaine et al. (2001), Public. Astron. Soc. of the Pacific 113, 409-435. [2] Roller (2015), Abstract T34B-0407, AGU Spring Meeting 2015. [3] Arevalo et al. (2010), Chem. Geol. 271, 70-85. [4] Roller (2015), Geophys. Res. Abstr. 17, EGU2015-2399. [5] Roller (2015), 78th Annu. Meeting Met. Soc., Abstract #5041. [6] Howes et al. (2015), Nature 527, 484-487.

  16. GW170817 and the Prospect of Forming Supramassive Remnants in Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Ma, Peng-Xiong; Jiang, Jin-Liang; Wang, Hao; Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming

    2018-05-01

    The gravitational wave data of GW170817 favor the equation of state (EoS) models that predict compact neutron stars (NSs), consistent with the radius constraints from X-ray observations. Motivated by such remarkable progress, we examine the fate of the remnants formed in NS mergers and focus on the roles of the angular momentum and the mass distribution of the binary NSs. In the mass-shedding limit (for which the dimensionless angular momentum equals the Keplerian value, i.e., j = j Kep), the adopted seven EoS models, except for H4 and ALF2, yield supramassive NSs in more than half of the mergers. However, for j ≲ 0.7 j Kep, the presence or absence of a non-negligible fraction of supramassive NSs formed in the mergers depends sensitively on both the EoS and the mass distribution of the binary systems. The NS mergers with a total gravitational mass ≤ 2.6 M ⊙ are found to be able to shed valuable light on both the EoS model and the angular momentum of the remnants if supramassive NSs are still absent. We have also discussed the uncertainty on estimating the maximum gravitational mass of nonrotating NSs (M max) due to the unknown j of the precollapse remnants. With the data of GW170817 and the assumption of the mass loss of 0.03 M ⊙, we have M max < (2.19, 2.32) M ⊙ (90% confidence level) for j = (1.0, 0.8) j Kep, respectively.

  17. A very dark stellar system lost in Virgo: kinematics and metallicity of SECCO 1 with MUSE

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Magrini, L.; Coccato, L.; Cresci, G.; Fraternali, F.; de Zeeuw, P. T.; Husemann, B.; Ibata, R.; Battaglia, G.; Martin, N.; Testa, V.; Perina, S.; Correnti, M.

    2017-02-01

    We present the results of VLT-MUSE (Very Large Telescope-Multi Unit Spectroscopic Explorer) integral field spectroscopy of SECCO 1, a faint, star-forming stellar system recently discovered as the stellar counterpart of an ultracompact high-velocity cloud (HVC 274.68+74.0), very likely residing within a substructure of the Virgo cluster of galaxies. We have obtained the radial velocity of a total of 38 individual compact sources identified as H II regions in the main and secondary bodies of the system, and derived the metallicity for 18 of them. We provide the first direct demonstration that the two stellar bodies of SECCO 1 are physically associated and that their velocities match the H I velocities. The metallicity is quite uniform over the whole system, with a dispersion lower than the uncertainty on individual metallicity estimates. The mean abundance, <12 + log(O/H)> = 8.44, is much higher than the typical values for local dwarf galaxies of similar stellar mass. This strongly suggests that the SECCO 1 stars were born from a pre-enriched gas cloud, possibly stripped from a larger galaxy. Using archival Hubble Space Telescope (HST) images, we derive a total stellar mass of ≃1.6 × 105 M⊙ for SECCO 1, confirming that it has a very high H I-to-stellar mass ratio for a dwarf galaxy, M_{H I}/M* ˜ 100. The star formation rate, derived from the Hα flux, is a factor of more than 10 higher than in typical dwarf galaxies of similar luminosity.

  18. Global Studies of Molecular Clouds in the Galaxy, the Magellanic Cloud and M31

    NASA Technical Reports Server (NTRS)

    Thaddeus, Patrick

    1998-01-01

    Over the past five years we have used our extensive CO surveys of the Galaxy and M31 in conjunction with spacecraft observations to address central problems in galactic structure and the astrophysics of molecular clouds. These problems included the nature of the molecular ring and its relation to the spiral arms and central bar, the cosmic ray distribution, the origin of the diffuse X-ray background, the distribution and properties of x-ray sources and supernova remnants, and the Galactic stellar mass distribution. For many of these problems, the nearby spiral M31 provided an important complementary perspective.

  19. A Highly Ordered Magnetic Field in a Crushed Pulsar Wind Nebula in G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Ma, Yik Ki; Ng, Chi-Yung; Bucciantini, Niccolò; Gaensler, Bryan M.; Slane, Patrick O.; Temim, Tea

    2015-01-01

    A significant fraction of a pulsar's spin-down luminosity is in the form of a relativistic magnetized particle outflow known as a pulsar wind. Confinement of the wind by the ambient medium creates a synchrotron-emitting bubble called a pulsar wind nebula (PWN). Studies of PWNe is important for understanding the physics of relativistic shocks and particle acceleration. Simulations suggest that a PWN will be crushed by the reverse shock of its surrounding supernova remnant at an age of ~10^4 yr, resulting in a turbulent environment. However, given the short timescale of the interaction stage, only a few such systems are observed.We present radio polarization observations of the PWN in supernova remnant G327.1-1.1, taken with the Australia Telescope Compact Array. Previous works suggest that this system has recently interacted with the supernova reverse shock, providing a rare example for the study of magnetic field in a crushed PWN. We found a highly ordered magnetic field in the PWN, which is unexpected given the presumed turbulent interior of the nebula. This suggests that the magnetic pressure in the PWN could play an important role in the interaction with supernova reverse shock.The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.YKM and CYN are supported by a ECS grant of the Hong Kong Government under HKU 709713P

  20. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  1. SDSS 1240+6710: a partially burnt supernova remnant

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2016-10-01

    We have recently (Kepler et al. 2016, Science 352, 6281, April 1 issue) identified SDSSJ124043.01+671034.68 as a white dwarf with most peculiar characterstics. Instead of the usual hydrogen or helium, its atmosphere is composed almost purely of oxygen, the only other trace elements detected are neon, magnesium, and silicon; and it has a large transverse velocity of 340km/s. The relatively low mass, 0.6Msun, and the non-detection of carbon strongly argue against SDSSJ1240+6710 being a canonical oxygen-neon core formed from the evolution of a single progenitor star with a mass of 6.5-10Msun. The detection of silicon suggests that the progenitor of this white dwarf may have initiated oxygen-burning, and we argue that SDSSJ1240+6710 is the partially burnt remnant of an unusual thermonuclear supernova, of which a variety have been discovered by the ongoing large transient surveys. We propose to obtain COS ultraviolet spectroscopy of SDSSJ1240+6710 to measure (1) the abundances of phosphorus and sulfur, two other products of oxygen-burning, (2) significantly improve the upper limits on hydrogen (from Ly alpha) and carbon (1330/1335A resonance lines), (3) probe for traces of other nuclear burning, including nitrogen, iron, and nickel, and (4) accurately measure its effective temperature and mass. SDSSJ1240+6710 provides so far the unique opportunity to test the predictions of the rapidly growing number of theoretical stellar explosion models producing gravitationally bound remnants.

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-08-01

    This x-ray image of the Cassiopeia A (CAS A) supernova remnant is the official first light image of the Chandra X-Ray Observatory (CXO). The 5,000-second image was made with the Advanced Charged Coupled Device (CCD) Image Spectrometer (ACIS). Two shock waves are visible: A fast outer shock and a slower irner shock. The inner shock wave is believed to be due to the collision of ejecta from the supernova explosion with a circumstellar shell of material, heating it to a temperature of 10 million-degrees Celsius. The outer shock wave is analogous to an awesome sonic boom resulting from this collision The x-rays reveal a bright object near the center, which may be the long-sought neutron star or black hole remnant of the explosion that produced Cassiopeia A. Cassiopeia A is the 320-year-old remnant of a massive star that exploded. Located in the constellation Cassiopeia, it is 10 light-years across and 10,000 light-years from Earth. A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically, reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst.

  3. Opening the CHOCBOX: clumpy stellar winds in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration

    2017-10-01

    Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.

  4. The II Zw 40 Supernebula

    NASA Astrophysics Data System (ADS)

    Leitherer, C.; Byler, N.; Lee, J. C.; Levesque, E. M.

    2017-11-01

    We obtained HST COS G140L spectroscopy of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster with a luminosity 10 times that of 30 Doradus, the most powerful giant HII region in the Local Group. The super star cluster has been suggested to be the ionizing source of a ”supernebula” detected via its free-free radiation in the radio. The physical conditions, however, are much more complex, as demonstrated by the detection of the nebular He II and the mid-infrared line of [O IV] 25.9. These lines are unlikely to be related to hot stars and require a different powering source. II Zw 40 shares many similarities with the related blue compact dwarfs NGC 5253 and Henize 2-10. However, II Zw 40’s UV spectrum is unique in terms of the exceptional strength of He II 1640, O III 1663 and CIII 1909. We determined reddening, age, and the stellar initial mass function and perform a comparison with the local benchmark 30 Doradus. Photoionization modeling is used to determine the origin of the nebular lines as due to stellar ionization, shocks, or powering by a black hole.

  5. Identifying Bright X-Ray Beasts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d

  6. The Optical Green Valley Versus Mid-infrared Canyon in Compact Groups

    NASA Technical Reports Server (NTRS)

    Walker, Lisa May; Butterfield, Natalie; Johnson, Kelsey; Zucker, Catherine; Gallagher, Sarah; Konstantopoulos, Iraklis; Zabludoff, Ann; Hornschemeier, Ann E.; Tzanavaris, Panayiotis; Charlton, Jane C.

    2013-01-01

    Compact groups of galaxies provide conditions similar to those experienced by galaxies in the earlier universe. Recent work on compact groups has led to the discovery of a dearth of mid-infrared transition galaxies (MIRTGs) in Infrared Array Camera (3.6-8.0 micrometers) color space as well as at intermediate specific star formation rates. However, we find that in compact groups these MIRTGs have already transitioned to the optical ([g-r]) red sequence. We investigate the optical color-magnitude diagram (CMD) of 99 compact groups containing 348 galaxies and compare the optical CMD with mid-infrared (mid-IR) color space for compact group galaxies. Utilizing redshifts available from Sloan Digital Sky Survey, we identified new galaxy members for four groups. By combining optical and mid-IR data, we obtain information on both the dust and the stellar populations in compact group galaxies. We also compare with more isolated galaxies and galaxies in the Coma Cluster, which reveals that, similar to clusters, compact groups are dominated by optically red galaxies. While we find that compact group transition galaxies lie on the optical red sequence, LVL (Local Volume Legacy) + (plus) SINGS (Spitzer Infrared Nearby Galaxies Survey) mid-IR (infrared) transition galaxies span the range of optical colors. The dearth of mid-IR transition galaxies in compact groups may be due to a lack of moderately star-forming low mass galaxies; the relative lack of these galaxies could be due to their relatively small gravitational potential wells. This makes them more susceptible to this dynamic environment, thus causing them to more easily lose gas or be accreted by larger members.

  7. Stellar parameters for the central star of the planetary nebula PRTM 1 using the German Astrophysical Virtual Observatory service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Demleitner, M.; Hoyer, D.; Werner, K.

    2018-04-01

    The German Astrophysical Virtual Observatory (GAVO) developed the registered service TheoSSA (theoretical stellar spectra access) and the supporting registered VO tool TMAW (Tübingen Model-Atmosphere WWW interface). These allow individual spectral analyses of hot, compact stars with state-of-the-art non-local thermodynamical equilibrium (NLTE) stellar-atmosphere models that presently consider opacities of the elements H, He, C, N, O, Ne, Na, and Mg, without requiring detailed knowledge about the involved background codes and procedures. Presently, TheoSSA provides easy access to about 150 000 pre-calculated stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In the case of the exciting star of PN PRTM 1, we demonstrate the easy way to calculate individual NLTE stellar model-atmospheres to reproduce an observed optical spectrum. We measured T_eff = 98 000± 5 000 K, log (g / cm/s^2) = 5.0^{+0.3}_{-0.2}, and photospheric mass fractions of H =7.5 × 10-1 (1.02 times solar), He =2.4 × 10-1 (0.96), C =2.0 × 10-3 (0.84), N =3.2 × 10-4 (0.46), and O =8.5 × 10-3 (1.48) with uncertainties of ±0.2 dex. We determined the stellar mass and luminosity of 0.73^{+0.16}_{-0.15} M_{⊙} and log (L/L⊙) = 4.2 ± 0.4, respectively.

  8. Cold, warm, and hot gas in the late-stage merger NGC 7252

    NASA Astrophysics Data System (ADS)

    Hibbard, J. E.; Guhathakurta, Puragra; van Gorkom, J. H.; Schweizer, Francois

    1994-01-01

    We present the first observations of the neutral hydrogen distribution and x-ray emission in the prototypical merger remnant NGC 7252, the 'Atoms-for-Peace' galaxy. These data are supplemented by accurate B and R surface photometry, reaching a limit of muB = 26.5 mag/sq arcsec, and images taken through a narrow-band H alpha filter. We find all of the 2 x 109/sq h solar mass of atomic gas to be restricted to the outer, tidal regions of this system (Hzero = 100 h km/s/Mpc). By contrast, the molecular gas traced by the (12)CO(1 approaches zero) map of Wang et al. (1992) is confined to an inner rotating disk of radius 7 seconds and has an H alpha counterpart. The gap between the atomic and molecular gas distributions is filled in by diffuse H alpha emission and perhaps by x-ray emission. The velocity field of the atomic gas in the tidal tails indicates that they are swinging through space in the same sense as the rotation of the inner gas disk. The H I at the apparent base of the northwestern tail seems to be falling back toward the main body of the galaxy, yet there is no H I associated with this main stellar body: This suggests ongoing efficient conversion of the atomic gas into other phases in this region. The H alpha velocity anomalies previously found in the remnant body may be produced in part by the combination of tail-related, noncircular motions and the inner gas-disk rotation. Both tidal tails have bluer B-R colors than the main body of the remnant, with the bluest regions coinciding with peaks in the gas column density. Each tail contains one giant H II region near the end of its optical light distribution. These H II regions are associated with large concentrations of gas and stars that approach the sizes and gas contents of dwarf galaxies. The H I extends beyond the end of the optical tails and reaches projected distances of 62/h kpc east and 120/h kpc northwest from the center. We discuss the possible relevance of these data to : (1) the transformation of merged spirals into ellipticls; (2) the generation of ripples by returning tidal material; and (3) the formation of bound stellar systems from tidally torn material.

  9. History and destiny of an emerging early-type galaxy. New IFU insights on the major-merger remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Husemann, B.; Kuntschner, H.; Martín-Navarro, I.; Bournaud, F.; Duc, P.-A.; Emsellem, E.; Krajnović, D.; Lyubenova, M.; McDermid, R. M.

    2018-06-01

    Context. The merging of galaxies is one key aspect in our favourite hierarchical ΛCDM Universe and is an important channel leading to massive quiescent elliptical galaxies. Understanding this complex transformational process is ongoing. Aims: We aim to study NGC 7252, which is one of the nearest major-merger galaxy remnants, observed 1 Gyr after the collision of presumably two gas-rich disc galaxies. It is therefore an ideal laboratory to study the processes inherent to the transformation of disc galaxies to ellipticals. Methods: We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50'' × 50'' of NGC 7252 to map the stellar and ionised gas kinematics, and the distribution and conditions of the ionised gas, revealing the extent of ongoing star formation and recent star formation history. Results: Contrary to previous studies, we find the inner gas disc not to be counter-rotating with respect to the stars. In addition, the stellar kinematics appear complex with a clear indication of a prolate-like rotation component which suggests a polar merger configuration. The ongoing star formation rate is 2.2 ± 0.6 M⊙ yr-1 and implies a typical depletion time of 2 Gyr given the molecular gas content. Furthermore, the spatially resolved star formation history suggests a slight radial dependence, moving outwards at later times. We confirm a large AGN-ionised gas cloud previously discovered 5 kpc south of the nucleus, and find a higher ionisation state of the ionised gas at the galaxy centre relative to the surrounding gas disc. Although the higher ionisation towards the centre is potentially degenerate within the central star forming ring, it may be associated with a low-luminosity AGN. Conclusions: Although NGC 7252 has been classified as post-starburst galaxy at the centre, the elliptical-like major-merger remnant still appears very active. A central kpc-scale gas disc has presumably re-formed quickly within the last 100 Myr after final coalescence. The disc features ongoing star formation, implying Gyr long timescale to reach the red sequence through gas consumption alone. While NGC 7252 is useful to probe the transformation from discs to ellipticals, it is not well-suited to study the transformation from blue to red at this point.

  10. Analysis of physical parameters related with water infiltration in tropical soils located in edges forest in urban areas

    NASA Astrophysics Data System (ADS)

    Márcia Longo, Regina; Cunha, Jessica C. M.; Lammoglia, Rafaella; Mendes, Deborah R.; Mungilioli, Sarah S.; Damame, Desiree B.; Demamboro, Antônio C.; Bettine, Sueli C.; Ribeiro, Admilson I.; Fengler, Felipe H.

    2015-04-01

    A very important factor for water infiltration into the soil in urban forest systems and suffering constant anthropogenic pressures is the analysis of soil compaction where these forests are or will be established. In this context, this work aimed to promote studies on physical parameters related to distribution of pores, compaction and soil biological activity in forest remnants border areas located in urban watersheds in Campinas / SP - Brazil. The Forest of Santa Genebra (22°49'45 "S and 47°06'33" W) has an average altitude of 680m and tropical climate of altitude, has an area of 251 ha and a nine kilometer perimeter. It constitutes 85% of Semideciduos forests and 15% swamp forest. Due to its location close to urban centers, roads and agricultural areas under direct influence of the anthropic means. For the present study analyzes were performed: particle size, soil density, porosity, matters organic, of biopores, and root distribution (primary, secondary and tertiary) and seedlings in 40 points on the perimeter of the forest equidistant 200m remaining edge. The analysis of the results allowed us to observe that areas suffer direct influence of human activities surrounding. With the results set correlations between the different parameters in order to allow a better understanding of the dynamics of water infiltration into the soil under these conditions and the quantity of tertiary roots, biopores and soil density were the best indicator of environmental quality as suffer direct influence of the surrounding areas, especially those near the most urbanized regions. In general, it can be observed that human activities such as deforestation and vehicle traffic, animals and people, promoted soil compaction and consequent changes in water infiltration into the soil in areas of edges of this remnant of these consequences affect direct numerous parameters that directly influence the dynamics of an ecosystem restoration that is now significantly affected by the occupation of their surroundings.

  11. The II Zw 40 Supernebula: 30 Doradus on Steroids

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2015-10-01

    We propose COS G140L spectroscopy of the enigmatic nearby blue compact dwarf galaxy II Zw 40. The galaxy hosts a nuclear super star cluster with a luminosity 10 times that of 30 Doradus, the most powerful giant HII region in the Local Group. The super star cluster has been suggested to be the ionizing source of a supernebula detected via its free-free radiation in the radio. The physical conditions, however, are much more complex, as demonstrated by the detection of the nebular He II and the mid-infrared line of [O IV] 25.9. These lines are unlikely to be related to hot stars and require a different powering source. II Zw 40 shares many similarities with the related blue compact dwarfs NGC 5253 and Henize 2-10, both of which have been studied extensively with HST, yet no ultraviolet spectroscopy has ever been obtained for II Zw 40. This small 4-orbit proposal will provide the necessary UV data to study the massive-star content directly. We will determine reddening, age, and the stellar initial mass function and perform a comparison with the local benchmark 30 Doradus. In particular we will investigate whether the hot stars are able to power the supernebula and the nebular high-excitation lines. Our modeling will utilize the latest generation of stellar evolutionary tracks with and without stellar rotation. If the stars fall short in terms of spectral hardness and luminosity, II Zw 40 may become the second candidate for a central black hole in a young starburst after Henize 2-10.

  12. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  13. ALMA Observations of Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.

    2017-04-01

    Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.

  14. A short introduction to the status and motivation for reversed field pinch and compact toroid research

    NASA Astrophysics Data System (ADS)

    Dreicer, H.

    1987-09-01

    Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direct cost (UDC) in dollars/kWe. These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost, etc., and are influenced by technological complexity. In an attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper.

  15. Kinematics of Ultra-high-velocity Gas in the Expanding Molecular Shell Adjacent to the W44 Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Yamada, Masaya; Oka, Tomoharu; Takekawa, Shunya; Iwata, Yuhei; Tsujimoto, Shiho; Tokuyama, Sekito; Furusawa, Maiko; Tanabe, Keisuke; Nomura, Mariko

    2017-01-01

    We mapped the ultra-high-velocity feature (the “Bullet”) detected in the expanding molecular shell associated with the W44 supernova remnant using the Nobeyama Radio Observatory 45 m telescope and the Atacama Submillimeter Telescope Experiment 10 m telescope. The Bullet clearly appears in the CO J = 1-0, CO J = 3-2, CO J = 4-3, and HCO+ J = 1-0 maps with a compact appearance (0.5 × 0.8 pc2) and an extremely broad-velocity width (ΔV ≃ 100 km s-1). The line intensities indicate that the Bullet has a higher density and temperature than those in the expanding molecular shell. The kinetic energy of the Bullet amounts to 1048.0 erg, which is approximately 1.5 orders of magnitude greater than the kinetic energy shared to the small solid angle of it. Two possible formation scenarios with an inactive isolated black hole are presented.

  16. A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk

    NASA Astrophysics Data System (ADS)

    Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas

    2004-12-01

    A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.

  17. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  18. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  19. A massive galaxy in its core formation phase three billion years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-01

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ~ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  20. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  1. COLA. III. Radio Detection of Active Galactic Nucleus in Compact Moderate Luminosity Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.

  2. A Near Infrared Study of Blue Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Vanzi, L.

    1997-09-01

    Blue Dwarf Galaxies (BDG) are objects of low luminosity (M_Vge-18) and very blue visible colors. Both the colors and the presence of narrow emission lines in their spectra are usually interpreted to result from intense episodes of star formation. The metallicity of the BDG is usually low with values in the range 10^{-2}-1~Zodot. Wolf-Rayet (WR) features are detected in many cases in the optical spectra. This is an unexpected characteristic since according to stellar evolution, the number of WR stars in a star forming region should increase with the metallicity while WR features are only rarely detected in solar metallicity galaxies. Different morphologies are found among BDG including compact elliptical, irregular, magellanic, interacting. Due to the low luminosity in most of these objects the starburst (SB) episode dominates the emitted radiation. Therefore starbursts can be studied in more detail in dwarf galaxies than in giant spiral galaxies where the presence of a quiescent stellar population is important in defining the observed characteristics. Moreover BDG are a unique laboratory to study the star formation process in low metallicity environments. We have used new imaging and spectroscopy in the near infrared to study both the star formation history and the excitation mechanism of the near infrared lines in BDG. The observations were taken with the Steward Observatory telescopes. We concentrated on 8 objects selected to be a representative but bright sample of BDG, they are: II Zw 40, He2-10, NGC 3077, NGC 4214, NGC 4449, NGC 1569, NGC 4861 and NGC 5253. The data were used to constrain a starburst model. For II Zw 40 we were able to fit the observations using a gaussian star formation rate with FWHM=5 My and a solar neiborhood IMF. The star formation episode appears to have occured about 4 Myr ago with aproximately one tenth of the total mass of the galaxy involved. Evidence for an evolved population was found in the outer parts of II Zw 40. We also studied the possible periodicity of the starbursting process ruling out episodes comparable to the present one for the last billion years. For all the other galaxies we confirm the tendency of the burst in BDG to be very short, no more than a few million years. The short duration of the burst deduced from our modelling is consistent with the detection of WR features, since short bursts also produce a WR/O ratio higher than a long duration or continous burst. The presence of WR stars is well correlated with the age of the burst. We found a very good correlation between the [FeII] line at 1.64 microns and the age of the burst for a sample of SB galaxies, well explained in terms of a model where all the [FeII] emissin originates from supernova remnants. All the BDG, with the exception of He2-10, show a deficiency in [FeII], in agreement with the low metal content of these objects. Using observations of M 82 we calibrated the [FeII] emission for solar metallicity SB, obtaining good agreement with the supernova remnants observed in the Galaxy. The correlation between molecular hydrogen emission (H_2) at 2.12 microns and age is weaker. In this case there is a minimum emission level associated with supernovae and an additional contribution from different excitation mechanisms. No deviation from the general trend is detected for BDG when compared to normal starburst in agreement with an independency of H_2 on metallicity. Indications for fluorescently excitated H_2 were found in a few cases. We briefly analyzed the FIR-radio relationship finding that BDG follow the trend defined by IR galaxies, despite the low metallicity of the BDG. Finally we use the HeI line at 1.70 microns as an indicator for the presence of high mass stars. Our results show a tendency of commonly used [OIII]/Hβ parameter to overestimate the stellar temperature. The correlation between the 1.70 micron line and the age of the burst is very good. We believe this line is a very reliable indicator of stellar temperature being less affected by the extinction and the electron temperature than the temperature indicators in the visible. (SECTION: Dissertation Summaries)

  3. The primary role of the SW Sextantis stars in the evolution of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Torres, Manuel; Gaensicke, Boris; Rodriguez-Gil, Pablo; Long, Knox; Marsh, Tom; Steeghs, Danny; Munoz-Darias, Teodoro; Shahbaz, Tariq; Schmidtobreick, Linda; Schreiber, Matthias

    2009-02-01

    SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) which plays a fundamental role in our understanding of CV structure and evolution. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the binary parameters, white dwarf temperature, and distance to the system for a SW Sex star for the first time. The measured stellar masses and radii will especially be a precious input to the theory of compact binary evolution as a whole.

  4. Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code

    NASA Astrophysics Data System (ADS)

    Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.

    2000-10-01

    The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).

  5. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  6. Surface brightness and color distributions in blue compact dwarf galaxies. I - Haro 2, an extreme example of a star-forming young elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Loose, Hans-Hermann; Thuan, Trinh X.

    1986-01-01

    The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.

  7. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines.more » Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.« less

  8. Galactic star formation rates gauged by stellar end-products

    NASA Astrophysics Data System (ADS)

    Persic, M.; Rephaeli, Y.

    2007-02-01

    Young galactic X-ray point sources (XPs) closely trace the ongoing star formation in galaxies. From measured XP number counts we extract the collective 2-10 keV luminosity of young XPs, L_x^yXP, which we use to gauge the current star formation rate (SFR) in galaxies. We find that, for a sample of local star-forming galaxies (i.e., normal spirals and mild starbursts), L_x^yXP correlates linearly with the SFR over three decades in luminosity. A separate, high-SFR sample of starburst ULIRGs can be used to check the calibration of the relation. Using their (presumably SF-related) total 2-10 keV luminosities we find that these sources satisfy the SFR-L_x^yXP relation, as defined by the weaker sample, and extend it to span ˜5 decades in luminosity. The SFR-L_x^yXP relation is also likely to hold for distant (z ˜ 1) Hubble Deep Field North galaxies, especially so if these high-SFR objects are similar to the (more nearby) ULIRGs. It is argued that the SFR-L_x^yXP relation provides the most adequate X-ray estimator of instantaneous SFR by the phenomena characterizing massive stars from their birth (FIR emission from placental dust clouds) through their death as compact remnants (emitting X-rays by accreting from a close donor). For local, low/intermediate-SFR galaxies, the simultaneous existence of a correlation of the instantaneous SFR with the total 2-10 keV luminosity, L_x, which traces the SFR integrated over the last ˜109 yr, suggests that during such epoch the SF in these galaxies has been proceeding at a relatively constant rate.

  9. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  10. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    PubMed

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  11. HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn

    2014-05-10

    In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spinmore » down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.« less

  12. A multiwavelength study of the Eridanus soft X-ray enhancement

    NASA Technical Reports Server (NTRS)

    Burrows, D. N.; Singh, K. P.; Nousek, J. A.; Garmire, G. P.; Good, J.

    1993-01-01

    We present soft X-ray, N(H), and IR maps of the Eridanus soft X-ray enhancement. Soft X-ray maps from the HEAO 1 A-2 LED experiment, processed with a maximum entropy method (MEM) algorithm, show that the enhancement consists of two distinct components: a large hook-shaped component and a small circular component at different temperatures. Both of these are located in 'holes' in the IR emission, and they correspond to N(H) features at very different velocities. The dust surrounding the X-ray enhancements appears to be associated with several high-latitude molecular clouds, which allow us to obtain a probable distance of about 130 pc to the near edge of the main enhancement. The total power emitted by the hot gas is then about 10 exp 35 to 10 exp 36 ergs/s. We consider alternative interpretations of these objects as adiabatic supernova remnants or as stellar wind bubbles and conclude that they are more likely to be stellar wind bubbles, possibly reheated by a SN explosion in the case of the main, hook-shaped object.

  13. A physical model of mass ejection in failed supernovae

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel

    2018-06-01

    During the core collapse of massive stars, the formation of the proto-neutron star is accompanied by the emission of a significant amount of mass energy (˜0.3 M⊙) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova. We analytically investigate this mass-loss-induced wave generation and propagation. Heuristic arguments provide an accurate estimate of the amount of energy contained in the outgoing sound pulse. We then develop a general formalism for analysing the response of the star to centrally concentrated mass loss in linear perturbation theory. To build intuition, we apply this formalism to polytropic stellar models, finding qualitative and quantitative agreement with simulations and heuristic arguments. We also apply our results to realistic pre-collapse massive star progenitors (both giants and compact stars). Our analytic results for the sound pulse energy, excitation radius, and steepening in the stellar envelope are in good agreement with full time-dependent hydrodynamic simulations. We show that prior to the sound pulses arrival at the stellar photosphere, the photosphere has already reached velocities ˜ 20-100 per cent of the local sound speed, thus likely modestly decreasing the stellar effective temperature prior to the star disappearing. Our results provide important constraints on the physical properties and observational appearance of failed supernovae.

  14. Strongly-Interacting Fermi Gases in Reduced Dimensions

    DTIC Science & Technology

    2009-05-29

    effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas

  15. Primordial black holes as dark matter: constraints from compact ultra-faint dwarfs

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Vasiliev, Eugene; Li, Yuexing; Jing, Yipeng

    2018-05-01

    The ground-breaking detections of gravitational waves from black hole mergers by LIGO have rekindled interest in primordial black holes (PBHs) and the possibility of dark matter being composed of PBHs. It has been suggested that PBHs of tens of solar masses could serve as dark matter candidates. Recent analytical studies demonstrated that compact ultra-faint dwarf galaxies can serve as a sensitive test for the PBH dark matter hypothesis, since stars in such a halo-dominated system would be heated by the more massive PBHs, their present-day distribution can provide strong constraints on PBH mass. In this study, we further explore this scenario with more detailed calculations, using a combination of dynamical simulations and Bayesian inference methods. The joint evolution of stars and PBH dark matter is followed with a Fokker-Planck code PHASEFLOW. We run a large suite of such simulations for different dark matter parameters, then use a Markov chain Monte Carlo approach to constrain the PBH properties with observations of ultra-faint galaxies. We find that two-body relaxation between the stars and PBH drives up the stellar core size, and increases the central stellar velocity dispersion. Using the observed half-light radius and velocity dispersion of stars in the compact ultra-faint dwarf galaxies as joint constraints, we infer that these dwarfs may have a cored dark matter halo with the central density in the range of 1-2 M⊙pc - 3, and that the PBHs may have a mass range of 2-14 M⊙ if they constitute all or a substantial fraction of the dark matter.

  16. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  17. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  18. Compact stars

    NASA Astrophysics Data System (ADS)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  19. ROSAT observations of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.

    1995-01-01

    We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.

  20. New Hubble Observations of Supernova 1987A Trace Shock Wave

    NASA Image and Video Library

    2017-12-08

    Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  1. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.

  2. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is {h}{rss}50 % =2.1× {10}-22 {{Hz}}-1/2 at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is {h}{rss}50 % =8.4× {10}-22 {{Hz}}-1/2 for a millisecond magnetar model, and {h}{rss}50 % =5.9× {10}-22 {{Hz}}-1/2 for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

  3. Broadband Observations and Modeling of the Shell-Type Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Slane, Patrick O.; Gaensler, Bryan M.

    2002-01-01

    The supernova remnant G347.3-0.5 emits a featureless power law in X-rays, thought to indicate shock acceleration of electrons to high energies. We here produce a broadband spectrum of the bright northwest limb of this source by combining radio observations from the Australia Telescope Compact Array (ATCA), X-ray observations from the Advanced Satellite for Cosmology and Astrophysics (ASCA), and TeV gamma-ray observations from the CANGAROO imaging Cerenkov telescope. We assume that this emission is produced by an electron population generated by diffusive shock acceleration at the remnant forward shock. The nonlinear aspects of the particle acceleration force a connection between the widely different wavelength bands and between the electrons and the unseen ions, presumably accelerated simultaneously with the electrons. This allows us to infer the relativistic proton spectrum and estimate ambient parameters such as the supernova explosion energy, magnetic field, matter density in the emission region, and efficiency of the shock acceleration process. We find convincing evidence that the shock acceleration is efficient, placing greater than 25% of the shock kinetic energy flux into relativistic ions. Despite this high efficiency, the maximum electron and proton energies, while depending somewhat on assumptions for the compression of the magnetic field in the shock, are well below the observed 'knee' at 10(exp 15) eV in the Galactic cosmic-ray spectrum.

  4. Molecular environment and X-ray study of the metal-rich thermal composite supernova remnant Kes 79

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Sun, Ming

    2015-08-01

    Kes 79 is a thermal composite SNR hosting a central compact object (anti-magnetar) and with a transient magnetar in the south. The SNR has an intriguing double radio shell structure and the nature of the centrally-filled X-ray morphology is still unclear. We have performed 13CO 1-0, 12CO 1-0, 12CO 2-1, and 12CO 3-2 study towards this remnant to investigate the molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-120 km/s. The inner radio shell appears to be well confined by a molecular shell at VLSR˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveals many bright filamentary structures well coincident with 24 um infrared filaments and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also study the overabundant metal species Mg, Si, S and Ar, and show their asymmetric distribution across the remnant. The broadband observations suggest that the centrally filled X-ray morphology is a projection effect. Finally, we will discuss the progenitor star of Kes 79 based on the molecular line and X-ray properties.

  5. A Missing Link in Galaxy Evolution: The Mysteries of Dissolving Star Clusters

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Meyer, Martin; Harris, Jason; Calzetti, Daniela

    2007-05-01

    Star-forming events in starbursts and normal galaxies have a direct impact on the global stellar content of galaxies. These events create numerous compact clusters where stars are produced in great number. These stars eventually end up in the star field background where they are smoothly distributed. However, due to instrumental limitations such as spatial resolution and sensitivity, the processes involved during the transition phase from the compact clusters to the star field background as well as the impact of the environment (spiral waves, bars, starburst) on the lifetime of clusters are still poorly constrained observationally. I will present our latest results on the physical properties of dissolving clusters directly detected in HST/ACS archival images of the three nearby galaxies IC 2574, NGC 1313, and IC 10 (D < 5 Mpc). The ACS has the capability to detect and spatially resolve individual stars in nearby galaxies within a large field-of-view. For all ACS images obtained in three filters (F435W, F555W or F606W, and F814W), we performed PSF stellar photometry in crowded field. Color-magnitude diagrams (CMD) allow us to identify the most massive stars more likely to be part of dissolving clusters (A-type and earlier), and to isolate them from the star field background. We then adapt and use a clustering algorithm on the selected stars to find groups of stars to reveal and quantify the properties of all star clusters (compactness, size, age, mass). With this algorithm, even the less compact clusters are revealed while they are being destroyed. Our sample of three galaxies covers an interesting range in gravitational potential well and explores a variety of galaxy morphological types, which allows us to discuss the dissolving cluster properties as a function of the host galaxy characteristics. The properties of the star field background will also be discussed.

  6. Discovery of a 105 ms X-Ray Pulsar in Kesteven 79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-07-01

    We report the discovery of 105 ms X-ray pulsations from the compact central object (CCO) in the supernova remnant Kes 79 using data acquired with the Newton X-Ray Multi-Mirror Mission (XMM-Newton). Two observations of the pulsar taken 6 days apart yield an upper limit on its spin-down rate of P˙<7×10-14 s s-1 and no evidence for binary orbital motion. The implied energy loss rate is E˙<2×1036 ergs s-1, the surface magnetic field strength is Bp<3×1012 G, and the spin-down age is τ>24 kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of PSR J1852+0040 is best characterized by a blackbody model of temperature kTBB=0.44+/-0.03 keV, radius RBB~0.9 km, and Lbol=3.7×1033 ergs s-1 at d=7.1 kpc. The sinusoidal light curve is modulated with a pulsed fraction of >45%, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of PSR J1852+0040 as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, E˙c~4×1036 ergs s-1. The age discrepancy implies that its E˙ has always been below E˙c, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of PSR J1852+0040 suggests a low-luminosity anomalous X-ray pulsar (AXP), but the weak inferred Bp field is incompatible with a magnetar theory of its X-ray luminosity. We cannot exclude accretion from a fallback disk. The ordinary spin parameters discovered from PSR J1852+0040 highlight the difficulty that existing theories of isolated neutron stars have in explaining the high luminosities and temperatures of CCO thermal X-ray spectra.

  7. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  8. Bright Merger-nova Emission Powered by Magnetic Wind from a Newborn Black Hole

    NASA Astrophysics Data System (ADS)

    Ma, Shuai-Bing; Lei, Wei-Hua; Gao, He; Xie, Wei; Chen, Wei; Zhang, Bing; Wang, Ding-Xiong

    2018-01-01

    Mergers of neutron star–neutron star (NS–NS) or neutron star–black hole (NS–BH) binaries are candidate sources of gravitational waves (GWs). At least a fraction of the merger remnants should be a stellar mass BH with sub-relativistic ejecta. A collimated jet is launched via the Blandford–Znajek mechanism from the central BH to trigger a short gamma-ray burst (sGRB). At the same time, a near-isotropic wind may be driven by the Blandford–Payne mechanism (BP). In previous work, additional energy injection to the ejecta from the BP mechanism was ignored, and radioactive decay has long been thought to be the main source of the kilonova energy. In this Letter, we propose that the wind driven by the BP mechanism from the newborn BH’s disk can heat up and push the ejecta during the prompt emission phase or even at late times when there is fall-back accretion. Such a BP-powered merger-nova could be bright in the optical band even for a low-luminosity sGRB. The detection of a GW merger event with a BH clearly identified as a remnant, accompanied by a bright merger-nova, would provide robust confirmation of our model.

  9. Interstellar gas in the Gum Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallerstein, G.; Silk, J.; Jenkins, E.B.

    1980-09-15

    We have surveyed the interstellar gas in and around the Gum Nebula by optically observing 67 stars at Ca II, 42 stars at Na I, and 14 stars in the ultraviolet with the Copernicus satellite. Velocity dispersions for gas in the Gum Nebula, excluding the region of Vela remnant filaments, are not significantly larger than in the general interstellar medium. The ionization structure is predominantly that of an H II region with moderately high ionization, i.e., strong Si III and S III, in clouds with Vertical BarV/sub LSR/Vertical Bar> or approx. =10 km s/sup -1/. Furthermore, we find an increasemore » in fine-structure excitation with increasing component LSR velocity, suggestive of ram-pressure confinement for the intermediate-velocity clouds. These denser, more highly ionized clouds appear to be concentrated toward the inner Gum Nebula, where a somewhat higher velocity dispersion is found than in the outer regions. Clouds in the Gum Nebula do not show the anomalously high ionization seen in the Vela remnant clouds. The observational data are generally consistent with a model of the Gum Nebula as an H II region ionized by OB stars and stirred up by multiple stellar winds.« less

  10. How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

    NASA Astrophysics Data System (ADS)

    Kuranz, C. C.; Park, H.-S.; Huntington, C. M.; Miles, A. R.; Remington, B. A.; Drake, R. P.; Tranthan, M. A.; Handy, T. A.; Shvarts, D.; Malamud, G.; Shimony, A.; Shvarts, D.; Kline, J.; Flippo, K. A.; Doss, F. W.; Plewa, T.

    2017-10-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. We present data and simulations from Rayleigh-Taylor instability experiments in high- and low- energy flux experiments performed at the National Ignition Facility. We also will discuss the apparent, larger role of heat conduction when we closely examined the comparison between the experimental results, and the SNR observations and models. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  11. The remnants of galaxy formation from a panoramic survey of the region around M31.

    PubMed

    McConnachie, Alan W; Irwin, Michael J; Ibata, Rodrigo A; Dubinski, John; Widrow, Lawrence M; Martin, Nicolas F; Côté, Patrick; Dotter, Aaron L; Navarro, Julio F; Ferguson, Annette M N; Puzia, Thomas H; Lewis, Geraint F; Babul, Arif; Barmby, Pauline; Bienaymé, Olivier; Chapman, Scott C; Cockcroft, Robert; Collins, Michelle L M; Fardal, Mark A; Harris, William E; Huxor, Avon; Mackey, A Dougal; Peñarrubia, Jorge; Rich, R Michael; Richer, Harvey B; Siebert, Arnaud; Tanvir, Nial; Valls-Gabaud, David; Venn, Kimberly A

    2009-09-03

    In hierarchical cosmological models, galaxies grow in mass through the continual accretion of smaller ones. The tidal disruption of these systems is expected to result in loosely bound stars surrounding the galaxy, at distances that reach 10-100 times the radius of the central disk. The number, luminosity and morphology of the relics of this process provide significant clues to galaxy formation history, but obtaining a comprehensive survey of these components is difficult because of their intrinsic faintness and vast extent. Here we report a panoramic survey of the Andromeda galaxy (M31). We detect stars and coherent structures that are almost certainly remnants of dwarf galaxies destroyed by the tidal field of M31. An improved census of their surviving counterparts implies that three-quarters of M31's satellites brighter than M(v) = -6 await discovery. The brightest companion, Triangulum (M33), is surrounded by a stellar structure that provides persuasive evidence for a recent encounter with M31. This panorama of galaxy structure directly confirms the basic tenets of the hierarchical galaxy formation model and reveals the shared history of M31 and M33 in the unceasing build-up of galaxies.

  12. The Circumstellar Medium of Cassiopeia A Inferred from the Outer Ejecta Knot Properties

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2009-01-01

    We investigate the effect of the circumstellar medium density profile on the X-ray emission from outer ejecta knots in the Cassiopeia A supernova remnant using the 1 Ms Chandra observation. The spectra of a number of radial series of ejecta knots at various positions around the remnant are analyzed using techniques similar to those devised in previous papers. We can obtain a reasonable match to our data for a circumstellar density profile proportional to r(sup -2) as would arise from the steady dense wind of a red supergiant, but the agreement is improved if we introduce a central cavity around the progenitor into our models. Such a profile might arise if the progenitor emitted a, fast tenuous stellar wind for a short period immediately prior to explosion. We review other lines of evidence supporting this conclusion. The spectra also indicate the widespread presence of Fe-enriched plasma that was presumably formed by complete Si burning during the explosion, possibly via alpha-rich freezeout. This component is typically associated with hotter and more highly ionized gas than the bulk of the O- and Si-rich ejecta.

  13. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift. Appendices are available in electronic form at http://www.aanda.org

  14. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Iorio, Lorenzo

    2017-01-01

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.

  15. ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it

    2017-01-10

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less

  16. Optical/Near-IR spatially resolved study of the H II galaxy Tol 02★

    NASA Astrophysics Data System (ADS)

    Torres-Campos, A.; Terlevich, E.; Rosa-González, D.; Terlevich, R.; Telles, E.; Díaz, A. I.

    2017-11-01

    The main goal of this study is to characterize the stellar populations in very low-metallicity galaxies. We have obtained broad U, B, R, I, J, H, K, intermediate Strömgren y and narrow H α and [O III] deep images of the Wolf-Rayet, blue compact dwarf, H II galaxy Tol 02. We have analysed the low surface brightness component, the stellar cluster complexes and the H II regions. The stellar populations in the galaxy have been characterized by comparing the observed broad-band colours with those of single stellar population models. The main results are consistent with Tol 02 being formed by a 1.5 Gyr old disc component at the centre of which a group of eight massive (>104 M⊙) stellar cluster clumps is located. Six of these clumps are 10 Myr old and their near-infrared colours suggest that their light is dominated by Red Supergiant (RSG) stars, the other two are young Wolf-Rayet cluster candidates of ages 3 and 5 Myr, respectively. 12 H II regions in the star-forming region of the galaxy are also identified. These are immersed in a diffuse H α and [O III] emission that spreads towards the north and south covering the old stellar disc. Our spatial-temporal analysis shows that star formation is more likely stochastic and simultaneous within short time-scales. The mismatch between observations and models cannot be attributed alone to a mistreat of the RSG phase and still needs to be further investigated.

  17. Mapping the tidally disrupting Andromeda XXVII and its stellar stream

    NASA Astrophysics Data System (ADS)

    Preston, Janet; Collins, Michelle; Bonaca, Ana; Ibata, Rodrigo; Tollerud, Erik; Geha, Marla; PAndAS Collaboration

    2017-03-01

    Andromeda XXVII is a dwarf spheroidal galaxy in the outskirts of the Andromeda galaxy (M31). It appears to be dissolving in to the Northern arc of M31, and could be the remnant of a strong tidal disruption. In the upcoming months, our spectroscopic program, which has measured velocities for multiple stars within both the dwarf galaxy progenitor and its stream (using the Keck II DEIMOS telescope, as part of the PAndAS survey), will determine velocity dispersions, scale radii and metallicities of both the dwarf and the stream. This in turn may enable us to ascertain the progenitor mass profile and determine whether it is cusped or cored.

  18. The positive binding energy envelopes of low-mass helium stars

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2018-04-01

    It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.

  19. Internal motions of HII regions and giant HII regions

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kennicutt, Robert C., Jr.

    1994-01-01

    We report new echelle observations of the kinematics of 30 HII regions in the Large Magellanic Clouds (LMC), including the 30 Doradus giant HII region. All of the HII regions possess supersonic velocity dispersions, which can be attributed to a combination of turbulent motions and discrete velocity splitting produced by stellar winds and/or embedded supernova remnants (SNRs). The core of 30 Dor is unique, with a complex velocity structure that parallels its chaotic optical morphology. We use our calibrated echelle data to measure the physical properties and energetic requirements of these velocity structures. The most spectacular structures in 30 Dor are several fast expanding shells, which appear to be produced at least partially by SNRs.

  20. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (˜ {10}9 {M}⊙ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ˜ {10}4{--}{10}5 {M}⊙ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color-color cuts ([{F}090W-{F}220W]> 0;-0.3< [{F}200W-{F}444W]< 0.3) and the ratio of X-ray flux to rest-frame optical flux ({F}X/{F}444W\\gg 1). Our cuts sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  1. Some Like it Hot: Linking Diffuse X-Ray Luminosity, Baryonic Mass, and Star Formation Rate in Compact Groups of Galaxies

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis

    2014-01-01

    We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.

  2. First confirmed ultra-compact dwarf galaxy in the NGC 5044 group

    NASA Astrophysics Data System (ADS)

    Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.

    2017-03-01

    Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5

  3. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  4. "SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.

    2003-01-01

    A new computer code SMART (Spectra from Model Atmospheres by Radiative Transfer) for computing the stellar spectra, forming in plane-parallel atmospheres, has been compiled by us and A. Aret. To guarantee wide compatibility of the code with shell environment, we chose FORTRAN-77 as programming language and tried to confine ourselves to common part of its numerous versions both in WINDOWS and LINUX. SMART can be used for studies of several processes in stellar atmospheres. The current version of the programme is undergoing rapid changes due to our goal to elaborate a simple, handy and compact code. Instead of linearisation (being a mathematical method of recurrent approximations) we propose to use the physical evolutionary changes or in other words relaxation of quantum state populations rates from LTE to NLTE has been studied using small number of NLTE states. This computational scheme is essentially simpler and more compact than the linearisation. This relaxation scheme enables using instead of the Λ-iteration procedure a physically changing emissivity (or the source function) which incorporates in itself changing Menzel coefficients for NLTE quantum state populations. However, the light scattering on free electrons is in the terms of Feynman graphs a real second-order quantum process and cannot be reduced to consequent processes of absorption and emission as in the case of radiative transfer in spectral lines. With duly chosen input parameters the code SMART enables computing radiative acceleration to the matter of stellar atmosphere in turbulence clumps. This also enables to connect the model atmosphere in more detail with the problem of the stellar wind triggering. Another problem, which has been incorporated into the computer code SMART, is diffusion of chemical elements and their isotopes in the atmospheres of chemically peculiar (CP) stars due to usual radiative acceleration and the essential additional acceleration generated by the light-induced drift. As a special case, using duly chosen pixels on the stellar disk, the spectrum of rotating star can be computed. No instrumental broadening has been incorporated in the code of SMART. To facilitate study of stellar spectra, a GUI (Graphical User Interface) with selection of labels by ions has been compiled to study the spectral lines of different elements and ions in the computed emergent flux. An amazing feature of SMART is that its code is very short: it occupies only 4 two-sided two-column A4 sheets in landscape format. In addition, if well commented, it is quite easily readable and understandable. We have used the tactics of writing the comments on the right-side margin (columns starting from 73). Such short code has been composed widely using the unified input physics (for example the ionisation cross-sections for bound-free transitions and the electron and ion collision rates). As current restriction to the application area of the present version of the SMART is that molecules are since ignored. Thus, it can be used only for luke and hot stellar atmospheres. In the computer code we have tried to avoid bulky often over-optimised methods, primarily meant to spare the time of computations. For instance, we compute the continuous absorption coefficient at every wavelength. Nevertheless, during an hour by the personal computer in our disposal AMD Athlon XP 1700+, 512MB DDRAM) a stellar spectrum with spectral step resolution λ / dλ = 3D100,000 for spectral interval 700 -- 30,000 Å is computed. The model input data and the line data used by us are both the ones computed and compiled by R. Kurucz. In order to follow presence and representability of quantum states and to enumerate them for NLTE studies a C++ code, transforming the needed data to the LATEX version, has been compiled. Thus we have composed a quantum state list for all neutrals and ions in the Kurucz file 'gfhyperall.dat'. The list enables more adequately to compose the concept of super-states, including partly correlating super-states. We are grateful to R. Kurucz for making available by CD-ROMs and Internet his computer codes ATLAS and SYNTHE used by us as a starting point in composing of the new computer code. We are also grateful to Estonian Science Foundation for grant ESF-4701.

  5. The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Schwartz, D.

    1981-01-01

    The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.

  6. THE TOP 10 SPITZER YOUNG STELLAR OBJECTS IN 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Barba, Rodolfo H.; Sewilo, Marta M., E-mail: walborn@stsci.edu, E-mail: rbarba@dfuls.cl, E-mail: mmsewilo@pha.jhu.edu

    2013-04-15

    The most luminous Spitzer point sources in the 30 Doradus triggered second generation are investigated coherently in the 3-8 {mu}m region. Remarkable diversity and complexity in their natures are revealed. Some are also among the brightest JHK sources, while others are not. Several of them are multiple when examined at higher angular resolutions with Hubble Space Telescope NICMOS and WFPC2/WFC3 as available, or with VISTA/VMC otherwise. One is a dusty compact H II region near the far northwestern edge of the complex, containing a half-dozen bright I-band sources. Three others appear closely associated with luminous WN stars and causal connectionsmore » are suggested. Some are in the heads of dust pillars oriented toward R136, as previously discussed from the NICMOS data. One resides in a compact cluster of much fainter sources, while another appears monolithic at the highest resolutions. Surprisingly, one is the brighter of the two extended ''mystery spots'' associated with Knot 2 of Walborn et al. Masses are derived from young stellar object models for unresolved sources and lie in the 10-30 M{sub Sun} range. Further analysis of the IR sources in this unique region will advance understanding of triggered massive star formation, perhaps in some unexpected and unprecedented ways.« less

  7. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory

    2017-08-01

    Present-day galaxy clusters consist chiefly of low-mass dwarf elliptical galaxies, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies, common in intermediate-reshift clusters but virtually extinct today. Recent cosmological simulations suggest that the present-day dwarfs galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We propose a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we will combine optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we will exploit a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we will test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  8. Neutron star evolution and emission

    NASA Astrophysics Data System (ADS)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  9. Role of Massive Stars in the Evolution of Primitive Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2012-01-01

    An important factor controlling galaxy evolution is feedback from massive stars. It is believed that the nature and intensity of stellar feedback changes as a function of galaxy mass and metallicity. At low mass and metallicity, feedback from massive stars is mainly in the form of photoionizing radiation. At higher mass and metallicity, it is in stellar winds. IZw 18 is a local blue, compact dwarf galaxy that meets the requirements for a primitive galaxy: low halo mass greater than 10(exp 9)Msun, strong photoionizing radiation, no galactic outflow, and very low metallicity,log(O/H)+12=7.2. We will describe the properties of massive stars and their role in the evolution of IZw 18, based on analysis of ultraviolet images and spectra obtained with HST.

  10. A black hole-white dwarf compact binary model for long gamma-ray bursts without supernova association

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Ze; Gu, Wei-Min; Liu, Tong; Wang, Junfeng

    2018-03-01

    Gamma-ray bursts (GRBs) are luminous and violent phenomena in the Universe. Traditionally, long GRBs are expected to be produced by the collapse of massive stars and associated with supernovae. However, some low-redshift long GRBs have no detection of supernova association, such as GRBs 060505, 060614, and 111005A. It is hard to classify these events convincingly according to usual classifications, and the lack of the supernova implies a non-massive star origin. We propose a new path to produce long GRBs without supernova association, the unstable and extremely violent accretion in a contact binary system consisting of a stellar-mass black hole and a white dwarf, which fills an important gap in compact binary evolution.

  11. The KONA Survey: A Near-IR Perspective of the Circumnuclear Environment of local Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Mueller Sanchez, Francisco; Malkan, Matthew Arnold

    2018-06-01

    With the Keck OSIRIS Nearby AGN, KONA, survey we simultaneously probe the stellar, molecular gas, and ionized gas kinematics within the central 400 pc of a sample of 40 local representative AGN. KONA's spatially resolved spectra enable an unprecedented study of the feeding and feedback processes in bona- fide AGN. We present a study the nuclear K-band properties of these local Seyferts, as well as the integrated molecular hydrogen and stellar distribution and kinematic at radii varying from 25 to 200 pc. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities over 3 orders of magnitude in both K-band and X-ray luminosities, implying that the majority of the emission is non-stellar. No correlation is found between the 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicates the presence of nuclear star formation and attenuating material (gas and dust), which is found to be compact in some galaxies and in others extended. A comparison of the circumnuclear stellar and molecular hydrogen properties (flux distribution, surface brightness, and velocity dispersion) in Seyfert 1 and 2 sources will also be presented.

  12. A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven

    2017-08-01

    X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.

  13. Gravitational Conundrum? Dynamical Mass Segregation versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  14. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  15. On the stability and collisions in triple stellar systems

    NASA Astrophysics Data System (ADS)

    He, Matthias Y.; Petrovich, Cristobal

    2018-02-01

    A significant fraction of main-sequence (MS) stars are part of a triple system. We study the long-term stability and dynamical outcomes of triple stellar systems using a large number of long-term direct N-body integrations with relativistic precession. We find that the previously proposed stability criteria by Eggleton & Kiseleva and Mardling & Aarseth predict the stability against ejections reasonably well for a wide range of parameters. Assuming that the triple stellar systems follow orbital and mass distributions from FGK binary stars in the field, we find that ˜ 1 per cent and ˜ 0.5 per cent of the triple systems lead to a direct head-on collision (impact velocity ˜ escape velocity) between MS stars and between a MS star and a stellar-mass compact object, respectively. We conclude that triple interactions are the dominant channel for direct collisions involving a MS star in the field with a rate of one event every ˜100 years in the Milky Way. We estimate that the fraction of triple systems that form short-period binaries is up to ˜ 23 per cent with only up to ˜ 13 per cent being the result of three-body interactions with tidal dissipation, which is consistent with previous work using a secular code.

  16. La Freccia Rossa: an IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate

    NASA Astrophysics Data System (ADS)

    Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl

    2018-07-01

    The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105 M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. Australia Telescope Compact Array constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to the Eddington luminosity ratios under the intermediate-mass black hole interpretation. A protostellar-disc scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesize that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.

  17. Optical Spectrum of the Compact Planetary Nebula IC 5117

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.

  18. COLA. III. RADIO DETECTION OF ACTIVE GALACTIC NUCLEUS IN COMPACT MODERATE LUMINOSITY INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, R.; Conway, J. E.; Aalto, S.

    2010-09-01

    We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L{sub IR} = 10{sup 11.01} L{sub sun}) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores ({approx}10{sup 21} W Hz{sup -1}) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whosemore » VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.« less

  19. Understanding the Milky Way Halo through Large Surveys

    NASA Astrophysics Data System (ADS)

    Koposov, Sergey

    This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".

  20. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

Top