Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor
NASA Astrophysics Data System (ADS)
Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui
2018-03-01
Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.
Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.
2014-02-01
Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we presentmore » the current progress of the system development.« less
Compact organic vapor jet printing print head
Forrest, Stephen R; McGraw, Gregory
2013-12-24
A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print header further includes a first layer comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.
Progress Toward a Compact, Highly Stable Ion Clock
NASA Technical Reports Server (NTRS)
Prestage, John; Chung, Sang
2009-01-01
There was an update on the subject of two previous NASA Tech Briefs articles: Compact, Highly Stable Ion Clock (NPO-43075), Vol. 32, No. 5 (May 2008), page 63; and Neon as a Buffer Gas for a Mercury-Ion Clock (NPO-42919), Vol. 32, No. 7 (July 2008), page 62. To recapitulate: A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump maintains the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a neon buffer gas. There was progress in the development of the clock, with emphasis on the design, fabrication, pump-down, and bake-out of the vacuum tube (based on established practice in the travelingwave- tube-amplifier industry) and the ability of the tube to retain a vacuum after a year of operation. Other developments include some aspects of the operation of mercury-vapor source (a small appendage oven containing HgO) so as to maintain the optimum low concentration of mercury vapor, and further efforts to miniaturize the vacuum and optical subsystems to fit within a volume of 2 L.
Compact organic vapor jet printing print head
Forrest, Stephen; McGraw, Gregory
2016-02-02
A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.
Compact organic vapor jet printing print head
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stepehen R; McGraw, Gregory
A first device is provided. The first device includes a print head, and a first gas source hermetically sealed to the print head. The print head further includes a first layer further comprising a plurality of apertures, each aperture having a smallest dimension of 0.5 to 500 microns. A second layer is bonded to the first layer. The second layer includes a first via in fluid communication with the first gas source and at least one of the apertures. The second layer is made of an insulating material.
CHARGE BOTTLE FOR A MASS SEPARATOR
Davidson, P.H.
1959-07-01
Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.
Effect of molding pressure on fabrication of low-crystalline calcite block.
Lin, Xin; Matsuya, Shigeki; Nakagawa, Masaharu; Terada, Yoshihiro; Ishikawa, Kunio
2008-02-01
We have reported that low-crystalline porous calcite block, which is useful as a bone substitute or a source material to prepare apatite-type bone fillers could be fabricated by exposing calcium hydroxide compact to carbon dioxide gas saturated with water vapor. In the present study, we investigated the effect of molding pressure on the transformation of calcium hydroxide into calcite and the mechanical strength of the carbonated compact. Transformation into calcite was almost completed within 72 h, however, a small amount of Ca(OH)(2) still remained unreacted at higher molding pressure because of incomplete penetration of CO(2) gas into the interparticle space due to dense packing of Ca(OH)(2) particles. On the other hand, high molding pressure resulted in an increase in diametral tensile strength (DTS) of the calcite compact formed. Critical porosity of the calcite block was calculated as approximately 68%.
Measurements of Water Vapor Profiles with Compact DIAL in the Tokyo Metropolitan Area
NASA Astrophysics Data System (ADS)
Abo, Makoto; Sakai, Tetsu; Le Hoai, Phong Pham; Shibata, Yasukuni; Nagasawa, Chikao
2018-04-01
In recent years, the frequency of occurrence of locally heavy rainfall that can cause extensive damages, has been increasing in Japan. For early prediction of heavy rainfall, it is useful to measure the water vapor vertical distribution upwind cumulus convection beforehand. For that purpose, we have been developing compact water vapor differential absorption lidar (DIAL). We show the results of the measurements with lidar in summer when the local heavy rainfall frequently occurs in Japan. We also show the preliminary result of the assimilation of the lidar data to the numerical model and impact on the heavy rainfall prediction.
Characterization of a Compact Water Vapor Radiometer
NASA Astrophysics Data System (ADS)
Gill, Ajay; Selina, Rob
2018-01-01
We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of < -20 dB is met.For the gain stability test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is < 2 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2 x 10-4 requirement. The observable gain stability is < 2.5 x 10-4 over τ = 2.5 - 103 sec, which meets the < 2.5 x 10-4 requirement.Overall, the test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.
Rey-Raap, Natalia; Gallardo, Antonio
2012-05-01
In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.
High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.
Bartlome, R; Baer, M; Sigrist, M W
2007-01-01
In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.
Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control
NASA Technical Reports Server (NTRS)
Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew
2015-01-01
The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.
A high-temperature single-photon source from nanowire quantum dots.
Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak
2008-12-01
We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.
NASA Technical Reports Server (NTRS)
Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.
2011-01-01
A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.
CRISM Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2008-01-01
Near-infrared spectra returned by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM, [1]) on-board the Mars Reconnaissance Orbiter (MRO) contain the clear spectral signature of several atmospheric gases including carbon dioxide (CO2), water vapor (H2O), and carbon monoxide (CO). Here we describe the seasonal and spatial mapping of water vapor and carbon dioxide for one full Martian year using CRISM spectra.
New laser design for NIR lidar applications
NASA Astrophysics Data System (ADS)
Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.
2018-04-01
Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.
A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.
McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L
2007-09-01
The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.
Compact anhydrous HCl to aqueous HCl conversion system
Grossman, M.W.; Speer, R.
1993-06-01
The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.
Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang
2018-05-29
In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.
NASA Technical Reports Server (NTRS)
Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.
1984-01-01
Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.
2008-01-01
The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 μg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture. PMID:18754507
Johnson, Natalie C; Manchester, Shawn; Sarin, Love; Gao, Yuming; Kulaots, Indrek; Hurt, Robert H
2008-08-01
The projected increase in the use of compact fluorescent lamps (CFLs) motivates the development of methods to manage consumer exposure to mercury and its environmental release at the end of lamp life. This work characterizes the time-resolved release of mercury vapor from broken CFLs and from underlying substrates after removal of glass fragments to simulate cleanup. In new lamps, mercury vapor is released gradually in amounts that reach 1.3 mg or 30% of the total lamp inventory after four days. Similar time profiles but smaller amounts are released from spent lamps or from underlying substrates. Nanoscale formulations of S, Se, Cu, Ni, Zn, Ag, and WS2 are evaluated for capture of Hg vapor under these conditions and compared to conventional microscale formulations. Adsorption capacities range over 7 orders of magnitude, from 0.005 (Zn micropowder) to 188 000 microg/g (unstabilized nano-Se), depending on sorbent chemistry and particle size. Nanosynthesis offers clear advantages for most sorbent chemistries. Unstabilized nano-selenium in two forms (dry powder and impregnated cloth) was successfully used in a proof-of-principle test for the in situ, real-time suppression of Hg vapor escape following CFL fracture.
Bubble migration in a compacting crystal-liquid mush
NASA Astrophysics Data System (ADS)
Boudreau, Alan
2016-04-01
Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid. Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isfahani, RN; Moghaddam, S
An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less
Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...
Design of ultra-compact composite plasmonic Mach-Zehnder interferometer for chemical vapor sensing
NASA Astrophysics Data System (ADS)
Ghosh, Souvik; Rahman, B. M. A.
2018-02-01
Following the Industrial advancements in the last few decades, highly flammable chemicals, such as ethanol (CH3CH2OH) and methanol (CH3OH) are widely being used in daily life. Ethanol have some degrees of carcinogenic effects in human whereas acute and chronic exposer of methanol results blurred vision and nausea. Therefore, accurate and efficient sensing of these two vapors in industrial environment are of high priorities. We have designed a novel, ultra-compact chemical vapor sensor based on composite plasmonic horizontal slot waveguide (CPHSW) where a low-index porous-ZnO (P-ZnO) layer is sandwiched in between top silver metal and lower silicon layers. Different P-ZnO templates, such as nano-spheres, nano-sheets and nanoplates could be used for high-selectivity of ethanol and methanol at different temperatures. The Lorentz-Lorenz model is used to determine the variation of P-ZnO refractive index (RI) with porosity and equivalent RI of P-ZnO layer for capillary condensation of different percentage of absorbed vapor. An in-house, new divergence modified finite element method is used to calculate effective index and attenuation sensitivity. Plasmonic modal analyses of dominant quasi-TM mode shows a high 42% power confinement in the slot. Next, an ultra-compact MZI incorporating a few micrometres long CPHSW is designed and analysed as a transducer device for accurate detection of effective index change. The device performance has been studied for different percentage of ethanol into P-ZnO with different porosity and a maximum phase sensitivity of >0.35 a.u. is achieved for both the chemical vapors at a mid-IR operating wavelength of 1550 nm.
Integrated anode structure for passive direct methanol fuel cells with neat methanol operation
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Zhang, Haifeng; Chen, Peng; Guo, Jing; Yuan, Ting; Zheng, Junwei; Yang, Hui
2014-02-01
A microporous titanium plate based integrated anode structure (Ti-IAS) suitable for passive direct methanol fuel cells (DMFCs) fueled with neat methanol is reported. This anode structure incorporates a porous titanium plate as a methanol mass transfer barrier and current collector, pervaporation film for passively vaporizing methanol, vaporous methanol cavity for evenly distributing fuel, and channels for carbon dioxide venting. With the effective control of methanol delivery rate, the Ti-IAS based DMFC allows the direct use of neat methanol as the fuel source. In the meantime, the required water for methanol-oxidation reaction at the anode can also be fully recovered from the cathode with the help of the highly hydrophobic microporous layer in the cathode. DMFCs incorporating this new anode structure exhibit a power density as high as 40 mW cm-2 and a high volumetric energy density of 489 Wh L-1 operating with neat methanol and at 25 °C. Importantly, no obvious performance degradation of the passive DMFC system is observed after more than 90 h of continuous operation. The experimental results reveal that the compact DMFC based on the Ti-IAS exhibits a substantial potential as power sources for portable applications.
Advanced Detector and Waveform Digitizer for Water Vapor DIAL Systems
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1998-01-01
Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.
NASA Technical Reports Server (NTRS)
Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.
1999-01-01
The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.
Spontaneous Cracking in Unfired Magnesia Compacts Upon Standing in Air
NASA Technical Reports Server (NTRS)
Davies, Myron O.; Grimes, Hubert H.; May, Charles E.
1961-01-01
Analytical-grade magnesium oxide powder without binder was compressed hydrostatically to 50,000 lb. per sq. in. to form compacts. When exposed to moist air immediately after pressing, these compacts developed irregularly shaped cracks. Controlled tests, in which these compacts were exposed for various lengths of time to various atmospheres, indicated that in general water vapor, carbon dioxide, and residual stresses had to be present if cracking was to occur. The probable cause of the cracking was the formation of a less dense and mechanically weak basic carbonate of magnesium at crystallite surface points of high stress concentration which developed during the compacting. The adsorption of dry CO2 at such sites prevented subsequent delayed fracture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey-Raap, Natalia; Gallardo, Antonio, E-mail: gallardo@emc.uji.es
Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix.more » Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.« less
Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.
2009-01-01
The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory
2013-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.
PROCESS OF FORMING POWDERED MATERIAL
Glatter, J.; Schaner, B.E.
1961-07-14
A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.
Multi-leg heat pipe evaporator
NASA Technical Reports Server (NTRS)
Alario, J. P.; Haslett, R. A. (Inventor)
1986-01-01
A multileg heat pipe evaporator facilitates the use and application of a monogroove heat pipe by providing an evaporation section which is compact in area and structurally more compatible with certain heat exchangers or heat input apparatus. The evaporation section of a monogroove heat pipe is formed by a series of parallel legs having a liquid and a vapor channel and a communicating capillary slot therebetween. The liquid and vapor channels and interconnecting capillary slots of the evaporating section are connected to the condensing section of the heat pipe by a manifold connecting liquid and vapor channels of the parallel evaporation section legs with the corresponding liquid and vapor channels of the condensing section.
Solar vapor generation enabled by nanoparticles.
Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J
2013-01-22
Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.
Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger
NASA Astrophysics Data System (ADS)
Kimura, Randon
The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pustelny, S., E-mail: pustelny@uj.edu.pl; Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300; Schultze, V.
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the {sup 85}Rbmore » ground state or as far as 16 GHz away from the closest optical transition.« less
NASA Technical Reports Server (NTRS)
Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)
1995-01-01
A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.
Calibration and Field Deployment of the NSF G-V VCSEL Hygrometer
NASA Astrophysics Data System (ADS)
DiGangi, J. P.; O'Brien, A.; Diao, M.; Hamm, C.; Zhang, Q.; Beaton, S. P.; Zondlo, M. A.
2012-12-01
Cloud formation and dynamics have a significant influence on the Earth's radiative forcing budget, which illustrates the importance of clouds with respect to global climate. Therefore, an accurate understanding of the microscale processes dictating cloud formation is crucial for accurate computer modeling of global climate change. A critical tool for understanding these processes from an airborne platform is an instrument capable of measuring water vapor with both high accuracy and time, thus spatial, resolution. Our work focuses on an open-path, compact, vertical-cavity surface-emitting laser (VCSEL) absorption-based hygrometer, capable of 25 Hz temporal resolution, deployed on the NSF/NCAR Gulfstream-V aircraft platform. The open path nature of our instrument also helps to minimize sampling artifacts. We will discuss our efforts toward achieving within 5% accuracy over 5 orders of magnitude of water vapor concentrations. This involves an intercomparison of five independent calibration methods: ice surface saturators using an oil temperature bath, solvent slush baths (e.g. chloroform/LN2, water/ice), a research-grade frost point hygrometer, static pressure experiments, and Pt catalyzed hydrogen gas. This wide variety of available tools allows us to accurately constrain the calibrant water vapor concentrations both before and after the VCSEL hygrometer sampling chamber. For example, the mixing ratio as measured by research-grade frost point hygrometer after the VCSEL hygrometer agreed within 2% of the mixing ration expected from the water/ice bubbler source before the VCSEL over the temperature range -50°C to 20°C. Finally, due to the compact nature of our instrument, we are able to perform these calibrations simultaneously at the same temperatures (-80°C to 30°C) and pressures (150 mbar to 760 mbar) as sampled ambient air during a flight. This higher accuracy can significantly influence the science utilizing this data, which we will illustrate using preliminary data from our most recent field deployment, the NSF Deep Convective Clouds and Chemistry Experiment in May-June 2012
Strong Turbulence in Alkali Halide Negative Ion Plasmas
NASA Astrophysics Data System (ADS)
Sheehan, Daniel
1999-11-01
Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).
PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis
Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil
2011-01-01
A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372
Calibrated vapor generator source
Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.
1995-01-01
A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.
Ricor's Nanostar water vapor compact cryopump: applications and model overview
NASA Astrophysics Data System (ADS)
Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan
2017-05-01
Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.
An intelligent data model for the storage of structured grids
NASA Astrophysics Data System (ADS)
Clyne, John; Norton, Alan
2013-04-01
With support from the U.S. National Science Foundation we have developed, and currently maintain, VAPOR: a geosciences-focused, open source visual data analysis package. VAPOR enables highly interactive exploration, as well as qualitative and quantitative analysis of high-resolution simulation outputs using only a commodity, desktop computer. The enabling technology behind VAPOR's ability to interact with a data set, whose size would overwhelm all but the largest analysis computing resources, is a progressive data access file format, called the VAPOR Data Collection (VDC). The VDC is based on the discrete wavelet transform and their information compaction properties. Prior to analysis, raw data undergo a wavelet transform, concentrating the information content into a fraction of the coefficients. The coefficients are then sorted by their information content (magnitude) into a small number of bins. Data are reconstructed by applying an inverse wavelet transform. If all of the coefficient bins are used during reconstruction the process is lossless (up to floating point round-off). If only a subset of the bins are used, an approximation of the original data is produced. A crucial point here is that the principal benefit to reconstruction from a subset of wavelet coefficients is a reduction in I/O. Further, if smaller coefficients are simply discarded, or perhaps stored on more capacious tertiary storage, secondary storage requirements (e.g. disk) can be reduced as well. In practice, these reductions in I/O or storage can be on the order of tens or even hundreds. This talk will briefly describe the VAPOR Data Collection, and will present real world success stories from the geosciences that illustrate how progressive data access enables highly interactive exploration of Big Data.
Calibrated vapor generator source
Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.
1995-09-26
A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.
In-Situ Water Vapor Probe for a Robot Arm-Mounted, Compact Water Vapor Analyzer: Preliminary Results
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Niles, Paul B.; Cabiran, Mike; Rossi, Chris; Sun, Tao
2013-01-01
This work describes the ongoing development of an instrument package for the in-situ detection and isotopic analysis of water (from ice, icy soils, and hydrated minerals) on future lunar, asteroid, or martian exploration missions. This instrument is intended to be mounted on a robotic arm and be brought to the sample, rather than necessitating expensive and complicated sample handling to bring the sample to the instrument.
Low temperature ablation models made by pressure/vacuum application
NASA Technical Reports Server (NTRS)
Fischer, M. C.; Heier, W. C.
1970-01-01
Method developed employs high pressure combined with strong vacuum force to compact ablation models into desired conical shape. Technique eliminates vapor hazard and results in high material density providing excellent structural integrity.
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita
1996-01-01
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.
1996-08-27
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.
Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory
2014-01-01
The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.
Frequency locking of compact laser-diode modules at 633 nm
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin
2018-02-01
This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.
Richness of compact radio sources in NGC 6334D to F
NASA Astrophysics Data System (ADS)
Medina, S.-N. X.; Dzib, S. A.; Tapia, M.; Rodríguez, L. F.; Loinard, L.
2018-02-01
Context. The presence and properties of compact radio sources embedded in massive star forming regions can reveal important physical properties about these regions and the processes occurring within them. The NGC 6334 complex, a massive star forming region, has been studied extensively. Nevertheless, none of these studies has focused in its content in compact radio sources. Aims: Our goal here is to report on a systematic census of the compact radio sources toward NGC 6334, and their characteristics. This will be used to attempt to define their very nature. Methods: We used the VLA C band (4-8 GHz) archive data with 0.̋36 (500 AU) of spatial resolution and noise level of 50 μJy bm‑1 to carry out a systematic search for compact radio sources within NGC 6334. We also searched for infrared counterparts to provide some constraints on the nature of the detected radio sources. Results: A total of 83 compact sources and three slightly resolved sources were detected. Most of them are here reported for the first time. We found that 29 of these 86 sources have infrared counterparts and three are highly variable. Region D contains 18 of these sources. The compact source toward the center, in projection, of region E is also detected. Conclusions: From statistical analyses, we suggest that the 83 reported compact sources are real and most of them are related to NGC 6334 itself. A stellar nature for 27 of them is confirmed by their IR emission. Compared with Orion, region D suffers a deficit of compact radio sources. The infrared nebulosities around two of the slightly resolved sources are suggested to be warm dust, and we argue that the associated radio sources trace free-free emission from ionized material. We confirm the thermal radio emission of the compact source in region E. However, its detection at infrared wavelengths implies that it is located in the foreground of the molecular cloud. Finally, three strongly variable sources are suggested to be magnetically active young stars.
SPADE H2O measurements and the seasonal cycle of statospheric water vapor
NASA Technical Reports Server (NTRS)
Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.
1994-01-01
We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.
2011-12-01
Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and aerosol profiles are displayed in real-time. The transmitter is capable of operating at any spectral position along the selected water vapor absorption line allowing for year round operation at various geographical locations using a single line. Water vapor and aerosol profiles have been recorded up to 6 km and 15 km with 10 m and 1 m temporal averaging, respectively, allowing for mesoscale monitoring of boundary layer dynamics during both daytime and nighttime operation. A brief description of the current status of the water vapor DIAL instrument will be presented. Nighttime and daytime water vapor and aerosol profiles/inversions from the DIAL instrument will also be presented and favorable comparisons against collocated radiosonde, in situ, and column averaged data from SUOMINET and AERONET will also be discussed. A future outlook towards instrument enhancements that will allow the diode-laser-based DIAL technique/technology to become a viable candidate for deployment in multi-point sensor networks will also be discussed.
Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.
2013-01-01
Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697
Lee, Brian; Sarin, Love; Johnson, Natalie C; Hurt, Robert H
2009-08-01
Compact fluorescent lamps contain small quantities of mercury, release of which can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nanoselenium as the reactive component. Multilayer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping, and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of thethree scenarios. The nanoselenium barriers also exhibit a unique indicator function that can reveal the location of Hg contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nanoselenium and its reaction products.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2012-01-01
The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
Rapid Cycle Amine (RCA 2.0) System Development
NASA Technical Reports Server (NTRS)
Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin
2013-01-01
The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.
A compact high brightness laser synchrotron light source for medical applications
NASA Astrophysics Data System (ADS)
Nakajima, Kazuhisa
1999-07-01
The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.
Preparation Of Sources For Plasma Vapor Deposition
NASA Technical Reports Server (NTRS)
Waters, William J.; Sliney, Hal; Kowalski, D.
1993-01-01
Multicomponent metal targets serving as sources of vapor for plasma vapor deposition made in modified pressureless-sintering process. By use of targets made in modified process, one coats components with materials previously plasma-sprayed or sintered but not plasma-vapor-deposited.
Microfabricated diffusion source
Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM
2008-07-15
A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.
Reconditioning perovskite films in vapor environments through repeated cation doping
NASA Astrophysics Data System (ADS)
Boonthum, Chirapa; Pinsuwan, Kusuma; Ponchai, Jitprabhat; Srikhirin, Toemsak; Kanjanaboos, Pongsakorn
2018-06-01
Perovskites have attracted considerable attention for application as high-efficiency photovoltaic devices owing to their low-cost and low-temperature fabrication. A good surface and high crystallinity are necessary for high-performance devices. We examine the negative effects of chemical ambiences on the perovskite crystal formation and morphology. The repeated cation doping (RCD) technique was developed to remedy these issues by gradually dropping methylammonium ions on top of about-to-form perovskite surfaces to cause recrystallization. RCD promotes pinhole-free, compact, and polygonal-like surfaces under various vapor conditions. Furthermore, it enhances the electronic properties and crystallization. The benefits of RCD extend beyond perovskites under vapor ambiences, as it can improve regular and wasted perovskites.
NASA Astrophysics Data System (ADS)
Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi
2016-09-01
Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.
Update on BioVapor Analysis (Draft Deliberative Document)
An update is given on EPA ORD's evaluation of the BioVapor model for petroleum vapor intrusion assessment. Results from two scenarios are presented: a strong petroleum source and a weaker source. Model results for the strong source are shown to depend on biodegradation rate, oxyg...
Mono-Energy Coronary Angiography with a Compact Synchrotron Source
NASA Astrophysics Data System (ADS)
Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela
2017-02-01
X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1981-01-01
Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.
Thin films of mixed metal compounds
Mickelsen, R.A.; Chen, W.S.
1985-06-11
Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.
Lead telluride as a thermoelectric material for thermoelectric power generation
NASA Astrophysics Data System (ADS)
Dughaish, Z. H.
2002-09-01
The specialized applications of thermoelectric generators are very successful and have motivated a search for materials with an improved figure of merit Z, and also for materials which operate at elevated temperatures. Lead telluride, PbTe, is an intermediate thermoelectric power generator. Its maximum operating temperature is 900 K. PbTe has a high melting point, good chemical stability, low vapor pressure and good chemical strength in addition to high figure of merit Z. Recently, research in thermoelectricity aims to obtain new improved materials for autonomous sources of electrical power in specialized medical, terrestial and space applications and to obtain an unconventional energy source after the oil crises of 1974. Although the efficiency of thermoelectric generators is rather low, typically ∼5%, the other advantages, such as compactness, silent, reliability, long life, and long period of operation without attention, led to a wide range of applications. PbTe thermoelectric generators have been widely used by the US army, in space crafts to provide onboard power, and in pacemakers batteries. The general physical properties of lead telluride and factors affecting the figure of merit have been reviewed. Various possibilities of improving the figure of merit of the material have been given, including effect of grain size on reducing the lattice thermal conductivity λL. Comparison of some transport properties of lead telluride with other thermoelectric materials and procedures of preparing compacts with transport properties very close to the single crystal values from PbTe powder by cold and hot-pressing techniques are discussed.
NASA Astrophysics Data System (ADS)
Iturbide-Sanchez, Flavio
This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the implementation of a dense network of radiometers designed to perform measurements of the 3-D water vapor field, with the potential to improve weather forecasting, particularly the location and timing of the initiation of intense convective activity responsible for potentially damaging winds, rain, hail and lightning.
Searching for Compact Radio Sources Associated with UCH ii Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masqué, Josep M.; Trinidad, Miguel A.; Rodríguez-Rico, Carlos A.
Ultra-compact (UC)H ii regions represent a very early stage of massive star formation. The structure and evolution of these regions are not yet fully understood. Interferometric observations showed in recent years that compact sources of uncertain nature are associated with some UCH ii regions. To examine this, we carried out VLA 1.3 cm observations in the A configuration of selected UCH ii regions in order to report additional cases of compact sources embedded in UCH ii regions. With these observations, we find 13 compact sources that are associated with 9 UCH ii regions. Although we cannot establish an unambiguous naturemore » for the newly detected sources, we assess some of their observational properties. According to the results, we can distinguish between two types of compact sources. One type corresponds to sources that are probably deeply embedded in the dense ionized gas of the UCH ii region. These sources are photoevaporated by the exciting star of the region and will last for 10{sup 4}–10{sup 5} years. They may play a crucial role in the evolution of the UCH ii region as the photoevaporated material could replenish the expanding plasma and might provide a solution to the so-called lifetime problem of these regions. The second type of compact sources is not associated with the densest ionized gas of the region. A few of these sources appear resolved and may be photoevaporating objects such as those of the first type, but with significantly lower mass depletion rates. The remaining sources of this second type appear unresolved, and their properties are varied. We speculate on the similarity between the sources of the second type and those of the Orion population of radio sources.« less
Development of Raman-Mie lidar system for aerosol and water vapor profiling
NASA Astrophysics Data System (ADS)
Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian
2018-03-01
Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.
Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel
2010-05-24
Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.
Stellar physics. Observing the onset of outflow collimation in a massive protostar.
Carrasco-González, C; Torrelles, J M; Cantó, J; Curiel, S; Surcis, G; Vlemmings, W H T; van Langevelde, H J; Goddi, C; Anglada, G; Kim, S-W; Kim, J-S; Gómez, J F
2015-04-03
The current paradigm of star formation through accretion disks, and magnetohydrodynamically driven gas ejections, predicts the development of collimated outflows, rather than expansion without any preferential direction. We present radio continuum observations of the massive protostar W75N(B)-VLA 2, showing that it is a thermal, collimated ionized wind and that it has evolved in 18 years from a compact source into an elongated one. This is consistent with the evolution of the associated expanding water-vapor maser shell, which changed from a nearly circular morphology, tracing an almost isotropic outflow, to an elliptical one outlining collimated motions. We model this behavior in terms of an episodic, short-lived, originally isotropic ionized wind whose morphology evolves as it moves within a toroidal density stratification. Copyright © 2015, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Collins, E. R. J.
1983-01-01
Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.
The broken bulb can continue to release mercury vapor until it is cleaned up and removed. This cleanup guidance represents minimum recommended actions to reduce mercury exposure, and will be updated as more efficient practices are identified.
Role of the source to building lateral separation distance in petroleum vapor intrusion.
Verginelli, Iason; Capobianco, Oriana; Baciocchi, Renato
2016-06-01
The adoption of source to building separation distances to screen sites that need further field investigation is becoming a common practice for the evaluation of the vapor intrusion pathway at sites contaminated by petroleum hydrocarbons. Namely, for the source to building vertical distance, the screening criteria for petroleum vapor intrusion have been deeply investigated in the recent literature and fully addressed in the recent guidelines issued by ITRC and U.S.EPA. Conversely, due to the lack of field and modeling studies, the source to building lateral distance received relatively low attention. To address this issue, in this work we present a steady-state vapor intrusion analytical model incorporating a piecewise first-order aerobic biodegradation limited by oxygen availability that accounts for lateral source to building separation. The developed model can be used to evaluate the role and relevance of lateral vapor attenuation as well as to provide a site-specific assessment of the lateral screening distances needed to attenuate vapor concentrations to risk-based values. The simulation outcomes showed to be consistent with field data and 3-D numerical modeling results reported in previous studies and, for shallow sources, with the screening criteria recommended by U.S.EPA for the vertical separation distance. Indeed, although petroleum vapors can cover maximum lateral distances up to 25-30m, as highlighted by the comparison of model outputs with field evidences of vapor migration in the subsurface, simulation results by this new model indicated that, regardless of the source concentration and depth, 6m and 7m lateral distances are sufficient to attenuate petroleum vapors below risk-based values for groundwater and soil sources, respectively. However, for deep sources (>5m) and for low to moderate source concentrations (benzene concentrations lower than 5mg/L in groundwater and 0.5mg/kg in soil) the above criteria were found extremely conservative as the model results indicated that for such scenarios the lateral screening distance may be set equal to zero. Copyright © 2016 Elsevier B.V. All rights reserved.
Lawrence, E.O.; Brobeck, W.M.
1959-04-14
ABS>An ion source is described for a calutron especially designed to improve the uniformity of charge vapor flow when the vapor encounters the arc. The inventive feature of the source consists of a specific source block construction wherein heater means prevents condensation from taking place within the block, and a separate vapor generator is supported on the wall of the block by a hollow thimble. The thimble communicates with a bore cavity in the block and the vapor flows therethrough into the cavity and uniformly out a slot along the length of the cavity where the arc discharge is located.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1984-01-01
The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1982-01-01
The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction.
Low temperature ion source for calutrons
Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.
1981-01-01
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Low temperature ion source for calutrons
Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.
1979-10-10
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide
2016-08-30
324449 Page Intentionally Left Blank iii Executive Summary Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants...strength and location, vadose zone transport, and a model for estimating movement of soil -gas vapor contamination into buildings. The tool may be...framework for estimating the impact of a vadose zone contaminant source on soil gas concentrations and vapor intrusion into a building
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.
High heat transfer oxidizer heat exchanger design and analysis. [RL10-2B engine
NASA Technical Reports Server (NTRS)
Kmiec, Thomas D.; Kanic, Paul G.; Peckham, Richard J.
1987-01-01
The RL10-2B engine, a derivative of the RL10, is capable of multimode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2% of full thrust, and pumped idle (PI), which is 10% of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-2B engine during the low thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidizer heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. The design, concept verification testing and analysis for such a heat exchanger is discussed. The design presented uses a high efficiency compact core to vaporize the oxygen, and in the self-contained unit, attenuates any pressure and flow oscillations which result from unstable boiling in the core. This approach is referred to as the high heat transfer design. An alternative approach which prevents unstable boiling of the oxygen by limiting the heat transfer is referred to as the low heat transfer design and is reported in Pratt & Whitney report FR-19135-2.
Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact.
Matsuya, Shigeki; Lin, Xin; Udoh, Koh-ichi; Nakagawa, Masaharu; Shimogoryo, Ryoji; Terada, Yoshihiro; Ishikawa, Kunio
2007-07-01
Calcium carbonate (CaCO(3)) has been widely used as a bone substitute material because of its excellent tissue response and good resorbability. In this experimental study, we propose a new method obtaining porous CaCO(3) monolith for an artificial bone substitute. In the method, calcium hydroxide compacts were exposed to carbon dioxide saturated with water vapor at room temperature. Carbonation completed within 3 days and calcite was the only product. The mechanical strength of CaCO(3) monolith increased with carbonation period and molding pressure. Development of mechanical strength proceeded through two steps; the first rapid increase by bonding with calcite layer formed at the surface of calcium hydroxide particles and the latter increase by the full conversion of calcium hydroxide to calcite. The latter process was thought to be controlled by the diffusion of CO(2) through micropores in the surface calcite layer. Porosity of calcite blocks thus prepared had 36.8-48.1% depending on molding pressure between 1 MPa and 5 MPa. We concluded that the present method may be useful for the preparation of bone substitutes or the preparation of source material for bone substitutes since this method succeeded in fabricating a low-crystalline, and thus a highly reactive, porous calcite block.
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Trace explosives sensor testbed (TESTbed)
NASA Astrophysics Data System (ADS)
Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.
2017-03-01
A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.
Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.
Ma, Jie; Yan, Guangxu; Li, Haiyan; Guo, Shaohui
2016-03-05
This study conducted one-at-a-time (OAT) sensitivity and uncertainty analysis for a numerical vapor intrusion model for nine input parameters, including soil porosity, soil moisture, soil air permeability, aerobic biodegradation rate, building depressurization, crack width, floor thickness, building volume, and indoor air exchange rate. Simulations were performed for three soil types (clay, silt, and sand), two source depths (3 and 8m), and two source concentrations (1 and 400 g/m(3)). Model sensitivity and uncertainty for shallow and high-concentration vapor sources (3m and 400 g/m(3)) are much smaller than for deep and low-concentration sources (8m and 1g/m(3)). For high-concentration sources, soil air permeability, indoor air exchange rate, and building depressurization (for high permeable soil like sand) are key contributors to model output uncertainty. For low-concentration sources, soil porosity, soil moisture, aerobic biodegradation rate and soil gas permeability are key contributors to model output uncertainty. Another important finding is that impacts of aerobic biodegradation on vapor intrusion potential of petroleum hydrocarbons are negligible when vapor source concentration is high, because of insufficient oxygen supply that limits aerobic biodegradation activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region
NASA Astrophysics Data System (ADS)
Putman, Annie L.; Feng, Xiahong; Sonder, Leslie J.; Posmentier, Eric S.
2017-04-01
In this study, precipitation isotopic variations at Barrow, AK, USA, are linked to conditions at the moisture source region, along the transport path, and at the precipitation site. Seventy precipitation events between January 2009 and March 2013 were analyzed for δ2H and deuterium excess. For each precipitation event, vapor source regions were identified with the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) air parcel tracking program in back-cast mode. The results show that the vapor source region migrated annually, with the most distal (proximal) and southerly (northerly) vapor source regions occurring during the winter (summer). This may be related to equatorial expansion and poleward contraction of the polar circulation cell and the extent of Arctic sea ice cover. Annual cycles of vapor source region latitude and δ2H in precipitation were in phase; depleted (enriched) δ2H values were associated with winter (summer) and distal (proximal) vapor source regions. Precipitation δ2H responded to variation in vapor source region as reflected by significant correlations between δ2H with the following three parameters: (1) total cooling between lifted condensation level (LCL) and precipitating cloud at Barrow, ΔTcool, (2) meteorological conditions at the evaporation site quantified by 2 m dew point, Td, and (3) whether the vapor transport path crossed the Brooks and/or Alaskan ranges, expressed as a Boolean variable, mtn. These three variables explained 54 % of the variance (p<0. 001) in precipitation δ2H with a sensitivity of -3.51 ± 0.55 ‰ °C-1 (p<0. 001) to ΔTcool, 3.23 ± 0.83 ‰ °C-1 (p<0. 001) to Td, and -32.11 ± 11.04 ‰ (p = 0. 0049) depletion when mtn is true. The magnitude of each effect on isotopic composition also varied with vapor source region proximity. For storms with proximal vapor source regions (where ΔTcool <7 °C), ΔTcool explained 3 % of the variance in δ2H, Td alone accounted for 43 %, while mtn explained 2 %. For storms with distal vapor sources (ΔTcool > 7°C), ΔTcool explained 22 %, Td explained only 1 %, and mtn explained 18 %. The deuterium excess annual cycle lagged by 2-3 months during the δ2H cycle, so the direct correlation between the two variables is weak. Vapor source region relative humidity with respect to the sea surface temperature, hss, explained 34 % of variance in deuterium excess, (-0.395 ± 0.067 ‰ %-1, p<0. 001). The patterns in our data suggest that on an annual scale, isotopic ratios of precipitation at Barrow may respond to changes in the southerly extent of the polar circulation cell, a relationship that may be applicable to interpretation of long-term climate change records like ice cores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salamon, Todd R; Vyas, Brijesh; Kota, Krishna
An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.
Nuclear design of a vapor core reactor for space nuclear propulsion
NASA Astrophysics Data System (ADS)
Dugan, Edward T.; Watanabe, Yoichi; Kuras, Stephen A.; Maya, Isaac; Diaz, Nils J.
1993-01-01
Neutronic analysis methodology and results are presented for the nuclear design of a vapor core reactor for space nuclear propulsion. The Nuclear Vapor Thermal Reactor (NVTR) Rocket Engine uses modified NERVA geometry and systems which the solid fuel replaced by uranium tetrafluoride vapor. The NVTR is an intermediate term gas core thermal rocket engine with specific impulse in the range of 1000-1200 seconds; a thrust of 75,000 lbs for a hydrogen flow rate of 30 kg/s; average core exit temperatures of 3100 K to 3400 K; and reactor thermal powers of 1400 to 1800 MW. Initial calculations were performed on epithermal NVTRs using ZrC fuel elements. Studies are now directed at thermal NVTRs that use fuel elements made of C-C composite. The large ZrC-moderated reactors resulted in thrust-to-weight ratios of only 1 to 2; the compact C-C composite systems yield thrust-to-weight ratios of 3 to 5.
Design of Advanced Atmospheric Water Vapor Differential Absorption Lidar (DIAL) Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
The measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The lidar atmospheric sensing experiment (LASE) is an instrument designed and operated by the Langley Research Center for high precision water vapor measurements. The design details of a new water vapor lidar detection system that improves the measurement sensitivity of the LASE instrument by a factor of 10 are discussed. The new system consists of an advanced, very low noise, avalanche photodiode (APD) and a state-of-the-art signal processing circuit. The new low-power system is also compact and lightweight so that it would be suitable for space flight and unpiloted atmospheric vehicles (UAV) applications. The whole system is contained on one small printed circuit board (9 x 15 sq cm). The detection system is mounted at the focal plane of a lidar receiver telescope, and the digital output is read by a personal computer with a digital data acquisition card.
VLBI observations at 2.3 GHz of the compact galaxy 1934-638
NASA Technical Reports Server (NTRS)
Tzioumis, Anastasios K.; Jauncey, David L.; Preston, Robert A.; Meier, David L.; Morabito, David D.; Skjerve, Lyle; Slade, Martin A.; Nicolson, George D.; Niell, Arthur E.; Wehrle, Ann E.
1989-01-01
VLBI observations of the strong radio source 1934-638 show it to be a binary with a component separation of 42.0 + or - 0.2 mas, a position angle of 90.5 + or - 1 deg, and component sizes of about 2.5 mas. The results imply the presence of an additional elongated component aligned with, and between, the compact double components. The sources's almost equal compact double structure, peaked spectrum, low variability, small polarization, and particle-dominated radio lobes suggests that it belongs to the class of symmetric compact double sources identified by Phillips and Mutel (1980, 1981, 1982).
Compact Water Vapor Exchanger for Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward
2012-01-01
Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.
Automated detection of extended sources in radio maps: progress from the SCORPIO survey
NASA Astrophysics Data System (ADS)
Riggi, S.; Ingallinera, A.; Leto, P.; Cavallaro, F.; Bufano, F.; Schillirò, F.; Trigilio, C.; Umana, G.; Buemi, C. S.; Norris, R. P.
2016-08-01
Automated source extraction and parametrization represents a crucial challenge for the next-generation radio interferometer surveys, such as those performed with the Square Kilometre Array (SKA) and its precursors. In this paper, we present a new algorithm, called CAESAR (Compact And Extended Source Automated Recognition), to detect and parametrize extended sources in radio interferometric maps. It is based on a pre-filtering stage, allowing image denoising, compact source suppression and enhancement of diffuse emission, followed by an adaptive superpixel clustering stage for final source segmentation. A parametrization stage provides source flux information and a wide range of morphology estimators for post-processing analysis. We developed CAESAR in a modular software library, also including different methods for local background estimation and image filtering, along with alternative algorithms for both compact and diffuse source extraction. The method was applied to real radio continuum data collected at the Australian Telescope Compact Array (ATCA) within the SCORPIO project, a pathfinder of the Evolutionary Map of the Universe (EMU) survey at the Australian Square Kilometre Array Pathfinder (ASKAP). The source reconstruction capabilities were studied over different test fields in the presence of compact sources, imaging artefacts and diffuse emission from the Galactic plane and compared with existing algorithms. When compared to a human-driven analysis, the designed algorithm was found capable of detecting known target sources and regions of diffuse emission, outperforming alternative approaches over the considered fields.
Lepidium perfoliatum seed gum: a new source of carbohydrate to make a biodegradable film.
Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes
2014-01-30
Microstructural, physical, mechanical and thermal properties of a novel biodegradable film based on Lepidium perfoliatum seed gum (LPSG) were investigated. LPSG films were successfully prepared by incorporation of four levels of glycerol (40%, 50%, 60% and 70%, w/w). As expected, increasing glycerol concentration from 40 to 70% (w/w), increased water vapor permeability (WVP), elongation at break (EB%), moisture content, moisture adsorption and water solubility of LPSG films; whilst, elastic modulus (EM), contact angle, melting point (Tm), enthalpy of melting (ΔHm) and glass transition point (Tg) decreased significantly. LPSG films became slightly greenish and yellowish in color but still transparent in appearance. The images taken from electron scanning microscopy indicated uniform surface, compact sheets with no holes or fracture. This study demonstrates that LPSG based films with desired properties can be obtained by adjusting glycerol content. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.
2017-12-01
The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and EAP pattern.
Compact Power Conditioning and RF Systems for a High Power RF Source
2008-12-01
RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system
Development of an Airborne Micropulse Water Vapor DIAL
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Ismail, S.
2012-12-01
Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground based instrument is achievable via overdriven current pulses to the TSOA gain medium while maintaining a 1μs and 10 kHz pulse width and PRF, respectively. The increase in the laser transmitter pulse energy will allow for nighttime and daytime water vapor profile retrievals from an airborne platform operating at an 8 km altitude with 2-5 minute integration periods. Results from a numerical model demonstrating the performance of an airborne DIAL system with the mentioned transmitter enhancements will be presented and compared against the existing ground based instrument performance. Furthermore, results from laboratory experiments demonstrating the laser transmitter performance including maximum extractable energy, energy stability, and spectral purity will also be presented.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, I.G.; MacGill, R.A.; Galvin, J.E.
1991-05-07
An apparatus and method are disclosed for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time. 10 figures.
Apparatus for coating a surface with a metal utilizing a plasma source
Brown, Ian G.; MacGill, Robert A.; Galvin, James E.
1991-01-01
An apparatus and method for coating or layering a surface with a metal utilizing a metal vapor vacuum arc plasma source. The apparatus includes a trigger mechanism for actuating the metal vacuum vapor arc plasma source in a pulsed mode at a predetermined rate. The surface or substrate to be coated or layered is supported in position with the plasma source in a vacuum chamber. The surface is electrically biased for a selected period of time during the pulsed mode of operation of the plasma source. Both the pulsing of the metal vapor vacuum arc plasma source and the electrical biasing of the surface are synchronized for selected periods of time.
40 CFR Table 10 to Subpart Eeee of... - Continuous Compliance With Work Practice Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquids, operate a vapor balancing system. i. Monitoring each potential source of vapor leakage in the... requirements of 40 CFR part 63, subpart TT, UU, or H. i. Carrying out a leak detection and repair program in... relief devices, monitoring each potential source of vapor leakage in the system, including, but not...
NASA Astrophysics Data System (ADS)
Tyul'Bashev, S. A.
2009-01-01
A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.
Observations of compact radio nuclei in Cygnus A, Centaurus A, and other extended radio sources
NASA Technical Reports Server (NTRS)
Kellermann, K. I.; Clark, B. G.; Niell, A. E.; Shaffer, D. B.
1975-01-01
Observations of Cygnus A show a compact radio core 2 milliarcsec in extent oriented in the same direction as the extended components. Other large double- or multiple-component sources, including Centaurus A, have also been found to contain compact radio nuclei with angular sizes in the range 1-10 milliarcsec.
Phenomenological Model for Infrared Emissions from High-Explosive Detonation Fireballs
2007-09-01
concentrations for H2O, CO2, CO, and HCl. Fitting this model to the observed MWIR spectra affords a compact, high-fidelity representation with... concentrations separates the TNT and ENE events. Spectrally-determined R values are somewhat consistent with stoichiometric expectations. Comparing...78 4.7.2 Atmospheric Water Vapor Concentration . . . . . . . . . . . . . . . . . 79 4.7.3 Spectral Resolution
NASA Astrophysics Data System (ADS)
Affolderbach, C.; Moreno, W.; Ivanov, A. E.; Debogovic, T.; Pellaton, M.; Skrivervik, A. K.; de Rijk, E.; Mileti, G.
2018-03-01
Additive manufacturing (AM) of passive microwave components is of high interest for the cost-effective and rapid prototyping or manufacture of devices with complex geometries. Here, we present an experimental study on the properties of recently demonstrated microwave resonator cavities manufactured by AM, in view of their applications to high-performance compact atomic clocks. The microwave cavities employ a loop-gap geometry using six electrodes. The critical electrode structures were manufactured monolithically using two different approaches: Stereolithography (SLA) of a polymer followed by metal coating and Selective Laser Melting (SLM) of aluminum. The tested microwave cavities show the desired TE011-like resonant mode at the Rb clock frequency of ≈6.835 GHz, with a microwave magnetic field highly parallel to the quantization axis across the vapor cell. When operated in an atomic clock setup, the measured atomic Rabi oscillations are comparable to those observed for conventionally manufactured cavities and indicate a good uniformity of the field amplitude across the vapor cell. Employing a time-domain Ramsey scheme on one of the SLA cavities, high-contrast (34%) Ramsey fringes are observed for the Rb clock transition, along with a narrow (166 Hz linewidth) central fringe. The measured clock stability of 2.2 × 10-13 τ-1/2 up to the integration time of 30 s is comparable to the current state-of-the-art stabilities of compact vapor-cell clocks based on conventional microwave cavities and thus demonstrates the feasibility of the approach.
Radio supernovae and super star clusters in the circumnuclear region of NGC 1365
NASA Astrophysics Data System (ADS)
Lindblad, P. O.; Kristen, H.
Groundbased optical and VLA observations have shown that the nucleus of the barred Seyfert 1 galaxy NGC 1365 is surrounded by a number of star forming regions, or "hot spots", as well as a number of resolved and unresolved continuum radio sources. HST/FOC observations reveal that the nucleus is surrounded by a ring of very compact unresolved sources of the kind that have been discovered in a number of other galaxies, and that have been assumed to be very compact young globular star clusters. The hot spots are resolved into groups of such compact sources. VLA observations at lambda = 2 cm, where the resolution approaches that of HST, reveals that the brightest unresolved radio source at 2 cm, which has been assumed to be a radio supernova, coincides with one of the compact HST sources. The implications of this will be discussed.
Point and Compact Hα Sources in the Interior of M33
NASA Astrophysics Data System (ADS)
Moody, J. Ward; Hintz, Eric G.; Joner, Michael D.; Roming, Peter W. A.; Hintz, Maureen L.
2017-12-01
A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebulae, X-ray binaries, etc., can be discovered as point or compact sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.‧5 × 6.‧5 of M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than approximately 10-15 erg cm-2s-1. We have effectively recovered previously mapped H II regions and have identified 152 unresolved point sources and 122 marginally resolved compact sources, of which 39 have not been previously identified in any archive. An additional 99 Hα sources were found to have sufficient archival flux values to generate a Spectral Energy Distribution. Using the SED, flux values, Hα flux value, and compactness, we classified 67 of these sources.
NASA Astrophysics Data System (ADS)
Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki
2010-02-01
Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Special issue on compact x-ray sources
NASA Astrophysics Data System (ADS)
Hooker, Simon; Midorikawa, Katsumi; Rosenzweig, James
2014-04-01
Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on compact x-ray sources, to appear in the winter of 2014, and invites you to submit a paper. The potential for high-brilliance x- and gamma-ray sources driven by advanced, compact accelerators has gained increasing attention in recent years. These novel sources—sometimes dubbed 'fifth generation sources'—will build on the revolutionary advance of the x-ray free-electron laser (FEL). New radiation sources of this type have widespread applications, including in ultra-fast imaging, diagnostic and therapeutic medicine, and studies of matter under extreme conditions. Rapid advances in compact accelerators and in FEL techniques make this an opportune moment to consider the opportunities which could be realized by bringing these two fields together. Further, the successful development of compact radiation sources driven by compact accelerators will be a significant milestone on the road to the development of high-gradient colliders able to operate at the frontiers of particle physics. Thus the time is right to publish a peer-reviewed collection of contributions concerning the state-of-the-art in: advanced and novel acceleration techniques; sophisticated physics at the frontier of FELs; and the underlying and enabling techniques of high brightness electron beam physics. Interdisciplinary research connecting two or more of these fields is also increasingly represented, as exemplified by entirely new concepts such as plasma based electron beam sources, and coherent imaging with fs-class electron beams. We hope that in producing this special edition of Journal of Physics B: Atomic, Molecular and Optical Physics (iopscience.iop.org/0953-4075/) we may help further a challenging mission and ongoing intellectual adventure: the harnessing of newly emergent, compact advanced accelerators to the creation of new, agile light sources with unprecedented capabilities. New schemes for compact accelerators: laser- and beam-driven plasma accelerators; dielectric laser accelerators; THz accelerators. Latest results for compact accelerators. Target design and staging of advanced accelerators. Advanced injection and phase space manipulation techniques. Novel diagnostics: single-shot measurement of sub-fs bunch duration; measurement of ultra-low emittance. Generation and characterization of incoherent radiation: betatron and undulator radiation; Thomson/Compton scattering sources, novel THz sources. Generation and characterization of coherent radiation. Novel FEL simulation techniques. Advances in simulations of novel accelerators: simulations of injection and acceleration processes; simulations of coherent and incoherent radiation sources; start-to-end simulations of fifth generation light sources. Novel undulator schemes. Novel laser drivers for laser-driven accelerators: high-repetition rate laser systems; high wall-plug efficiency systems. Applications of compact accelerators: imaging; radiography; medical applications; electron diffraction and microscopy. Please submit your article by 15 May 2014 (expected web publication: winter 2014); submissions received after this date will be considered for the journal, but may not be included in the special issue.
NASA Astrophysics Data System (ADS)
Sahoo, Swaroop
2011-12-01
The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.
Phillips, J.D.; Nabighian, M.N.; Smith, D.V.; Li, Y.
2007-01-01
The Helbig method for estimating total magnetization directions of compact sources from magnetic vector components is extended so that tensor magnetic gradient components can be used instead. Depths of the compact sources can be estimated using the Euler equation, and their dipole moment magnitudes can be estimated using a least squares fit to the vector component or tensor gradient component data. ?? 2007 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg
1994-06-01
The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, A.F.; Makowiecki, D.M.; Rambach, G.D.; Randich, E.
1998-05-19
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated. 8 figs.
Forced-flow once-through boilers. [structural design criteria/aerospace environments
NASA Technical Reports Server (NTRS)
Stone, J. R.; Gray, V. H.; Gutierrez, O. A.
1975-01-01
A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1999-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
Jankowski, Alan F.; Makowiecki, Daniel M.; Rambach, Glenn D.; Randich, Erik
1998-01-01
The use of vapor deposition techniques enables synthesis of the basic components of a solid oxide fuel cell (SOFC); namely, the electrolyte layer, the two electrodes, and the electrolyte-electrode interfaces. Such vapor deposition techniques provide solutions to each of the three critical steps of material synthesis to produce a thin film solid oxide fuel cell (TFSOFC). The electrolyte is formed by reactive deposition of essentially any ion conducting oxide, such as defect free, yttria stabilized zirconia (YSZ) by planar magnetron sputtering. The electrodes are formed from ceramic powders sputter coated with an appropriate metal and sintered to a porous compact. The electrolyte-electrode interface is formed by chemical vapor deposition of zirconia compounds onto the porous electrodes to provide a dense, smooth surface on which to continue the growth of the defect-free electrolyte, whereby a single fuel cell or multiple cells may be fabricated.
Laser Velocimeter for Studies of Microgravity Combustion Flowfields
NASA Technical Reports Server (NTRS)
Varghese, P. L.; Jagodzinski, J.
2001-01-01
We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.
Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.
2015-08-27
Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.
Compact x-ray source and panel
Sampayon, Stephen E [Manteca, CA
2008-02-12
A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.
NASA Astrophysics Data System (ADS)
Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong
2012-09-01
The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.
Compact optical transconductance varistor
Sampayan, Stephen
2015-09-22
A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.
Method for producing uranium atomic beam source
Krikorian, Oscar H.
1976-06-15
A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.
NASA Astrophysics Data System (ADS)
Li, Jun-Sheng; Zhang, Chang-Rui; Li, Bin
2011-06-01
Boron nitride (BN) coatings were deposited on carbon fibers by chemical vapor deposition (CVD) using borazine as single source precursor. The deposited coatings were characterized by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The effect of temperatures on growth kinetics, morphology, composition and structure of the coatings was investigated. In the low temperature range of 900 °C-1000 °C, the growth rate increased with increasing temperature complying with Arrhenius law, and an apparent active energy of 72 kJ/mol was calculated. The coating surface was smooth and compact, and the coatings uniformly deposited on individual fibers of carbon fiber bundles. The growth was controlled by surface reaction. At 1000 °C, the deposition rate reached a maximum (2.5 μm/h). At the same time, the limiting step of the growth translated to be mass-transportation. Above 1100 °C, the growth rate decreased drastically due to the occurrence of gas-phase nucleation. Moreover, the coating surface became loose and rough. Composition and structure examinations revealed that stoichiometric BN coatings with turbostratic structure were obtained below 1000 °C, while hexagonal BN coatings were deposited above 1100 °C. A penetration of carbon element from the fibers to the coatings was observed.
Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).
NASA Astrophysics Data System (ADS)
Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.
2017-02-01
The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.
Experimental Studies on Mass Transport of Cadmium-Zinc Telluride by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Palosz, W.; Szofran, F. R.; Lehoczky, S. L.
1995-01-01
Experimental studies on mass transport of ternary compound, Cd(1-x)Zn(x)Te by physical vapor transport (PVT) for source compositions up to X = 0.21 are presented. The effect of thermochemical (temperatures, vapor composition) and other factors (preparation of the source, crystal growth rate, temperature gradient) on composition and composition profiles of the grown crystals were investigated. A steep decrease in the mass flux with an increase in X(crystal) for X less than 0.1, and a difference in composition between the source and the deposited material have been observed. The composition profiles of the crystals were found to depend on the density and pretreatment of the source, and on the temperature gradient in the source zone. The homogeneity of the crystals improves at low undercoolings and/or when an appropriate excess of metal constituents is present in the vapor phase. The experimental results are in good agreement with our thermochemical model of this system.
Storey, Andrew P; Zeiri, Offer M; Ray, Steven J; Hieftje, Gary M
2017-02-01
The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data. Graphical Abstract ᅟ.
The Three Sources of Gas in the Comae of Comets
NASA Technical Reports Server (NTRS)
Huebner, W. F.
1995-01-01
Surface water ice on a comet nucleus is the major source of coma gas. Dust, entrained by coma gas, fragments and vaporizes, forming a second, distributed source of coma gas constituents. Ice species more volatile than water ice below the surface of the nucleus are a third source of coma gas. Vapors from these ices, produced by heat penetrating into the nucleus, diffuse through pores outward into the coma. The second and third sources provide minor, but sometimes easily detectible, gaseous species in the coma. We present mixing ratios of observed minor coma constituents relative to water vapor as a function of heliocentric and cometocentric distances and compare these ratios with model predictions, assuming the sources of the minor species are either coma dust or volatile ices in the nucleus.
In situ calibration of a light source in a sensor device
Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.
2015-12-29
A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.
Methods for characterizing subsurface volatile contaminants using in-situ sensors
Ho, Clifford K [Albuquerque, NM
2006-02-21
An inverse analysis method for characterizing diffusion of vapor from an underground source of volatile contaminant using data taken by an in-situ sensor. The method uses one-dimensional solutions to the diffusion equation in Cartesian, cylindrical, or spherical coordinates for isotropic and homogenous media. If the effective vapor diffusion coefficient is known, then the distance from the source to the in-situ sensor can be estimated by comparing the shape of the predicted time-dependent vapor concentration response curve to the measured response curve. Alternatively, if the source distance is known, then the effective vapor diffusion coefficient can be estimated using the same inverse analysis method. A triangulation technique can be used with multiple sensors to locate the source in two or three dimensions. The in-situ sensor can contain one or more chemiresistor elements housed in a waterproof enclosure with a gas permeable membrane.
Volatile Analysis by Pyrolysis of Regolith (Vapor) for Planetary Resource Prospecting
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Malespin, C. A.; Ten Kate, I. L.; Mcadam, A.; Getty, S. A.; Mumm, E.; Franz, H. B.; Southard, A. E.; Bleacher, J. E.; Mahaffy, P. R.
2016-01-01
Measuring the chemical composition of planetary bodies and their atmospheres is key to understanding the formation of the Solar System and the evolution of the planets and their moons. In situ volatile measurements enable a ground-truth assessment of the distribution and abundance of resources such as water-ice and oxygen, important for a sustained human presence on the Moon and beyond. The Volatile Analysis by Pyrolysis of Regolith (VAPoR) instrument is a compact pyrolysis mass spectrometer designed to detect volatiles released from solid samples that are heated to elevated temperatures and is one technique that should be considered for resource prospecting on the Moon, Mars, and asteroids.
New single-aircraft integrated atmospheric observation capabilities
NASA Astrophysics Data System (ADS)
Wang, Z.
2011-12-01
Improving current weather and climate model capabilities requires better understandings of many atmospheric processes. Thus, advancing atmospheric observation capabilities has been regarded as the highest imperatives to advance the atmospheric science in the 21st century. Under the NSF CAREER support, we focus on developing new airborne observation capabilities through the developments of new instrumentations and the single-aircraft integration of multiple remote sensors with in situ probes. Two compact Wyoming cloud lidars were built to work together with a 183 GHz microwave radiometer, a multi-beam Wyoming cloud radar and in situ probes for cloud studies. The synergy of these remote sensor measurements allows us to better resolve the vertical structure of cloud microphysical properties and cloud scale dynamics. Together with detailed in situ data for aerosol, cloud, water vapor and dynamics, we developed the most advanced observational capability to study cloud-scale properties and processes from a single aircraft (Fig. 1). A compact Raman lidar was also built to work together with in situ sampling to characterize boundary layer aerosol and water vapor distributions for many important atmospheric processes studies, such as, air-sea interaction and convective initialization. Case studies will be presented to illustrate these new observation capabilities.
An evaporation model of multicomponent solution drops
NASA Astrophysics Data System (ADS)
Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.
2010-11-01
Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.
An evaporation model of colloidal suspension droplets
NASA Astrophysics Data System (ADS)
Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.
2009-11-01
Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.
NASA Technical Reports Server (NTRS)
1990-01-01
This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.
Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)
2000-01-01
Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.
Real-time sono-photoacoustic imaging of gold nanoemulsions
NASA Astrophysics Data System (ADS)
Arnal, Bastien; Wei, Chen-Wei; Perez, Camilo; Lombardo, Michael; Pelivanov, Ivan M.; Pozzo, Danilo; O'Donnell, Matthew
2015-03-01
Phase transition contrast agents were first introduced in ultrasound (US) in the form of perfluorocarbon droplets. When their size is reduced to the nanoscale, surface tension dominates their stability and high pressure is required to vaporize them using long US emissions at high frequencies. Our group recently showed that nanoemulsion beads (100-300 nm) coated with gold nanopsheres could be used as non-linear contrast agents. Beads can be vaporized with light only, inducing stronger photoacoustic signals by increasing thermal expansion. A photoacoustic cavitation threshold study (US: 1.2 MHz, Laser 750 nm and 10-ns pulse) shows that the vaporization thresholds of NEB-GNS can be greatly reduced using simultaneous light and US excitations. The resulting signal is driven only by the pressure amplitude for a fluence higher than 2.4 mJ/cm2. At diagnostic exposures, it is possible to capture very high signals from the vaporized beads at concentrations reduced to 10 pM with optical absorption smaller than 0.01 cm-1. A real-time imaging mode selectively isolating vaporization signals was implemented on a Verasonics system. A linear US probe (L74, 3 MHz) launched short US bursts before light was emitted from the laser. Vaporization of NEB-GNS resulted in a persistent 30-dB signal enhancement compared to a dye with the same absorption. Specific vaporization signals were retrieved in phantom experiments with US scatterers. This technique, called sonophotoacoustics, has great potential for targeted molecular imaging and therapy using compact nanoprobes with potentially high-penetrability into tissue.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
The self-similar turbulent flow of low-pressure water vapor
NASA Astrophysics Data System (ADS)
Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.
2018-05-01
We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.
A Comparison of Two Methods for Initiating Air Mass Back Trajectories
NASA Astrophysics Data System (ADS)
Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.
2014-12-01
Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source meteorology estimated by M2 is used to determine vapor isotopic properties it would produce results similar to M1 in all cases except the occasional very high cloud. The methods strive to balance a sufficient number of tracked air masses for meaningful vapor source estimation with minimal computational time. Zhao, C and Garrett, T.J. 2008, J. Geophys. Res.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Ebert, Volker
2014-05-01
Airborne hygrometry is often demanded in scientific flight campaigns to provide datasets for environmental modeling or to correct for water vapor dilution or cross sensitivity effects in other gas analytical techniques. Water vapor measurements, however, are quite challenging due to the large dynamic range in the atmosphere (between 2 and 40000 ppmv) and the high spatio-temporal variability. Airborne hygrometers therefore need to combine a large measurement range with high temporal resolution to resolve - at typical airspeeds of 500 to 900 km/h - atmospheric gradients of several 1000 ppmv/s. Especially during the ascent into the upper troposphere, hygrometers need to work at high gas exchange rates to minimize water vapor adsorption effects. On the other hand, water vapor sensors are difficult to calibrate due to the strong water adsorption and the lack of bottled reference gas standards, which requires pre- or/and post-flight field calibrations. Recently in-flight calibration using an airborne H2O generator was demonstrated, which minimizes calibration drift but still imposes a lot of additional work and hardware to the experiments, since these kind of calibrations just transfer the accuracy level issues to the in-flight calibration-source. To make things worse, the low gas flow (1-5 std l/min, compared with up to 100 std l/min in flight for fast response instruments) adheres critical questions of wall absorption/desorption of the source and instrument even during the calibration process. The national metrological institutes (NMIs) maintain a global metrological water vapor scale which is defined via national primary humidity generators. These provide for calibration purposes well-defined, accurate water vapor samples of excellent comparability and stability traced back to the SI-units. The humidity calibration chain is maintained via high accuracy (but rather slow) Dew-Point-Mirror-Hygrometers as transfer standards. These provide a traceable performance and calibration link to any industrial or research laboratory hygrometer. To establish metrological traceability in field and particular in airborne hygrometers is however challenging and requires fast, field-compatible, metrologically qualified transfer hygrometry standards to link the metrological and the environmental sciences water scales. The SEALDH (Selective Extractive Airborne Laser Diode Hygrometer) development started 3 years ago and aims at filling this gap by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a special, calibration-free data evaluation [1]. Previously developed, laboratory-based TDLAS instruments, such as [2] [3], were starting points to develop an autonomously operating, extractive water vapor sensor in a compact 19' 4 HU form factor. This new airborne package and far-reaching developments [4] in hard- and software allow an autonomous, low maintenance, airborne operation. SEALDH-II can be used in a calibration-free field sensor mode (with an absolute, metrologically defined uncertainty of 4.3% +- 3ppmv). The response time is mainly limited by the gas flow and significantly below 1 sec with a precision down to 0.08 ppmv (1σ, 1sec) measured at 600 ppmv and 1000 hPa. The excellent long-term stability of SEALDH-II (
Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J
2008-12-15
Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.
Techniques for avoiding discrimination errors in the dynamic sampling of condensable vapors
NASA Technical Reports Server (NTRS)
Lincoln, K. A.
1983-01-01
In the mass spectrometric sampling of dynamic systems, measurements of the relative concentrations of condensable and noncondensable vapors can be significantly distorted if some subtle, but important, instrumental factors are overlooked. Even with in situ measurements, the condensables are readily lost to the container walls, and the noncondensables can persist within the vacuum chamber and yield a disproportionately high output signal. Where single pulses of vapor are sampled this source of error is avoided by gating either the mass spectrometer ""on'' or the data acquisition instrumentation ""on'' only during the very brief time-window when the initial vapor cloud emanating directly from the vapor source passes through the ionizer. Instrumentation for these techniques is detailed and its effectiveness is demonstrated by comparing gated and nongated spectra obtained from the pulsed-laser vaporization of several materials.
Evaluation of potential site for mineral processing plant
NASA Astrophysics Data System (ADS)
Izwan Ishak, Muhamad Noor; Sipaun, Susan Maria; Mustapha, Ismail; Fahmi Engku Chik, Engku Mohd; Abdullah, Nurliyana; Affandi Mahmood, Airwan
2018-01-01
Nuclear moisture-density gauge is a type of instrument for measuring density and moisture of the material in a relatively thin zone beneath a surface of the material by using low activity of neutron and gamma radiation source. Density and moisture content data of the compacted layers are needed to determine the degree of compaction of soils, aggregate, concrete, asphalt or other materials used in civil engineering works. A gamma radiation source is mounted inside gauge housing with the source rod vertically extended to various depth positions. Direct transmission gamma radiation technique is used to obtain the count reading for the number of photons emitted before it is converted into density reading by microprocessor. This paper presents the inspection technique and results for the measurement of soil moisture and density carried out at potential site for mineral processing plant, Malaysian Nuclear Agency. Primarily, the experiment was conducted to ensure the compaction of ground is suitable for the plant construction. From the calculation, the percentages of soil wet density compaction (%WD Compact) are within acceptable limits with respect to the standard compacted wet soil density measured in the laboratory.
Bell, W.A. Jr.; Love, L.O.; Prater, W.K.
1958-01-28
An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.
Galactic water vapor emission: further observations of variability.
Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C
1969-10-10
Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.
Selective laser vaporization of polypropylene sutures and mesh
NASA Astrophysics Data System (ADS)
Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.
2012-02-01
Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
Ade, P. A. R.; Aghanim, N.; Argüeso, F.; ...
2016-09-20
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. Also, it consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilitiesmore » than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. Finally, the improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).« less
A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering
NASA Astrophysics Data System (ADS)
Corvan, D. J.; Zepf, M.; Sarri, G.
2016-09-01
γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.
Planck 2015 results: XXVI. The Second Planck Catalogue of Compact Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, P. A. R.; Aghanim, N.; Argüeso, F.
The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. Also, it consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilitiesmore » than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. Finally, the improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).« less
NASA Astrophysics Data System (ADS)
Chhetri, R.; Ekers, R. D.; Morgan, J.; Macquart, J.-P.; Franzen, T. M. O.
2018-06-01
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point (<0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above ˜3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
NASA Astrophysics Data System (ADS)
Pankine, Alexey A.; Tamppari, Leslie K.; Smith, Michael D.
2010-11-01
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the 'cold' surface areas in the North polar region ( Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO 2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO 2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.
Compact X-ray Light Source Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.
2012-12-01
This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.
Xu, P; Zhao, L N; Lv, X J; Lu, J; Yuan, Y; Zhao, G; Zhu, S N
2009-06-08
1W quasi-white-light source has been generated from a single lithium tantalate with cascaded domain modulation. The quasi-white-light is combined by proper proportion of the red, green and blue laser light. The red and the blue result from a compact self-sum frequency optical parametric oscillation when pumped by a single green laser. The efficiency of quasi-white-light from the green pump reaches 27%. This compact design can be employed not only as a stable and powerful RGB light source but also an effective blue laser generator.
Tests of New NIRS Compact ECR Ion Source for Carbon Therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-03-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power, good stability and long operation time without maintenance (one year or more). Based on the performance of the proto type compact source, a 10 GHz compact ECR ion source with all permanent magnets has been developed. Peak values of the mirror magnetic field along the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, respectively, while the minimum B strength is 0.25 T. The source has a diameter of 320 mm and a length of 295 mm. The result of beam tests showed that a C4+ intensity of 530 μA was obtained under an extraction voltage of 40 kV. This paper describes the experimental results for the new source.
Inverse compton light source: a compact design proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitrick, Kirsten Elizabeth
In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgarten, C.; Barchetti, A.; Einenkel, H.
2011-05-15
A compact electron cyclotron resonance proton source has been developed and installed recently at thePaul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10 - 12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.
Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P
2014-06-01
A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide. Copyright © 2014 Elsevier B.V. All rights reserved.
Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources
Garetano, Gary; Gochfeld, Michael; Stern, Alan H.
2006-01-01
Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659
Stratospheric water vapor in the NCAR CCM2
NASA Technical Reports Server (NTRS)
Mote, Philip W.; Holton, James R.
1992-01-01
Results are presented of the water vapor distribution in a 3D GCM with good vertical resolution, a state-of-the-art transport scheme, and a realistic water vapor source in the middle atmosphere. In addition to water vapor, the model transported methane and an idealized clock tracer, which provides transport times to and within the middle atmosphere. The water vapor and methane distributions are compared with Nimbus 7 SAMS and LIMS data and with in situ measurements. It is argued that the hygropause in the model is maintained not by 'freeze-drying' at the tops of tropical cumulonimbus, but by a balance between two sources and one sink. Since the southern winter dehydration is unrealistically intense, this balance most likely does not resemble the balance in the real atmosphere.
Hollow spherical shell manufacture
O'Holleran, T.P.
1991-11-26
A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.
Hollow spherical shell manufacture
O'Holleran, Thomas P.
1991-01-01
A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.
NASA Technical Reports Server (NTRS)
Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel
1993-01-01
Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.
Compact range for variable-zone measurements
Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.
1988-08-02
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.
Compact range for variable-zone measurements
Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.
1988-01-01
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.
Kantsyrev, V L; Chuvatin, A S; Rudakov, L I; Velikovich, A L; Shrestha, I K; Esaulov, A A; Safronova, A S; Shlyaptseva, V V; Osborne, G C; Astanovitsky, A L; Weller, M E; Stafford, A; Schultz, K A; Cooper, M C; Cuneo, M E; Jones, B; Vesey, R A
2014-12-01
A compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources is experimentally demonstrated in a configuration with a central target and tailored shine shields at a 1.7-MA Zebra generator. Driving in parallel two magnetically decoupled compact double-planar-wire Z pinches has demonstrated the generation of synchronized x-ray bursts that correlated well in time with x-ray emission from a central reemission target. Good agreement between simulated and measured hohlraum radiation temperature of the central target is shown. The advantages of compact hohlraum design applications for multi-MA facilities are discussed.
Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells
1999-05-05
stabilized zirconia but are equally applicable to components, have been developed. Halogen com- other oxide electrolytes. pounds such as ZrCl4 and YC13...substrates. They used ZrCl4 and an oxygen source reactant. EVD is a two-step YC13 vapor mixtures as the metal compound sources process. The first step...thin zirconia layers on ited film. In this step oxygen ions formed on the porous alumina substrates. ZrCl4 and YC13 vapor water vapor side of the
Neutron Yield With a Pulsed Surface Flashover Deuterium Source
NASA Astrophysics Data System (ADS)
Guethlein, G.; Falabella, S.; Sampayan, S. E.; Meyer, G.; Tang, V.; Kerr, P.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact, low average power ion source is needed. Towards that end, we are testing a high current, pulsed surface flashover ion source, with deuterated titanium as the spark contacts. Neutron yield and source lifetime data will be presented using a low voltage (<100 kV) deuterated target. With 20 ns spark drive pulses we have shown >106 neutrons/s with 1 kHz PRF
NASA Astrophysics Data System (ADS)
Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T.
2012-11-01
Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control ±10K around 1500°C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.
Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources
NASA Astrophysics Data System (ADS)
Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.
2012-01-01
The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.
A two-dimensional analytical model of vapor intrusion involving vertical heterogeneity.
Yao, Yijun; Verginelli, Iason; Suuberg, Eric M
2017-05-01
In this work, we present an analytical chlorinated vapor intrusion (CVI) model that can estimate source-to-indoor air concentration attenuation by simulating two-dimensional (2-D) vapor concentration profile in vertically heterogeneous soils overlying a homogenous vapor source. The analytical solution describing the 2-D soil gas transport was obtained by applying a modified Schwarz-Christoffel mapping method. A partial field validation showed that the developed model provides results (especially in terms of indoor emission rates) in line with the measured data from a case involving a building overlying a layered soil. In further testing, it was found that the new analytical model can very closely replicate the results of three-dimensional (3-D) numerical models at steady state in scenarios involving layered soils overlying homogenous groundwater sources. By contrast, by adopting a two-layer approach (capillary fringe and vadose zone) as employed in the EPA implementation of the Johnson and Ettinger model, the spatially and temporally averaged indoor concentrations in the case of groundwater sources can be higher than the ones estimated by the numerical model up to two orders of magnitude. In short, the model proposed in this work can represent an easy-to-use tool that can simulate the subsurface soil gas concentration in layered soils overlying a homogenous vapor source while keeping the simplicity of an analytical approach that requires much less computational effort.
CRISM Limb Observations of Aerosols and Water Vapor
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.
2009-01-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.
Studies of material and process compatibility in developing compact silicon vapor chambers
NASA Astrophysics Data System (ADS)
Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.
2013-06-01
The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.
The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1
NASA Technical Reports Server (NTRS)
Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.
2011-01-01
We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.
Very high-resolution observations of compact radio sources in the directions of supernova remnants
NASA Technical Reports Server (NTRS)
Geldzahler, B. J.; Shaffer, D. B.
1981-01-01
Compact radio sources whose positions lie within the outlines of supernova remnants may be the stellar remnants of supernova explosions and, if they are related to the supernova remnants, may be used to explore the nature of any morphological connection between the Galactic and extragalactic radio sources. Three such compact sources, G 127.11+0.54, CL 4, and 2051+433, have been observed at 10.65 GHz with an array of very long baseline interferometers having elements in the USA and West Germany. The radio source 2051+433 was also observed briefly at 5.01 GHz. The measured size of CL 4 at 10.65 GHz is about 0.0005 arcsec and seems to be dominated by the effects of interstellar scattering. No fringes were seen in 2051+433, and results indicate there is no compact component of 2051+433 smaller than 0.001 arcsec radiating at 10.65 GHz above a level of about 50 mJy. The possibility is presented that G 127.11+0.54 is a Galactic object. It is found to consist of two components separated by about 0.002 arcsec and oriented perpendicular to both the radio bridge of the supernova remnant G 127.1+0.5 and the underlying optical image. G 127.11+0.54, if Galactic, lies at the extreme low-luminosity end of an apparent continuum of Galactic and extragalactic compact radio source luminosities.
Buchholz, B; Ebert, V
2014-05-01
For the direct fiber coupling of small optical measurement cells, we developed a new compact vacuum feedthrough for glass fibers and other similarly shaped objects that are compact and that offer the possibility of adjusting the fiber in longitudinal and in circular direction. The feedthrough assembly avoids compression or torsion on the fiber and thus protects, e.g., highly frangible fiber materials. In the following, we will present a brief simulation of the tightness requirements for low-pressure and low-concentration water vapor measurements and we will explain an integrated concept for a displaceable and self-adjustable, compression-free, compact, ultra-high vacuum, resealable feedthrough with good strain relief. The feedthrough has been successfully tested in a laboratory test facility and in several extractive airborne tunable diode laser absorption spectroscopy hygrometers. The leakage rate of the feedthrough presented here was tested via a helium leak searcher and was quantified further in an 8-week vacuum measurement campaign. The leakage rate is determined to be 0.41 ± 0.04 × 10(-9) hPa l/s, which--to our knowledge--is the first time a leakage rate for such a feedthrough has been quantified.
Compact range for variable-zone measurements
Burnside, W.D.; Rudduck, R.C.; Yu, J.S.
1987-02-27
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.
NASA Astrophysics Data System (ADS)
Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy
2018-05-01
By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.
3D AMR hydrosimulations of a compact source scenario for the Galactic Centre cloud G2
NASA Astrophysics Data System (ADS)
Ballone, A.; Schartmann, M.; Burkert, A.; Gillessen, S.; Plewa, P. M.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Habibi, M.; Ott, T.; George, E. M.
2018-06-01
The nature of the gaseous and dusty cloud G2 in the Galactic Centre is still under debate. We present three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations of G2, modeled as an outflow from a "compact source" moving on the observed orbit. The construction of mock position-velocity (PV) diagrams enables a direct comparison with observations and allow us to conclude that the observational properties of the gaseous component of G2 could be matched by a massive (\\dot{M}_w=5× 10^{-7} M_{⊙} yr^{-1}) and slow (50 km s-1) outflow, as observed for T Tauri stars. In order for this to be true, only the material at larger (>100 AU) distances from the source must be actually emitting, otherwise G2 would appear too compact compared to the observed PV diagrams. On the other hand, the presence of a central dusty source might be able to explain the compactness of G2's dust component. In the present scenario, 5-10 years after pericentre the compact source should decouple from the previously ejected material, due to the hydrodynamic interaction of the latter with the surrounding hot and dense atmosphere. In this case, a new outflow should form, ahead of the previous one, which would be the smoking gun evidence for an outflow scenario.
The interaction of water vapor with a lunar soil, a compacted soil, and a cinder-like rock fragment
NASA Technical Reports Server (NTRS)
Cadenhead, D. A.; Stetter, J. R.
1974-01-01
A volumetric adsorption system incorporating a pressure gauge was employed to determine nitrogen adsorption and evaluate surface areas. The water adsorption of the lunar samples was measured with the aid of a gravimetric adsorption system including a microbalance. The results obtained in the investigation for the three samples are discussed in detail, giving attention to aspects of dehydroxylation and rehydroxylation.
NASA Astrophysics Data System (ADS)
Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki
2015-01-01
Some fundamental experiments are carried out in order to develop a plasma process that will uniformly sterilize both the space and inner wall of the reactor chamber at atmospheric pressure. Air, oxygen, argon, and nitrogen are each used as the plasma source gas to which mixed vapors of water and ethanol at different ratios are added. The reactor chamber is remotely located from the plasma area and a metal mesh for eliminating charged particles is installed between them. Thus, only reactive neutral particles such as plasma-excited gas molecules and radicals are utilized. As a result, adding vapors to the source gas markedly enhances the sterilization effect. In particular, air with water and/or ethanol vapor and oxygen with ethanol vapor show more than 6-log reduction for Geobacillus stearothermophilus spores.
GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2001-01-01
The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)
2002-01-01
The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.
Wu, Rengmao; Hua, Hong; Benítez, Pablo; Miñano, Juan C.; Liang, Rongguang
2016-01-01
The energy efficiency and compactness of an illumination system are two main concerns in illumination design for extended sources. In this paper, we present two methods to design compact, ultra efficient aspherical lenses for extended Lambertian sources in two-dimensional geometry. The light rays are directed by using two aspherical surfaces in the first method and one aspherical surface along with an optimized parabola in the second method. The principles and procedures of each design method are introduced in detail. Three examples are presented to demonstrate the effectiveness of these two methods in terms of performance and capacity in designing compact, ultra efficient aspherical lenses. The comparisons made between the two proposed methods indicate that the second method is much simpler and easier to be implemented, and has an excellent extensibility to three-dimensional designs. PMID:29092336
Observations of Metallic Species in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; Potter, Andrew E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Anderson, Carrie M.; Burger, Matthew H.
2010-01-01
From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2006-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.
Scheffler, Stefanie; Dieken, Hauke; Krischenowski, Olaf; Förster, Christine; Branscheid, Detlev; Aufderheide, Michaela
2015-04-08
E-cigarettes are emerging products, often described as "reduced-risk" nicotine products or alternatives to combustible cigarettes. Many smokers switch to e-cigarettes to quit or significantly reduce smoking. However, no regulations for e-cigarettes are currently into force, so that the quality and safety of e-liquids is not necessarily guaranteed. We exposed primary human bronchial epithelial cells of two different donors to vapor of e-cigarette liquid with or without nicotine, vapor of the carrier substances propylene glycol and glycerol as well as to mainstream smoke of K3R4F research cigarettes. The exposure was done in a CULTEX® RFS compact module, allowing the exposure of the cells at the air-liquid interface. 24 h post-exposure, cell viability and oxidative stress levels in the cells were analyzed. We found toxicological effects of e-cigarette vapor and the pure carrier substances, whereas the nicotine concentration did not have an effect on the cell viability. The viability of mainstream smoke cigarette exposed cells was 4.5-8 times lower and the oxidative stress levels 4.5-5 times higher than those of e-cigarette vapor exposed cells, depending on the donor. Our experimental setup delivered reproducible data and thus provides the opportunity for routine testing of e-cigarette liquids to ensure safety and quality for the user.
Developments toward a Low-Cost Approach for Long-Term, Unattended Vapor Intrusion Monitoring
Tolley, William K.
2014-01-01
There are over 450,000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these site stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors. PMID:24903107
VLBI observations of galactic nuclei at 18 centimeters - NGC 1052, NGC 4278, M82, and M104
NASA Technical Reports Server (NTRS)
Shaffer, D. B.; Marscher, A. P.
1979-01-01
Compact radio sources about a light year in size have been detected in the nuclei of the galaxies NGC 1052, NGC 3034 (M82), NGC 4278, and NGC 4594 (M104) at a wavelength of 18 cm. The compact nucleus detected in M81 at 6 cm was not seen at 18 cm. The compact source in M82 is unique among extragalactic sources in its size-spectrum relationship. It is either broadened by scattering within M82 or it lies behind, and is absorbed by, an H II region. In these galaxies, the size of the nuclear radio source at 18 cm is larger than it is at higher frequencies. The nucleus of the giant radio galaxy DA 240 was not detected.
Chemical vapor deposition of fluorine-doped zinc oxide
Gordon, Roy G.; Kramer, Keith; Liang, Haifan
2000-06-06
Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.
Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)
2001-01-01
Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is correlated with total precipitation. There is a general positive correlation between local evaporation and local precipitation, but it can be weaker because large evaporation can occur when precipitation is inhibited. In India, the local source of precipitation is a small percentage of the precipitation owing to the dominance of the atmospheric transport of oceanic water. The southern Indian Ocean provides a key source of water for both the Indian continent and the Sahelian region.
A Compact Source of Flash-Corona Discharge for Biomedical Applications
NASA Astrophysics Data System (ADS)
Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.
2018-01-01
A compact source of low-temperature plasma for biological and medical applications is proposed, which operates at kilohertz frequencies in the regime of flash-corona discharge with an energy of 0.1 mJ/pulse. The plasma source was tested in application to plasma pretreatment of green salad seeds. Plasma-treated seeds exhibited increased (by about 25%) germination speed as compared to that in the untreated control.
Compact 2.45 GHz ECR Ion Source for generation of singly-charged ions
NASA Astrophysics Data System (ADS)
Fatkullin, Riyaz; Bogomolov, Sergey; Kuzmenkov, Konstantin; Efremov, Andrey
2018-04-01
2.45 GHz ECR ion sources are widely used for production of protons, single charged heavy ions and secondary radioactive ion beams. This paper describes the development of a compact ECR ion source based on 2.45 GHz coaxial resonator. The first results of extracted current measurements at different resonator configuration as a function of UHF frequency, power and gas flow are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less
Shapeable short circuit resistant capacitor
Taylor, Ralph S.; Myers, John D.; Baney, William J.
2015-10-06
A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.
NASA Astrophysics Data System (ADS)
Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm
2018-02-01
The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.
Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.; ...
2018-01-12
Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenaway, Ann L.; Bachman, Benjamin F.; Boucher, Jason W.
Ga 1–xIn xP is a technologically important III–V ternary semiconductor widely utilized in commercial and record-efficiency solar cells. We report the growth of Ga 1–xIn xP by water-vapor-mediated close-spaced vapor transport. Because growth of III–V semiconductors in this system is controlled by diffusion of metal oxide species, we find that congruent transport from the mixed powder source requires complete annealing to form a single alloy phase. Growth from a fully alloyed source at water vapor concentrations of ~7000 ppm in H 2 at 850 °C affords smooth films with electron mobility of 1070 cm 2 V –1 s –1 andmore » peak internal quantum efficiency of ~90% for carrier collection in a nonaqueous photoelectrochemical test cell.« less
NASA Astrophysics Data System (ADS)
Jagodzinski, Jeremy James
2007-12-01
The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change in the velocity of the flow under investigation results in a change in the detected modulated absorption signal. This change in the detected signal provides a quantifiable measure of the Doppler frequency shift, and hence the velocity in the probe volume, provided that the laser source exhibits acceptable levels of frequency stability (determined by the magnitude of the velocities being measured). An extended cavity diode laser (ECDL) in the Littrow configuration provides frequency tunable, relatively narrow-linewidth lasing for the MFRS velocimeter. Frequency stabilization of the ECDL is provided by a proportional-integral-differential (PID) controller based on an error signal in the reference arm of the experiment. The optical power of the Littrow laser source is amplified by an antireflection coated (AR coated) broad stripe diode laser. The single-mode, frequency-modulatable, frequency-stable O(50 mW) of optical power provided by this extended cavity diode laser master oscillator power amplifier (ECDL-MOPA) system provided sufficient scattering signal from a condensing jet of CO2 to implement the MFRS technique in the frequency-locked mode of operation.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. II. IMAGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlot, P.; Boboltz, D. A.; Fey, A. L.
2010-05-15
We have measured the submilliarcsecond structure of 274 extragalactic sources at 24 and 43 GHz in order to assess their astrometric suitability for use in a high-frequency celestial reference frame (CRF). Ten sessions of observations with the Very Long Baseline Array have been conducted over the course of {approx}5 years, with a total of 1339 images produced for the 274 sources. There are several quantities that can be used to characterize the impact of intrinsic source structure on astrometric observations including the source flux density, the flux density variability, the source structure index, the source compactness, and the compactness variability.more » A detailed analysis of these imaging quantities shows that (1) our selection of compact sources from 8.4 GHz catalogs yielded sources with flux densities, averaged over the sessions in which each source was observed, of about 1 Jy at both 24 and 43 GHz, (2) on average the source flux densities at 24 GHz varied by 20%-25% relative to their mean values, with variations in the session-to-session flux density scale being less than 10%, (3) sources were found to be more compact with less intrinsic structure at higher frequencies, and (4) variations of the core radio emission relative to the total flux density of the source are less than 8% on average at 24 GHz. We conclude that the reduction in the effects due to source structure gained by observing at higher frequencies will result in an improved CRF and a pool of high-quality fiducial reference points for use in spacecraft navigation over the next decade.« less
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
A simple physical model for X-ray burst sources
NASA Technical Reports Server (NTRS)
Joss, P. C.; Rappaport, S.
1977-01-01
In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.
InP-based compact transversal filter for monolithically integrated light source array.
Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki
2014-04-07
We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.
29 CFR 1915.32 - Toxic cleaning solvents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... space. (2) Either natural ventilation or mechanical exhaust ventilation shall be used to remove the vapor at the source and to dilute the concentration of vapors in the working space to a concentration which is safe for the entire work period. (3) Employees shall be protected against toxic vapors by...
Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model
Riehle, J.R.; Miller, T.F.; Bailey, R.A.
1995-01-01
Previous models of degassing, cooling and compaction of rhyolitic ash flow deposits are combined in a single computational model that runs on a personal computer. The model applies to a broader range of initial and boundary conditions than Riehle's earlier model, which did not integrate heat and mass flux with compaction and which for compound units was limited to two deposits. Model temperatures and gas pressures compare well with simple measured examples. The results indicate that degassing of volatiles present at deposition occurs within days to a few weeks. Compaction occurs for weeks to two to three years unless halted by devitrification; near-emplacement temperatures can persist for tens of years in the interiors of thick deposits. Even modest rainfall significantly chills the upper parts of ash deposits, but compaction in simple cooling units ends before chilling by rainwater influences cooling of the interior of the sheet. Rainfall does, however, affect compaction at the boundaries of deposits in compound cooling units, because the influx of heat from the overlying unit is inadequate to overcome heat previously lost to vaporization of water. Three density profiles from the Matahina Ignimbrite, a compound cooling unit, are fairly well reproduced by the model despite complexities arising from numerous cooling breaks. Uncertainties in attempts to correlate in detail among the profiles may be the result of the non-uniform distribution of individual deposits. Regardless, it is inferred that model compaction is approximately valid. Thus the model should be of use in reconstructing the emplacement history of compound ash deposits, for inferring the depositional environments of ancient deposits and for assessing how long deposits of modern ash flows are capable of generating phreatic eruptions or secondary ash flows. ?? 1995 Springer-Verlag.
THE POPULATION OF COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbrich, J.; Meingast, S.; Rivilla, V. M.
We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30 hr single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 μ Jy bm{sup −1}, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The newmore » data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than ±0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.« less
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; Tsang, Y. W.
2001-12-01
Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high-permeability wing heater boreholes and escapes the test block through an open bulkhead that connects the HD to the outside world. We show that this vapor transport makes a significant difference in the validation of numerical models against TH processes in the DST. A huge volume of data, including changes in temperature and saturation of the rock, has been collected from the DST. Sophisticated conceptual and numerical models, based on the TOUGH2 simulator, have been developed to analyze these data and to help develop a better understanding of various aspects of coupled TH processes in unsaturated fractured tuff. In general, these models have predicted a close match between measured and simulated results, indicating a good representation of the underlying physical processes. However, there are subtle differences in the predictions from these models. Of particular interest here are two models: One in which vapor transport was considered through the natural fractures only, and the other in which vapor transport through the boreholes housing the wing heaters was included in addition to that through natural fractures. Direct statistical comparison of simulated and measured temperatures from more than 1,700 sensors yielded a mean error of 3-4oC for the first model, indicating that less heat was retained in the test block than that predicted by the model. On the other hand, a similar statistical comparison yielded a mean error of 1-2oC for the second model, suggesting that inclusion of vapor loss through the boreholes produces results closer to the measured data.
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.
2008-11-01
Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.
Lahann, R.W.; Swarbrick, R.E.
2011-01-01
Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.
Wallace, P.J.; Gerlach, T.M.
1994-01-01
Sulfur dioxide (SO2) released by the explosive eruption of Mount Pinatubo on 15 June 1991 had an impact on climate and stratospheric ozone. The total mass of SO2 released was much greater than the amount dissolved in the magma before the eruption, and thus an additional source for the excess SO2 is required. Infrared spectroscopic analyses of dissolved water and carbon dioxide in glass inclusions from quartz phenocrysts demonstrate that before eruption the magma contained a separate, SO2-bearing vapor phase. Data for gas emissions from other volcanoes in subduction-related arcs suggest that preeruptive magmatic vapor is a major source of the SO2 that is released during many volcanic eruptions.
Takenaka, T; Kiriyama, R; Muramatsu, M; Kitagawa, A; Uchida, T; Kurisu, Y; Nozaki, D; Yano, K; Yoshida, Y; Sato, F; Kato, Y; Iida, T
2012-02-01
An electron cyclotron resonance ion source (ECRIS) is used to generate multicharged ions for many kinds of the fields. We have developed an evaporator by using induction heating method that can generate pure vapor from solid state materials in ECRIS. We develop the new matching and protecting circuit by which we can precisely control the temperature of the induction heating evaporator. We can control the temperature within ±15 °C around 1400 °C under the operation pressure about 10(-4) Pa. We are able to use this evaporator for experiment of synthesizing process to need pure vapor under enough low pressure, e.g., experiment of generation of endohedral Fe-fullerene at the ECRIS.
Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.
2002-01-01
A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.
Compact permanent magnet H⁺ ECR ion source with pulse gas valve.
Iwashita, Y; Tongu, H; Fuwa, Y; Ichikawa, M
2016-02-01
Compact H(+) ECR ion source using permanent magnets is under development. Switching the hydrogen gas flow in pulse operations can reduce the gas loads to vacuum evacuation systems. A specially designed piezo gas valve chops the gas flow quickly. A 6 GHz ECR ion source equipped with the piezo gas valve is tested. The gas flow was measured by a fast ion gauge and a few ms response time is obtained.
A new technique for ground simulation of hypervelocity debris
NASA Astrophysics Data System (ADS)
Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.
1995-02-01
A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.
Method of making AlInSb by metal-organic chemical vapor deposition
Biefeld, Robert M.; Allerman, Andrew A.; Baucom, Kevin C.
2000-01-01
A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.
Vertical Distribution of Aersols and Water Vapor Using CRISM Limb Observations
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd
2011-01-01
Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of C02 (or surface pressure) and H20 gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 run for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available from aerosol scattering.
NASA Astrophysics Data System (ADS)
Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.
2017-10-01
At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.
Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development
NASA Astrophysics Data System (ADS)
Warren, Zachary Aron
Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).
A compact time-of-flight mass spectrometer for ion source characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L., E-mail: l.chen03@gmail.com; Wan, X.; Jin, D. Z.
2015-03-15
A compact time-of-flight mass spectrometer with overall dimension of about 413 × 250 × 414 mm based on orthogonal injection and angle reflection has been developed for ion source characterization. Configuration and principle of the time-of-flight mass spectrometer are introduced in this paper. The mass resolution is optimized to be about 1690 (FWHM), and the ion energy detection range is tested to be between about 3 and 163 eV with the help of electron impact ion source. High mass resolution and compact configuration make this spectrometer useful to provide a valuable diagnostic for ion spectra fundamental research and study themore » mass to charge composition of plasma with wide range of parameters.« less
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.
Kerdtongmee, P; Srinoum, D; Nisoa, M
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
Development of a compact permanent magnet helicon plasma source for ion beam bioengineering
NASA Astrophysics Data System (ADS)
Kerdtongmee, P.; Srinoum, D.; Nisoa, M.
2011-10-01
A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.
Mass spectrometry for water vapor measurements in the UT/LS
NASA Astrophysics Data System (ADS)
Kaufmann, S.; Voigt, C.; Schäuble, D.; Schäfler, A.; Schlager, H.; Thornberry, T. D.; Fahey, D. W.
2012-12-01
Water vapor in the lower stratosphere plays a crucial role for the atmospheric radiation budget (Solomon et al., 2011). However, large uncertainties remain in measuring atmospheric water vapor mixing ratios below 10 ppmv typical for the lower stratosphere. To this end, we have developed the Atmospheric Ionization Mass Spectrometer (AIMS) for the accurate and fast detection of water vapor in the UT/LS from aircraft. In the AIMS instrument atmospheric air is directly ionized in a discharge ion source and the resulting water vapor clusters H3O+(H2O)n (n = 0..3) are detected with a linear quadrupole mass spectrometer as a direct measure of the atmospheric water vapor mixing ratio. AIMS is calibrated in-flight with a H2O calibration source using the catalytic reaction of H2 and O2 on a heated platinum surface to form gaseous H2O. This calibration setup combined with the water vapor mass spectrometry offers a powerful technical development in atmospheric hygrometry, enriching existing H2O measurement techniques by a new independent method. Here, we present AIMS water vapor measurements performed during the CONCERT2011 campaign (Contrail and Cirrus Experiment) with the DLR research aircraft Falcon. In September 2011 a deep stratospheric intrusion was probed over northern Europe with a dynamical tropopause lowered down to 6 km. We found sharp humidity gradients between tropospheric and stratospheric air at the edge of the tropopause fold, which we crossed 4 times at altitudes between 6 and 11 km. In the center of the tropopause fold, we measured water vapor mixing ratios down to 4 ppmv. The observed water vapor distribution is compared to water vapor analysis fields of the ECMWF's Integrated Forecast System (IFS) to evaluate the representation water vapor in this specific meteorological situation.
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-11-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.
Condensation induced water hammer driven sterilization
Kullberg, Craig M.
2004-05-11
A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises
1993-01-01
A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.
Using the World's Tallest Barometer as a Demonstration Apparatus
NASA Astrophysics Data System (ADS)
Bennett, T. E.
2016-12-01
The barometer has been around since the early 1640's when Italian scientists Berte inadvertently made a water barometer and Torricelli purposely made a mercury barometer. A water barometer has the problem of high vapor pressure, so that it does not maintain a good vacuum above the water column unless continually vacuum pumped. The high density of mercury and its low vapor pressure allows a mercury barometer to be a compact and accurate lab apparatus. The tall barometer at Portland State University's Maseeh College of Engineering atrium makes use of doubly distilled synthetic vacuum pump oil as the working fluid. The fluid has a specific gravity of 0.83 and very low vapor pressure. The nominal height of this barometer is 12.45m, with excursions of +/- 0.40m. This barometer is used in the Civil Engineering Fluids Lab as a lab apparatus and it is also used during general tours of the building. With the placement of the tall barometer in the atrium of the Engineering Building, the barometer is very visible to all PSU engineering students and visitors to the building.
Compact diode laser source for multiphoton biological imaging
Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.
2016-01-01
We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420
Toward the Realization of a Compact Chemical Sensor Platform using Quantum Cascade Lasers
2015-09-01
bromide (KBr) beamsplitter and a mercury cadmium telluride ( MCT )-A (narrow band – 650 cm-1 cutoff) detector . Each spectrum was acquired at a resolution...focuses on increasing speed, sensitivity, and selectivity, while reducing size and cost. Although the current state-of-the-art vapor detector (Joint...Chemical Agent Detector (JCAD)) is lightweight, handheld, and easily attaches to a belt, it still provides added bulk to a soldier on foot patrol. Both
The Milky Way Project: What are Yellowballs?
NASA Astrophysics Data System (ADS)
Kerton, C. R.; Wolf-Chase, G.; Arvidsson, K.; Lintott, C. J.; Simpson, R. J.
2015-02-01
Yellowballs are a collection of approximately 900 compact, infrared sources identified and named by volunteers participating in the Milky Way Project (MWP), a citizen science project that uses GLIMPSE/MIPSGAL images from Spitzer to explore topics related to Galactic star formation. In this paper, through a combination of catalog cross-matching and infrared color analysis, we show that yellowballs are a mix of compact star-forming regions, including ultra-compact and compact H II regions, as well as analogous regions for less massive B-type stars. The resulting MWP yellowball catalog provides a useful complement to the Red MSX Source survey. It similarly highlights regions of massive star formation, but the selection of objects purely on the basis of their infrared morphology and color in Spitzer images identifies a signature of compact star-forming regions shared across a broad range of luminosities and, by inference, masses. We discuss the origin of their striking mid-infrared appearance and suggest that future studies of the yellowball sample will improve our understanding of how massive and intermediate-mass star-forming regions transition from compact to more extended bubble-like structures.
Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John
2006-01-01
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
GaIn(N)As/GaAs VCSELs emitting in the 1.1-1.3 μm range
NASA Astrophysics Data System (ADS)
Grenouillet, L.; Duvaut, P.; Olivier, N.; Gilet, P.; Grosse, P.; Poncet, S.; Philippe, P.; Pougeoise, E.; Fulbert, L.; Chelnokov, A.
2006-07-01
In the field of datacom, 10 Gbit/s sources with a good coupling in monomode silica fibers, whose dispersion minimum occurs at 1.3 μm, are required. Vertical Cavity Surface Emitting Lasers (VCSELs) emitting at 1.3 μm are key components in this field thanks to their compactness, their ability of being operated at high frequencies, their low threshold current and their low beam divergence. Such devices emitting in this wavelength range have been demonstrated using different materials such as strained GaInAs/GaAs quantum wells [1-3], GaInNAs/GaAs quantum wells [4-7], InAs/GaAs quantum dots [8, 9], and antimonides [10], using either molecular beam epitaxy (MBE) or metalorganic vapor phase epitaxy (MOVPE). In the emerging field of photonics on CMOS, there is a need to bond efficient III-V laser sources on SOI wafers. These components should operate at small voltage and current, have a small footprint, and be efficiently couple to Si waveguides, these latter being transparent above 1.1 μm. Since these requirements resemble VCSEL properties, the development of VCSEL emitting above 1.1 μm could therefore benefit to future new sources for photonics on silicon applications. In this context we developed GaAs-based VCSELs emitting in the 1.1 μm - 1.3 μm range with GaInAs/GaAs or GaInNAs/GaAs quantum wells (QWs) as the active materials.
New Evidence for a Black Hole in the Compact Binary Cygnus X-3
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Titarchuk, Lev; Shaposhnikov, Nikolai
2010-01-01
The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive. Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of pa.ranietern the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than 4.2 solar mass thus clearly indicative of a black hole and as such resolving a longstanding issue. The full range of uncertainty in our analysis and from using a. range of recently published distance estimates constrains the compact object mass to lie between 4.2 solar mass and 14.4 solar mass. Our favored estimate, based on a 9.0 kpc distance estimate is approx. l0 solar mass, with the. error margin of 3.2 solar masses. This result may thus pose challenges to shared-envelope evolutionary models of compact binaries. as well as establishing Cygnus X-3 as the first confirmed accretion-powered galactic gamma: ray source.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
Method and apparatus for conducting variable thickness vapor deposition
Nesslage, G.V.
1984-08-03
A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.
Vaporization of a mixed precursors in chemical vapor deposition for YBCO films
NASA Technical Reports Server (NTRS)
Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises
1995-01-01
Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.
Study on Sources of Volatile Organic Compounds (CMB) in Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Liu, Y.; Shao, M.; Lu, S.; Chang, C.; Wang, C. J.; Wang, B.
2007-05-01
The profiles of major Volatile organic compounds (VOCs) sources including vehicle exhaust, gasoline vapor, painting, asphalt, liquefied petroleum gas (LPG), biomass burning and petrochemical industry in Pearl River Delta were experimentally determined. Source samples were taken by using dilution chamber for mobile and stationary sources, laboratory simulation for biomass burning. The concentrations of 108 VOC species of sources were quantified by using canister with pre-concentration-GC/MS system, from which 52 PAMS hydrocarbons and one kind of chlorinated hydrocarbon were deployed to build the source profiles for source apportionment of VOCs. Based the measurement of source profiles, the possible tracers for various emission sources were identified, e.g 2-methylbutane and 1,3-butadiene were the tracers for motor vehicle exhaust, the characteristic compounds of architectural and furnishing coatings are aromatics such as toluene and m/p-xylene; the light hydrocarbons, namely n-butane, trans-2-butene and n-pentane, dominated the composition of gasoline vapor; and the nonane, decane and undecane are found to represent the asphalt emissions etc.. The CMB receptor model was applied to source apportionment of 58 hydrocarbons measured at seven sites during the PRD campaign, 2004. The 12 kinds of VOC sources include gasoline/diesel-powered vehicle exhaust, gasoline/diesel headspace vapor, vehicle evaporative emissions, liquid petroleum gas (LPG) leakage, painting vapors, asphalt emission from paved road, biomass burning, coal burning, chemical industry and petroleum refinery. Vehicle exhaust was the largest sources contributing over half of the ambient VOCs at the three urban sites (GuangZhou, FoShan and ZhongShan). LPG leakage played an important role with the percentage of 8- 16% in most sites in PRD. Contributions from solvents usage were highest at DongGuan, an industrial site. At XinKen, the solvents and coatings had the largest percentage of 31% probably due to the influence of its upwind area of DongGuan. The local biomass burning was also found to be a noticeable source at XK.
A 10-cm Discharge-Length He-ZnII White Light Laser
NASA Astrophysics Data System (ADS)
Sasaki, Wakao; Itani, Kimihiko; Ohta, Tatehisa
1989-06-01
We demonstrate a unique, efficient white light laser source realized by the He-Zn mixture with substantially short discharge length of 10 cm. The white laser light can be made up of only two wavelengths at simultaneous oscillation --- 492.4 nm (4f2Fo712_4d2D5/2) and 610.2 nm (5d 2D 512 -5 2p03/2 The ideal white color region for human eyes lies just between these two wavelengths in the chromaticity diagram. Therefore, such a compact white light laser will be useful for some specific purposes such as a white color standard. Moreover, we have analyzed the proper relation between the electron energy and the discharge sustaining voltage which appears as a function of the Zn vapor pressure measured at the terminal of the tube, considering the Druyvesteyn distribution of electron energy. Then we succeeded to operate a He-Zn laser tube in white light with 10-cm discharge length. The derived output beam was estimated to be about 0.5 mW.
J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis
NASA Astrophysics Data System (ADS)
López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration
2017-10-01
We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.
Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging
Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.
Epitaxial Deposition Of Germanium Doped With Gallium
NASA Technical Reports Server (NTRS)
Huffman, James E.
1994-01-01
Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.
A new continuous light source for high-speed imaging
NASA Astrophysics Data System (ADS)
Paton, R. T.; Hall, R. E.; Skews, B. W.
2017-02-01
Xenon arc lamps have been identified as a suitable continuous light source for high-speed imaging, specifically high-speed Schlieren and shadowgraphy. One issue when setting us such systems is the time that it takes to reduce a finite source to the approximation of a point source for z-type schlieren. A preliminary design of a compact compound lens for use with a commercial Xenon arc lamp was tested for suitability. While it was found that there is some dimming of the illumination at the spot periphery, the overall spectral and luminance distribution of the compact source is quite acceptable, especially considering the time benefit that it represents.
Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis
NASA Astrophysics Data System (ADS)
Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.
2013-12-01
Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.
Chemical vapor infiltration using microwave energy
Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.
1993-01-01
A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.
A low-power reversible alkali atom source
NASA Astrophysics Data System (ADS)
Kang, Songbai; Mott, Russell P.; Gilmore, Kevin A.; Sorenson, Logan D.; Rakher, Matthew T.; Donley, Elizabeth A.; Kitching, John; Roper, Christopher S.
2017-06-01
An electrically controllable, solid-state, reversible device for sourcing and sinking alkali vapor is presented. When placed inside an alkali vapor cell, both an increase and decrease in the rubidium vapor density by a factor of two are demonstrated through laser absorption spectroscopy on 10-15 s time scales. The device requires low voltage (5 V), low power (<3.4 mW peak power), and low energy (<10.7 mJ per 10 s pulse). The absence of oxygen emission during operation is shown through residual gas analysis, indicating that Rb is not lost through chemical reaction but rather by ion transport through the designed channel. This device is of interest for atomic physics experiments and, in particular, for portable cold-atom systems where dynamic control of alkali vapor density can enable advances in science and technology.
NASA Technical Reports Server (NTRS)
Fetzer, Eric J.; Eldering, Annmarie; Lee, Sung-Yung
2005-01-01
In this presentation we address several fundamental issues in the measurement of temperature and water vapor by AIRS: accuracy, precision, vertical resolution and biases as a function of cloud amount. We use two correlative data sources. First we compare AIRS total water vapor with that from the Advanced microwave Sounding Radiometer for EOS (AMSR-E) instrument, also onboard the Aqua spacecraft. AMSRE uses a mature methodology with a heritage including the operational Special Sensor Microwave Imager (SSM/I) instruments. AIRS and AMSR-E observations are collocated and simultaneous, providing a very large data set for comparison: about 200,000 over-ocean matches daily. We show small cloud-dependent biases between AIRS and AMSR-E total water vapor for several oceanic regions. Our second correlative data source is several hundred dedicated radiosondes launched during AIRS overpasses.
NASA Technical Reports Server (NTRS)
Chen, Ming-Ming; Faghri, Amir
1990-01-01
A numerical analysis is presented for the overall performance of heat pipes with single or multiple heat sources. The analysis includes the heat conduction in the wall and liquid-wick regions as well as the compressibility effect of the vapor inside the heat pipe. The two-dimensional elliptic governing equations in conjunction with the thermodynamic equilibrium relation and appropriate boundary conditions are solved numerically. The solutions are in agreement with existing experimental data for the vapor and wall temperatures at both low and high operating temperatures.
Lofgren, E.J.
1959-04-14
This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.
Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.C.; Stiel, L.I.
1980-09-30
1,2-dichloro-1,1-difluoroethane is useful as a power fluid with particular suitability for moderate scale Rankine cycle applications based on systems with moderate temperature heat sources. The fluid is utilized in a Rankine cycle application by vaporizing the fluid by passing the same in heat exchange relationship with a heat source and utilizing the kinetic energy of the resulting expanding vapors to perform work. In this manner heat energy is converted to mechanical energy. The fluid is particularly advantageous in a dual cycle system consisting of a Rankine power cycle combined with a vapor compression cooling or heating cycle.
Wagner, Jr., Edward P.
1999-01-01
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.
Total sulfur dioxide emissions and pre-eruption vapor-saturated magma at Mount St. Helens, 1980-88
NASA Astrophysics Data System (ADS)
Gerlach, T. M.; McGee, K. A.
1994-12-01
SO2 from explosive volcanism can cause significant climatic and atmospheric impacts, but the source of the sulfur is controversial. Total ozone mapping spectrometer (TOMS), correlation spectrometer (COSPEC), and ash leachate data for Mount St. Helens from the time of the climactic eruption on 18 May 1980 to the final stages of non-explosive degassing in 1988 give a total SO2 emission of 2 Mt. COSPEC data show a sharp drop in emission rate that was apparently controlled by a decreasing rate of magma supply. A total SO2 emission of only 0.08 Mt is estimated from melt inclusion data and the conventional assumption that the main sulfur source was pre-eruption melt; commonly invoked sources of 'excess sulfur' (anhydrite decomposition, basaltic magma, and degassing of non-erupted magma) are unlikely in this case. Thus melt inclusions may significantly underestimate SO2 emissions and impacts of explosive volcanism on climate and the atmosphere. Measured CO2 emissions, together with the H2O content of melt inclusions and experimental solubility data, indicate the Mount St. Helens dacite was vapor-saturated at depth prior to ascent and suggest that a vapor phase was the main source of sulfur for the 2-Mt of SO2. A vapor source is consistent with experimental studies on the Mount St. Helens dacite and removes the need for a much debated shallow magma body.
A compact, coherent light source system architecture
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Dattoli, G.; DiPalma, E.; Einstein, J.; Milton, S. V.; Petrillo, V.; Rau, J. V.; Sabia, E.; Spassovsky, I. P.; van der Slot, P. J. M.
2016-09-01
Our team has been examining several architectures for short-wavelength, coherent light sources. We are presently exploring the use and role of advanced, high-peak power lasers for both accelerating the electrons and generating a compact light source with the same laser. Our overall goal is to devise light sources that are more accessible by industry and in smaller laboratory settings. Although we cannot and do not want to compete directly with sources such as third-generation light sources or that of national-laboratory-based free-electron lasers, we have several interesting schemes that could bring useful and more coherent, short-wavelength light source to more researchers. Here, we present and discuss several results of recent simulations and our future steps for such dissemination.
Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi
2014-10-20
Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.
Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)
2001-01-01
Numerous studies suggest that local feedback of evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote sources of water for precipitation, based on the implementation of passive constituent tracers of water vapor (termed water vapor tracers, WVT) in a general circulation model. In this case, the major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In this approach, each WVT is associated with an evaporative source region, and tracks the water until it precipitates from the atmosphere. By assuming that the regional water is well mixed with water from other sources, the physical processes that act on the WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be computed within the model simulation, and can be validated against the model's prognostic water vapor. Furthermore, estimates of precipitation recycling can be compared with bulk diagnostic approaches. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional tracers, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic 2 regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In general, most North American land regions showed a positive correlation between evaporation and recycling ratio (except the Southeast United States) and negative correlations of recycling ratio with precipitation and moisture transport (except the Southwestern United States). The Midwestern local source is positively correlated with local evaporation, but it is not correlated with water vapor transport. This is contrary to bulk diagnostic estimates of precipitation recycling. In India, the local source of precipitation is a small percentage of the precipitation owing to the dominance of the atmospheric transport of oceanic water. The southern Indian Ocean provides a key source of water for both the Indian continent and the Sahelian region.
Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment
NASA Technical Reports Server (NTRS)
Levy, Moises; Sarma, Bimal K.
1994-01-01
Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.
1992-02-21
Vapor Crystal Growth System developed in IML-1, Mercuric Iodide Crystal grown in microgravity FES/VCGS (Fluids Experiment System/Vapor Crystal Growth Facility). During the mission, mercury iodide source material was heated, vaporized, and transported to a seed crystal where the vapor condensed. Mercury iodide crystals have practical uses as sensitive X-ray and gamma-ray detectors. In addition to their excellent optical properties, these crystals can operate at room temperature, which makes them useful for portable detector devices for nuclear power plant monitoring, natural resource prospecting, biomedical applications, and astronomical observing.
A VLA SURVEY FOR FAINT COMPACT RADIO SOURCES IN THE ORION NEBULA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, Patrick D.; Eisner, Josh A.; Mann, Rita K.
We present Karl G. Jansky Very Large Array 1.3, 3.6, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster (ONC). We mosaicked 34 arcmin{sup 2} at 1.3 cm, 70 arcmin{sup 2} at 3.6 cm and 109 arcmin{sup 2} at 6 cm, containing 778 near-infrared detected young stellar objects and 190 Hubble Space Telescope -identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source, we fitted a simple free–freemore » and dust emission model to characterize the radio emission. We extrapolate the free–free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from submillimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify the variability of our sources.« less
A 1420 MHz Catalog of Compact Sources in the Northern Galactic Plane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. R.; Leahy, D. A.; Sunstrum, C.
We present a catalog of compact sources of radio emission at 1420 MHz in the northern Galactic plane from the Canadian Galactic Plane Survey. The catalog contains 72,758 compact sources with an angular size less than 3′ within the Galactic longitude range 52° < ℓ < 192° down to a 5 σ detection level of ∼1.2 mJy. Linear polarization properties are included for 12,368 sources with signals greater than 4 σ{sub QU} in the Canadian Galactic Plane Survey (CGPS) Stokes Q and U images at the position of the total intensity peak. We compare CGPS flux densities with cataloged flux densities in themore » Northern VLA Sky Survey catalog for 10,897 isolated unresolved sources with CGPS flux density greater than 4 mJy to search for sources that show variable flux density on timescales of several years. We identify 146 candidate variables that exhibit high fractional variations between the two surveys. In addition, we identify 13 candidate transient sources that have CGPS flux density above 10 mJy but are not detected in the Northern VLA Sky Survey.« less
NASA Technical Reports Server (NTRS)
Grasza, K.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
An in-situ study of the morphology of the solid-vapor interface during iodine crystal growth was done. The conditions for terrace growth, flat faces formation and retraction, competition between sources of steps, formation of protrusions, surface roughening, and defect overgrowth are demonstrated and discussed.
NASA Astrophysics Data System (ADS)
Maeda, Y.; Kumagai, H.; Lacson, R.; Figueroa, M. S.; Yamashina, T.
2012-12-01
We installed a multi-parameter monitoring network including five broadband seismometers at Taal volcano, the Philippines, where a high risk of near-future eruption is expected. The network detected more than 40,000 long-period (LP) seismic events which have a peak frequency of 0.8 Hz and a Q value of 6. Most of the events occurred in a 2-month-long swarm period of ~600 events/day. Our travel time analysis pointed to a shallow source (100-200 m) beneath the northeastern flank of the active volcanic island. To determine the source mechanism of the LP events, we performed waveform inversion. We first fixed the source location to that obtained by the travel time analysis, and performed inversion using waveforms with and without site amplification corrections and assuming four simple source geometries (a vertical crack, a horizontal crack, a vertical pipe, and a sphere). We obtained the minimum AIC value for the vertical crack source geometry using the corrected waveforms. We next performed a grid search for dip, azimuth, and the location of the tensile crack source using the corrected waveforms. We obtained small residuals for crack dips between 30 and 60 degrees at similar locations to that of the travel time analysis. We used the fluid-filled crack model to interpret the observed complex frequencies of the events. The observed waveforms of the events show a small Q value (= 6), which may be explained by bubbly basalt, bubbly water, or gas. However, since the source location is estimated to be shallow (100-200 m) and we have no evidence for an ascent of magma to such a shallow depth in the swarm period, bubbly basalt seems to be unrealistic. It seems difficult to maintain bubbly water in the inclined crack. For bubbly water, a peak frequency variation is expected to occur due to a variation of the bubble content, whereas the observed peak frequencies of the events are almost constant. The constant frequency is more easily realized by gas in a crack. We therefore examine H2O gas (vapor) for simplicity. We calculated far-field waveforms generated by an oscillation of a crack containing vapor, and applied the Sompi method to estimate Q and nondimensional frequency. The estimated Q of a fundamental longitudinal mode oscillation was similar to the observation. We obtained a reasonable crack size (188 m) from a comparison of the observed peak frequency (0.8 Hz) with the calculated nondimensional frequency of the mode. In the swarm period of the LP events, other anomalies such as large volcano deformation and significant increase of gas emission from the main crater were not observed. This feature and the crack model result above suggest an active and localized vapor supply from magma at depth to the LP source. Such a localized supply may be realized by a transportation of vapor through a fissure. If we assume that the estimated crack volume (10^2 m^3) corresponds to vapor supplied to the LP source for each event, the total vapor mass supplied throughout the swarm period is ~10^7 kg. If we assume that this amount of vapor was originated by degassing from the magma and transported to the LP source through the fissure, we can estimate a magma volume of ~10^6 m^3. We thus suggest that the LP events at Taal were triggered by degassing and transportation of vapor from a deep magma to a shallow depth through a fissure.
Probing for Pulsars: An XMM Study of the Composite SNRS G327.1-1.1 and CTA1
NASA Technical Reports Server (NTRS)
Slane, Patrick; Mushotzky, Richard F. (Technical Monitor)
2003-01-01
The subject grant is for analysis of XMM data from the supernova remnant CTA1. Our investigation centered on the study of the compact source Rx 50007.0+7302 that, based on our previous observations, appears to be a neutron star powering a wind nebula in the remnant interior. This compact source has also been suggested as the counterpart of the EGRET source 2EG J0008+7307. The analysis of the data from the compact source is complete. We find that the spectrum of the source is well described by a power law with the addition of a soft thermal component that may correspond to emission from hot polar cap regions or to cooling emission from a light element atmosphere over the entire star. There is evidence of extended emission on small spatial scales which may correspond to structure in the underlying synchrotron nebula. Extrapolation of the nonthermal emission component to gamma-ray energies yields a flux that is consistent with that of 2EG J0008+7307, thus strengthening the proposition that there is a gamma-ray emitting pulsar at the center of CTA 1. Our timing studies with the EPIC pn data revealed no evidence for pulsations, however; we set an upper limit of 61% on the pulsed fraction from this source. The results from this study were presented in a poster at the recent IAU Symposium in Sydney, Australia. A paper summarizing these results, entitled "Xray Observations of the Compact Source in CTA 1" (Slane et al.) has been submitted for publication in the Astrophysical Journal.
Compact Apparatus Grows Protein Crystals
NASA Technical Reports Server (NTRS)
Bugg, Charles E.; Delucas, Lawrence J.; Suddath, Fred L.; Snyder, Robert S.; Herren, Blair J.; Carter, Daniel C.; Yost, Vaughn H.
1989-01-01
Laboratory apparatus provides delicately balanced combination of materials and chemical conditions for growth of protein crystals. Apparatus and technique for growth based on hanging-drop method for crystallization of macromolecules. Includes pair of syringes with ganged plungers. One syringe contains protein solution; other contains precipitating-agent solution. Syringes intrude into cavity lined with porous reservoir material saturated with 1 mL or more of similar precipitating-agent solution. Prior to activation, ends of syringes plugged to prevent transport of water vapor among three solutions.
NASA Technical Reports Server (NTRS)
Alario, J. P.; Haslett, R. A.
1986-01-01
Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.
Nonlinear optical magnetometry with accessible in situ optical squeezing
Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.
2014-11-14
In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.
ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moor, A.; Frey, S.; Lambert, S. B.
2011-06-15
Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For themore » first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.« less
Mass Spectrometry Vapor Analysis for Improving Explosives Detection Canine Proficiency
2017-02-10
ionization (SESI), 8,19-21 dielectric barrier discharge ionization (DBDI), 21,22 selected-ion-flow-tube (SIFT), 23,24 and proton transfer reaction...handled only with wood- en or Teflon® spatulas to prevent static discharge . Using these precautions, we never experienced an accidental detonation...ionization (SESI) and dielectric barrier discharge ionization (DBDI) sources were used for vapor ioni- zation. Source temperature was held at 100 o C
Interstellar Broadening of Images in the Gravitational Lens Pks 1830-211
NASA Technical Reports Server (NTRS)
Jones, D. L.; Preston, R. A.; Murphy, D. W.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Costa, M. E.
1996-01-01
The remarkably strong radio gravitational lens PKS 1830-211 consists of a one arcsecond diameter Einstein ring with two bright compact (milliarcsecond) components located on opposite sides of the ring. We have obtained 22 GHz VLBA data on this source to determine the intrinsic angular sizes of the compact components. Previous VLBI observations at lower frequencies indicate that the brightness temperatures of these components are significantly lower than 10(exp 10) K (Jauncey, et al. 1991), less than is typical for compact synchrotron radio sources and less than is implied by the short timescales of flux density variations. A possible explanation is that interstellar scattering is broadening the apparent angular size of the source and thereby reducing the observed brightness temperature. Our VLBA data support this hypothesis. At 22 GHz the measured brightness temperature is at least 10(exp 11) K, and the deconvolved 2 size of the core in the southwest compact component is proportional to upsilon(sup -2) between 1.7 and 22 GHz. VLBI observations at still higher frequencies should be unaffected by interstellar scattering.
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
NASA Astrophysics Data System (ADS)
Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato
2017-02-01
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1 m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20 years, even for vapor source concentrations up to 10 g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.
Application of CFD (Fluent) to LNG spills into geometrically complex environments.
Gavelli, Filippo; Bullister, Edward; Kytomaa, Harri
2008-11-15
Recent discussions on the fate of LNG spills into impoundments have suggested that the commonly used combination of SOURCE5 and DEGADIS to predict the flammable vapor dispersion distances is not accurate, as it does not account for vapor entrainment by wind. SOURCE5 assumes the vapor layer to grow upward uniformly in the form of a quiescent saturated gas cloud that ultimately spills over impoundment walls. The rate of spillage is then used as the source term for DEGADIS. A more rigorous approach to predict the flammable vapor dispersion distance is to use a computational fluid dynamics (CFD) model. CFD codes can take into account the physical phenomena that govern the fate of LNG spills into impoundments, such as the mixing between air and the evaporated gas. Before a CFD code can be proposed as an alternate method for the prediction of flammable vapor cloud distances, it has to be validated with proper experimental data. This paper describes the use of Fluent, a widely-used commercial CFD code, to simulate one of the tests in the "Falcon" series of LNG spill tests. The "Falcon" test series was the only series that specifically addressed the effects of impoundment walls and construction obstructions on the behavior and dispersion of the vapor cloud. Most other tests, such as the Coyote and the Burro series, involved spills onto water and relatively flat ground. The paper discusses the critical parameters necessary for a CFD model to accurately predict the behavior of a cryogenic spill in a geometrically complex domain, and presents comparisons between the gas concentrations measured during the Falcon-1 test and those predicted using Fluent. Finally, the paper discusses the effect vapor barriers have in containing part of the spill thereby shortening the ignitable vapor cloud and therefore the required hazard area. This issue was addressed by comparing the Falcon-1 simulation (spill into the impoundment) with the simulation of an identical spill without any impoundment walls, or obstacles within the impoundment area.
Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants
NASA Technical Reports Server (NTRS)
Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.
1994-01-01
We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.
NASA Astrophysics Data System (ADS)
Zama, Hideaki; Morishita, Tadataka
2000-10-01
New Ba(DPM)2-amine (DPM=dipivaloylmethane) adduct compounds were attempted to be synthesized from Ba(DPM)2 and amines. Complexes obtained were evaluated based on decreases of their weight with increasing temperature by thermogravimetry. The simple vaporizing phenomenon, showing a one-step weight-reduction curve, was observed only in the case of using tetraethylenepentamine and pentaethylenehexamine (pentaen) as adduct molecules, which have a simple chain structure and five to six primary and secondary amine radicals. From the viewpoint of applicability to film growth, they have the best structure based on a survey in this study using sixteen amine molecules with distinctive structures. When we used Ba(DPM)2-pentaen as a metalorganic source for a metalorganic chemical vapor deposition method at a vaporizing temperature of 140°C, the Ba supply rate remained stable within a standard deviation of 1.6% for over 300 h.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
NASA Astrophysics Data System (ADS)
Drewnick, F.; Diesch, J.-M.; Faber, P.; Borrmann, S.
2015-09-01
The Aerodyne aerosol mass spectrometer (AMS) is a frequently used instrument for on-line measurement of the ambient sub-micron aerosol composition. With the help of calibrations and a number of assumptions on the flash vaporization and electron impact ionization processes, this instrument provides robust quantitative information on various non-refractory ambient aerosol components. However, when measuring close to certain anthropogenic or marine sources of semi-refractory aerosols, several of these assumptions may not be met and measurement results might easily be incorrectly interpreted if not carefully analyzed for unique ions, isotope patterns, and potential slow vaporization associated with semi-refractory species. Here we discuss various aspects of the interaction of aerosol particles with the AMS tungsten vaporizer and the consequences for the measurement results: semi-refractory components - i.e., components that vaporize but do not flash-vaporize at the vaporizer and ionizer temperatures, like metal halides (e.g., chlorides, bromides or iodides of Al, Ba, Cd, Cu, Fe, Hg, K, Na, Pb, Sr, Zn) - can be measured semi-quantitatively despite their relatively slow vaporization from the vaporizer. Even though non-refractory components (e.g., NH4NO3 or (NH4)2SO4) vaporize quickly, under certain conditions their differences in vaporization kinetics can result in undesired biases in ion collection efficiency in thresholded measurements. Chemical reactions with oxygen from the aerosol flow can have an influence on the mass spectra for certain components (e.g., organic species). Finally, chemical reactions of the aerosol with the vaporizer surface can result in additional signals in the mass spectra (e.g., WO2Cl2-related signals from particulate Cl) and in conditioning or contamination of the vaporizer, with potential memory effects influencing the mass spectra of subsequent measurements. Laboratory experiments that investigate these particle-vaporizer interactions are presented and are discussed together with field results, showing that measurements of typical continental or urban aerosols are not significantly affected, while measurements of semi-refractory aerosol in the laboratory, close to anthropogenic sources or in marine environments, can be biased by these effects.
NASA Technical Reports Server (NTRS)
Wright, J. S.; Fu, R.; Fueglistaler, S.; Liu, Y. S.; Zhang, Y.
2011-01-01
The relative contributions of Southeast Asian convective source regions during boreal summer to water vapor in the tropical stratosphere are examined using Lagrangian trajectories. Convective sources are identified using global observations of infrared brightness temperature at high space and time resolution, and water vapor transport is simulated using advection-condensation. Trajectory simulations are driven by three different reanalysis data sets, GMAO MERRA, ERA-Interim, and NCEP/NCAR, to establish points of consistency and evaluate the sensitivity of the results to differences in the underlying meteorological fields. All ensembles indicate that Southeast Asia is a prominent boreal summer source of tropospheric air to the tropical stratosphere. Three convective source domains are identified within Southeast Asia: the Bay of Bengal and South Asian subcontinent (MON), the South China and Philippine Seas (SCS), and the Tibetan Plateau and South Slope of the Himalayas (TIB). Water vapor transport into the stratosphere from these three domains exhibits systematic differences that are related to differences in the bulk characteristics of transport. We find air emanating from SCS to be driest, from MON slightly moister, and from TIB moistest. Analysis of pathways shows that air detrained from convection over TIB is most likely to bypass the region of minimum absolute saturation mixing ratio over the equatorial western Pacific; however, the impact of this bypass mechanism on mean water vapor in the tropical stratosphere at 68 hPa is small 0.1 ppmv). This result contrasts with previously published hypotheses, and it highlights the challenge of properly quantifying fluxes of atmospheric humidity.
Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems
NASA Technical Reports Server (NTRS)
Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)
2002-01-01
We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.
NASA Astrophysics Data System (ADS)
Tortschanoff, Andreas; Baumgart, Marcus; Kroupa, Gerhard
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) technology holds the potential for onsite real-time measurements of steel products. However, for a mobile and robust LIBS measurement system, an adequate small and ruggedized laser source is a key requirement. In this contribution, we present tests with our compact high-power laser source, which, initially, was developed for ignition applications. The CTR HiPoLas® laser is a robust diode pumped solid-state laser with a passive Q-switch with dimensions of less than 10 cm3. The laser generates 2.5-ns pulses with 30 mJ at a maximum continuous repetition rate of about 30 Hz. Feasibility of LIBS experiments with the laser source was experimentally verified with steel samples. The results show that the laser with its current optical output parameters is very well-suited for LIBS measurements. We believe that the miniaturized laser presented here will enable very compact and robust portable high-performance LIBS systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.
1980-09-02
A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less
Compact Optical Atomic Clock Based on a Two-Photon Transition in Rubidium
NASA Astrophysics Data System (ADS)
Martin, Kyle W.; Phelps, Gretchen; Lemke, Nathan D.; Bigelow, Matthew S.; Stuhl, Benjamin; Wojcik, Michael; Holt, Michael; Coddington, Ian; Bishop, Michael W.; Burke, John H.
2018-01-01
Extralaboratory atomic clocks are necessary for a wide array of applications (e.g., satellite-based navigation and communication). Building upon existing vapor-cell and laser technologies, we describe an optical atomic clock, designed around a simple and manufacturable architecture, that utilizes the 778-nm two-photon transition in rubidium and yields fractional-frequency instabilities of 4 ×10-13/√{τ (s ) } for τ from 1 to 10 000 s. We present a complete stability budget for this system and explore the required conditions under which a fractional-frequency instability of 1 ×10-15 can be maintained on long time scales. We provide a precise characterization of the leading sensitivities to external processes, including magnetic fields and fluctuations of the vapor-cell temperature and 778-nm laser power. The system is constructed primarily from commercially available components, an attractive feature from the standpoint of the commercialization and deployment of optical frequency standards.
Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria
Lukianova-Hleb, Ekaterina Y.; Campbell, Kelly M.; Constantinou, Pamela E.; Braam, Janet; Olson, John S.; Ware, Russell E.; Sullivan, David J.; Lapotko, Dmitri O.
2014-01-01
Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme nanoparticles called “hemozoin,” a unique component of all blood-stage malaria parasites, generates a transient vapor nanobubble around hemozoin in response to a short and safe near-infrared picosecond laser pulse. The acoustic signals of these malaria-specific nanobubbles provided transdermal noninvasive and rapid detection of a malaria infection as low as 0.00034% in animals without using any reagents or drawing blood. These on-demand transient events have no analogs among current malaria markers and probes, can detect and screen malaria in seconds, and can be realized as a compact, easy-to-use, inexpensive, and safe field technology. PMID:24379385
Hemozoin-generated vapor nanobubbles for transdermal reagent- and needle-free detection of malaria.
Lukianova-Hleb, Ekaterina Y; Campbell, Kelly M; Constantinou, Pamela E; Braam, Janet; Olson, John S; Ware, Russell E; Sullivan, David J; Lapotko, Dmitri O
2014-01-21
Successful diagnosis, screening, and elimination of malaria critically depend on rapid and sensitive detection of this dangerous infection, preferably transdermally and without sophisticated reagents or blood drawing. Such diagnostic methods are not currently available. Here we show that the high optical absorbance and nanosize of endogenous heme nanoparticles called "hemozoin," a unique component of all blood-stage malaria parasites, generates a transient vapor nanobubble around hemozoin in response to a short and safe near-infrared picosecond laser pulse. The acoustic signals of these malaria-specific nanobubbles provided transdermal noninvasive and rapid detection of a malaria infection as low as 0.00034% in animals without using any reagents or drawing blood. These on-demand transient events have no analogs among current malaria markers and probes, can detect and screen malaria in seconds, and can be realized as a compact, easy-to-use, inexpensive, and safe field technology.
Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates
NASA Astrophysics Data System (ADS)
Krishnamurthy, Aarti Krishna
Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.
A new mass spectrometer system for investigating laser-induced vaporization phenomena
NASA Technical Reports Server (NTRS)
Lincoln, K. A.
1974-01-01
A laser has been combined with a mass spectrometer in a new configuration developed for studies of high-temperature materials. A vacuum-lock, solid-sample inlet is mounted at one end of a cylindrical, high-vacuum chamber one meter in length with a nude ion-source, time-of-flight mass spectrometer at the opposite end. The samples are positioned along the axis of the chamber at distances up to one meter from the ion source, and their surfaces are vaporized by a pulsed laser beam entering via windows on one side of the chamber. The instrumentation along with its capabilities is described, and results from laser-induced vaporization of several graphites are presented.
Wagner, E.P. Jr.
1999-01-12
A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Chiou, E. W.; Mcmaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.
1993-01-01
Data collected by the Stratospheric Aerosol and Gas Experiment II are presented, showing annual variations of water vapor in the stratosphere and the upper troposphere. The altitude-time cross sections of water vapor were found to exhibit annually repeatable patterns in both hemispheres, with a yearly minimum in water vapor appearing in both hemispheres at about the same time, supporting the concept of a common source for stratospheric dry air. A linear regression analysis was applied to the three-year data set to elucidate global values and variations of water vapor ratio.
NASA Astrophysics Data System (ADS)
McDowell, R. E.; Giammarise, A. W.; Johnson, R. N.
1994-01-01
Over 200 operating cylinder hours were run on critical wearing engine parts. The main components tested included cylinder liners, piston rings, and fuel injector nozzles for coal/water slurry fueled operation. The liners had no visible indication of scoring nor major wear steps found on their tungsten carbide coating. While the tungsten carbide coating on the rings showed good wear resistance, some visual evidence suggests adhesive wear mode was present. Tungsten carbide coated rings running against tungsten carbide coated liners in GE 7FDL engines exhibit wear rates which suggest an approximate 500 to 750 hour life. Injector nozzle orifice materials evaluated were diamond compacts, chemical vapor deposited diamond tubes, and thermally stabilized diamond. Based upon a total of 500 cylinder hours of engine operation (including single-cylinder combustion tests), diamond compact was determined to be the preferred orifice material.
Chemical Reactions in the Processing of Mosi2 + Carbon Compacts
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.
1993-01-01
Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.
NASA Astrophysics Data System (ADS)
Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe
2018-06-01
Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.
Energy-efficient regenerative liquid desiccant drying process
Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.
1980-01-01
This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Andreani, C.; Anderson, I. S.; Carpenter, J. M.; ...
2014-12-24
In 2005 the International Atomic Energy Agency (IAEA) in Vienna published a report [1] on ‘Development Opportunities of Small and Medium Scale Accelerator Driven Neutron Sources’ which summarized the prospect of smaller sources in supporting the large spallation neutron sources for materials characterization and instrumentation, a theme advocated by Bauer, Clausen, Mank, and Mulhauser in previous publications [2-4]. In 2010 the Union for Compact Accelerator-driven Neutron Sources (UCANS) was established [5], galvanizing cross-disciplinary collaborations on new source and neutronics development and expanded applications based on both slow-neutron scattering and other neutron-matter interactions of neutron energies ranging from 10⁻⁶ to 10²more » MeV [6]. Here, we first cover the recent development of ongoing and prospective projects of compact accelerator-driven neutron sources (CANS) but concentrate on prospective accelerators currently proposed in Italy. Two active R&D topics, irradiation effects on electronics and cultural heritage studies, are chosen to illustrate the impact of state-of-the-art CANS on these programs with respect to the characteristics and complementarity of the accelerator and neutronics systems as well as instrumentation development.« less
Compact DFB laser modules with integrated isolator at 935 nm
NASA Astrophysics Data System (ADS)
Reggentin, M.; Thiem, H.; Tsianos, G.; Malach, M.; Hofmann, J.; Plocke, T.; Kneier, M.; Richter, L.
2018-02-01
New developments in industrial applications and applications under rough environmental conditions within the field of spectroscopy and quantum technology in the 935 nm wavelength regime demand new compact, stable and robust laser systems. Beside a stable laser source the integration of a compact optical isolator is necessary to reduce size and power consumption for the whole laser system. The integration of a suitable optical isolator suppresses back reflections from the following optical system efficiently. However, the miniaturization of the optics inside the package leads to high optical power density levels that make a more detailed analysis of the components and their laser damage threshold necessary. We present test results on compact stable DFB laser sources (butterfly style packages) with newly integrated optical isolators operating around 935 nm. The presented data includes performance and lifetime tests for the laser diodes as well as package components. Overall performance data of the packaged laser diodes will be shown as well.
Wada, Takao; Ueda, Noriaki
2013-01-01
The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843
Emily Carter; Tim McDonald; John Torbert
2000-01-01
Mechanised forest harvest operations are a significant source of soil compaction for which intensive tillage is prescribed to alleviate soil compaction and ensure successful regeneration of planted pine trees. Soil strength is a poiential indicator of compaction status of a harvest tract due to its sensitivity and the ease of data collection with a cone penetrometer,...
Hi Image Synthesis of Southern Compact Groups
NASA Astrophysics Data System (ADS)
Babic, B.; Price, R. M.; Jones, K.
Four southern compact groups, the Hickson Compact Groups HCG 22 and HCG 26 (Hickson 1982), and the groups AM 1238 - 396 and ESO 410-G(024 - 026) have been imaged in Hi, along with 12 cm continuum using the Australia Telescope Compact Array (ATCA). The initial findings for the latter two groups are presented here. While ESO 410-G is not in fact a physical group, due to the discordant redshifts amongst the members, it is however presented here. Overall for all the groups we find no other sources of Hi in the field that might indicate that these are part of a larger loose group structure. This is not always the case, as with HCG 23 (Williams 1995) and HCG 95 (Hutchmeier 1999), both of whom find additional Hi sources within the primary beam accordant with the compact group's velocity. The Hi is also clearly associated with each of the individual member galaxies in all cases, except for HCG 26, which envelopes the whole group as was also shown by Williams and van Gorkom (Williams 1995).
Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques
NASA Astrophysics Data System (ADS)
Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.
2009-12-01
We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.
Sanehira, Yoshitaka; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu
2018-05-23
Highly crystalline TiO 2 nanostructured films were synthesized by a simple steam treatment of a TiCl 4 precursor film under a saturated water vapor atmosphere at 125 °C, here referred to as the steam-annealing method. In a single TiO 2 film preparation step, a bilayer structure comprising a compact bottom layer and a mesoporous surface layer was formed. The mesoporous layer was occupied by bipyramidal nanoparticles, with a composite phase of anatase and brookite crystals. Despite the low-temperature treatment process, the crystallinity of the TiO 2 film was high, comparable with that of the TiO 2 film sintered at 500 °C. The compact double-layered TiO 2 film was applied to perovskite solar cells (PSCs) as an electron-collecting layer. The PSC exhibited a maximum power conversion efficiency (PCE) of 18.9% with an open-circuit voltage ( V OC ) of 1.15 V. The PCE and V OC were higher than those of PSCs using a TiO 2 film formed by 500 °C sintering.
Absorption models for low-frequency variability in compact radio sources
NASA Technical Reports Server (NTRS)
Marscher, A. P.
1979-01-01
The consequences of the most plausible version of the absorption model for low-frequency variability in compact extragalactic radio sources are considered. The general restrictions placed on such a model are determined, and observational tests are suggested that can be used either to support the model or to discriminate among its various versions. It is shown that low-frequency variability in compact radio sources can be successfully explained by a class of models in which the flux is modulated by changes in free-free optical depth within an intervening ionized medium. Two versions of such a model are distinguished, one involving large changes in optical depth and the other, small changes. It is noted that while absorption effects are capable of causing rapid flux and structural variations at centimetric wavelengths, the models predict detailed behavior that is in direct conflict with observational data.
NASA Astrophysics Data System (ADS)
Hayashizaki, Noriyosu; Hattori, Toshiyuki; Matsui, Shinjiro; Tomizawa, Hiromitsu; Yoshida, Toru; Isokawa, Katsushi; Kitagawa, Atsushi; Muramatsu, Masayuki; Yamada, Satoru; Okamura, Masahiro
2000-02-01
We have researched a compact medical accelerator with low investment and running cost for the popularization of heavy ion cancer therapy. As the first step, the compact injector system has been investigated for a Heavy Ion Medical Accelerator in Chiba at National Institute of Radiological Sciences. The proposed new injector system consists of a 6 MeV/u interdigital H-mode (IH) linac of 3.1 m long and a 18 GHz superconducting electron cyclotron resonance (ECR) (SC-ECR) ion source. The IH linac with high power efficiency is appropriate to a medical and industrial injector system. Its beam trajectory was simulated and a prototype has been constructed. The SC-ECR ion source has been designed to realize lightweight and low power consumption and the mirror field distribution was estimated.
A Parametric Study of Fine-scale Turbulence Mixing Noise
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Bridges, James; Freund, Jonathan B.
2002-01-01
The present paper is a study of aerodynamic noise spectra from model functions that describe the source. The study is motivated by the need to improve the spectral shape of the MGBK jet noise prediction methodology at high frequency. The predicted spectral shape usually appears less broadband than measurements and faster decaying at high frequency. Theoretical representation of the source is based on Lilley's equation. Numerical simulations of high-speed subsonic jets as well as some recent turbulence measurements reveal a number of interesting statistical properties of turbulence correlation functions that may have a bearing on radiated noise. These studies indicate that an exponential spatial function may be a more appropriate representation of a two-point correlation compared to its Gaussian counterpart. The effect of source non-compactness on spectral shape is discussed. It is shown that source non-compactness could well be the differentiating factor between the Gaussian and exponential model functions. In particular, the fall-off of the noise spectra at high frequency is studied and it is shown that a non-compact source with an exponential model function results in a broader spectrum and better agreement with data. An alternate source model that represents the source as a covariance of the convective derivative of fine-scale turbulence kinetic energy is also examined.
Radiation and Scattering Compact Antenna Laboratory (RASCAL) Capabilities Brochure
2016-09-06
Array Measurements Integrated Measurement of Subsystems with Digital Backends RADIATION AND SCATTERING COMPACT ANTENNA LABORATORY...hardware gating to eliminate sources of error within the range itself. Processing is also available for multi-arm spiral antennas for the generation
NASA Astrophysics Data System (ADS)
Berdis, Jodi; Murphy, Jim; Wilson, Robert John
2017-10-01
Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.
Vapor Intrusion Assessment and Mitigation 2012
2012-03-26
1 Geosyntec 0 consultants Vapor Intrusion Assessment and Mitigation 2012 Robert Ettinger, M.S., P.E., Todd McAiary, M.Sc., P.Eng., P.G...REPORT DATE 26 MAR 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vapor Intrusion Assessment and...Updates • Typical Assessment Approaches and Common Challenges • Methods to Distinguish Background Sources (McHugh) • Significance • Compound
Atmospheric Calibration for Cassini Radio Science
NASA Technical Reports Server (NTRS)
Resch, G. M.; Bar-Sever, Y.; Keihm, S.; Kroger, P.; Linfield, R.; Mahoney, M. J.; Tanner, A.; Teitelbaum, L.
1996-01-01
The signals from the Cassini spacecraft that will be affected by delay fluctuations in the Earth's atmosphere. These fluctuations are dominated by water vapor in the troposphere, and in the case of Gravitaional Wave Experiment (GWE), they are likely to be a limiting error source. A passive remote sensing system, centered around a water vapor radiometer (WVR), has been developed to provide calibrations of water vapor fluctuations during radio science experiments.
If motor fuels are spilled from underground storage tanks, petroleum hydrocarbons can vaporize from the spill and move as a vapor through the unsaturated zone. If a building is sited above or near the spill, the hydrocarbons may intrude into the air space of the building. This ...
NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE II
Vapor permeation with highly permeable and organic-selective membranes is becoming an increasingly popular technique for preventing VOC emissions that are generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operat...
Water from air: An overlooked source of moisture in arid and semiarid regions
McHugh, Theresa; Morrissey, Ember M.; Reed, Sasha C.; Hungate, Bruce A.; Schwartz, Egbert
2015-01-01
Water drives the functioning of Earth’s arid and semiarid lands. Drylands can obtain water from sources other than precipitation, yet little is known about how non-rainfall water inputs influence dryland communities and their activity. In particular, water vapor adsorption – movement of atmospheric water vapor into soil when soil air is drier than the overlying air – likely occurs often in drylands, yet its effects on ecosystem processes are not known. By adding 18O-enriched water vapor to the atmosphere of a closed system, we documented the conversion of water vapor to soil liquid water across a temperature range typical of arid ecosystems. This phenomenon rapidly increased soil moisture and stimulated microbial carbon (C) cycling, and the flux of water vapor to soil had a stronger impact than temperature on microbial activity. In a semiarid grassland, we also observed that non-rainfall water inputs stimulated microbial activity and C cycling. Together these data suggest that, during rain-free periods, atmospheric moisture in drylands may significantly contribute to variation in soil water content, thereby influencing ecosystem processes. The simple physical process of adsorption of water vapor to soil particles, forming liquid water, represents an overlooked but potentially important contributor to C cycling in drylands.
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D.; Krummenacher, Jakob J.; West, Kevin N.
2007-08-28
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Method for the removal and recovery of mercury
Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.
1997-01-01
The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.
Method for the removal and recovery of mercury
Easterly, C.E.; Vass, A.A.; Tyndall, R.L.
1997-01-28
The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.
Catalytic partial oxidation of hydrocarbons
Schmidt, Lanny D [Minneapolis, MN; Krummenacher, Jakob J [Minneapolis, MN; West, Kevin N [Minneapolis, MN
2009-05-19
A process for the production of a reaction product including a carbon containing compound. The process includes providing a film of a fuel source including at least one organic compound on a wall of a reactor, contacting the fuel source with a source of oxygen, forming a vaporized mixture of fuel and oxygen, and contacting the vaporized mixture of fuel and oxygen with a catalyst under conditions effective to produce a reaction product including a carbon containing compound. Preferred products include .alpha.-olefins and synthesis gas. A preferred catalyst is a supported metal catalyst, preferably including rhodium, platinum, and mixtures thereof.
Californium--palladium metal neutron source material
Dahlen, B.L.; Mosly, W.C. Jr.; Smith, P.K.; Albenesius, E.L.
1974-01-22
Californium, as metal or oxide, is uniformly dispersed throughout a noble metal matrix, provided in compact, rod or wire form. A solution of californium values is added to palladium metal powder, dried, blended and pressed into a compact having a uni-form distribution of californium. The californium values are decomposed to californium oxide or metal by heating in an inert or reducing atmosphere. Sintering the compact to a high density closes the matrix around the dispersed californium. The sintered compact is then mechanically shaped into an elongated rod or wire form. (4 claims, no drawings) (Official Gazette)
Matching network for RF plasma source
Pickard, Daniel S.; Leung, Ka-Ngo
2007-11-20
A compact matching network couples an RF power supply to an RF antenna in a plasma generator. The simple and compact impedance matching network matches the plasma load to the impedance of a coaxial transmission line and the output impedance of an RF amplifier at radio frequencies. The matching network is formed of a resonantly tuned circuit formed of a variable capacitor and an inductor in a series resonance configuration, and a ferrite core transformer coupled to the resonantly tuned circuit. This matching network is compact enough to fit in existing compact focused ion beam systems.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
Sources of water vapor to economically relevant regions in Amazonia and the effect of deforestation
NASA Astrophysics Data System (ADS)
Pires, G. F.; Fontes, V. C.
2017-12-01
The Amazon rain forest helps regulate the regional humid climate. Understanding the effects of Amazon deforestation is important to preserve not only the climate, but also economic activities that depend on it, in particular, agricultural productivity and hydropower generation. This study calculates the source of water vapor contributing to the precipitation on economically relevant regions in Amazonia according to different scenarios of deforestation. These regions include the state of Mato Grosso, which produces about 9% of the global soybean production, and the basins of the Xingu and Madeira, with infrastructure under construction that will be capable to generate 20% of the electrical energy produced in Brazil. The results show that changes in rainfall after deforestation are stronger in regions nearest to the ocean and indicate the importance of the continental water vapor source to the precipitation over southern Amazonia. In the two more continental regions (Madeira and Mato Grosso), decreases in the source of water vapor in one region were offset by increases in contributions from other continental regions, whereas in the Xingu basin, which is closer to the ocean, this mechanism did not occur. As a conclusion, the geographic location of the region is an important determinant of the resiliency of the regional climate to deforestation-induced regional climate change. The more continental the geographic location, the less climate changes after deforestation.
Stable isotopic variations of water vapor on the winter coastal area in Korea
NASA Astrophysics Data System (ADS)
Lee, Jeonghoon; Lee, Songyi; Han, Yeongcheol; Do Hur, Soon
2017-04-01
Studies of isotopic compositions of precipitation in Korea have been conducted for groundwater mixing and sources and residence time of water. Unravelling of water vapor isotopes will be very helpful in explaining the sources of moisture. In this work, we first present isotopic compositions of water vapor over western part of Korea in winter between December 2015 and February 2016. We collected the samples of water vapor isotopes by a cryogenic method with impingers and liquid nitrogen. We captured the water vapor for 4 to 6 hours, depending on humidity and collected 54 samples in total. The samples were analyzed by a Picarro L2130-i and the precisions were 0.06‰ and 0.7‰ for oxygen and hydrogen, respectively. The isotopic compositions of water vapor ranged from -34.04‰ to -15.27‰ for oxygen and from -221.9‰ to -100.2‰ for hydrogen. The deuterium excess (d=δD-8*δ18O) was between 17.4 and 44.0 in permil. Both air temperature (T, δ18O=0.57*T-25.5, R2=0.46) and relative humidity (RH, δ18O=0.18*RH-35.9, R2=0.38) were positively correlated with the water vapor isotopes. This is not consistent with the fact that precipitation isotopes are correlated with only temperate in winter Eastern Asia. We expect that the water vapor isotopes will be an important role to understand the origin and pathway of moistures over the Eastern Asia.
NASA Astrophysics Data System (ADS)
Smith, Jessica B.; Wilmouth, David M.; Bedka, Kristopher M.; Bowman, Kenneth P.; Homeyer, Cameron R.; Dykema, John A.; Sargent, Maryann R.; Clapp, Corey E.; Leroy, Stephen S.; Sayres, David S.; Dean-Day, Jonathan M.; Paul Bui, T.; Anderson, James G.
2017-09-01
On 27 August 2013, during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys field mission, NASA's ER-2 research aircraft encountered a region of enhanced water vapor, extending over a depth of approximately 2 km and a minimum areal extent of 20,000 km2 in the stratosphere (375 K to 415 K potential temperature), south of the Great Lakes (42°N, 90°W). Water vapor mixing ratios in this plume, measured by the Harvard Water Vapor instrument, constitute the highest values recorded in situ at these potential temperatures and latitudes. An analysis of geostationary satellite imagery in combination with trajectory calculations links this water vapor enhancement to its source, a deep tropopause-penetrating convective storm system that developed over Minnesota 20 h prior to the aircraft plume encounter. High resolution, ground-based radar data reveal that this system was composed of multiple individual storms, each with convective turrets that extended to a maximum of 4 km above the tropopause level for several hours. In situ water vapor data show that this storm system irreversibly delivered between 6.6 kt and 13.5 kt of water to the stratosphere. This constitutes a 20-25% increase in water vapor abundance in a column extending from 115 hP to 70 hPa over the plume area. Both in situ and satellite climatologies show a high frequency of localized water vapor enhancements over the central U.S. in summer, suggesting that deep convection can contribute to the stratospheric water budget over this region and season.
Power-law X-ray and gamma-ray emission from relativistic thermal plasmas
NASA Technical Reports Server (NTRS)
Zdziarski, A. A.
1985-01-01
A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.
Method and apparatus for sampling atmospheric mercury
Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.
1976-01-20
A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
The multiple infrared source GL 437
NASA Technical Reports Server (NTRS)
Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.
1981-01-01
Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
NASA Astrophysics Data System (ADS)
Williams, Christina C.; Giavalisco, Mauro; Bezanson, Rachel; Cappelluti, Nico; Cassata, Paolo; Liu, Teng; Lee, Bomee; Tundo, Elena; Vanzella, Eros
2017-04-01
We report the detection of morphology-dependent stellar age in massive quenched galaxies (QGs) at z ˜ 1.2. The sense of the dependence is that compact QGs are 0.5-2 Gyr older than normal-sized ones. The evidence comes from three different age indicators—{D}n4000, {{{H}}}δ , and fits to spectral synthesis models—applied to their stacked optical spectra. All age indicators consistently show that the stellar populations of compact QGs are older than those of their normal-sized counterparts. We detect weak [O II] emission in a fraction of QGs, and the strength of the line, when present, is similar between the two samples; however, compact galaxies exhibit a significantly lower frequency of [O II] emission than normal ones. Fractions of both samples are individually detected in 7 Ms Chandra X-ray images (luminosities ˜1040-1041 erg s-1). The 7 Ms stacks of nondetected galaxies show similarly low luminosities in the soft band only, consistent with a hot gas origin for the X-ray emission. While both [O II] emitters and nonemitters are also X-ray sources among normal galaxies, no compact galaxy with [O II] emission is an X-ray source, arguing against an active galactic nucleus (AGN) powering the line in compact galaxies. We interpret the [O II] properties as further evidence that compact galaxies are older and further along in the process of quenching star formation and suppressing gas accretion. Finally, we argue that the older age of compact QGs is evidence of progenitor bias: compact QGs simply reflect the smaller sizes of galaxies at their earlier quenching epoch, with stellar density most likely having nothing directly to do with cessation of star formation.
Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment
Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng
2018-01-01
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981
NASA Astrophysics Data System (ADS)
Matsui, Y.; Watanabe, T.; Satani, T.; Muramatsu, M.; Tanaka, K.; Kitagawa, A.; Yoshida, Y.; Sato, F.; Kato, Y.; Iida, T.
2008-11-01
Multiply charged iron ions are produced from solid pure material in an electron cyclotron resonance (ECR) ion source. We develop an evaporator by using induction heating with the induction coil which is made from bare molybdenum wire and surrounding the pure iron rod. We optimize the shape of induction heating coil and operation of rf power supply. We conduct experiment to investigate reproducibility and stability in the operation and heating efficiency. Induction heating evaporator produces pure material vapor, because materials directly heated by eddy currents have non-contact with insulated materials which are impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10-4 to 10-3 Pa. We measure temperature of iron rod and film deposition rate by depositing iron vapor to crystal oscillator. We confirm stability and reproducibility of evaporator enough to conduct experiment in ECR ion source. We can obtain required temperature of iron under maximum power of power supply. We are aiming the evaporator higher melting point material than iron.
NOVEL CERAMIC-ORGANIC VAPOR PERMEATION MEMBRANES FOR VOC REMOVAL - PHASE I
Vapor permeation holds much promise for becoming a highly efficient means of preventing VOC emissions that are now generated by a variety of stationary sources, including solvent and surface coating operations, gasoline storage operations, and printing operations. A limitation of...
Compact Gamma-Beam Source for Nuclear Security Technologies
NASA Astrophysics Data System (ADS)
Gladkikh, P.; Urakawa, J.
2015-10-01
A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.
Comparative Study of Light Sources for Household
NASA Astrophysics Data System (ADS)
Pawlak, Andrzej; Zalesińska, Małgorzata
2017-03-01
The article describes test results that provided the ground to define and evaluate basic photometric, colorimetric and electric parameters of selected, widely available light sources, which are equivalent to a traditional incandescent 60-Watt light bulb. Overall, one halogen light bulb, three compact fluorescent lamps and eleven LED light sources were tested. In general, it was concluded that in most cases (branded products, in particular) the measured and calculated parameters differ from the values declared by manufacturers only to a small degree. LED sources prove to be the most beneficial substitute for traditional light bulbs, considering both their operational parameters and their price, which is comparable with the price of compact fluorescent lamps or, in some instances, even lower.
Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.
2000-01-01
A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.
NASA Astrophysics Data System (ADS)
McCray, J. E.; Downs, W.; Falta, R. W.; Housley, T.
2005-12-01
DNAPL sources of carbon tetrachloride (CT) vapors are of interest at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL). The site is underlain by thick fractured basalt that includes sedimentary interbeds, each are a few meters thick. Daily atmospheric pressure fluctuations serve as driving forces for CT vapor transport in the subsurface. Other important transport processes for vapor movement include gas-phase diffusion and density-driven transport. The objective of this research is to investigate the influence and relative importance of these processes on gaseous transport of CT. Gas pressure and vapor concentration measurements were conducted at various depths in two wells. A numerical multiphase flow model (TOUGH2), calibrated to field pressure data, is used to conduct sensitivity analyses to elucidate the importance of the different transport mechanisms. Results show that the basalt is highly permeable to vertical air flow. The pressure dampening occurs mainly in the sedimentary interbeds. Model-calibrated permeability values for the interbeds are similar to those obtained in a study by the U.S. Geological Survey for shallow sediments, and an order of magnitude higher than column-scale values obtained by previous studies conducted by INEEL scientists. The transport simulations indicate that considering the effect of barometric pressure changes is critical to simulating transport of pollutants in the vadose zone above the DNAPL source. Predicted concentrations can be orders of magnitude smaller than actual concentrations if the effect is not considered. Below the DNAPL vapor source, accounting for density and diffusion alone would yield acceptable results provided that a 20% error in concentrations are acceptable, and that simulating concentrations trends (and not actual concentrations) is the primary goal.
Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.
1999-01-01
The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.
NASA Astrophysics Data System (ADS)
Marrero, J. E.; St Clair, J. M.; Yates, E. L.; Ryoo, J. M.; Gore, W.; Swanson, A. K.; Iraci, L. T.; Hanisco, T. F.
2016-12-01
Formaldehyde (HCHO) is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere, playing a role in multiple atmospheric processes, such as ozone (O3) production in polluted environments. Due to its short lifetime of only a few hours in daytime, HCHO also serves as tracer of recent photochemical activity. While photochemical oxidation of non-methane hydrocarbons is the dominant source, HCHO can also be emitted directly from fuel combustion, vegetation, and biomass burning. The Compact Formaldehyde FluorescencE Experiment (COFFEE) instrument was built for integration onto the Alpha Jet Atmospheric eXperiment (AJAX) payload, based out of NASA's Ames Research Center (Moffett Field, CA). Using Non-Resonant Laser Induced Fluorescence (NR-LIF), trace concentrations of HCHO can be detected with a sensitivity of 200 parts per trillion. Since its first research flight in December 2015, COFFEE has successfully flown on more than 20 science missions throughout California and Nevada. Presented here are results from these flights, including boundary layer measurements and vertical profiles throughout the tropospheric column. California's San Joaquin Valley is a primary focus, as this region is known for its elevated levels of HCHO as well as O3. Measurements collected in wildfire plumes, urban centers, agricultural lands, and on and off shore comparisons will be presented. In addition, the correlation of HCHO to other trace gases also measured by AJAX, including O3, methane, carbon dioxide, and water vapor will also be shown. Lastly, the implications of these HCHO measurements on calibration and validation of remote sensing data collected by NASA's OMI (Aura) and OMPS (SuomiNPP) satellites will be addressed.
Study of the molecular and ionized gas in a possible precursor of an ultra-compact H II region
NASA Astrophysics Data System (ADS)
Ortega, M. E.; Paron, S.; Giacani, E.; Celis Peña, M.; Rubio, M.; Petriella, A.
2017-10-01
Aims: We aim to study the molecular and the ionized gas in a possible precursor of an ultra-compact H II region to contribute to the understanding of how high-mass stars build-up their masses once they have reached the zero-age main sequence. Methods: We carried out molecular observations toward the position of the Red MSX source G052.9221-00.4892, using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, C18O J = 3-2, and HCO+J = 4-3 lines with an angular resolution of about 22''. We also present radio continuum observations at 6 GHz carried out with the Jansky Very Large Array (JVLA; USA) interferometer with a synthesized beam of 4.8 arcsec × 4.1 arcsec. The molecular data were used to study the distribution and kinematics of the molecular gas, while the radio continuum data were used to characterize the ionized gas in the region. Combining these observations with public infrared data allowed us to inquire about the nature of the source. Results: The analysis of the molecular observations reveals the presence of a kinetic temperature and H2 column density gradients across the molecular clump in which the Red MSX source G052.9221-00.4892 is embedded, with the hotter and less dense gas in the inner region. The 12CO J = 3-2 emission shows evidence of misaligned massive molecular outflows, with the blue lobe in positional coincidence with a jet-like feature seen at 8 μm. The radio continuum emission shows a slightly elongated compact radio source, with a flux density of about 0.9 mJy, in positional coincidence with the Red MSX source. The polar-like morphology of this compact radio source perfectly matches the hourglass-like morphology exhibited by the source in the Ks band. Moreover, the axes of symmetry of the radio source and the near-infrared nebula are perfectly aligned. Thus, based on the presence of molecular outflows, the slightly elongated morphology of the compact radio source matching the hourglass-like morphology of the source at the Ks band, and the lack of evidence of collimated jets in the near-infrared spectrum, one interpretation for the nature of the source, is that the Red MSX source G052.9221-00.4892 could be transiting a hyper-compact H II region phase, in which the young central star emits winds and ionizing radiation through the poles. On the other hand, according to a comparison between the Brγ intensity and the radio flux density at 6 GHz, the source would be in a more evolved evolutionary stage of an optically thin UC H II region in photoionization equilibrium. If this is the case, from the radio continuum emission, we can conjecture upon the spectral type of its exciting star which would be a B0.5V.
Rapid variability, dying pulse trains and black holes
NASA Technical Reports Server (NTRS)
Stoeger, W. R.
1980-01-01
After reviewing the general model and arguments by which rapid temporal variability and quasi-periodicities are considered indicative of a compact source's possible black hole character, the paper presents a scenario for 'dying pulse trains'. These originate inside the inner edge of accretion disks encircling black holes from accreting flares or other self-luminous entities executing their final few revolutions before reaching the event horizon. Confirmed detection of such phenomena with time scales in the range 0.01 (M/solar mass) to 0.5 (M/solar mass)ms, where M is the mass of the compact source, would provide much better support for its black hole candidacy. Variability on time-scales larger than this by itself places few constraints on the nature of the compact object.
Water-vapor pressure control in a volume
NASA Technical Reports Server (NTRS)
Scialdone, J. J.
1978-01-01
The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.
The Most Compact Bright Radio-loud AGNs. II. VLBA Observations of 10 Sources at 43 and 86 GHz
NASA Astrophysics Data System (ADS)
Cheng, X.-P.; An, T.; Hong, X.-Y.; Yang, J.; Mohan, P.; Kellermann, K. I.; Lister, M. L.; Frey, S.; Zhao, W.; Zhang, Z.-L.; Wu, X.-C.; Li, X.-F.; Zhang, Y.-K.
2018-01-01
Radio-loud active galactic nuclei (AGNs), hosting powerful relativistic jet outflows, provide an excellent laboratory for studying jet physics. Very long baseline interferometry (VLBI) enables high-resolution imaging on milli-arcsecond (mas) and sub-mas scales, making it a powerful tool to explore the inner jet structure, shedding light on the formation, acceleration, and collimation of AGN jets. In this paper, we present Very Long Baseline Array observations of 10 radio-loud AGNs at 43 and 86 GHz that were selected from the Planck catalog of compact sources and are among the brightest in published VLBI images at and below 15 GHz. The image noise levels in our observations are typically 0.3 and 1.5 mJy beam‑1 at 43 and 86 GHz, respectively. Compared with the VLBI data observed at lower frequencies from the literature, our observations with higher resolutions (with the highest resolution being up to 0.07 mas at 86 GHz and 0.18 mas at 43 GHz) and at higher frequencies detected new jet components at sub-parsec scales, offering valuable data for studies of the physical properties of the innermost jets. These include the compactness factor of the radio structure (the ratio of core flux density to total flux density), and core brightness temperature ({T}{{b}}). In all these sources, the compact core accounts for a significant fraction (> 60 % ) of the total flux density. Their correlated flux density at the longest baselines is higher than 0.16 Jy. The compactness of these sources make them good phase calibrators of millimeter-wavelength ground-based and space VLBI.
Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato
2017-02-01
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20years, even for vapor source concentrations up to 10g/m 3 . A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application. Copyright © 2017 Elsevier B.V. All rights reserved.
Uninterrupted and reusable source for the controlled growth of nanowires
Sugavaneshwar, R. P.; Nanda, Karuna Kar
2013-01-01
Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i. e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials. PMID:23412010
NASA Technical Reports Server (NTRS)
Zhang, Shanju; Zhu, Lingbo; Minus, Marilyn L.; Chae, han Gi; Jagannathan, Sudhakar; Wong, Ching-Ping; Kowalik, Janusz; Roberson, Luke B.; Kumar, Satish
2007-01-01
In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated.
Hot air drum evaporator. [Patent application
Black, R.L.
1980-11-12
An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.
Black, Roger L.
1981-01-01
An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.
Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study
Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated...
Stratospheric Aerosol and Gas Experiment (SAGE 3)
NASA Technical Reports Server (NTRS)
Mccormick, M. P.
1993-01-01
The proposed SAGE III instrument would be the principal source of data for global changes of stratospheric aerosols, stratospheric water vapor, and ozone profiles, and a contributing source of data for upper tropospheric water vapor, aerosols, and clouds. The ability to obtain such data has been demonstrated by the predecessor instrument, SAGE II, but SAGE III will be substantially more capable, as discussed below. The capabilities for monitoring the profiles of atmospheric constituents have been verified in detail, including ground-based validations, for aerosol, ozone, and water vapor. Indeed, because of its self-calibrating characteristics, SAGE II was an essential component of the international ozone trend assessments, and SAGE II is now proving to be invaluable in tracking the aerosols from Mt. Pinatubo. Although SAGE profiles generally terminate at the height of the first tropospheric cloud layer, it has been found that the measurements extend down to 3 km altitude more than 40 percent of the time at most latitudes. Thus, useful information can also be obtained on upper tropospheric aerosols, water vapor, and ozone.
NASA Technical Reports Server (NTRS)
Delzeit, Lance D. (Inventor); Delzeit, Clement J. (Inventor)
2005-01-01
A method for cleaning or otherwise removing amorphous carbon and other residues that arise in growth of a carbon nanotube (CNT) array. The CNT array is exposed to a plurality of hydroxyls or hydrogen, produced from a selected vapor or liquid source such as H2O or H2O2. and the hydroxyls or hydrogen (neutral or electrically charged) react with the residues to produce partly or fully dissolved or hydrogenated or hydroxylizated products that can be removed or separated from the CNT array. The hydroxyls or hydrogen can be produced by heating the CNT array, residue and selected vapor or liquid source or by application of an electromagnetic excitation signal with a selected frequency or range of frequencies to dissociate the selected vapor or liquid. The excitation frequency can be chirped to cover a selected range of frequencies corresponding to dissociation of the selected vapor or liquid. Sonication may be uscd to supplement dissociation of the H2O and/or H2O2.
Swenson, Paul F.; Moore, Paul B.
1983-01-01
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Swenson, Paul F.; Moore, Paul B.
1977-01-01
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, J.J.; Halpern, B.L.
1994-10-18
A method and apparatus are disclosed for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases. 8 figs.
Evaporation system and method for gas jet deposition of thin film materials
Schmitt, Jerome J.; Halpern, Bret L.
1994-01-01
A method and apparatus for depositing thin films of materials such as metals, oxides and nitrides at low temperature relies on a supersonic free jet of inert carrier gas to transport vapor species generated from an evaporation source to the surface of a substrate. Film deposition vapors are generated from solid film precursor materials, including those in the form of wires or powders. The vapor from these sources is carried downstream in a low pressure supersonic jet of inert gas to the surface of a substrate where the vapors deposit to form a thin film. A reactant gas can be introduced into the gas jet to form a reaction product with the evaporated material. The substrate can be moved from the gas jet past a gas jet containing a reactant gas in which a discharge has been generated, the speed of movement being sufficient to form a thin film which is chemically composed of the evaporated material and reactant gases.
Swenson, Paul F.; Moore, Paul B.
1983-06-21
An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.
Multi-cathode metal vapor arc ion source
Brown, Ian G.; MacGill, Robert A.
1988-01-01
An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.
Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC
2013-12-01
TCE trichloroethylene trans-1,2-DCE trans-1,2-dichloroethylene USEPA U.S. Environmental Protection Agency UST underground storage tank VI vapor... trichloroethylene (TCE) VI; however, for this building, the CSIA result provided strong evidence of an indoor source. The scenario that best fits...concentrations of trichloroethylene (TCE) range from 0.3 to 1.6 micrograms per cubic meter (µg/m3) in houses unaffected by VI (50th to 95th percentile
Water masers in NGC7538 region
NASA Astrophysics Data System (ADS)
Kameya, Osamu
We observed H2O masers towards NGC7538 molecular-cloud core using VERA (VLBI Experiment of Radio Astrometry). This region is in the Perseus arm at a distance of about 2.7 kpc and is famous for its multiple, massive star formation. There are three areas there, N(IRS1-3), E(IRS9), and S(IRS11), each having a strong IR source(s), ultra-compact HII region(s), bipolar outflow, high-density core, and OH/H2O/CH3OH masers. We made differential VLBI observations towards the NGC7538 H2O maser sources at N and S and a reference source, Cepheus A H2O maser, simultaneously. The Cepheus A region is separated by 2 degrees from the NGC7538 region. The positions of H2O masers in N and S regions, distributed around the ultra-compact HII regions, are basically consistent with those found by means of interferometric observations of past 29 years. The masers may come from interface regions between the ultra-compact HII regions and the environments of dense molecular gas.
A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, XiLong; Messenger, Christopher; Heng, Ik Siong
We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% ofmore » the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.« less
Accreting Compact Object at the Center of the Supernova Remnant RCW 103.
NASA Astrophysics Data System (ADS)
Sanwal, D.; Garmire, G. P.; Garmire, A.; Pavlov, G. G.; Mignani, R.
2002-05-01
We observed the radio-quiet central compact object of the supernova remnant RCW 103 with the Chandra ACIS during 13.8 hours on 2002 March 3, when the source was in high state, with a time-averaged flux of 8*E-12 erg cm-2 s-1 in the 0.5--8.0 keV band. The complex light curve of the source shows a period of about 6.4 hours and two partial eclipses or dips per period, separated by 180o in phase. The variability of the source proves that it is powered by accretion, likely from a low-mass companion in a binary system. Deep near-IR observations of the source with VLT suggest a potential counterpart of the compact object about 2'' from the nominal Chandra position. The magnitudes of the potential counterpart are J ≈ 22.3, H ≈ 19.6, and Ks ≈ 18.5, with an uncertainty of about 0.5 mag. We will discuss possible interpretations of the observational results. This work was partially supported by NASA grants NAS8-01128 and NAG5-10865.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
High-resolution mass spectrometric analysis of biomass pyrolysis vapors
Christensen, Earl; Evans, Robert J.; Carpenter, Daniel
2017-01-19
Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less
Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Chang, Liann-Be
2016-01-01
The preparation of Cu2ZnSnSe4 (CZTSe) thin films by the selenization of an electrodeposited copper–tin–zinc (CuSnZn) precursor with various Sn contents in low-pressure Se+SnSex vapor was studied. Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) measurements revealed that the Sn content of the precursor that is used in selenization in a low-pressure Se+SnSex vapor atmosphere only slightly affects the elemental composition of the formed CZTSe films. However, the Sn content of the precursor significantly affects the grain size and surface morphology of CZTSe films. A metal precursor with a very Sn-poor composition produces CZTSe films with large grains and a rough surface, while a metal precursor with a very Sn-rich composition procures CZTSe films with small grains and a compact surface. X-ray diffraction (XRD) and SEM revealed that the metal precursor with a Sn-rich composition can grow a thicker MoSe2 thin film at CZTSe/Mo interface than one with a Sn-poor composition, possibly because excess Sn in the precursor may catalyze the formation of MoSe2 thin film. A CZTSe solar cell with an efficiency of 7.94%was realized by using an electrodeposited metal precursor with a Sn/Cu ratio of 0.5 in selenization in a low-pressure Se+SnSex vapor. PMID:28773366
Chemicapacitive microsensors for detection of explosives and TICs
NASA Astrophysics Data System (ADS)
Patel, Sanjay V.; Hobson, Stephen T.; Cemalovic, Sabina; Mlsna, Todd E.
2005-10-01
Seacoast Science develops chemical sensors that use polymer-coated micromachined capacitors to measure the dielectric permittivity of an array of selectively absorbing materials. We present recent results demonstrating the sensor technology's capability to detect components in explosives and toxic industrial chemicals. These target chemicals are detected with functionalized polymers or network materials, chosen for their ability to adsorb chemicals. When exposed to vapors or gases, the permittivity of these sorbent materials changes depending on the strength of the vapor-sorbent interaction. Sensor arrays made of ten microcapacitors on a single chip have been previously shown to detect vapors of organic compounds (chemical warfare agents, industrial solvents, fuels) and inorganic gases (SO2, CO2, NO2). Two silicon microcapacitor structures were used, one with parallel electrode plates and the other with interdigitated "finger-like" electrodes. The parallel-plates were approximately 300 μm wide and separated by 750 nm. The interdigitated electrodes were approximately 400 μm long and were elevated above the substrate to provide faster vapor access. Eight to sixteen of these capacitors are fabricated on chips that are 5 x 2 mm and are packaged in less than 50 cm3 with supporting electronics and batteries, all weighing less than 500 grams. The capacitors can be individually coated with different materials creating a small electronic nose that produces different selectivity patterns in response to different chemicals. The resulting system's compact size, low-power consumption and low manufacturing costs make the technology ideal for integration into various systems for numerous applications.
How interfaces affect hydrophobically driven polymer folding.
Jamadagni, Sumanth N; Godawat, Rahul; Dordick, Jonathan S; Garde, Shekhar
2009-04-02
Studies of folding-unfolding of hydrophobic polymers in water provide an excellent starting point to probe manybody hydrophobic interactions in the context of realistic self-assembly processes. Such studies in bulk water have highlighted the similarities between thermodynamics of polymer collapse and of protein folding, and emphasized the role of hydration-water structure, density, and fluctuations-in the folding kinetics. Hydrophobic polymers are interfacially active-that is, they prefer locations at aqueous interfaces relative to bulk water-consistent with their low solubility. How does the presence of a hydrophobic solid surface or an essentially hydrophobic vapor-water interface affect the structural, thermodynamic, and kinetic aspects of polymer folding? Using extensive molecular dynamics simulations, we show that the large hydrophobic driving force for polymer collapse in bulk water is reduced at a solid alkane-water interface and further reduced at a vapor-water interface. As a result, at the solid-water interface, folded structures are marginally stable, whereas the vapor-liquid interface unfolds polymers completely. Structural sampling is also significantly affected by the interface. For example, at the solid-water interface, polymer conformations are quasi-2- dimensional, with folded states being pancake-like structures. At the vapor-water interface, the hydrophobic polymer is significantly excluded from the water phase and freely samples a broad range of compact to extended structures. Interestingly, although the driving force for folding is considerably lower, kinetics of folding are faster at both interfaces, highlighting the role of enhanced water fluctuations and dynamics at a hydrophobic interface.
Position and morphology of the compact non-thermal radio source at the Galactic Center
NASA Technical Reports Server (NTRS)
Marcaide, J. M.; Alberdi, A.; Bartel, N.; Clark, T. A.; Corey, B. E.; Elosegui, P.; Gorenstein, M. V.; Guirado, J. C.; Kardashev, N.; Popov, M.
1992-01-01
We have determined with VLBI the position of the compact nonthermal radio source at the Galactic Center, commonly referred to as SgrA*, in the J2000.0 reference frame of extragalactic radio sources. We have also determined the size of SgrA* at 1.3, 3.6, and 13 cm wavelengths and found that the apparent size of the source increases proportionally to the observing wavelength squared, as expected from source size broadening by interstellar scattering and as reported previously by other authors. We have also established an upper limit of about 8 mJy at 3.6 cm wavelength for any ultracompact component. The actual size of the source is less than 15 AU. Fourier analysis of our very sensitive 3.6 cm observations of this source shows no significant variations of correlated flux density on time scales from 12 to 700 s.
H I absorption in nearby compact radio galaxies
NASA Astrophysics Data System (ADS)
Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.
2017-05-01
H I absorption studies yield information on both active galactic nucleus (AGN) feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for H I absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3-87 per cent). Of the detections, 71 per cent exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disc. Comparing mid-infrared colours of our galaxies with H I detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic discs. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of H I content within the host galaxy. This sample extends previous H I surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.
NASA Astrophysics Data System (ADS)
Cancio, P.; Gagliardi, G.; Galli, I.; Giusfredi, G.; Maddaloni, P.; Malara, P.; Mazzotti, D.; De Natale, P.
2017-11-01
We present a new generation of compact and rugged mid-infrared (MIR) difference-frequency coherent radiation sources referenced to fiber-based optical frequency comb synthesizers (OFCSs). By coupling the MIR radiation to high-finesse optical cavities, high-resolution and high-sensitivity spectroscopy is demonstrated for CH4 and CO2 around 3.3 and 4.5 μm respectively. Finally, the most effective detection schemes for space-craft trace-gas monitoring applications are singled out.
Effective shielding to measure beam current from an ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayle, H., E-mail: bayle@bergoz.com; Delferrière, O.; Gobin, R.
To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.
49 CFR 193.2445 - Sources of power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Equipment Vaporization Equipment § 193.2445 Sources of power. (a) Electrical...
UV Induced Oxidation of Nitric Oxide
NASA Technical Reports Server (NTRS)
Parrish, Clyde, F. (Inventor); Luecke, Dale E. (Inventor)
2007-01-01
Nitric oxide in a gaseous stream is converted to nitrogen dioxide using oxidizing species generated at least in part using in situ UV radiation sources. The sources of the oxidizing species include oxygen and/or hydrogen peroxide. The oxygen may be a component of the gaseous stream or added to the gaseous stream, preferably near a UV radiation source, and is converted to ozone by the UV irradiation. The hydrogen peroxide is decomposed through a combination of vaporization and UV irradiation. The hydrogen peroxide is preferably stored at stable concentration levels, i.e., approximately 50% by volume and increased in concentration in a continuous process preceding vaporization within the flow channel of the gaseous stream and in the presence of the UV radiation sources.
Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel
NASA Technical Reports Server (NTRS)
Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.
1985-01-01
The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.
Monitoring/Verification using DMS: TATP Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan Weeks, Kevin Kyle, Manuel Manard
Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers
NASA Astrophysics Data System (ADS)
Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.
2017-01-01
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
Tu, Y D; Wang, R Z; Ge, T S; Zheng, X
2017-01-12
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots
NASA Astrophysics Data System (ADS)
Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando
2015-12-01
We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.
Monitoring/Verification Using DMS: TATP Example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Kyle; Stephan Weeks
Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operationsmanagement systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biologicalmore » materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.« less
75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-01
..., Methods for Estimating Air Emissions from Chemical Manufacturing Facilities; Protocol for Equipment Leak... chemical vapor deposition process (CVD) or other manufacturing processes use N 2 O. Production processes.... N 2 O emissions from chemical vapor deposition and other electronics manufacturing processes...
Enceladus' Water Vapour Plumes
NASA Technical Reports Server (NTRS)
Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.;
2006-01-01
A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.
Fluxpart: Open source software for partitioning carbon dioxide and water vapor fluxes
USDA-ARS?s Scientific Manuscript database
The eddy covariance method is regularly used for measuring gas fluxes over agricultural fields and natural ecosystems. For many applications, it is desirable to partition the measured fluxes into constitutive components: the water vapor flux into transpiration and direct evaporation components, and ...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
NASA Technical Reports Server (NTRS)
Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)
2012-01-01
Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.
Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA
2012-06-06
Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.
2016-07-25
and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD Abstract Unlike current chemical trace detection technology, dogs...mm vertically from the flat surface. The vapor source consisted of a 10 mm diameter and 10 mm tall can with approximately 10 g of gelatin with 0.1...Fabrication and characterization of gelatin -based test materials for verification of trace contraband vapor detectors. Analyst 135, 2573-2578 (2010
Reduction of Legionella spp. in Water and in Soil by a Citrus Plant Extract Vapor
Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol
2014-01-01
Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. PMID:25063652
Reduction of Legionella spp. in water and in soil by a citrus plant extract vapor.
Laird, Katie; Kurzbach, Elena; Score, Jodie; Tejpal, Jyoti; Chi Tangyie, George; Phillips, Carol
2014-10-01
Legionnaires' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml(-1) on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml(-1) reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml(-1) reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John
1992-01-01
High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.
Sensitive glow discharge ion source for aerosol and gas analysis
Reilly, Peter T. A. [Knoxville, TN
2007-08-14
A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.
Wet atmospheric generation apparatus
NASA Technical Reports Server (NTRS)
Hamner, Richard M. (Inventor); Allen, Janice K. (Inventor)
1990-01-01
The invention described relates to an apparatus for providing a selectively humidified gas to a camera canister containing cameras and film used in space. A source of pressurized gas (leak test gas or motive gas) is selected by a valve, regulated to a desired pressure by a regulator, and routed through an ejector (venturi device). A regulated source of water vapor in the form of steam from a heated reservoir is coupled to a low pressure region of the ejector which mixes with high velocity gas flow through the ejector. This mixture is sampled by a dew point sensor to obtain dew point thereof (ratio of water vapor to gas) and the apparatus adjusted by varying gas pressure or water vapor to provide a mixture at a connector having selected humidity content.
Some Notes on Sparks and Ignition of Fuels
NASA Technical Reports Server (NTRS)
Fisher, Franklin A.
2000-01-01
This report compliments a concurrent analysis of the electromagnetic field threat to the fuel system of a transport aircraft. The accompanying effort assessed currents, voltages and power levels that may be induced upon fuel tank wiring from radio transmitters (inside and outside the aircraft). In addition to this, it was also essential to determine how much voltage, current, or power is required to create a fuel-vapor ignition hazard. The widely accepted minimum guideline for aircraft fuel-vapor ignition is the application of a 0.2 millijoule energy level. However, when considering radio frequency (RF) sources, this guideline is seriously inadequate. This report endeavors to bridge the gap between a traditional understanding of electrical breakdown, heating and combustion; and supplement the knowledge with available information regarding aircraft fuel-vapor ignition by RF sources
Theory of Noise Generation from Moving Bodies with an Application to Helicopter Rotors
NASA Technical Reports Server (NTRS)
Farassat, F.
1975-01-01
Several expressions for the determination of the acoustic field of moving bodies are presented. The analysis is based on the Ffowcs Williams-Hawkings equation. Applying some proposed criteria, one of these expressions is singled out for numerical computation of acoustic pressure signature. The compactness of sources is not assumed and the main results are not restricted by the observer position. The distinction between compact and noncompact sources on moving surfaces is discussed. Some thickness noise calculations of helicopter rotors and comparison with experiments are included which suggest this mechanism as the source of high-speed blade slap of rotors.
Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.
Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S
2012-06-01
Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4) generation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source.
Töpperwien, Mareike; Gradl, Regine; Keppeler, Daniel; Vassholz, Malte; Meyer, Alexander; Hessler, Roland; Achterhold, Klaus; Gleich, Bernhard; Dierolf, Martin; Pfeiffer, Franz; Moser, Tobias; Salditt, Tim
2018-03-21
We demonstrate that phase retrieval and tomographic imaging at the organ level of small animals can be advantageously carried out using the monochromatic radiation emitted by a compact x-ray light source, without further optical elements apart from source and detector. This approach allows to carry out microtomography experiments which - due to the large performance gap with respect to conventional laboratory instruments - so far were usually limited to synchrotron sources. We demonstrate the potential by mapping the functional soft tissue within the guinea pig and marmoset cochlea, including in the latter case an electrical cochlear implant. We show how 3d microanatomical studies without dissection or microscopic imaging can enhance future research on cochlear implants.
Development of a compact, rf-driven, pulsed ion source for neutron generation
NASA Astrophysics Data System (ADS)
Perkins, L. T.; Celata, C.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.
1997-02-01
Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a ˜5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 μs (limited only by the available rf power supply) and source pressures as low as ˜5 mTorr. In this configuration, peak extractable hydrogen current densities exceeding 1180 mA/cm2 with H1+ yields over 94% having been achieved.
Why Do Compact Active Galactic Nuclei at High Redshift Twinkle Less?
NASA Technical Reports Server (NTRS)
Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.; Reynolds, C.; Rickett, B. J.; Jauncey, D. L.; Pursimo, T.; Lovell, J. E. J.; Kedziora-Chudczer, L.; Ojha, R.
2012-01-01
The fraction of compact active galactic.nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z approx greater than 2. This can be attributed to an increase in the angular sizes of the mu-as-scale cores or a decrease in the flux densities of the compact mu-as cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM), or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 approx < z approx < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices (alpha (sup 8.4, sub 4.9)) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the alpha (sup 8.4, sub 4.9) < -0.4 sources. Selecting only the -0.4 < alpha (sup 8.4, sub 4.9) < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1 + z)(exp 0.5) scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of approx. < 110 mu-as at 4.9 GHz with 99% confidence for all lines of sight, and as low as approx. < 8 mu-as for sight-lines to the most compact, approx 10 mu-as sources.
FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium
Vega-Hernández, Mónica; Kovacs, Attila; De Langhe, Stijn; Ornitz, David M.
2011-01-01
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart. PMID:21750042
A search for long-time-scale, low-frequency radio transients
NASA Astrophysics Data System (ADS)
Murphy, Tara; Kaplan, David L.; Croft, Steve; Lynch, Christene; Callingham, J. R.; Bannister, Keith; Bell, Martin E.; Hurley-Walker, Natasha; Hancock, Paul; Line, Jack; Rowlinson, Antonia; Lenc, Emil; Intema, H. T.; Jagannathan, P.; Ekers, Ronald D.; Tingay, Steven; Yuan, Fang; Wolf, Christian; Onken, Christopher A.; Dwarakanath, K. S.; For, B.-Q.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R.; Wu, C.; Zheng, Q.
2017-04-01
We present a search for transient and highly variable sources at low radio frequencies (150-200 MHz) that explores long time-scales of 1-3 yr. We conducted this search by comparing the TIFR GMRT Sky Survey Alternative Data Release 1 (TGSS ADR1) and the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogues. To account for the different completeness thresholds in the individual surveys, we searched for compact GLEAM sources above a flux density limit of 100 mJy that were not present in the TGSS ADR1; and also for compact TGSS ADR1 sources above a flux density limit of 200 mJy that had no counterpart in GLEAM. From a total sample of 234 333 GLEAM sources and 275 612 TGSS ADR1 sources in the overlap region between the two surveys, there were 99 658 GLEAM sources and 38 978 TGSS ADR sources that passed our flux density cut-off and compactness criteria. Analysis of these sources resulted in three candidate transient sources. Further analysis ruled out two candidates as imaging artefacts. We analyse the third candidate and show it is likely to be real, with a flux density of 182 ± 26 mJy at 147.5 MHz. This gives a transient surface density of ρ = (6.2 ± 6) × 10-5 deg-2. We present initial follow-up observations and discuss possible causes for this candidate. The small number of spurious sources from this search demonstrates the high reliability of these two new low-frequency radio catalogues.
Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)
A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...
Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site
A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Therefore, EPA/ORD funded a research project with the primary goal of comparing vertical profiles of soil gas concentrat...
Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, and may result in increased inhalation of ethanol vapors in combination with other volatile gasoline constituents. It is important to understand potential risks of inhalation ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... composed of piping, connections, and, if necessary, flow-inducing devices that transport gas or vapor from an emission source to a control device. If gas or vapor from regulated equipment are routed to a process (e.g., to a petroleum refinery fuel gas system), the process shall not be considered a closed vent...
Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. To support selection of an appropriate endpoint for the SVE remedy, an evaluation is needed to determine whether vadose zone contamination has been diminished sufficient...
Highly sensitive solids mass spectrometer uses inert-gas ion source
NASA Technical Reports Server (NTRS)
1966-01-01
Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.
The radio sources CTA 21 and OF+247: The hot spots of radio galaxies
NASA Astrophysics Data System (ADS)
Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.
2013-06-01
The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.
Mono-energy coronary angiography with a compact light source
NASA Astrophysics Data System (ADS)
Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter B.; Pfeiffer, Franz; Muenzel, Daniela
2017-03-01
While conventional x-ray tube sources reliably provide high-power x-ray beams for everyday clinical practice, the broad spectra that are inherent to these sources compromise the diagnostic image quality. For a monochromatic x-ray source on the other hand, the x-ray energy can be adjusted to optimal conditions with respect to contrast and dose. However, large-scale synchrotron sources impose high spatial and financial demands, making them unsuitable for clinical practice. During the last decades, research has brought up compact synchrotron sources based on inverse Compton scattering, which deliver a highly brilliant, quasi-monochromatic, tunable x-ray beam, yet fitting into a standard laboratory. One application that could benefit from the invention of these sources in clinical practice is coronary angiography. Being an important and frequently applied diagnostic tool, a high number of complications in angiography, such as renal failure, allergic reaction, or hyperthyroidism, are caused by the large amount of iodine-based contrast agent that is required for achieving sufficient image contrast. Here we demonstrate monochromatic angiography of a porcine heart acquired at the MuCLS, the first compact synchrotron source. By means of a simulation, the CNR in a coronary angiography image achieved with the quasi-mono-energetic MuCLS spectrum is analyzed and compared to a conventional x-ray-tube spectrum. The results imply that the improved CNR achieved with a quasi-monochromatic spectrum can allow for a significant reduction of iodine contrast material.
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
NASA Astrophysics Data System (ADS)
Parra, R.; Conway, J. E.; Aalto, S.; Appleton, P. N.; Norris, R. P.; Pihlström, Y. M.; Kewley, L. J.
2010-09-01
We present results from 4.8 GHz Very Large Array (VLA) and global very long baseline interferometry (VLBI) observations of the northern half of the moderate FIR luminosity (median L IR = 1011.01 L sun) COLA sample of star-forming galaxies. VLBI sources are detected in a high fraction (20/90) of the galaxies observed. The radio luminosities of these cores (~1021 W Hz-1) are too large to be explained by radio supernovae or supernova remnants and we argue that they are instead powered by active galactic nuclei (AGNs). These sub-parsec scale radio cores are preferentially detected toward galaxies whose VLA maps show bright 100-500 parsec scale nuclear radio components. Since these latter structures tightly follow the FIR to radio-continuum correlation for star formation, we conclude that the AGN-powered VLBI sources are associated with compact nuclear starburst environments. The implications for possible starburst-AGN connections are discussed. The detected VLBI sources have a relatively narrow range of radio luminosity consistent with models in which intense compact Eddington-limited starbursts regulate the gas supply onto a central supermassive black hole. The high incidence of AGN radio cores in compact starbursts suggests little or no delay between the starburst phase and the onset of AGN activity.
Compact FEL-driven inverse compton scattering gamma-ray source
Placidi, M.; Di Mitri, Simone; Pellegrini, C.; ...
2017-02-28
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
Compact FEL-driven inverse compton scattering gamma-ray source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Placidi, M.; Di Mitri, Simone; Pellegrini, C.
Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less
A Fiber Optic Probe for Monitoring Protein Aggregation, Nucleation, and Crystallization
NASA Technical Reports Server (NTRS)
Ansari, Rafat R.; Suh, Kwang I.; Arabshahi, Alireza; Wilson, William W.; Bray, Terry L.; DeLucas, Lawrence J.
1996-01-01
Protein crystals are experimentally grown in hanging drops in microgravity experiments on-board the Space Shuttle orbiter. The technique of dynamic light scattering (DLS) can be used to monitor crystal growth process in hanging droplets (approx. 30 (L)) in microgravity experiments, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. In this paper we demonstrate that such experiments are now feasible. We apply a newly developed fiber optic probe to various earth and space (micro- gravity) bound protein crystallization system configurations to test its capability. These include conventional batch (cuvette or capillary) systems, hanging drop method in a six-pack hanging drop vapor diffusion apparatus (HDVDA), a modified HDVDA for temperature- induced nucleation and aggregation studies, and a newly envisioned dynamically controlled vapor diffusion system (DCVDS) configuration. Our compact system exploits the principles of DLS and offers a fast (within a few seconds) means of quantitatively and non-invasively monitoring the various growth stages of protein crystallization. In addition to DLS capability, the probe can also be used for performing single-angle static light scattering measurements. It utilizes extremely low levels of laser power (approx. few (W)) without a need of having any optical alignment and vibration isolation. The compact probe is also equipped with a miniaturized microscope for visualization of macroscopic protein crystals. This new optical diagnostic system opens up enormous opportunity for exploring new ways to grow good quality crystals suitable for x-ray crystallographic analysis and may help develop a concrete scientific basis for understanding the process of crystallization.
NASA Technical Reports Server (NTRS)
Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.
1993-01-01
The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.
Vapor-barrier Vacuum Isolation System
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)
2014-01-01
A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.
Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism
Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...
2014-01-01
Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.
Enhanced vacuum arc vapor deposition electrode
NASA Technical Reports Server (NTRS)
Weeks, Jack L. (Inventor); Todd, Douglas M. (Inventor)
1999-01-01
A process for forming a thin metal coating on a substrate wherein a gas stream heated by an electrical current impinges on a metallic target in a vacuum chamber to form a molten pool of the metal and then vaporize a portion of the pool, with the source of the heated gas stream being on one side of the target and the substrate being on the other side of the target such that most of the metallic vapor from the target is directed at the substrate.
METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON
Jenkins, F.A.
1958-05-01
Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Stocke, John T.; Darling, Jeremy
2016-03-15
This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5more » and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by the RFI. Future searches for highly redshifted H i and molecular absorption can easily find more distant CSOs among bright, “blank field” radio sources, but will be severely hampered by an inability to determine accurate spectroscopic redshifts due to their lack of rest-frame UV continuum.« less
Optical dynamic range maximization for humidity sensing by controlling growth of zinc oxide nanorods
NASA Astrophysics Data System (ADS)
Yusof, Haziezol Helmi Mohd; Harun, Sulaiman Wadi; Dimyati, Kaharudin; Bora, Tanujjal; Mohammed, Waleed S.; Dutta, Joydeep
2018-07-01
An experimental study of the dynamic range maximization with Zinc Oxide (ZnO) nanorods coated glass substrates for humidity and vapor sensing is reported. Growth time of the nanorods and the length of the coated segments were controlled to study the differences between a reference environmental condition (normal humidity or dry condition) and water vapor concentrations. In order to achieve long dynamic range of detection with respect to nanorods coverage, several substrates with triangular patterns of ZnO nanostructures were fabricated by selective hydrothermal growth over different durations of time (5 h, 10 h and 15 h). It was found that maximum dynamic range for the humidity sensing occurs for the combination parameters of normalized length (Z) of 0.23 and normalized scattering coefficient (ζ) of 0.3. A reduction in transmittance by 38% at humidity levels of 80% with reference point as 50% humidity was observed. The results could be correlated to a first order approximation model that assumes uniform growth and the optimum operating conditions for humidity sensing device. This study provides an option to correlate ZnO growth conditions for different vapor sensing applications which can set a platform for compact sensors where modulation of light intensity is followed.
The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.
Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos
2014-10-21
Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.
Water vapor: An extraordinary terahertz wave source under optical excitation
NASA Astrophysics Data System (ADS)
Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.
2008-09-01
In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.
The Nature of Accreting Black Holes in Nearby Galaxy Nuclei
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Mushotzky, R. F.
1999-04-01
We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.
The Nature of Accreting Black Holes in Nearby Galaxy Nuclei
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.; Mushotzky, R. F.
1999-05-01
We have found compact X-ray sources in the center of 21 (54%) of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 - 2.4 keV) of these compact X-ray sources are ~ 10(37) -10(40) erg s(-1) (with a mean of 3 x 10(39) erg s(-1) ). The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ~ 390 pc. The fact that compact nuclear sources were found in nearly all (five of six) galaxies with previous evidence for a black hole or an AGN indicates that at least some of the X-ray sources are accreting supermassive black holes. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Gamma ~ 2.5) spectral slope. A multicolor disk blackbody model fits the data from the spiral galaxies well, suggesting that the X-ray object in these galaxies may be similar to a Black Hole Candidate in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ~ 0.7 keV) gas dominates the emission. The fact that (for both spiral and elliptical galaxies) the spectral slope is steeper than in normal type 1 AGNs and that relatively low absorbing columns (N_H ~ 10(21) cm(-2) ) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral and elliptical galaxies may be black hole X-ray binaries, low-luminosity AGNs, or possibly young X-ray luminous supernovae. Assuming the sources in the spiral galaxies are accreting black holes in their soft state, we estimate black hole masses ~ 10(2) -10(4) M_sun.
Xia, Hanxue; Attygalle, Athula B
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Xia, Hanxue; Attygalle, Athula B.
2017-12-01
The role of water vapor in transforming the thermodynamically preferred species of protonated benzocaine to the less favored protomer was investigated using helium-plasma ionization (HePI) in conjunction with ion-mobility mass spectrometry (IM-MS). The IM arrival-time distribution (ATD) recorded from a neat benzocaine sample desorbed to the gas phase by a stream of dry nitrogen and ionized by HePI showed essentially one peak for the O-protonated species. However, when water vapor was introduced to the enclosed ion source, within a span of about 150 ms the ATD profile changed completely to one dominated by the N-protonated species. Under spray-based ionization conditions, the nature and composition of the solvents have been postulated to play a decisive role in defining the manifested protomer ratios. In reality, the solvent vapors present in the ion source (particularly the ambient humidity) indirectly dictate the gas-phase ratio of the protomers. Evidently, the gas-phase protomer ratio established at the confinement of the ions is readjusted by the ion-activation that takes place during the transmission of ions to the vacuum. Although it has been repeatedly stated that ions can retain a "memory" of their solution structures because they can be kinetically trapped, and thereby represent their solution-based stabilities, we show that the initial airborne ions can undergo significant transformations in the transit through the intermediate vacuum zones between the ion source and the mass detector. In this context, we demonstrate that the kinetically trapped N-protomer of benzocaine can be untrapped by reducing the humidity of the enclosed ion source. [Figure not available: see fulltext.
Magnetoencephalography with a Cs-based high-sensitivity compact atomic magnetometer
NASA Astrophysics Data System (ADS)
Sheng, Jingwei; Wan, Shuangai; Sun, Yifan; Dou, Rongshe; Guo, Yuhao; Wei, Kequan; He, Kaiyan; Qin, Jie; Gao, Jia-Hong
2017-09-01
In recent years, substantial progress has been made in developing a new generation of magnetoencephalography (MEG) with a spin-exchange relaxation free (SERF)-based atomic magnetometer (AM). An AM employs alkali atoms to detect weak magnetic fields. A compact AM array with high sensitivity is crucial to the design; however, most proposed compact AMs are potassium (K)- or rubidium (Rb)-based with single beam configurations. In the present study, a pump-probe two beam configuration with a Cesium (Cs)-based AM (Cs-AM) is introduced to detect human neuronal magnetic fields. The length of the vapor cell is 4 mm, which can fully satisfy the need of designing a compact sensor array. Compared with state-of-the-art compact AMs, our new Cs-AM has two advantages. First, it can be operated in a SERF regime, requiring much lower heating temperature, which benefits the sensor with a closer distance to scalp due to ease of thermal insulation and less electric heating noise interference. Second, the two-beam configuration in the design can achieve higher sensitivity. It is free of magnetic modulation, which is necessary in one-beam AMs; however, such modulation may cause other interference in multi-channel circumstances. In the frequency band between 10 Hz and 30 Hz, the noise level of the proposed Cs-AM is approximately 10 f T/Hz1/2, which is comparable with state-of-the-art K- or Rb-based compact AMs. The performance of the Cs-AM was verified by measuring human auditory evoked fields (AEFs) in reference to commercial superconducting quantum interference device (SQUID) channels. By using a Cs-AM, we observed a clear peak in AEFs around 100 ms (M100) with a much larger amplitude compared with that of a SQUID, and the temporal profiles of the two devices were in good agreement. The results indicate the possibility of using the compact Cs-AM for MEG recordings, and the current Cs-AM has the potential to be designed for multi-sensor arrays and gradiometers for future neuroscience studies.
A Penning discharge source for extreme ultraviolet calibration
NASA Technical Reports Server (NTRS)
Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.
1986-01-01
A Penning discharge lamp for use in the calibration of instruments and components for the extreme ultraviolet has been developed. This source is sufficiently light and compact to make it suitable for mounting on the movable slit assembly of a grazing incidence Rowland circle monochromator. Because this is a continuous discharge source, it is suitable for use with photon counting detectors. Line radiation is provided both by the gas and by atoms sputtered off the interchangeable metal cathodes. Usable lines are produced by species as highly ionized as Ne IV and Al V. The wavelength coverage provided is such that a good density of emission lines is available down to wavelengths as short as 100A. This source fills the gap between 100 and 300A, which is inadequately covered by the other available compact continuous radiation sources.
NASA Astrophysics Data System (ADS)
Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul
2008-04-01
Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.
Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source
NASA Astrophysics Data System (ADS)
Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang
2015-03-01
Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.
Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition
NASA Astrophysics Data System (ADS)
Akbari, M.; Mohajerzadeh, S.
2017-08-01
We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.
METHOD OF OPERATING A CALUTRON
Davidson, P.H.
1960-01-12
A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Stable isotopes in water vapor and precipitation for a coastal lagoon at mid latitudes
NASA Astrophysics Data System (ADS)
Zannoni, Daniele; Bergamasco, Andrea; Dreossi, Giuliano; Rampazzo, Giancarlo; Stenni, Barbara
2016-04-01
The stable oxygen and hydrogen isotope composition in precipitation can be used in hydrology to describe the signature of local meteoric water. The isotopic composition of water vapor is usually obtained indirectly from measurements of δD and δ18O in precipitation, assuming the isotopic equilibrium between rain and water vapor. Only few studies report isotopic data in both phases for the same area, thus providing a complete Local Meteoric Water Line (LMWL). The goal of this study is to build a complete LMWL for the lagoon of Venice (northern Italy) with observations of both water vapor and precipitation. The sampling campaign has started in March 2015 and will be carried out until the end of 2016. Water vapor is collected once a week with cold traps at low temperatures (-77°C). Precipitation is collected on event and monthly basis with a custom automatic rain sampler and a rain gauge, respectively. Liquid samples are analyzed with a Picarro L1102-i and results are reported vs VSMOW. The main meteorological parameters are continuously recorded in the same area by the campus automatic weather station. Preliminary data show an LMWL close to the Global Meteoric Water Line (GMWL) with lower slope and intercept. An evaporation line is clearly recognizable, considering samples that evaporated between the cloud base and the ground. The deviation from the GMWL parameters, especially intercept, can be attributed to evaporated rain or to the humidity conditions of the water vapor source. Water vapor collected during rainfall shows that rain and vapor are near the isotopic equilibrium, just considering air temperature measured at ground level. Temperature is one of the main factor that controls the isotopic composition of the atmospheric water vapor. Nevertheless, the circulation of air masses is a crucial parameter which has to be considered. Water vapor samples collected in different days but with the same meteorological conditions (air temperature and relative humidity) show differences in terms of δ18O up to 3‰. Isotopic ratios in rain events and water vapor are in fact dominated by a seasonal component but outliers are clearly linked to air parcel origin. The monthly measurements of δD and δ18O in precipitation of August 2015, for instance, are lower than in colder months, considering monthly average temperatures. Single rain events show a small sequence of precipitation, that leads to 40% of total precipitation of August, which lowers δ-values considerably. The sampling on event basis during occasional and discontinuous rain also allows to identify the rainout effect, which leads to lightening water during a rainfall. Statistics based on back trajectories (48 hours) show that the major part of air parcels travels across central Europe and derives from sources located in the north Atlantic, whereas, a smaller fraction of the water vapor can be attributed to Mediterranean sources.
Stirling Air Conditioner for Compact Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less
Kamen, M.D.
1958-02-25
This patent describes an improved ion source for a calutron which is designed to eliminate the necessity of opening the evacuated calutron tank to permit entrance into the tank to place a further charge in thc ion source. The improved ion source comprises a charge reservoir positioned exerior to the calutron tank and connected to an ionizing device located within the tank by a channeled member. A section cf the tank wall supports the ion source structure and Is removable to allow withdrawal of the composite assembly. Heat is applied to the charge reservoir to vaporize the charge and force the charge to the ionizing device, and heat is also furnished along the connecting channel to prevent condensation of the vapor, a valve structure at the exit from the charge reservoir controls the amount of charge received by the ionizing device.
Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.
Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio
2018-02-01
The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.
A compact inflow control device for simulating flight fan noise
NASA Technical Reports Server (NTRS)
Homyak, L.; Mcardle, J. G.; Heidelberg, L. J.
1983-01-01
Inflow control device (ICD's) of various shapes and sizes have been used to simulate inflight fan tone noise during ground static tests. A small, simple inexpensive ICD design was optimized from previous design and fabrication techniques. This compact two-fan-diameter ICD exhibits satisfactory acoustic performance characteristics without causing noise attenuation or redirection. In addition, it generates no important new noise sources. Design and construction details of the compact ICD are discussed and acoustic performance test results are presented.
Fast particles in a steady-state compact FNS and compact ST reactor
NASA Astrophysics Data System (ADS)
Gryaznevich, M. P.; Nicolai, A.; Buxton, P.
2014-10-01
This paper presents results of studies of fast particles (ions and alpha particles) in a steady-state compact fusion neutron source (CFNS) and a compact spherical tokamak (ST) reactor with Monte-Carlo and Fokker-Planck codes. Full-orbit simulations of fast particle physics indicate that a compact high field ST can be optimized for energy production by a reduction of the necessary (for the alpha containment) plasma current compared with predictions made using simple analytic expressions, or using guiding centre approximation in a numerical code. Alpha particle losses may result in significant heating and erosion of the first wall, so such losses for an ST pilot plant have been calculated and total and peak wall loads dependence on the plasma current has been studied. The problem of dilution has been investigated and results for compact and big size devices are compared.
Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX.
Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam
2010-11-15
Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bailey, Michael R. (Inventor); Simon, Julianna C. (Inventor); Crum, Lawrence A. (Inventor); Khokhlova, Vera A. (Inventor); Wang, Yak-Nam (Inventor); Sapozhnikov, Oleg A. (Inventor); Khokhlova, Tatiana D. (Inventor)
2016-01-01
The present technology is directed to methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities, and associated systems and devices. In several embodiments, for example, a method of non-invasively treating tissue includes pulsing ultrasound energy from the ultrasound source toward the target site in tissue. The ultrasound source is configured to emit high intensity focused ultrasound (HIFU) waves. The target site comprises a pressure-release interface of a gas or vapor cavity located within the tissue. The method continues by generating shock waves in the tissue to induce a lesion in the tissue at the target site. The method additionally includes characterizing the lesion based on a degree of at least one of a mechanical or thermal ablation of the tissue.
Compact radio sources in luminous infrared galaxies
NASA Astrophysics Data System (ADS)
Parra, Rodrigo
2007-08-01
Radio interferometry is an observational technique of high sensitivity and incomparably high spatial resolution. Moreover, because radio waves can freely propagate through interstellar dust and gas, it allows the study of regions of the universe completely obscured at other wavelengths. This thesis reports the observational and theoretical results of my research during the past four years which are mostly based on interferometric radio data. The COLA sample is an infrared selected sample of active star forming galaxies. We conducted 6 cm VLA and VLBI snapshot observations of the northern half of this sample. The radio emission seen at VLA scales is consistent with being powered by star formation activity because it follows the far infrared to radio correlation. We detect 22% of the sample sources in our VLBI snapshots. Based on luminosity arguments, we argue that these sub-parsec VLBI sources are powered by AGN activity. Furthermore, we find that VLBI detections are preferentially found in sources whose VLA scale structures have the highest peak brightnesses suggesting a strong correlation between compact starburst and AGN activity. This observational result is consistent with the theoretical picture of an Eddington-limited nuclear starburst acting as the last valve in the pipeline transporting the gas from kiloparsec scales onto the accretion disc of a buried AGN. Arp 220 is the archetypical ultra luminous infrared galaxy. For many years this source has been known to harbour a compact (~100 pc) cluster of unresolved 18 cm bright sources believed to be bright core collapse supernovae. Using multiwavelength VLBI observations, we obtained for the first time radio spectra for 18 of these sources. We find that over a half of them have spectra consistent with young supernovae. The rest can be better explained as older supernova remnants interacting with the high density starburst ISM. This finding allowed us to constrain the number of possible scenarios for the Arp 220 starburst. A subset of luminous infrared galaxies contain non-thermal spectral line emission from the OH radical. These OH megamasers often show diffuse extended (~100 pc) low gain emission surrounding compact ([Special characters omitted. 1 pc) high gain maser spots. These observational features have been explained in terms of unsaturated and saturated masers. Using numerical simulations we have shown how both the diffuse and compact components of the OH megamaser observed towards the luminous infrared galaxy IIIZw35 can be explained by a single phase of unsaturated maser clouds in which the compact bright masers are caused by the random line-of-sight overlap of several such clouds and the diffuse component by the beam spatial average of many low gain clouds too weak to be seen independently. The theoretical tools developed to analyse this particular case have been extended to the general problem of propagation of radiation in clumpy media.
Sargent, M R; Sayres, D S; Smith, J B; Witinski, M; Allen, N T; Demusz, J N; Rivero, M; Tuozzolo, C; Anderson, J G
2013-07-01
We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT∕LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT∕LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in which differences of 1.5-2 ppmv were routinely observed, and demonstrates that the accuracy of HHH is consistent with other instruments which use a range of detection methods and sampling techniques.
Chemical vapor deposition of W-Si-N and W-B-N
Fleming, James G.; Roherty-Osmun, Elizabeth Lynn; Smith, Paul M.; Custer, Jonathan S.; Jones, Ronald V.; Nicolet, Marc-A.; Madar, Roland; Bernard, Claude
1999-01-01
A method of depositing a ternary, refractory based thin film on a substrate by chemical vapor deposition employing precursor sources of tungsten comprising WF.sub.6, either silicon or boron, and nitrogen. The result is a W--Si--N or W--B--N thin film useful for diffusion barrier and micromachining applications.
Oxide vapor distribution from a high-frequency sweep e-beam system
NASA Astrophysics Data System (ADS)
Chow, R.; Tassano, P. L.; Tsujimoto, N.
1995-03-01
Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.
Brusseau, Mark L.; Carroll, Kenneth C.; Truex, Michael J.; Becker, David J.
2014-01-01
Contamination of vadose-zone systems by chlorinated solvents is widespread, and poses significant potential risk to human health through impacts on groundwater quality and vapor intrusion. Soil vapor extraction (SVE) is the presumptive remedy for such contamination, and has been used successfully for innumerable sites. However, SVE operations typically exhibit reduced mass-removal effectiveness at some point due to the impact of poorly accessible contaminant mass and associated mass-transfer limitations. Assessment of SVE performance and closure is currently based on characterizing contaminant mass discharge associated with the vadose-zone source, and its impact on groundwater or vapor intrusion. These issues are addressed in this overview, with a focus on summarizing recent advances in our understanding of the transport, characterization, and remediation of chlorinated solvents in the vadose zone. The evolution of contaminant distribution over time and the associated impacts on remediation efficiency will be discussed, as will the potential impact of persistent sources on groundwater quality and vapor intrusion. In addition, alternative methods for site characterization and remediation will be addressed. PMID:25383058
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging
NASA Technical Reports Server (NTRS)
Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.
2006-01-01
A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.
Escape of gravitational radiation from the field of massive bodies
NASA Technical Reports Server (NTRS)
Price, Richard H.; Pullin, Jorge; Kundu, Prasun K.
1993-01-01
We consider a compact source of gravitational waves of frequency omega in or near a massive spherically symmetric distribution of matter or a black hole. Recent calculations have led to apparently contradictory results for the influence of the massive body on the propagation of the waves. We show here that the results are in fact consistent and in agreement with the 'standard' viewpoint in which the high-frequency compact source produces the radiation as if in a flat background, and the background curvature affects the propagation of these waves.
Numerical simulation of compact intracloud discharge and generated electromagnetic pulse
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.
2015-06-01
Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.
The effect of the dynamic wet troposphere on VLBI measurements
NASA Technical Reports Server (NTRS)
Treuhaft, R. N.; Lanyi, G. E.
1986-01-01
Calculations using a statistical model of water vapor fluctuations yield the effect of the dynamic wet troposphere on Very Long Baseline Interferometry (VLBI) measurements. The statistical model arises from two primary assumptions: (1) the spatial structure of refractivity fluctuations can be closely approximated by elementary (Kolmogorov) turbulence theory, and (2) temporal fluctuations are caused by spatial patterns which are moved over a site by the wind. The consequences of these assumptions are outlined for the VLBI delay and delay rate observables. For example, wet troposphere induced rms delays for Deep Space Network (DSN) VLBI at 20-deg elevation are about 3 cm of delay per observation, which is smaller, on the average, than other known error sources in the current DSN VLBI data set. At 20-deg elevation for 200-s time intervals, water vapor induces approximately 1.5 x 10 to the minus 13th power s/s in the Allan standard deviation of interferometric delay, which is a measure of the delay rate observable error. In contrast to the delay error, the delay rate measurement error is dominated by water vapor fluctuations. Water vapor induced VLBI parameter errors and correlations are calculated. For the DSN, baseline length parameter errors due to water vapor fluctuations are in the range of 3 to 5 cm. The above physical assumptions also lead to a method for including the water vapor fluctuations in the parameter estimation procedure, which is used to extract baseline and source information from the VLBI observables.
NASA Astrophysics Data System (ADS)
Samuels, K. E.; Galewsky, J.; Sharp, Z. D.; Rella, C.; Ward, D.
2010-12-01
Subtropical deserts form in response to the interaction of large-scale processes, including atmospheric circulation and oceanic currents, with local features like topography. The degree to which each of these factors controls desert formation and the anticipated impacts of variations in each as climate changes, however, are poorly understood. Stable isotope compositions of water vapor in desert air can help to distinguish between moisture sources and processes that control aridity. The Atacama Desert, located in northern Chile between latitudes 23S and 27S, provides a natural laboratory in which to test the degree to which water vapor isotopologues enable the distinction between processes that control humidity, including the Hadley Circulation, the cold Humboldt Current off the coast of Chile, and the orographic effect of the Andes, in this subtropical desert. Water vapor isotopologues and concentrations were measured in real time using a cavity-ringdown spectrometer deployed on the Chajnantor Plateau over a three-week period from mid-July early August 2010. The elevation of the Plateau, 5000 m amsl (~550 hPa), places it above the boundary layer, allowing the evaluation of the Rayleigh fractionation model from the coast inland. Values reported by the instrument were verified with air samples taken at the coast and the Plateau, which were analyzed on an MAT-252 mass spectrometer. Water vapor concentrations and δD values varied spatially and temporally. Water vapor concentrations on the Plateau ranged from 200 to 3664 ppmv with a mean value of 536 ppmv. In contrast, water vapor concentrations at the coast were approximately 10000 ppmv, and at Yungay, 60 km inland, water vapor concentrations ranged from 1300 to 2000 ppmv from morning to evening. δD values on the Plateau ranged from -526‰ to -100‰ with a mean value of 290‰ with enriched values correlated to periods with higher water vapor concentrations. There are no strong diurnal variations in water vapor concentrations and corresponding δD values on the Plateau, however, water vapor concentrations generally increase after sunrise and reach their maxima in the evening. Temperatures on the Plateau were consistently around 0 degrees C during the pilot study with dewpoint temperatures around -20 degrees C and specific humidity ranging from 0.20 to 2.0 g/kg. Within this range of specific humidity, the Rayleigh fractionation model predicts δD values between -570‰ and -300‰. Preliminary results from this pilot study show that δD values are more enriched than predicted by a Rayleigh fractionation curve for water originating at the ocean and moving inland to an elevation of 5000 m. Instead, δD for water vapor on the Chajnantor Plateau falls along a mixing curve between upper- and lower-troposphere sources. Long term monitoring is necessary to understand the complex interplay between atmospheric and oceanic processes combined with topography responsible for the both water vapor concentrations and δD values observed on the Chajnantor Plateau.
NASA Technical Reports Server (NTRS)
Burbidge, G. R.; Jones, T. W.; Odell, S. L.
1974-01-01
The energy content of the compact incoherent electron-synchrotron sources 3C 84, 3C 120, 3C 273, 3C 279, 3C 454.3, CTA 102, 3C 446, PKS 2134+004, VRO 42.22.01 and OJ 287 is calculated on the assumption that the low-frequency turnovers in the radio spectrum are due to self-absorption and that the electron distribution is isotropic. The dependence of the source parameters on various modifications of the standard assumptions is determined. These involve relativistic motions, alternate explanations for the low-frequency turnover, proton-synchrotron radiation, and distance to the source. The canonical interpretation is found to be accurate in many respects; some of the difficulties and ways of dealing with them are discussed in detail.
Experimental demonstration of a compact epithermal neutron source based on a high power laser
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.
2017-07-01
Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.
Narrow bandwidth Laser-Plasma Accelerator driven Thomson photon source development
NASA Astrophysics Data System (ADS)
Geddes, C. G. R.; Tsai, H.-E.; Otero, G.; Liu, X.; van Tilborg, J.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Friedman, A.; Grote, D. P.; Leemans, W. P.
2017-10-01
Compact, high-quality photon sources at MeV energies can be provided by Thomson scattering of a laser from the electron beam of a Laser-Plasma Accelerator (LPA). Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV sources. Simulations indicate that high flux with narrow energy spread can be achieved via control of the scattering laser pulse shape and laser guiding, and that undesired background bremsstrahlung can be mitigated by plasma based deceleration of the electron beam after photon production. Construction of experiments and laser capabilities to combine these elements will be presented, along with initial operations, towards a compact photon source system. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.
Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).
Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui
2016-06-01
Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Roden, John S.; Ehleringer, James R.
1999-01-01
The Craig-Gordon evaporative enrichment model of the hydrogen (δD) and oxygen (δ18O) isotopes of water was tested in a controlled-environment gas exchange cuvette over a wide range (400‰ δD and 40‰ δ18O) of leaf waters. (Throughout this paper we use the term “leaf water” to describe the site of evaporation, which should not be confused with “bulk leaf water” a term used exclusively for uncorrected measurements obtained from whole leaf water extractions.) Regardless of how the isotopic composition of leaf water was achieved (i.e. by changes in source water, atmospheric vapor δD or δ18O, vapor pressure gradients, or combinations of all three), a modified version of the Craig-Gordon model was shown to be sound in its ability to predict the δD and δ18O values of water at the site of evaporation. The isotopic composition of atmospheric vapor was shown to have profound effects on the δD and δ18O of leaf water and its influence was dependent on vapor pressure gradients. These results have implications for conditions in which the isotopic composition of atmospheric vapor is not in equilibrium with source water, such as experimental systems that grow plants under isotopically enriched water regimes. The assumptions of steady state were also tested and found not to be a major limitation for the utilization of the leaf water model under relatively stable environmental conditions. After a major perturbation in the δD and δ18O of atmospheric vapor, the leaf reached steady state in approximately 2 h, depending on vapor pressure gradients. Following a step change in source water, the leaf achieved steady state in 24 h, with the vast majority of changes occurring in the first 3 h. Therefore, the Craig-Gordon model is a useful tool for understanding the environmental factors that influence the hydrogen and oxygen isotopic composition of leaf water as well as the organic matter derived from leaf water. PMID:10444100
Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source
NASA Astrophysics Data System (ADS)
Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Frydrych, S.; Kroll, F.; Joost, M.; Al-Omari, H.; Blažević, A.; Zielbauer, B.; Hofmann, I.; Bagnoud, V.; Cowan, T. E.; Roth, M.
2013-10-01
Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤30mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.
Spectral evolution in young active galactic nuclei
NASA Technical Reports Server (NTRS)
Boldt, E.; Leiter, D.
1986-01-01
The spectral evolution of AGNs is discussed within the context of a scenario where the cosmic X-ray background (CXB) is dominated by these sources. Attention is draqwn to the fact that the individually observed AGN X-ray spectra are significantly steeper than that of the CXB. The remarkably flat spectrum thereby required for the 'as-yet' unresolved sources of the residual CXB is interpreted as an observational constraint on an earlier stage of AGN evolution. Assuming black hole disk accretion, a picture emerges where young AGNs are compact Eddington limited thermal X-ray sources and where canonical AGNs represent later stages in which they have become appreciably less compact, exhibiting the importance of nonthermal disk-dynamo processes.
Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk
NASA Astrophysics Data System (ADS)
Bruce, John
2011-01-01
From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.
Overview of the Lockheed Martin Compact Fusion Reactor (CFR) Project
NASA Astrophysics Data System (ADS)
McGuire, Thomas
2017-10-01
The Lockheed Martin Compact Fusion Reactor (CFR) Program endeavors to quickly develop a compact fusion power plant with favorable commercial economics and military utility. The CFR uses a diamagnetic, high beta, magnetically encapsulated, linear ring cusp plasma confinement scheme. Major project activities will be reviewed, including the T4B and T5 plasma heating experiments. The goal of the experiments is to demonstrate a suitable plasma target for heating experiments, to characterize the behavior of plasma sources in the CFR configuration and to then heat the plasma with neutral beams, with the plasma transitioning into the high Beta confinement regime. The design and preliminary results of the experiments will be presented, including discussion of predicted behavior, plasma sources, heating mechanisms, diagnostics suite and relevant numerical modeling. ©2017 Lockheed Martin Corporation. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Shastri, Prajval
2017-09-01
We seek to test the hypothesis that radiatively efficient accretion onto the central supermassive black holes (SMBHs) of two merging galaxies drive the emission-line structure and kinematics that we see in the ROSAT-detected Carafe. We have confirmed the presence of two compact sources with LINER-type spectra, which coincide with two compact radio sources that we detect. We have obtained the emission-line structure and kinematics of the Carafe with an optical IFU mosaic. We demonstrate that the proposed 35ksec ACIS imaging will yield both the soft and hard X-ray photons that we need to definitively distinguish between the following hypotheses: that the driver of the system is a pair of accreting SMBH, or that the hot extended gas in the Carafe is shock-excited by two compact star bursts.
A compact new incoherent Thomson scattering diagnostic for low-temperature plasma studies
NASA Astrophysics Data System (ADS)
Vincent, Benjamin; Tsikata, Sedina; Mazouffre, Stéphane; Minea, Tiberiu; Fils, Jérôme
2018-05-01
Incoherent Thomson scattering (ITS) has a long history of application for the determination of electron density and temperature in dense fusion plasmas, and in recent years, has been increasingly extended to studies in low-temperature plasma environments. In this work, the design and preliminary implementation of a new, sensitive and uniquely compact ITS platform known as Thomson scattering experiments for low temperature ion sources are described. Measurements have been performed on a hollow cathode plasma source, providing access to electron densities as low as 1016 m‑3 and electron temperatures of a few eV and below. This achievement has been made possible by the implementation of a narrow volume Bragg grating notch filter for the attenuation of stray light, a feature which guarantees compactness and reduced transmission losses in comparison to standard ITS platforms.
Weaver, Scott R; Jazwa, Amelia; Popova, Lucy; Slovic, Paul; Rothenberg, Richard B; Eriksen, Michael P
2017-12-01
Public health agencies, the news media, and the tobacco/vapor industry have issued contradictory statements about the health effects of electronic nicotine delivery systems (ENDS). We investigated the levels of trust that consumers place in different information sources and how trust is associated with cultural worldviews, risk perceptions, ENDS use, and sociodemographic characteristics using a nationally representative sample of 6051 U.S. adults in 2015. Seventeen percent of adults were uncertain about their trust for one or more potential sources. Among the rest, the Centers for Disease Control and Prevention (CDC), health experts, and the Food & Drug Administration (FDA) elicited the highest levels of trust. In contrast, tobacco and vapor manufacturers, vape shop employees, and, to a lesser extent, the news media were distrusted. Adults who had higher incomes and more education or espoused egalitarian and communitarian worldviews expressed more trust in health sources and the FDA, whereas those identifying as non-Hispanic Black or multiracial reported less trust. Current smokers, those who identified as non-Hispanic Black or other race, had lower incomes, and espoused hierarchy and individualism worldviews expressed less distrust toward the tobacco and vapor industry. Greater trust (or less distrust) toward the tobacco and vapor industry and an individualism worldview were associated with perceptions of lower risk of premature death from daily ENDS use, greater uncertainty about those risks, and greater odds of using ENDS. Public health and the FDA should consider consumer trust and worldviews in the design and regulation of public education campaigns regarding the potential health risks and benefits of ENDS.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
Concept, design, and use of the photoacoustic heat pipe cell
NASA Astrophysics Data System (ADS)
Jalink, Henk; Bicanic, Dane
1989-10-01
A resonant photoacoustic cell suitable for studies of liquid samples having low vapor pressures has been developed and tested. The cell, the working of which is based on that of the heat pipe, is of a simple, compact design; its operational temperature range is limited only by the choice of working fluid and the material used to construct the cell. The feasibility of this novel-type cell has been demonstrated by obtaining the absorption spectrum of geraniol C10H18O at 403 K in the spectral region covered by the CO2 laser emission.
Bentley, Bill F.; Jett, James H.; Martin, John C.; Saunders, George C.
1992-01-01
Method and apparatus for removing material from a gas. A mist created by a piezoelectric ultrasonic transducer is contacted with the gas and both gas and mist are passed through baffled separators. Liquid effluent from the separators contains solid material removed from the gas and gaseous material which reacted with the liquid or was absorbed by the liquid. The invention is useful for collecting a sample of material in a gas, such as a vapor in the atmosphere, and in cleaning a gas. A relatively concentrated solution of a material present in a gas in a very small concentration can be obtained.
Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring
NASA Astrophysics Data System (ADS)
Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.
1995-09-01
We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.
The first VLBI image of an infrared-faint radio source
NASA Astrophysics Data System (ADS)
Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.
2008-11-01
Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.
NASA Technical Reports Server (NTRS)
Pilewski, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.
2000-01-01
Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under-cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.
NASA Technical Reports Server (NTRS)
Pilewskie, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.
2000-01-01
Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm(exp -2) per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.
Pathway to a compact SASE FEL device
NASA Astrophysics Data System (ADS)
Dattoli, G.; Di Palma, E.; Petrillo, V.; Rau, Julietta V.; Sabia, E.; Spassovsky, I.; Biedron, S. G.; Einstein, J.; Milton, S. V.
2015-10-01
Newly developed high peak power lasers have opened the possibilities of driving coherent light sources operating with laser plasma accelerated beams and wave undulators. We speculate on the combination of these two concepts and show that the merging of the underlying technologies could lead to new and interesting possibilities to achieve truly compact, coherent radiator devices.
Central Compact Objects in Kes 79 and RCW 103 as `Hidden' Magnetars with Crustal Activity
NASA Astrophysics Data System (ADS)
Popov, S. B.; Kaurov, A. A.; Kaminker, A. D.
2015-05-01
We propose that observations of `hidden' magnetars in central compact objects can be used to probe crustal activity of neutron stars with large internal magnetic fields. Estimates based on calculations by Perna & Pons, Pons & Rea and Kaminker et al. suggest that central compact objects, which are proposed to be `hidden' magnetars, must demonstrate flux variations on the time scale of months-years. However, the most prominent candidate for the `hidden' magnetars - CXO J1852.6+0040 in Kes 79 - shows constant (within error bars) flux. This can be interpreted by lower variable crustal activity than in typical magnetars. Alternatively, CXO J1852.6+0040 can be in a high state of variable activity during the whole period of observations. Then we consider the source 1E161348 - 5055 in RCW103 as another candidate. Employing a simple 2D-modelling we argue that properties of the source can be explained by the crustal activity of the magnetar type. Thus, this object may be supplemented for the three known candidates for the `hidden' magnetars among central compact objects discussed in literature.
The Evolution of Compact Binary Star Systems.
Postnov, Konstantin A; Yungelson, Lev R
2014-01-01
We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.
NASA Astrophysics Data System (ADS)
Cable, J. M.; Ogle, K.; Cable, B.; Welker, J. M.
2010-12-01
The interior Alaskan boreal forest ecosystem is underlain by permafrost and thus has complex soil moisture and soil thermal properties, and this complexity is further amplified by its dry climate with low snow in winter and minimal summer rain. This combination of climate, cryosphere, and hydrology characteristics impact vegetation ecophysiological and ecohydrological processes, such as the distribution of plant-available water sources and the temporal dynamics of evapotranspiration (ET). As a major component of ET, plant transpiration is typically sustained throughout a variety of climatic conditions. The water sources (rain, thawing ground ice, etc) supporting plant transpiration are relatively unquantified, particularly on a seasonal time scale. In this study, we ask: what are the seasonal dynamics of plant water use in the boreal forest, and how are the trends at the plant scale translated into ecosystem-level water fluxes? Thus, the objective of this study was to characterize the spatial and temporal dynamics of boreal plant water use and water flux throughout the growing season. To do this, we measured the stable isotope (δ18O and δD) composition of water from precipitation, ground ice, soils, plants, and vapor from 5 heights in the ecosystem during the growing season in a boreal system near Fairbanks, Alaska underlain by permafrost. We analyzed the plant water, soil water, and vapor isotope data in a Bayesian framework to quantify the plant water uptake profiles and to explore the implications of shifting water sources for ecosystem ET. The vapor isotope data (across all heights) ranged from -216 to -190 ‰ (δD) and -27 to -21 ‰ (δ18O) in late July to slightly more depleted in late August, with values ranging from -232 to -203 ‰ (δD) and -29 to -20 ‰ (δ18O). Diurnal trends are such that the isotope composition of vapor became more enriched over the day as ET rates increased, and vapor at the 0.25 m height was generally more enriched relative to the 6 m height. Plant and soil isotope sampling from prior years shows that dwarf birch (B. nana, the dominant shrub in the ecosystem sampled by the vapor analyzer) gets about 50% of its water from surface, rain-fed soil layers and 50% of its water from deeper soil layers (fed by thawing ground ice). This is one of the first studies to show the patterns of boreal ecosystem water isotopes at diurnal (vapor) and seasonal (plant) scales. Understanding the isotopic composition of water vapor from northern ecosystems is paramount to advancing estimates of biosphere-atmosphere interactions and the nature of ecohydrologic feedbacks to the changing state of the North.
Health effects of gasoline exposure. I. Exposure assessment for U.S. distribution workers.
Smith, T J; Hammond, S K; Wong, O
1993-01-01
Personal exposures were estimated for a large cohort of workers in the U.S. domestic system for distributing gasoline by trucks and marine vessels. This assessment included development of a rationale and methodology for extrapolating vapor exposures prior to the availability of measurement data, analysis of existing measurement data to estimate task and job exposures during 1975-1985, and extrapolation of truck and marine job exposures before 1975. A worker's vapor exposure was extrapolated from three sets of factors: the tasks in his or her job associated with vapor sources, the characteristics of vapor sources (equipment and other facilities) at the work site, and the composition of petroleum products producing vapors. Historical data were collected on the tasks in job definitions, on work-site facilities, and on product composition. These data were used in a model to estimate the overall time-weighted-average vapor exposure for jobs based on estimates of task exposures and their duration. Task exposures were highest during tank filling in trucks and marine vessels. Measured average annual, full-shift exposures during 1975-1985 ranged from 9 to 14 ppm of total hydrocarbon vapor for truck drivers and 2 to 35 ppm for marine workers on inland waterways. Extrapolated past average exposures in truck operations were highest for truck drivers before 1965 (range 140-220 ppm). Other jobs in truck operations resulted in much lower exposures. Because there were few changes in marine operations before 1979, exposures were assumed to be the same as those measured during 1975-1985. Well-defined exposure gradients were found across jobs within time periods, which were suitable for epidemiologic analyses. PMID:8020436
Li, Jianjun; Wang, Hongxia; Wu, Li; Chen, Cheng; Zhou, Zhiqiang; Liu, Fangfang; Sun, Yun; Han, Junbo; Zhang, Yi
2016-04-27
It is a challenge to fabricate high quality Cu2ZnSnSe4 (CZTSe) film with low Cu content (Cu/(Zn + Sn) < 0.8). In this work, the growth mechanisms of CZTSe films under different Se vapor composition are investigated by DC-sputtering and a postselenization approach. The composition of Se vapor has important influence on the compactability of the films and the diffusion of elements in the CZTSe films. By adjusting the composition of Se vapor during the selenization process, an optimized two step selenization process is proposed and highly crystallized CZTSe film with low Cu content (Cu/(Zn + Sn) = 0.75) is obtained. Further study of the effect of Cu content on the morphology and photovoltaic performance of the corresponding CZTSe solar cells has shown that the roughness of the CZTSe absorber film increases when Cu content decreases. As a consequence, the reflection loss of CZTSe solar cells reduces dramatically and the short circuit current density of the cells improve from 34.7 mA/cm(2) for Cu/(Zn + Sn) = 0.88 to 38.5 mA/cm(2) for Cu/(Zn + Sn) = 0.75. In addition, the CZTSe solar cells with low Cu content show longer minority carrier lifetime and higher open circuit voltage than the high Cu content devices. A champion performance CZTSe solar cell with 10.4% efficiency is fabricated with Cu/(Zn + Sn) = 0.75 in the CZTSe film without antireflection coating.
Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping
2011-09-01
A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.
Characterization of a Surface-Flashover Ion Source with 10-250 ns Pulse Widths
NASA Astrophysics Data System (ADS)
Falabella, S.; Guethlein, G.; Kerr, P. L.; Meyer, G. A.; Morse, J. D.; Sampayan, S.; Tang, V.
2009-03-01
As a step towards developing an ultra compact D-D neutron source for various defense and homeland security applications, a compact ion source is needed. Towards that end, we are testing a pulsed, surface flashover source, with deuterated titanium films deposited on alumina substrates as the electrodes. An electrochemically-etched mask was used to define the electrode areas on the substrate during the sputtered deposition of the titanium films. Deuterium loading of the films was performed in an all metal-sealed vacuum chamber containing a heated stage. Deuterium ion current from the source was determined by measuring the neutrons produced when the ions impacted a deuterium-loaded target held at -90 kV. As the duration of the arc current is varied, it was observed that the integrated deuteron current per pulse initially increases rapidly, then reaches a maximum near a pulse length of 100 ns.
Electrode structure of a compact microwave driven capacitively coupled atomic beam source
NASA Astrophysics Data System (ADS)
Shimabukuro, Yuji; Takahashi, Hidenori; Wada, Motoi
2018-01-01
A compact magnetic field free atomic beam source was designed, assembled and tested the performance to produce hydrogen and nitrogen atoms. A forced air-cooled solid-state microwave power supply at 2.45 GHz frequency drives the source up to 100 W through a coaxial transmission cable coupled to a triple stub tuner for realizing a proper matching condition to the discharge load. The discharge structure of the source affected the range of operation pressure, and the pressure was reduced by four orders of magnitude through improving the electrode geometry to enhance the local electric field intensity. Optical emission spectra of the produced plasmas indicate production of hydrogen and nitrogen atoms, while the flux intensity of excited nitrogen atoms monitored by a surface ionization type detector showed the signal level close to a source developed for molecular beam epitaxy applications with 500 W RF power.
NASA Astrophysics Data System (ADS)
Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.
2016-12-01
While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.
Development of a compact filament-discharge multi-cusp H- ion source.
Jia, XianLu; Zhang, TianJue; Zheng, Xia; Qin, JiuChang
2012-02-01
A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.
Minimum Energy-Variance Filters for the detection of compact sources in crowded astronomical images
NASA Astrophysics Data System (ADS)
Herranz, D.; Sanz, J. L.; López-Caniego, M.; González-Nuevo, J.
2006-10-01
In this paper we address the common problem of the detection and identification of compact sources, such as stars or far galaxies, in Astronomical images. The common approach, that consist in applying a matched filter to the data in order to remove noise and to search for intensity peaks above a certain detection threshold, does not work well when the sources to be detected appear in large number over small regions of the sky due to the effect of source overlapping and interferences among the filtered profiles of the sources. A new class of filter that balances noise removal with signal spatial concentration is introduced, then it is applied to simulated astronomical images of the sky at 857 GHz. We show that with the new filter it is possible to improve the ratio between true detections and false alarms with respect to the matched filter. For low detection thresholds, the improvement is ~ 40%.
Kinematic Age Estimates for Four Compact Symmetric Objects from the Pearson-Readhead Survey
NASA Astrophysics Data System (ADS)
Taylor, G. B.; Marr, J. M.; Pearson, T. J.; Readhead, A. C. S.
2000-09-01
Based on multiepoch observations at 15 and 43 GHz with the Very Long Baseline Array (VLBA), we detect significant angular expansions between the two hot spots of four compact symmetric objects (CSOs). From these relative motions we derive kinematic ages of between 300 and 1200 yr for the radio emission. These ages lend support to the idea that CSOs are produced in a recent phase of activity. These observations also allow us to study the evolution of the hot spots dynamically in individual sources. In all four sources the hot spots are separating along the source axis, but in 1031+567 the tip of the hot spot appears to be moving almost orthogonally to the source axis. Jet components, seen in three of the four sources observed, are found to be moving relativistically outward from the central engines toward the more slowly moving hot spots.
Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girka, O.; Bizyukov, I.; Sereda, K.
2012-08-15
This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}-more » 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.« less
The Parsec-Scale Morphology of Southern GPS Sources
NASA Astrophysics Data System (ADS)
Edwards, P. G.; Tingay, S. J.
2016-12-01
Multi-frequency, multi-epoch ATCA observations of a sample of AGN resulted in the identification of nine new candidate Giga-hertz Peaked Spectrum sources. Here, we present Long Baseline Array observations at 4.8 GHz of the four candidates with no previously published VLBI image, and consider these together with previously published VLBI images of the other five sources. We find core-jet or compact double morphologies dominate, with further observations required to distinguish between these two possibilities for some sources. One of the nine candidates, PKS 1831-711, displays appreciable variability, suggesting its GPS spectrum is more ephemeral in nature. We focus in particular on the apparent relationship between a narrow spectral width and `compact double' parsec-scale morphology, finding further examples, but also exceptions to this trend. An examination of the VLBI morphologies high-redshift (z > 3) sub-class of GPS sources suggests that core-jet morphologies predominate in this class.
Investigation of water vapor motion winds from geostationary satellites
NASA Technical Reports Server (NTRS)
Velden, Christopher
1993-01-01
Motions deduced in animated water vapor imagery from geostationary satellites can be used to infer wind fields in cloudless regimes. For the past several years, CIMSS has been exploring this potentially important source of global-scale wind information. Recently, METEOSAT-3 data has become routinely available to both the U.S. operational and research community. Compared with the current GOES satellite, the METEOSAT has a superior resolution (5 km vs. 16 km) in its water vapor channel. Preliminary work: at CIMSS has demonstrated that wind sets derived from METEOSAT water vapor imagery can provide important upper-tropospheric wind information in data void areas, and can positively impact numerical model guidance in meteorological applications. Specifically, hurricane track forecasts can be improved. Currently, we are exploring methods to further improve the derivation and quality of the water vapor wind sets.
Study on water vapor characteristic of typical heavy snowstorm case in Northern Xinjiang
NASA Astrophysics Data System (ADS)
Cui, C.; Zhang, J.
2017-12-01
Using the daily precipitation at 51 weather stations in the Northern Xinjiang from November to March during 2000—2012 and daily water vapor of NCEP/NCAR 6 h 1°×1° reanalysis data, the water vapor characteristics of 11 typical heavy snowstorm cases were studied. The result shows that the 11 cases are classified into 3 types: West of Northern Xinjiang and along Tianshan edge, north and east of Northern Xinjiang, west of Northern Xinjiang and west Tianshan. There are two main water vapor sources: Near the Mediterranean Sea, the Red Sea or near the Persian Gulf. There are two water vapor transport routes which are west, southwest and northwest, respectively. Water vapor from southwest route is more, that from northwest route is less. The top of water vapor is close to 300 hPa. The strongest water vapor transport level is between 650-750 hPa. Before the every occurrence of 11 heavy snowstorm processes, there are water vapor convergence between 600-1000 hPa in Northern Xinjiang.There are positive correlations between the snowstorm intensity and water vapor convergence between 600-1000 hPa, as well as the convergence strength, rang and duration time in Northern Xinjiang. Hence, some lowest values of the strongest water vapor transport, water vapor convergence and the upper and lower level jet streams are resented also and gave useful references for accurate heavy snowstorm forecasting.
Air Separation Using Hollow Fiber Membranes
NASA Technical Reports Server (NTRS)
Huang, Stephen E.
2004-01-01
The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over 300 different hydrocarbons commonly found in JP- 8, Jet A, and JP-5 fuels. I researched the major hydrocarbons that has a concentration of greater than 50 parts per million and found the vapor pressure data coefficients for a specific temperature range. The coefficients were applied to Antoine s Equation and Riedel's Equation to calculate the vapor pressures for that specific hydrocarbon in the specific temperature range. With the vapor pressure data scientists can formulate a fuel composition that has a lower vapor pressure profile, therefore making jet fuels less flammable. work, learn how to operate and examine the data from Gas Chromatograph and Mass Spectrometer, and develop new ways in applying hollow fiber membrane technology to other areas of environmental engineering. The United States military currently uses air separation technology and their primary The other side of making air travel safer is to reformulate the fuel. Analyses of three My goal this summer is to learn about hollow fiber membrane technologies and how they